JP2001351628A - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP2001351628A
JP2001351628A JP2000170120A JP2000170120A JP2001351628A JP 2001351628 A JP2001351628 A JP 2001351628A JP 2000170120 A JP2000170120 A JP 2000170120A JP 2000170120 A JP2000170120 A JP 2000170120A JP 2001351628 A JP2001351628 A JP 2001351628A
Authority
JP
Japan
Prior art keywords
titanium oxide
lithium titanium
secondary battery
battery
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000170120A
Other languages
Japanese (ja)
Other versions
JP4639432B2 (en
Inventor
堅一 ▲高▼田
Kenichi Takada
Nobuharu Koshiba
信晴 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000170120A priority Critical patent/JP4639432B2/en
Publication of JP2001351628A publication Critical patent/JP2001351628A/en
Application granted granted Critical
Publication of JP4639432B2 publication Critical patent/JP4639432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery that has a voltage gradient from the beginning to the completion of charge and discharge period and is improved in the detection precision of the residual capacity from the charge and discharge voltage in a battery which uses lithium titanium oxide in one of the positive electrode and the negative electrode. SOLUTION: The non-aqueous secondary battery is composed of a basic structure of a positive electrode, a negative electrode and a non-aqueous electrolyte and uses a lithium titanium oxide which has a spinel structure and expressed in a general formula Li1+XTi2-XO4 (X=-0.2-1/3) and amorphous in a part of the region in one of the positive electrode and the negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、移動用直流電源、
バックアップ用電源などに用いられ、正負極のいずれか
一方にスピネル構造を有するリチウムチタン酸化物を用
いた非水系二次電池に関する。
TECHNICAL FIELD The present invention relates to a mobile DC power supply,
The present invention relates to a non-aqueous secondary battery used for a backup power supply or the like and using a lithium titanium oxide having a spinel structure for one of a positive electrode and a negative electrode.

【0002】[0002]

【従来の技術】近年のエレクトロニクス分野における技
術の急速な発展により、電子機器の小型化が進み、それ
ら機器の電源として、小型軽量で高エネルギー密度を有
する充電が可能な非水電解系の二次電池、特にリチウム
を活物質に用いた二次電池の需要が高まっている。これ
ら電池の中で、負極に金属リチウムを用いたものは、エ
ネルギー密度の面で最も好ましいが、充放電の繰り返し
によってリチウム負極表面にデンドライトと呼ばれる樹
脂状の結晶が成長し、充放電サイクル寿命が著しく損な
われる欠点を有している。そこで、負極にリチウムの吸
蔵・放出が可能な材料を用いた構成が検討されている。
このような負極材料としては、五酸化ニオブやスピネル
型リチウムチタン酸化物などの金属酸化物、人造黒鉛な
どの炭素材料、さらにリチウム−アルミニウム合金等の
リチウム合金を用いたリチウム二次電池が提案されてい
る。
2. Description of the Related Art With the rapid development of technology in the field of electronics in recent years, electronic devices have been miniaturized, and as a power source for such devices, a secondary of a small, lightweight, chargeable non-aqueous electrolytic system having a high energy density has been developed. There is an increasing demand for batteries, particularly secondary batteries using lithium as an active material. Among these batteries, those using metallic lithium for the negative electrode are most preferable in terms of energy density, but resin-like crystals called dendrites grow on the surface of the lithium negative electrode due to repeated charge and discharge, and the charge and discharge cycle life is extended. It has the disadvantage of being severely impaired. Therefore, a configuration using a material capable of inserting and extracting lithium for the negative electrode has been studied.
As such a negative electrode material, a lithium secondary battery using a metal oxide such as niobium pentoxide or spinel type lithium titanium oxide, a carbon material such as artificial graphite, and a lithium alloy such as a lithium-aluminum alloy has been proposed. ing.

【0003】上記のリチウムの吸蔵・放出が可能な材料
において、スピネル型リチウムチタン酸化物、特に結晶
性のものは、リチウムイオンの吸蔵、放出がスムーズに
行われ易く、且つ充放電の繰り返しによるデンドライト
の発生もないため、長期にわたる充放電サイクル特性に
優れている。さらに、Li/Li+ に対して1.5V付
近で非常に平坦な充放電曲線を有していることから、こ
の酸化物を負極に用いたリチウム二次電池が実用化され
ている(例えば特開平6−275263号公報に記
載)。このような負極としての適用に加え、スピネル型
リチウムチタン酸化物は、充放電の電位が低いという特
徴を有することから、正極としての適用も検討されてい
る。この正極に組み合わされる負極として、Li/Li
+ に対して0.5V以下と比較的低い電位にある炭素
(特開平10−64592号公報)や、酸化ケイ素(特
開平10−162828号公報)が提案されている。
Among the above materials capable of inserting and extracting lithium, spinel-type lithium titanium oxides, especially crystalline ones, can easily occlude and release lithium ions, and have dendrites by repeated charge and discharge. Since there is no occurrence of aging, it is excellent in long-term charge-discharge cycle characteristics. Further, since it has a very flat charge / discharge curve at around 1.5 V with respect to Li / Li + , a lithium secondary battery using this oxide as a negative electrode has been put to practical use (for example, No. 6-275263). In addition to such application as a negative electrode, spinel-type lithium titanium oxide is characterized by its low charge / discharge potential, and therefore its application as a positive electrode is also being studied. As a negative electrode combined with this positive electrode, Li / Li
Carbon (JP-A-10-64592) and silicon oxide (JP-A-10-162828) having a relatively low potential of 0.5 V or less with respect to + have been proposed.

【0004】[0004]

【発明が解決しようとする課題】上記のような二次電池
を電源に用いる最近の電子機器では、電池の残存容量を
検知する機能は必要不可欠なものとなっている。さらに
最近では、機器側の消費電力増加による電池の高容量化
と、機器重量の低減を目的とした軽量化という相反する
要求を満たすために、限られた電池の容量を有効に活用
する必要がある。
In a recent electronic device using a secondary battery as a power supply as described above, a function of detecting the remaining capacity of the battery is indispensable. More recently, in order to meet the conflicting demands for higher battery capacity due to increased power consumption on the device side and weight reduction for the purpose of reducing device weight, it is necessary to effectively utilize limited battery capacity. is there.

【0005】そこで、電池の放電容量を検知する方法と
して、充放電電流および電圧を測定し、電池容量を検
出、表示する方法が種々提案されている。しかしこの方
法では、電子機器の重量増加を招いてしまい、携帯性を
重視した機器には好適ではない。そこで、電池電圧と残
存容量の関係を予めメモリに設定し、電池電圧の測定値
から残存容量を検出する構成が採用されている。
Therefore, as a method for detecting the discharge capacity of a battery, various methods have been proposed for measuring the charge / discharge current and voltage, and detecting and displaying the battery capacity. However, this method causes an increase in the weight of the electronic device, and is not suitable for a device that emphasizes portability. Therefore, a configuration is adopted in which the relationship between the battery voltage and the remaining capacity is set in a memory in advance, and the remaining capacity is detected from the measured value of the battery voltage.

【0006】前記スピネル型リチウムチタン酸化物は、
充放電時に平坦な電位変化を示し、充放電の各末期にお
いて急激な電位変化を示す特性がある。このため、リチ
ウムチタン酸化物を正負極の何れかに用いた電池では、
電圧が平坦に変位する領域では充放電に伴う電圧変化が
少ないことから残存容量の検出が行い難く、さらに電圧
が急激に変位する領域では残存容量の微小な増減に対し
て電圧が大きく変動することから、電圧レベルに基づく
残存容量の検出精度が低下する問題点を有している。
[0006] The spinel-type lithium titanium oxide comprises:
There is a characteristic that shows a flat potential change at the time of charging and discharging, and shows a sharp potential change at each end of charging and discharging. Therefore, in a battery using lithium titanium oxide for either of the positive and negative electrodes,
It is difficult to detect the remaining capacity in the area where the voltage is flatly displaced due to the small voltage change due to charge and discharge, and in the area where the voltage is rapidly changed, the voltage fluctuates greatly with small changes in the remaining capacity. Therefore, there is a problem that the detection accuracy of the remaining capacity based on the voltage level is reduced.

【0007】本発明は、以上のような残存容量の検出精
度面での不都合を解消するものであり、その目的とする
ところは、リチウムチタン酸化物を用いた電池が放電初
期から終了までの期間において電圧勾配を有し、充電電
圧の変化による残存容量の検出精度を向上させた非水系
二次電池を提供するものである。
An object of the present invention is to solve the above-described disadvantages in the detection accuracy of the remaining capacity. It is an object of the present invention to provide a battery using lithium titanium oxide for a period from the initial discharge to the end of discharge. The present invention provides a non-aqueous secondary battery having a voltage gradient and improving detection accuracy of the remaining capacity due to a change in charging voltage.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の非水系二次電池は、正極、負極及び非水
電解質を基本構成とし、前記正極、負極の何れか一方
に、スピネル構造を有する一般式Li1+X Ti2-X 4
(X=−0.2〜1/3)で示され、且つ少なくとも一
部の領域がアモルファス状にあるリチウムチタン酸化物
を用いるものである。
Means for Solving the Problems To solve the above problems, a nonaqueous secondary battery of the present invention has a basic structure of a positive electrode, a negative electrode, and a nonaqueous electrolyte. General formula Li 1 + X Ti 2-X O 4 having spinel structure
(X = −0.2 to 3), and at least a part of the region uses an amorphous lithium titanium oxide.

【0009】本発明の非水系二次電池は、充放電カーブ
が残存容量の増減に対応して放電電圧も変化する傾斜型
となり、充放電電圧の測定による残存容量の検出精度が
向上する。さらに、アモルファス化されたリチウムチタ
ン酸化物は、アモルファス化される前段階の結晶構造が
スピネル型であることから、良好な充放電の可逆性を有
しており、且つ充放電の繰り返しによる充放電カーブの
変化も少ない。このため、充放電の繰り返しによる劣化
が進行した状態であっても、検出精度を維持できる。
[0009] The non-aqueous secondary battery of the present invention is of a slope type in which the charge / discharge curve changes the discharge voltage in accordance with the increase / decrease in the remaining capacity, and the accuracy of detecting the remaining capacity by measuring the charge / discharge voltage is improved. Further, the amorphous lithium titanium oxide has good reversibility of charge / discharge because the crystal structure before the amorphization is a spinel type, and the charge / discharge by repeated charge / discharge. There is little change in the curve. For this reason, the detection accuracy can be maintained even in a state where deterioration due to repeated charge and discharge has progressed.

【0010】さらに本発明に係るリチウムチタン酸化物
は、アモルファス相単独、あるいは結晶性の領域とアモ
ルファス相の領域が共存する結晶構造を有する。これら
の結晶構造のスピネル型リチウムチタン酸化物では、還
元電位はLi/Li+ に対し2V付近より始まり、0.
5V付近まで緩やかな電位変化を保って進行する特性を
示し、酸化反応は先の電位から僅かに上昇し、逆方向に
進行する特性を示す。前記特性を示す理由としては、電
極材料中にアモルファス化されたリチウムチタン酸化物
が存在することで、生成物が均一に変化する反応が生
じ、反応に伴う生成物の電位変化により、常に電位が変
化する均一反応が生ずる。このため、緩やかなS字状を
示す電位勾配を生ずることと推定される。一方、結晶性
のスピネル型リチウムチタン酸化物は、反応物と生成物
が共存し、反応の進行により生成物の割合が増加する。
このため、一定の電位で酸化還元反応が進行し、充放電
時に平坦な電位変化を示すことになる。
Further, the lithium titanium oxide according to the present invention has a crystal structure in which an amorphous phase alone or a crystalline region and an amorphous phase region coexist. In the spinel-type lithium-titanium oxide having such a crystal structure, the reduction potential starts at around 2 V with respect to Li / Li +, and the potential decreases to 0.1 V.
It shows a characteristic that proceeds with a gradual change in potential up to around 5 V, and the oxidation reaction slightly rises from the previous potential and shows a characteristic of proceeding in the opposite direction. The reason for exhibiting the characteristics is that the presence of the amorphous lithium titanium oxide in the electrode material causes a reaction in which the product changes uniformly, and the potential always changes due to the potential change of the product accompanying the reaction. A varying homogeneous reaction results. For this reason, it is estimated that a potential gradient showing a gentle S-shape is generated. On the other hand, in the crystalline spinel-type lithium titanium oxide, the reactant and the product coexist, and the proportion of the product increases as the reaction proceeds.
Therefore, the oxidation-reduction reaction proceeds at a constant potential, and shows a flat potential change during charge and discharge.

【0011】従って、アモルファス相からなる領域を含
むスピネル構造のリチウムチタン酸化物を正極あるいは
負極に用いた場合、組み合わせる正極が平坦な充放電電
位を有する活物質であれば、構成された電池は緩やかな
S字状となる電圧勾配を有した充放電曲線を示すことに
なる。
Therefore, when lithium titanium oxide having a spinel structure including a region composed of an amorphous phase is used as a positive electrode or a negative electrode, if the positive electrode to be combined is an active material having a flat charge / discharge potential, the constructed battery is slow. This shows a charge / discharge curve having a voltage gradient that has an S-shaped shape.

【0012】本発明のリチウムチタン酸化物におけるア
モルファス相は、CuKα線を用いたX線回折パターン
において面間隔2.50〜2.54Åに回折ピークを有
し、その半価幅が0.12°以上になる。電極材料に占
めるアモルファス相の割合が高い多い状態では、回折ピ
ークがブロードになり、半価幅が大きくなる。本発明者
らが詳細な検討を行った結果、スピネル型リチウムチタ
ン酸化物を特徴づける面間隔2.50〜2.54Åにお
いて、半価幅が0.12°未満では結晶性が高く、アモ
ルファス相の占める割合が低いことから、精度の高い残
存容量検出に対応し得る電位勾配を示す充放電曲線を得
ることができない。一方、半価幅が0.12°以上で
は、アモルファス相の占める割合が高くなり、S字状の
電位勾配を示す充放電曲線を得ることができた。
The amorphous phase in the lithium titanium oxide of the present invention has a diffraction peak at an interplanar spacing of 2.50 to 2.54 ° in an X-ray diffraction pattern using CuKα ray, and has a half width of 0.12 °. That is all. In a state where the proportion of the amorphous phase in the electrode material is high, the diffraction peak becomes broad and the half width becomes large. As a result of a detailed study performed by the present inventors, the crystallinity was high when the half width was less than 0.12 ° and the amorphous phase was 2.50 to 2.54 °, which is a characteristic of the spinel-type lithium titanium oxide. , The charge / discharge curve showing the potential gradient corresponding to the accurate detection of the remaining capacity cannot be obtained. On the other hand, when the half width was 0.12 ° or more, the proportion occupied by the amorphous phase increased, and a charge / discharge curve showing an S-shaped potential gradient could be obtained.

【0013】このように、本発明のスピネル構造を有す
るリチウムチタン酸化物における結晶構造は、回折パタ
ーンにおける半価幅から評価することが可能であり、必
要とする電池特性を得るのに適した酸化物を選択するこ
とができる。
As described above, the crystal structure of the lithium titanium oxide having a spinel structure of the present invention can be evaluated from the half width in the diffraction pattern, and the oxidization suitable for obtaining the required battery characteristics is obtained. You can choose things.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態について
説明する。実施形態に基づいて具体的に説明する。尚、
以下の実施形態は、本発明の一例であって、本発明の技
術的範囲を限定するものではない。
Embodiments of the present invention will be described below. A specific description will be given based on the embodiment. still,
The following embodiments are examples of the present invention, and do not limit the technical scope of the present invention.

【0015】本発明に係るアモルファス相からなる領域
を含むスピネル型リチウムチタン酸化物は、リチウム化
合物と酸化チタンとを混合し、混合物を700〜100
0℃の温度範囲にて熱処理を施すことによって得られた
スピネル型リチウムチタン酸化物を形成した後、遊星ボ
ールミルにて微粉砕することで形成される。尚、遊星ボ
ールミルに替えて超急冷凝固等を用いてアモルファス相
を形成する構成も可能であり、アモルファス相からなる
領域を備えたリチウムチタン酸化物であれば、他の方法
であっても良い。
The spinel-type lithium-titanium oxide containing a region composed of an amorphous phase according to the present invention is obtained by mixing a lithium compound with titanium oxide and mixing the mixture with 700 to 100%.
After forming a spinel-type lithium titanium oxide obtained by performing a heat treatment in a temperature range of 0 ° C., it is formed by finely pulverizing with a planetary ball mill. It should be noted that a configuration in which an amorphous phase is formed by using ultra-rapid solidification instead of a planetary ball mill is also possible, and other methods may be used as long as they are lithium titanium oxide having a region composed of an amorphous phase.

【0016】本発明のスピネル型リチウムチタン酸化物
は一般式Li1+X Ti2-X 4 (−0.2≦X≦1/
3)で表される。その中でも代表的な組成としては、L
0.8Ti2.2 4 ,LiTi2 4 ,Li4/3 Ti
5/3 4 などがあり、いずれも良好な充放電サイクル特
性を有している。特にLi4/3 Ti5/3 4 は、充放電
サイクルに加え、量産の容易性の面でも優れており、工
業的に有効である。
The spinel-type lithium titanium oxide of the present invention has the general formula Li 1 + X Ti 2-X O 4 (−0.2 ≦ X ≦ 1 /
It is represented by 3). Among them, a typical composition is L
i 0.8 Ti 2.2 O 4 , LiTi 2 O 4 , Li 4/3 Ti
5/3 O 4 and the like, all of which have good charge / discharge cycle characteristics. In particular, Li 4/3 Ti 5/3 O 4 is excellent in terms of ease of mass production in addition to charge / discharge cycles and is industrially effective.

【0017】(第1の実施形態)第1の実施形態とし
て、本発明に係るスピネル構造を有するリチウムチタン
酸化物を正極に用いた非水系二次電池について説明す
る。
(First Embodiment) As a first embodiment, a non-aqueous secondary battery using a lithium titanium oxide having a spinel structure according to the present invention as a positive electrode will be described.

【0018】アモルファス相からなる領域を含むリチウ
ムチタン酸化物は、以下の手順にて作成した。まず、酸
化チタン1モルに対して水酸化リチウムを4/5モル混
合し、酸素雰囲気中にて800℃で8時間熱処理し、ス
ピネル型リチウムチタン酸化物を作成した。このスピネ
ル型リチウムチタン酸化物を遊星ボールミルで1、3、
5、10時間粉砕した。粉砕したリチウムチタン酸化物
をCuKαをターゲットとして使用したX線回折で測定
した場合の面間隔2.50〜2.54Åに対応する回折
ピークの半価幅を表1に示す。
A lithium titanium oxide containing a region composed of an amorphous phase was prepared by the following procedure. First, 4/5 mol of lithium hydroxide was mixed with 1 mol of titanium oxide, and heat-treated at 800 ° C. for 8 hours in an oxygen atmosphere to prepare a spinel-type lithium titanium oxide. This spinel-type lithium titanium oxide is 1, 3 in a planetary ball mill.
Grinding for 5, 10 hours. Table 1 shows the half widths of the diffraction peaks corresponding to the interplanar spacing of 2.50 to 2.54 ° when the ground lithium titanium oxide was measured by X-ray diffraction using CuKα as a target.

【0019】[0019]

【表1】 [Table 1]

【0020】粉砕時間が長くなるのに伴い、半価幅が大
きくなっている。これらの試料を90wt%、導電材で
あるアセチレンブラック5wt%および結着剤であるフ
ッ素樹脂を5wt%の重量比になるように混練し、直径
15mm、厚み0.6mmの大きさになるようペレット
成形し、250℃で真空乾燥によって、脱水処理したも
のを正極として用いた。ここで、リチウムチタン酸化物
の充填量は100mgとした。
As the grinding time increases, the half width increases. 90% by weight of these samples, 5% by weight of acetylene black as a conductive material and 5% by weight of a fluororesin as a binder were kneaded at a weight ratio of 5% by weight, and pellets having a diameter of 15 mm and a thickness of 0.6 mm were obtained. What was molded and dehydrated by vacuum drying at 250 ° C. was used as a positive electrode. Here, the filling amount of lithium titanium oxide was 100 mg.

【0021】次に得られた正極を用いて偏平形電池を作
成した。図1は、本実施形態に係る非水系電池の断面図
である。この図1において、ケース1は正極端子を兼ね
ており、厚さ0.5mmのステンレス鋼からなる。封口
板2は負極端子を兼ねており、ケース1と同様に厚さ
0.5mmのステンレス鋼からなる。ポリプロピレン製
のガスケット3は、ポリケース1と封口板2を絶縁して
おり、厚さ約0.3mmで断面が略L字形に成型されて
いる。正極4は上記の手順にて作成されたリチウムチタ
ン酸化物からなる。負極5は、金属リチウムを用いた。
シート状の金属リチウムを直径15mm、厚み0.6m
mの形状に打ち抜き、これを封口板内面に配置した。セ
パレータ6は厚み0.3mmのポリプロピレン製不織布
である。また、電解液はプロピレンカーボネート(P
C)、エチレンカーボネート(EC)、1,2−ジメト
キシエタン(DME)の等容積混合溶媒にLiPF6
1モル/lの割合で溶解させたものである。作製された
電池は、外径20mm、高さ2.0mmの形状となる。
Next, a flat battery was prepared using the obtained positive electrode. FIG. 1 is a sectional view of the nonaqueous battery according to the present embodiment. In FIG. 1, case 1 also serves as a positive electrode terminal, and is made of stainless steel having a thickness of 0.5 mm. The sealing plate 2 also serves as a negative electrode terminal, and is made of stainless steel having a thickness of 0.5 mm, like the case 1. The gasket 3 made of polypropylene insulates the poly case 1 and the sealing plate 2 and is formed to have a thickness of about 0.3 mm and a substantially L-shaped cross section. The positive electrode 4 is made of the lithium titanium oxide prepared by the above procedure. The negative electrode 5 used metallic lithium.
Metallic lithium sheet is 15mm in diameter and 0.6m in thickness
m, and this was placed on the inner surface of the sealing plate. The separator 6 is a 0.3-mm-thick polypropylene nonwoven fabric. The electrolyte is propylene carbonate (P
LiPF 6 is dissolved in an equal volume mixed solvent of C), ethylene carbonate (EC) and 1,2-dimethoxyethane (DME) at a ratio of 1 mol / l. The fabricated battery has an outer diameter of 20 mm and a height of 2.0 mm.

【0022】(第2の実施形態)第2の実施形態とし
て、本発明に係るリチウムチタン酸化物を負極に用いた
非水形電池について説明する。
Second Embodiment As a second embodiment, a non-aqueous battery using the lithium titanium oxide according to the present invention for a negative electrode will be described.

【0023】実施の形態1と同様に、酸化チタンと水酸
化リチウムを混合、熱処理してスピネル型リチウムチタ
ン酸化物を作成した。これを遊星ボールミルで1、3、
5、10時間粉砕し、表1に示す半価幅を有するスピネ
ル型リチウムチタン酸化物を得た。これらを100mg
ずつ秤量し、直径15mm、厚み0.6mmのペレット
に成形し、さらに乾燥・脱水処理を施した。さらに、こ
れら負極ペレットを電解液に浸漬し、リチウムを吸蔵さ
せることで負極ペレットを得た。
As in Embodiment 1, titanium oxide and lithium hydroxide were mixed and heat-treated to prepare a spinel type lithium titanium oxide. This is a planetary ball mill, 1, 3,
Pulverization was performed for 5 or 10 hours to obtain a spinel-type lithium titanium oxide having a half width shown in Table 1. 100mg of these
Each was weighed, formed into a pellet having a diameter of 15 mm and a thickness of 0.6 mm, and further subjected to drying and dehydration treatment. Furthermore, these negative electrode pellets were immersed in an electrolytic solution to occlude lithium, thereby obtaining negative electrode pellets.

【0024】正極には、Li/Li+ に対して3.0V
の電位を有するリチウムマンガン酸化物を用いた。マン
ガンとリチウムを焼成して得たLiMnO2を90重量
%、カ−、導電材であるアセチレンブラック5重量%お
よび結着剤であるフッ素樹脂を5重量%の重量比になる
ように混練し、直径15mm、厚み0.6mmのペレッ
トに成形し、250℃での真空乾燥、及び脱水処理を施
した。
The positive electrode has a voltage of 3.0 V with respect to Li / Li + .
Lithium manganese oxide having the following potential was used. 90% by weight of LiMnO 2 obtained by calcining manganese and lithium, kneading a car, 5% by weight of acetylene black as a conductive material, and 5% by weight of a fluororesin as a binder, and It was formed into a pellet having a diameter of 15 mm and a thickness of 0.6 mm, and was subjected to vacuum drying at 250 ° C. and dehydration treatment.

【0025】得られた正極、負極の各ペレットを用いて
図1に示す偏平形電池を作製した。尚、前記ペレットを
除く構成部品については、実施の形態1と同様とする。
Using the obtained pellets of the positive electrode and the negative electrode, a flat battery as shown in FIG. 1 was produced. The components other than the pellets are the same as in the first embodiment.

【0026】[0026]

【実施例】(実施例1)第1の実施例として、第1の実
施形態にて作製された電池を用いて評価を実施した。正
極4は、リチウムチタン酸化物の粉砕時間を0h、1
h、3h、5h、10hとして得られたものを用いた。
これら正極のそれぞれに対し電池を作製し、電池A、電
池B、電池C、電池D、電池Eを得た。
EXAMPLES (Example 1) As a first example, evaluation was performed using the battery manufactured in the first embodiment. The positive electrode 4 has a pulverization time of lithium titanium oxide of 0 h, 1
h, 3h, 5h, and 10h were used.
Batteries were prepared for each of these positive electrodes to obtain Batteries A, B, C, D, and E.

【0027】放電試験は、室温で定電流1mAで放電
し、0.5Vに至るまでの放電維持電圧を図2に示し
た。図2から明らかなように、粉砕時間を長くすること
により、つまり半価幅が大きくすることにより、放電の
電圧勾配は大きくなる。放電容量の10%当たり、粉砕
をしていない電池Aでは約2mV、粉砕時間の短い電池
Bでは約5mVであるのに対して、粉砕時間が長く、半
価幅が0.12°以上の電池C、D、Eは50mV以上
と大きく、電圧チェックによる残存容量の検知が容易に
なった。
In the discharge test, the battery was discharged at a constant current of 1 mA at room temperature, and the discharge sustaining voltage up to 0.5 V is shown in FIG. As apparent from FIG. 2, the voltage gradient of the discharge is increased by increasing the pulverization time, that is, by increasing the half width. A battery with a long pulverization time and a half-value width of 0.12 ° or more, while the battery A without pulverization has a pulverization time of about 2 mV and a battery B with a short pulverization time of about 5 mV per 10% of the discharge capacity. C, D, and E were as large as 50 mV or more, and it was easy to detect the remaining capacity by voltage check.

【0028】半価幅が0.12°以上でアモルファスの
割合が増えても電圧勾配があまり大きく変化しないの
は、遊星ボールミルを使用して粉砕した場合、粒子の表
面が摩擦によってアモルファス化し易くなり、半価幅が
0.12°以上において、粒子表面がアモルファス状で
覆われてしまうためと思われる。
The reason why the voltage gradient does not change so much even when the ratio of amorphous phase is increased when the half width is 0.12 ° or more is that when the particles are ground using a planetary ball mill, the surface of the particles tends to become amorphous due to friction. If the half width is 0.12 ° or more, it is considered that the particle surface is covered in an amorphous state.

【0029】(実施例2)第2の実施例として、第2の
実施形態にて作製された電池を用いて評価を実施した。
負極5は、リチウムチタン酸化物の粉砕時間を0h、1
h、3h、5h、10hとして得られたものを用いた。
これら負極のそれぞれに対し電池を作製し、電池F、電
池G、電池H、電池I、電池Jを得た。
(Example 2) As a second example, evaluation was performed using the battery manufactured in the second embodiment.
The negative electrode 5 has a pulverization time of lithium titanium oxide of 0 h,
h, 3h, 5h, and 10h were used.
Batteries were prepared for each of these negative electrodes to obtain Battery F, Battery G, Battery H, Battery I, and Battery J.

【0030】放電試験は、室温で定電流1mAで放電
し、0.5Vに至るまでの放電維持電圧を図3に示し
た。図3からも明らかなように、実施例1と同様に粉砕
時間が長く、半価幅が0.12°以上の電池H、I、J
は電圧勾配は大きく、電圧チェックによる残存容量の検
知が容易になった。
In the discharge test, the battery was discharged at a constant current of 1 mA at room temperature, and the discharge sustaining voltage up to 0.5 V is shown in FIG. As is clear from FIG. 3, batteries H, I, and J having a long pulverization time and a half-value width of 0.12 ° or more as in Example 1.
Has a large voltage gradient, which makes it easier to detect the remaining capacity by voltage check.

【0031】次に、図4には1mAの定電流で2.5V
から0.5Vの間で充放電をくり返したときに得られる
各電池の放電容量の変化を示したものである。いずれの
電池も100サイクルまで安定に推移しており、アモル
ファス状のリチウムチタン酸化物を共存させても可逆性
が失われることはない。リチウムチタン酸化物結晶への
充放電中のリチウムイオンのリチウムイオンのドープ、
アンドープの反応は、結晶格子をほとんどゆがめること
がないためであるが、アモルファス状のリチウムチタン
酸化物を共存させても同様の理由と考えられる。
Next, FIG. 4 shows that a constant current of 1 mA and 2.5 V
5 shows changes in the discharge capacity of each battery obtained when charging and discharging are repeated between 0.5 and 0.5 V. All of the batteries are stable up to 100 cycles, and the reversibility is not lost even in the presence of amorphous lithium titanium oxide. Lithium ion doping of lithium ion during charging and discharging of lithium titanium oxide crystal,
This is because the undoped reaction scarcely distorts the crystal lattice, but it is considered that the same reason is obtained even when amorphous lithium titanium oxide is present.

【0032】[0032]

【発明の効果】以上の実施例から明らかなように、本発
明によれば、アモルファス状もしくはアモルファス状と
結晶性のものが共存するスピネル型リチウムチタン酸化
物を電極材料に用いることにより、電圧による残存容量
の検知が容易となるよう放電初期より終了まで電圧勾配
を有し、放電電圧による残存容量の検出を容易にするリ
チウム電池用電極材料を提供するものである。
As is clear from the above embodiments, according to the present invention, a spinel-type lithium titanium oxide in which an amorphous state or an amorphous state and a crystalline state coexist is used as an electrode material, so that the voltage An object of the present invention is to provide a lithium battery electrode material having a voltage gradient from the beginning to the end of discharge to facilitate detection of the remaining capacity and facilitating detection of the remaining capacity by the discharge voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1及び第2の実施形態に係る偏平形非水系二
次電池の断面図
FIG. 1 is a cross-sectional view of a flat nonaqueous secondary battery according to first and second embodiments.

【図2】実施例1における放電特性図FIG. 2 is a discharge characteristic diagram in Example 1.

【図3】実施例2における放電特性図FIG. 3 is a discharge characteristic diagram in Example 2.

【図4】実施例2における充放電サイクルと放電容量を
示す図
FIG. 4 is a diagram showing a charge / discharge cycle and a discharge capacity in Example 2.

【符号の説明】[Explanation of symbols]

1 ケース 2 封口板 3 ガスケット 4 正極 5 負極 6 セパレータ DESCRIPTION OF SYMBOLS 1 Case 2 Sealing plate 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator

フロントページの続き Fターム(参考) 5H029 AJ03 AK03 AL03 AM03 AM04 AM05 AM07 BJ03 BJ16 DJ16 DJ17 DJ18 HJ02 HJ13 5H050 AA08 BA17 CA07 CB03 EA10 EA24 FA12 FA17 FA19 FA20 GA05 HA02 HA13 Continued on the front page F term (reference) 5H029 AJ03 AK03 AL03 AM03 AM04 AM05 AM07 BJ03 BJ16 DJ16 DJ17 DJ18 HJ02 HJ13 5H050 AA08 BA17 CA07 CB03 EA10 EA24 FA12 FA17 FA19 FA20 GA05 HA02 HA13

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極及び非水電解質を基本構成と
する非水系二次電池であって、スピネル構造を有する一
般式Li1+X Ti2-X 4 (X=−0.2〜1/3)で
示され、且つ少なくとも一部の領域がアモルファス状に
あるリチウムチタン酸化物を、前記正極、負極の何れか
一方に用いることを特徴とする非水系二次電池。
1. A non-aqueous secondary battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte as a basic component, having a general formula Li 1 + X Ti 2-X O 4 (X = −0.2 to A non-aqueous secondary battery characterized by using, as one of the positive electrode and the negative electrode, lithium titanium oxide represented by (1/3) and at least a part of the region is in an amorphous state.
【請求項2】 リチウムチタン酸化物が結晶性の領域と
アモルファス状の領域を有する請求項1記載の非水系二
次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the lithium titanium oxide has a crystalline region and an amorphous region.
【請求項3】 リチウムチタン酸化物の表面層がアモル
ファス状にある請求項1記載の非水系二次電池。
3. The non-aqueous secondary battery according to claim 1, wherein the surface layer of the lithium titanium oxide is in an amorphous state.
【請求項4】 リチウムチタン酸化物がCuKα線を用
いたX線回折パターンにおいて面間隔2.50〜2.5
4Åに回折ピークを有し、その半価幅が0.12°以上
である請求項1記載の非水系二次電池。
4. An X-ray diffraction pattern using CuKα radiation, wherein the lithium titanium oxide has an interplanar spacing of 2.50 to 2.5.
The non-aqueous secondary battery according to claim 1, which has a diffraction peak at 4 ° and a half width of 0.12 ° or more.
【請求項5】 リチウムチタン酸化物がLi4/3 Ti
5/3 4 である請求項1記載の非水系二次電池。
5. The method according to claim 1, wherein the lithium titanium oxide is Li 4/3 Ti.
Non-aqueous secondary battery of claim 1, wherein a 5/3 O 4.
【請求項6】 リチウムチタン酸化物のアモルファス状
の領域が機械式粉砕法によって形成された請求項1記載
の非水系二次電池。
6. The non-aqueous secondary battery according to claim 1, wherein the amorphous region of lithium titanium oxide is formed by a mechanical pulverization method.
JP2000170120A 2000-06-07 2000-06-07 Non-aqueous secondary battery Expired - Lifetime JP4639432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000170120A JP4639432B2 (en) 2000-06-07 2000-06-07 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000170120A JP4639432B2 (en) 2000-06-07 2000-06-07 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2001351628A true JP2001351628A (en) 2001-12-21
JP4639432B2 JP4639432B2 (en) 2011-02-23

Family

ID=18672883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000170120A Expired - Lifetime JP4639432B2 (en) 2000-06-07 2000-06-07 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4639432B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032704A (en) * 2005-05-18 2009-02-12 Toshiba Corp Nonaqueous electrolyte battery, and lithium-titanium composite oxide
JP2012182077A (en) * 2011-03-02 2012-09-20 Toshiba Corp Nonaqueous electrolyte battery and battery pack
US8318351B2 (en) 2005-05-13 2012-11-27 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery containing a negative electrode of lithium-titanium composite oxide, battery pack and vehicle
US20120328950A1 (en) * 2009-10-15 2012-12-27 Sud-Chemie Ag Process for the preparation of finely dispersed lithium titanium spinels and their use
JP2021077445A (en) * 2019-11-05 2021-05-20 トヨタ自動車株式会社 Non-aqueous electrolyte battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334917A (en) * 1997-06-04 1998-12-18 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334917A (en) * 1997-06-04 1998-12-18 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8318351B2 (en) 2005-05-13 2012-11-27 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery containing a negative electrode of lithium-titanium composite oxide, battery pack and vehicle
US8541137B2 (en) 2005-05-13 2013-09-24 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery containing a negative electrode of lithium-titanium composite oxide, battery pack and vehicle
JP2009032704A (en) * 2005-05-18 2009-02-12 Toshiba Corp Nonaqueous electrolyte battery, and lithium-titanium composite oxide
US20120328950A1 (en) * 2009-10-15 2012-12-27 Sud-Chemie Ag Process for the preparation of finely dispersed lithium titanium spinels and their use
JP2012182077A (en) * 2011-03-02 2012-09-20 Toshiba Corp Nonaqueous electrolyte battery and battery pack
JP2021077445A (en) * 2019-11-05 2021-05-20 トヨタ自動車株式会社 Non-aqueous electrolyte battery
JP7259703B2 (en) 2019-11-05 2023-04-18 トヨタ自動車株式会社 Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP4639432B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
KR102115685B1 (en) Precursor for lithium transition metal oxide cathode materials for rechargeable batteries
KR101255853B1 (en) Nonaqueous electrolyte secondary battery
KR100687672B1 (en) Nonaqueous electrolyte secondary battery
JP2018014322A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2893327B2 (en) Electrodes and lithium secondary batteries
JPH11283624A (en) Lithium secondary battery and manufacture thereof
Kim et al. Synthesis and charge–discharge properties of LiNi1− x− yCoxMyO2 (M= Al, Ga) compounds
JP3929548B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2974213B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
JP3229544B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material
JP4639432B2 (en) Non-aqueous secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP2004362934A (en) Positive electrode material and battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JP3578503B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
JPH04253162A (en) Lithium secondary battery
JP3908829B2 (en) Positive electrode active material and non-aqueous secondary battery using the same
JP2615854B2 (en) Non-aqueous electrolyte secondary battery
JP2003086180A (en) Positive electrode active material of nonaqueous electrolyte secondary battery and secondary battery using it
KR100266074B1 (en) Lifemn2-xo4 as positive electrode material for 5v lithium secondary batteries
JP3680306B2 (en) Positive electrode plate for lithium battery and lithium battery
JP2004006293A (en) Positive electrode material, its manufacturing method, and battery using it
JP3278072B2 (en) Lithium battery
US7829223B1 (en) Process for preparing lithium ion cathode material
JP3406636B2 (en) Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070613

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R151 Written notification of patent or utility model registration

Ref document number: 4639432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

EXPY Cancellation because of completion of term