JP2001325960A - Lithium secondary cell - Google Patents

Lithium secondary cell

Info

Publication number
JP2001325960A
JP2001325960A JP2000141967A JP2000141967A JP2001325960A JP 2001325960 A JP2001325960 A JP 2001325960A JP 2000141967 A JP2000141967 A JP 2000141967A JP 2000141967 A JP2000141967 A JP 2000141967A JP 2001325960 A JP2001325960 A JP 2001325960A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
lithium secondary
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000141967A
Other languages
Japanese (ja)
Inventor
Akihiko Koiwai
明彦 小岩井
Toru Shiga
亨 志賀
Yasuhito Kondo
康仁 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000141967A priority Critical patent/JP2001325960A/en
Publication of JP2001325960A publication Critical patent/JP2001325960A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary cell using lithium-manganese compound oxide like LiMn2O4 having a long-life at high temperature for a positive electrode active material by improving the positive electrode. SOLUTION: The lithium secondary cell mainly structured by a positive electrode containing lithium-manganese compound oxide in at least a part of positive electrode active material, a negative electrode composed of materials which can store and discharge lithium reversibly, nonaqueous electrolyte which dissolves lithium salt in organic solvent, the positive electrode contains one or more additional agents selected from metaaluminate or metasilicate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,リチウムイオンの可逆的な吸蔵
・放出現象を利用したリチウム二次電池であって,その
正極活物質にリチウムマンガン複合酸化物を用いた高温
特性に優れたリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery utilizing reversible occlusion and release phenomena of lithium ions, and using a lithium manganese composite oxide as a positive electrode active material, a lithium secondary battery having excellent high temperature characteristics. Battery.

【0002】[0002]

【従来技術】リチウムイオンの吸蔵・放出を利用したリ
チウム二次電池は,高電圧でエネルギー密度が高いこと
から,パソコン,携帯電話等の小型化に伴い,情報機
器,通信機器の分野では実用化が進み,広く一般に普及
するに至っている。その一方で,環境問題,資源問題か
ら電気自動車の開発が急がれ,このリチウム二次電池を
電気自動車用電源として用いることも検討されている。
2. Description of the Related Art Lithium secondary batteries that utilize the insertion and extraction of lithium ions have high voltage and high energy density, and have become practical in the fields of information equipment and communication equipment as personal computers and mobile phones have become smaller. Has spread, and has spread widely to the general public. On the other hand, the development of electric vehicles has been rushed due to environmental problems and resource problems, and the use of this lithium secondary battery as a power source for electric vehicles is being studied.

【0003】これらのリチウム二次電池の正極活物質に
は,4V級の電池が構成できるものとして,LiCoO
2,LiNiO2,LiMn24等のリチウム遷移金属複
合酸化物が知られている。リチウム二次電池を,電気自
動車用電源として用いる場合,大量の活物質を用いなけ
ればならないことから,前記正極活物質の中で,資源量
が豊富で原料コストが低いLiMn24等のリチウムマ
ンガン複合酸化物が有利なものとなる。
As a positive electrode active material of these lithium secondary batteries, LiCoO 2 is used as a material capable of forming a 4V class battery.
Lithium transition metal composite oxides such as 2 , LiNiO 2 and LiMn 2 O 4 are known. When a lithium secondary battery is used as a power source for an electric vehicle, a large amount of active material must be used. Therefore, among the positive electrode active materials, lithium such as LiMn 2 O 4, which has abundant resources and low material cost, is used. Manganese composite oxides are advantageous.

【0004】しかし,LiMn24等のリチウムマンガ
ン複合酸化物を正極活物質に用いたリチウム二次電池
は,高温下で活物質からマンガンが溶出し,特に高温に
おける電池寿命が短いことが知られている。これに対し
て,スピネル構造のLiMn24の結晶構造を安定化さ
せマンガンの溶出を低減するために,マンガンサイトの
一部をリチウムで置換する方法(Y.Gao and J. R. Dah
n,J. Electrochem. Soc., 143, 100(1996)等に開示)
や,他金属で置換する方法(特開平04−160769
等に開示)が提案されている。しかし,スピネル構造の
LiMn24の高温特性を改善する効果は充分では無か
った。また,さらに高温特性を改善するために,特開平
10−241682号公報に示されるようにマンガンサ
イトの一部を他金属で置換したリチウムマンガン複合酸
化物をホウ素化合物で熱処理することにより表面処理を
施す方法が提案されている。
However, in a lithium secondary battery using a lithium manganese composite oxide such as LiMn 2 O 4 as a positive electrode active material, it is known that manganese elutes from the active material at a high temperature, and the battery life at high temperatures is particularly short. Have been. On the other hand, in order to stabilize the crystal structure of LiMn 2 O 4 having a spinel structure and reduce the elution of manganese, a method of partially replacing manganese sites with lithium (Y. Gao and JR Dah
n, J. Electrochem. Soc., 143, 100 (1996), etc.)
Or a method of substituting with another metal (Japanese Unexamined Patent Application Publication No.
Etc.) have been proposed. However, the effect of improving the high-temperature characteristics of LiMn 2 O 4 having a spinel structure was not sufficient. Further, in order to further improve the high-temperature characteristics, a surface treatment is performed by subjecting a lithium manganese composite oxide in which a part of a manganese site is substituted with another metal to a heat treatment with a boron compound as disclosed in Japanese Patent Application Laid-Open No. Hei 10-241682. A method of applying has been proposed.

【0005】[0005]

【解決しようとする課題】しかしながら,上記従来の方
法は,LiMn24等のリチウムマンガン複合酸化物を
正極活物質に用いたリチウム二次電池の高温寿命を改善
するものの,まだ,その改善効果は充分なものとはいえ
ない。また,特開平10−241682号公報に開示さ
れた方法では,熱処理が必要なため原料コストを引き上
げる原因となる。
However, the above conventional method improves the high-temperature life of a lithium secondary battery using a lithium manganese composite oxide such as LiMn 2 O 4 as a positive electrode active material, but it still has an effect of the improvement. Is not enough. In the method disclosed in Japanese Patent Application Laid-Open No. Hei 10-241682, heat treatment is required, which causes a rise in raw material costs.

【0006】本発明は,かかる従来の問題点に鑑みてな
されたもので,正極を改善することにより,高温寿命の
長いLiMn24等のリチウムマンガン複合酸化物を正
極活物質に用いたリチウム二次電池を提供しようとする
ものである。
The present invention has been made in view of the above-mentioned conventional problems. By improving a positive electrode, a lithium manganese composite oxide such as LiMn 2 O 4 having a long high-temperature life is used as a positive electrode active material. It is intended to provide a secondary battery.

【0007】[0007]

【課題の解決手段】本発明は,正極活物質の少なくとも
一部にリチウムマンガン複合酸化物を含む正極と,リチ
ウムを可逆的に吸蔵・放出可能な物質からなる負極と,
リチウム塩を有機溶媒に溶解した非水電解液を主要な構
成要素として構成されるリチウム二次電池において,上
記正極は,メタアルミン酸塩またはメタ珪酸塩から選ば
れる添加剤を1種以上含むことを特徴とするリチウム二
次電池にある。
According to the present invention, there is provided a positive electrode comprising a lithium manganese composite oxide in at least a part of a positive electrode active material, a negative electrode comprising a substance capable of reversibly storing and releasing lithium,
In a lithium secondary battery including a nonaqueous electrolyte in which a lithium salt is dissolved in an organic solvent as a main component, the positive electrode may include one or more additives selected from metaaluminates and metasilicates. It is a feature of the lithium secondary battery.

【0008】本発明において最も注目すべき点は,上記
正極が,メタアルミン酸塩(AlO 2 -塩)またはメタ珪
酸塩(SiO3 2-塩)から選ばれる添加剤を1種以上含
むことである。
The most remarkable point in the present invention is that
The positive electrode is a metaaluminate (AlO) Two -Salt) or metasilicon
Acid salt (SiOThree 2-Salt).
That is.

【0009】本発明によれば,メタアルミン酸塩または
メタ珪酸塩から選ばれる1種以上の塩をリチウムマンガ
ン複合酸化物を含む正極に添加することにより,特に高
温におけるリチウムマンガン複合酸化物と電解液との反
応を抑制することができ,これにより,それからのマン
ガンの溶出を低減し,高温における寿命を改善すること
ができる。
According to the present invention, by adding one or more salts selected from metaaluminates and metasilicates to a positive electrode containing a lithium manganese composite oxide, the lithium manganese composite oxide and the electrolyte, especially at a high temperature, are added. The reaction with manganese can be suppressed, whereby the elution of manganese therefrom can be reduced, and the life at high temperatures can be improved.

【0010】次に,請求項2の発明のように,上記メタ
アルミン酸塩およびメタ珪酸塩は,アルカリ金属塩また
はアルカリ土類金属塩であることが好ましい。また,請
求項3の発明のように,上記正極は,上記メタアルミン
酸塩およびメタ珪酸塩を正極活物質の重量に対して0.
1〜10重量%含むことが好ましい。
Next, as in the second aspect of the invention, the metaaluminate and the metasilicate are preferably an alkali metal salt or an alkaline earth metal salt. Further, as in the third aspect of the present invention, the positive electrode comprises the metaaluminate and the metasilicate in an amount of 0.1% based on the weight of the positive electrode active material.
It is preferable to contain 1 to 10% by weight.

【0011】[0011]

【発明の実施の形態】以下に,本発明のリチウム二次電
池の代表的な実施形態について説明する。本発明の二次
電池は,リチウムイオンを可逆的に吸蔵・放出可能な正
極および負極と,リチウム塩を有機溶媒に溶解させた非
水電解液とを主要な構成要素として構成される。正極
は,正極活物質と,メタアルミン酸塩またはメタ珪酸塩
から選ばれる少なくとも一種以上の添加剤と,導電材お
よび結着材とを混合し,適当な溶剤を加えてペースト状
の正極合材としたものを用いる。そしてこれをアルミニ
ウム等の金属箔製の集電体表面に塗布乾燥し,必要に応
じて電極密度を高めるべく圧縮して形成することができ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, typical embodiments of the lithium secondary battery of the present invention will be described. The secondary battery of the present invention is mainly composed of a positive electrode and a negative electrode capable of reversibly storing and releasing lithium ions, and a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent. The positive electrode is prepared by mixing a positive electrode active material, at least one additive selected from metaaluminates or metasilicates, a conductive material and a binder, and adding an appropriate solvent to form a paste-like positive electrode mixture. Use what was done. Then, this can be applied to the surface of a current collector made of a metal foil such as aluminum, dried and, if necessary, compressed to increase the electrode density.

【0012】正極活物質には,リチウムマンガン複合酸
化物の少なくとも一種を含む。リチウムマンガン複合酸
化物の例示として,スピネル構造のLiMn24を挙げ
ることができる。また,スピネル構造のLiMn2
4は,化学量論的組成のものに限られず,マンガンサイ
トの一部をリチウムで置換したLi1+xMn2-x4,他
金属Mで置換したLiMn2-yy4,リチウムおよび
他金属Mで置換したLi1+xMn2-x-yMyO4等の組成の
ものを用いることができる。さらに必要に応じて,上記
リチウムマンガン複合酸化物にLiCoO2,LiNi
2等を混合して正極活物質として用いることもでき
る。
[0012] The positive electrode active material contains at least one lithium manganese composite oxide. As an example of the lithium manganese composite oxide, LiMn 2 O 4 having a spinel structure can be given. In addition, LiMn 2 O having a spinel structure
4 is not limited to the stoichiometric composition, Li 1 + x Mn 2- x O 4 a part of manganese site was replaced with lithium, LiMn 2-y M y O 4 obtained by substituting other metals M, Li 1 + x Mn 2-xy MyO 4 substituted with lithium and another metal M can be used. Further, if necessary, LiCoO 2 , LiNi
O 2 and the like can be mixed and used as a positive electrode active material.

【0013】本発明の特徴をなす正極への添加剤である
メタアルミン酸塩またはメタ珪酸塩は,あらかじめ上記
正極活物質とよく混合した後に,導電材と結着材と溶剤
を併せて正極合材とすることができる。この場合,正極
活物質中の水分等の不純物を除去すべく,メタアルミン
酸塩またはメタ珪酸塩と混合された正極活物質を600
℃以下の温度で乾燥等の熱処理を施しても問題はない。
メタアルミン酸塩またはメタ珪酸塩は,安価であるとい
う利点を持つことから,アルカリ金属塩またはアルカリ
土類金属塩であることが望ましい。これらの例示とし
て,LiAlO2,NaAlO2,Ba(AlO22,L
2SiO3等を挙げることができる。
The metaaluminate or metasilicate, which is an additive to the positive electrode, which is a feature of the present invention, is mixed well with the positive electrode active material in advance, and then mixed with a conductive material, a binder, and a solvent to form a positive electrode mixture. It can be. In this case, in order to remove impurities such as moisture in the positive electrode active material, a positive electrode active material mixed with metaaluminate or metasilicate is used for 600 minutes.
There is no problem even if heat treatment such as drying is performed at a temperature of not more than ° C.
Metaaluminate or metasilicate is preferably an alkali metal salt or an alkaline earth metal salt because of its low cost advantage. Examples of these are LiAlO 2 , NaAlO 2 , Ba (AlO 2 ) 2 , L
i 2 SiO 3 and the like can be mentioned.

【0014】メタアルミン酸塩またはメタ珪酸塩の正極
への添加は,これらの総量が,正極活物質の重量に対し
て0.1重量%以上,10重量%以下とすることが望ま
しい。これは,メタアルミン酸塩およびメタ珪酸塩の総
量が0.1重量%未満の場合は,正極活物質からのマン
ガンの溶出に対して充分な抑制効果が得られず,構成し
たリチウム二次電池の高温寿命の充分な改善効果が得ら
れないためで,また,10重量%を超える場合は,構成
したリチウム二次電池の電池容量の低下が大きくなるた
めである。尚,実用的な添加割合としては,1重量%以
上5重量%以下とすることがより望ましい。
It is desirable that the total amount of metaaluminate or metasilicate added to the positive electrode be 0.1% by weight or more and 10% by weight or less based on the weight of the positive electrode active material. This is because when the total amount of metaaluminate and metasilicate is less than 0.1% by weight, a sufficient effect of suppressing the elution of manganese from the positive electrode active material cannot be obtained, and thus the lithium secondary battery constituted has This is because a sufficient improvement effect of the high-temperature life cannot be obtained, and when it exceeds 10% by weight, the battery capacity of the configured lithium secondary battery is greatly reduced. It is more preferable that the practical addition ratio be 1% by weight or more and 5% by weight or less.

【0015】導電材は,正極の電気伝導性を確保するた
めのものであり,例えば,カーボンブラック,アセチレ
ンブラック,黒鉛等の炭素物質粉状体の1種または2種
以上を混合したものを用いることができる。結着材は,
正極合材中の活物質等の固体状物質を繋ぎ止める役割を
果たすもので,例えば,ポリテトラフルオロエチレン,
ポリフッ化ビニリデン,フッ素ゴム等の含フッ素樹脂,
ポリプロピレン,ポリエチレン等の熱可塑性樹脂を用い
ることができる。また,ペースト状の正極合材を得るた
めに,溶剤としてN−メチル−2−ピロリドン等の有機
溶媒を用いることができる。
The conductive material is used to ensure the electrical conductivity of the positive electrode. For example, one or a mixture of two or more powdered carbon materials such as carbon black, acetylene black, and graphite is used. be able to. The binder is
It plays the role of anchoring a solid material such as an active material in the positive electrode mixture, for example, polytetrafluoroethylene,
Fluororesin such as polyvinylidene fluoride and fluoro rubber,
Thermoplastic resins such as polypropylene and polyethylene can be used. Further, in order to obtain a paste-like positive electrode mixture, an organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent.

【0016】負極には,金属リチウム,リチウム合金を
使用できる。ただし,これらを使用した場合,デンドラ
イトの析出という問題点があるために,これらに代え
て,正極同様,リチウムイオンを可逆的に吸蔵・放出で
きる負極活物質に結着材を混合し,適当な溶剤を加えて
ペースト状にした負極合材を,銅等の金属箔集電体の表
面に塗布乾燥し,必要に応じて電極密度を高めるべく圧
縮して形成することができる。
As the negative electrode, metallic lithium and lithium alloy can be used. However, when these are used, there is a problem of dendrite precipitation. Instead of these, as in the case of the positive electrode, a binder is mixed with a negative electrode active material capable of occluding and releasing lithium ions reversibly. The negative electrode mixture formed into a paste by adding a solvent can be formed by applying and drying the surface of a metal foil current collector such as copper and compressing it to increase the electrode density as necessary.

【0017】この場合,負極活物質として,例えば,天
然黒鉛,人造黒鉛,フェノール樹脂等の有機化合物焼成
体,コークス等の炭素物質の粉状体を用いることができ
る。また,この場合,負極結着材としては,正極同様に
ポリフッ化ビニリデン等の含フッ素樹脂等を,これらの
活物質と結着材を分散させる溶剤としてはN−メチル−
2−ピロリドン等の有機溶媒を用いることができる。
In this case, as the negative electrode active material, for example, an organic compound fired body such as natural graphite, artificial graphite, and phenol resin, and a powdered carbon material such as coke can be used. In this case, a fluorine-containing resin such as polyvinylidene fluoride or the like is used as the negative electrode binder similarly to the positive electrode, and N-methyl- is used as a solvent for dispersing these active materials and the binder.
An organic solvent such as 2-pyrrolidone can be used.

【0018】正極と負極との間に狭装されるセパレータ
は,正極と負極とを分離し電解液を保持するためのもの
であり,例えばポリエチレン,ポリプロピレン等の薄い
微多孔膜を用いることができる。非水電解液は,リチウ
ム塩を有機溶媒に溶解させたものを用いればよい。
The separator provided between the positive electrode and the negative electrode is for separating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a thin microporous film such as polyethylene or polypropylene can be used. . As the non-aqueous electrolyte, a solution in which a lithium salt is dissolved in an organic solvent may be used.

【0019】リチウム塩は有機溶媒に溶解することによ
って解離し,リチウムイオンとなって電解液中に存在す
る。使用できるリチウム塩としては,LiPF6,Li
BF4,LiClO4,LiCF3SO3,LiAsF6
LiN(CF3SO22,LiN(C25SO22が挙
げられる。これらのリチウム塩は,それぞれ単独で用い
てもよく,また,これらのもののうち2種以上を混合し
て用いることもできる。これらのリチウム塩の中でも,
電気化学的に高い安定性を持ち,イオン導電率も高いと
いう点を考慮すれば,LiPF6を用いることが望まし
い。
The lithium salt is dissociated by dissolving in an organic solvent and forms lithium ions in the electrolyte. Lithium salts that can be used include LiPF 6 , Li
BF 4 , LiClO 4 , LiCF 3 SO 3 , LiAsF 6 ,
LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 . These lithium salts may be used alone, or two or more of these lithium salts may be used in combination. Among these lithium salts,
Considering that it has high electrochemical stability and high ionic conductivity, it is preferable to use LiPF 6 .

【0020】リチウム塩を溶解させる有機溶媒には,非
プロトン性の有機溶媒を用いる。たとえば,環状カーボ
ネート,鎖状カーボネート,環状エステル,環状エーテ
ルあるいは鎖状エーテルの1種または2種以上からなる
混合溶媒を用いることができる。環状カーボネートの例
示としては,エチレンカーボネート,プロピレンカーボ
ネート,ブチレンカーボネート,ビニレンカーボネート
等が,鎖状カーボネートの例示としては,ジメチルカー
ボネート,ジエチルカーボネート,メチルエチルカーボ
ネート等が,環状エステルの例示としては,ガンマプチ
ルラクトン,ガンマバレルラクトン等が,環状エーテル
の例示としては,テトラヒドロフラン,2−メチルテト
ラヒドロフラン等が,また,鎖状エーテルの例示として
は,ジメトキシエタン,エチレングリコールジメチルエ
ーテル等がそれぞれ挙げられる。
An aprotic organic solvent is used as the organic solvent for dissolving the lithium salt. For example, a mixed solvent of one or more of cyclic carbonate, chain carbonate, cyclic ester, cyclic ether or chain ether can be used. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. Examples of the cyclic ester include gamma butyl. Examples of lactone, gamma barrel lactone and the like, examples of cyclic ethers include tetrahydrofuran and 2-methyltetrahydrofuran, and examples of chain ethers include dimethoxyethane and ethylene glycol dimethyl ether.

【0021】以上のものを主要構成要素として構成され
る本発明のリチウム二次電池であるが,その形状はコイ
ン型,カード型,円筒型,積層型等,種々のものとする
ことができる。いずれの形状を採る場合であっても,正
極と負極にセパレータを狭装させて電極体とし,正極集
電体および負極集電体から外部に通ずる正極端子および
負極端子までの間を集電用リード線等を用いて接続し,
この電極体に上記非水電解液を含浸させ,電池ケースに
密閉して電池を完成させることができる。
The lithium secondary battery of the present invention constituted as described above as a main constituent element can have various shapes such as a coin type, a card type, a cylindrical type, and a stacked type. Regardless of the shape, the separator is narrowed between the positive electrode and the negative electrode to form an electrode body, and the space between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside is used for current collection. Connect using lead wires, etc.
This electrode body is impregnated with the above non-aqueous electrolyte, and the battery case is sealed to complete the battery.

【0022】[0022]

【実施例】上記実施形態に基づいて,実際に18650
型サイズの円筒型リチウム二次電池を作製し,環境温度
60℃における高温サイクル試験を実施した。以下,こ
れらの内容について説明する。
EXAMPLE Based on the above embodiment, 18650 was actually
A cylindrical lithium secondary battery having a die size was manufactured, and a high-temperature cycle test at an ambient temperature of 60 ° C. was performed. Hereinafter, these contents will be described.

【0023】(実施例1)本実施例1のリチウム二次電
池は,正極活物質としてスピネル構造のLi1.1Mn1.8
Ni0.14を用いた。尚,このLi1.1Mn1.8Ni0.1
4はLi2CO3とMnO2とNiOとを11:36:2
のモル比で混合させたものを,850℃で加熱すること
により合成したものである。Li1.1Mn1.8Ni0.14
とLiAlO2とを重量比にして95:5となるようよ
く混合した後,200℃にて真空乾燥した。その後,こ
の混合物86重量部に,導電材としての黒鉛粉末を10
重量部,結着材としてのポリフッ化ビニリデン(PVd
F)を4重量部混合し,溶剤としてN−メチル−2−ピ
ロリドン(NMP)を適量加えてペースト状の正極合材
を得た。
Example 1 A lithium secondary battery of Example 1 has a spinel structure of Li 1.1 Mn 1.8 as a positive electrode active material.
Ni 0.1 O 4 was used. The Li 1.1 Mn 1.8 Ni 0.1
O 4 is composed of Li 2 CO 3 , MnO 2 and NiO at 11: 36: 2.
The mixture was synthesized by heating at 850 ° C. Li 1.1 Mn 1.8 Ni 0.1 O 4
And LiAlO 2 were mixed well at a weight ratio of 95: 5, and then vacuum dried at 200 ° C. Then, 10 parts of graphite powder as a conductive material were added to 86 parts by weight of the mixture.
Parts by weight, polyvinylidene fluoride (PVd
F) was mixed in an amount of 4 parts by weight, and an appropriate amount of N-methyl-2-pyrrolidone (NMP) was added as a solvent to obtain a paste-like positive electrode mixture.

【0024】次いで,この正極合材を,厚さ20μmの
アルミニウム箔集電体の両面に,片面あたり100μm
の厚さで塗布し,これを200℃で真空乾燥後,ロール
プレスにて片面あたり65μmの厚さまで密度を高め
て,正極を作製した。尚,この正極の面積は243cm
2とした。
Next, this positive electrode mixture was applied to both sides of a 20 μm-thick aluminum foil current collector at a thickness of 100 μm per side.
, And vacuum-dried at 200 ° C., and the density was increased to 65 μm per side by a roll press to produce a positive electrode. The area of this positive electrode was 243 cm.
And 2 .

【0025】負極活物質には,球状人造黒鉛MCMB2
5−28(大阪ガスケミカル製)を用いた。まず,この
球状人造黒鉛95重量部に,結着材としてPVdFを5
重量部混合し,溶剤としてNMPを適量加えて,ペース
ト状の負極合材を得た。次いで,この負極合材を,厚さ
10μmの銅箔集電体の片面あたり60μmの厚さで塗
布し,これを120℃で真空乾燥後,ロールプレスにて
片面あたり40μmの厚さまで密度を高めて負極を作製
した。尚,この負極の面積は280cm2とした。
As the negative electrode active material, spherical artificial graphite MCMB2 was used.
5-28 (manufactured by Osaka Gas Chemicals) was used. First, 5 parts by weight of PVdF as a binder was added to 95 parts by weight of the spherical artificial graphite.
Parts by weight were mixed and an appropriate amount of NMP was added as a solvent to obtain a paste-like negative electrode mixture. Next, this negative electrode mixture was applied in a thickness of 60 μm per side of a copper foil current collector having a thickness of 10 μm, dried in vacuum at 120 ° C., and then increased in density to a thickness of 40 μm per side by a roll press. To produce a negative electrode. The area of the negative electrode was 280 cm 2 .

【0026】上記正極を200℃で,また,負極を12
0℃で再度真空乾燥した後,露点−40℃のドライルー
ム内で,正極と負極を,厚さ25μmのポリエチレン製
微多孔膜からなるセパレータを介し対向させて捲回し,
ロール状の電極体を形成させた。この電極体を,エチレ
ンカーボネートとジエチルカーボネートとを体積比3:
7に混合した混合有機溶媒に電解質としてLiPF6
1Mの濃度となるように溶解させた非水電解液とともに
18650型電池ケース内に密封して,リチウム二次電
池を完成させた。このリチウム二次電池を実施例1のリ
チウム二次電池とした。
The above positive electrode was heated at 200 ° C.
After vacuum drying again at 0 ° C., in a dry room at a dew point of −40 ° C., the positive electrode and the negative electrode were wound facing each other via a separator made of a 25 μm-thick polyethylene microporous membrane,
A roll-shaped electrode body was formed. This electrode body was prepared by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 3:
7 was sealed in a 18650 type battery case together with a non-aqueous electrolytic solution in which LiPF 6 was dissolved as an electrolyte to a concentration of 1 M in the mixed organic solvent mixed in 7 to complete a lithium secondary battery. This lithium secondary battery was used as the lithium secondary battery of Example 1.

【0027】(実施例2)本実施例2のリチウム二次電
池は,実施例1のリチウム二次電池において,LiAl
2に代えてNaAlO2を正極に混合したものである。
添加率および他の電池構成は,実施例1のリチウム二次
電池と同様とした。
(Embodiment 2) The lithium secondary battery of Embodiment 2 is different from the lithium secondary battery of Embodiment 1 in that LiAl
It is a mixture of NaAlO 2 in the positive electrode instead of O 2 .
The addition ratio and other battery configurations were the same as those of the lithium secondary battery of Example 1.

【0028】(実施例3)本実施例3のリチウム二次電
池は,実施例1のリチウム二次電池において,LiAl
2に代えてBa(AlO22を正極に混合したもので
ある。添加率および他の電池構成は,実施例1のリチウ
ム二次電池と同様とした。
(Embodiment 3) The lithium secondary battery of Embodiment 3 is different from the lithium secondary battery of Embodiment 1 in that LiAl
It is obtained by mixing Ba (AlO 2 ) 2 in the positive electrode instead of O 2 . The addition ratio and other battery configurations were the same as those of the lithium secondary battery of Example 1.

【0029】(実施例4)本実施例4のリチウム二次電
池は,実施例1のリチウム二次電池において,LiAl
2に代えてLi2SiO3を正極に混合したものであ
る。添加率および他の電池構成は,実施例1のリチウム
二次電池と同様とした。
(Embodiment 4) The lithium secondary battery of Embodiment 4 is different from the lithium secondary battery of Embodiment 1 in that LiAl
It is a mixture of Li 2 SiO 3 in the positive electrode instead of O 2 . The addition ratio and other battery configurations were the same as those of the lithium secondary battery of Example 1.

【0030】(実施例5〜7)上記の実施例1〜4のリ
チウム二次電池では,正極活物質とメタアルミン酸塩ま
たはメタ珪酸塩を混合した後に,吸着水分を除去するた
めに200℃での真空乾燥を行った。この乾燥温度は,
必要に応じて200℃を超える高温で実施する場合も想
定できることから,実施例5〜7では,正極活物質とメ
タアルミン酸塩またはメタ珪酸塩との混合物を200℃
を超える温度で熱処理し,電池特性に与える影響を検討
した。
(Examples 5 to 7) In the lithium secondary batteries of Examples 1 to 4, after mixing the positive electrode active material and metaaluminate or metasilicate, at 200 ° C. to remove adsorbed moisture. Was vacuum dried. This drying temperature is
In Examples 5 to 7, a mixture of a positive electrode active material and a metaaluminate or metasilicate is used at a temperature of 200 ° C.
Heat treatment was performed at a temperature higher than the above, and the effect on battery characteristics was examined.

【0031】すなわち,実施例5のリチウム二次電池
は,実施例1のリチウム二次電池と同様に,Li1.1
1.8Ni0.14とLiAlO2とを重量比にして95:
5となるようよく混合した。その後,500℃の空気中
にて10時間この混合物を熱処理した。このLi1.1
1.8Ni0.14とLiAlO2との混合物を熱処理した
こと以外は,実施例1のリチウム二次電池の作製法と同
様とした。
That is, the lithium secondary battery of the fifth embodiment is similar to the lithium secondary battery of the first embodiment in that the Li 1.1 M
n 1.8 Ni 0.1 O 4 and LiAlO 2 in a weight ratio of 95:
5 and mixed well. Thereafter, the mixture was heat-treated in air at 500 ° C. for 10 hours. This Li 1.1 M
except that the heat-treated n 1.8 Ni 0.1 mixture of O 4 and LiAlO 2 were the same as in the preparation method of the lithium secondary battery of Example 1.

【0032】また,実施例6のリチウム二次電池は,実
施例5のリチウム二次電池において,LiAlO2に代
えてBa(AlO22を正極に混合したものである。添
加率および他の電池構成は,実施例1のリチウム二次電
池と同様とした。また,実施例7のリチウム二次電池
は,実施例5のリチウム二次電池において,LiAlO
2に代えてLi2SiO3を正極に混合したものである。
添加率および他の電池構成は,実施例1のリチウム二次
電池と同様とした。
The lithium secondary battery of Example 6 is the same as the lithium secondary battery of Example 5, except that Ba (AlO 2 ) 2 is mixed in the positive electrode instead of LiAlO 2 . The addition ratio and other battery configurations were the same as those of the lithium secondary battery of Example 1. The lithium secondary battery of the seventh embodiment is the same as the lithium secondary battery of the fifth embodiment except that
In this example, Li 2 SiO 3 was mixed in the positive electrode instead of 2 .
The addition ratio and other battery configurations were the same as those of the lithium secondary battery of Example 1.

【0033】(比較例1)本比較例1のリチウム二次電
池は,上記実施例1〜7のリチウム二次電池と異なり,
メタアルミン酸塩およびメタ珪酸塩のいずれをも添加し
ていない正極合材を用いて作製したリチウム二次電池で
ある。他の電池構成は,実施例1のリチウム二次電池と
同様とした。
Comparative Example 1 The lithium secondary battery of Comparative Example 1 is different from the lithium secondary batteries of Examples 1 to 7 above.
This is a lithium secondary battery manufactured using a positive electrode mixture into which neither metaaluminate nor metasilicate is added. Other battery configurations were the same as the lithium secondary battery of Example 1.

【0034】(比較例2)本比較例2のリチウム二次電
池は,実施例1のリチウム二次電池において,LiAl
2に代えてメタホウ酸リチウム(LiBO2)を正極に
混合したものである。添加率および他の電池構成は,実
施例1のリチウム二次電池と同様とした。
Comparative Example 2 The lithium secondary battery of Comparative Example 2 is the same as the lithium secondary battery of Example 1 except that
In this case, lithium metaborate (LiBO 2 ) is mixed with the positive electrode in place of O 2 . The addition ratio and other battery configurations were the same as those of the lithium secondary battery of Example 1.

【0035】(比較例3)本比較例3のリチウム二次電
池は,比較例2のリチウム二次電池と同様にLi 1.1
1.8Ni0.14とLiBO2とを重量比にして95:5
となるようよく混合した。その後,500℃の空気中に
て10時間この混合物を熱処理した。このLi1.1Mn
1.8Ni0.14とLiBO2の混合物を熱処理したこと以
外の電池構成は,比較例2のリチウム二次電池と同様と
した。
Comparative Example 3 The lithium secondary battery of Comparative Example 3
The pond was made of Li as in the lithium secondary battery of Comparative Example 2. 1.1M
n1.8Ni0.1OFourAnd LiBOTwo95: 5 by weight
And mixed well. Then, in the air of 500 ℃
The mixture was heat treated for 10 hours. This Li1.1Mn
1.8Ni0.1OFourAnd LiBOTwoHeat treatment of the mixture
The external battery configuration was the same as that of the lithium secondary battery of Comparative Example 2.
did.

【0036】<高温サイクル試験>上記実施例1〜7お
よび比較例1〜3のそれぞれのリチウム二次電池に対し
て,高温サイクル試験を行った。まず,それぞれの電池
を,25℃の環境下で,以下の条件で充放電させた。充
電終止電圧4.2Vまで1.1mA/cm2の電流密度
の定電流で充電し4.2Vに達した後に定電圧で充電総
時間が2.5時間となるように充電する定電流定電圧充
電と,充電後,放電終止電圧3.0Vまで0.33mA
/cm2の電流密度の定電流で放電する定電流放電を5
サイクル実施した。
<High Temperature Cycle Test> Each of the lithium secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3 was subjected to a high temperature cycle test. First, each battery was charged and discharged under the following conditions in an environment of 25 ° C. A constant current constant voltage for charging at a constant current of 1.1 mA / cm 2 up to a charging end voltage of 4.2 V and charging at a constant voltage after reaching 4.2 V so that the total charging time becomes 2.5 hours. After charging, after charging, 0.33 mA up to the discharge end voltage 3.0 V
/ Constant current discharge at a constant current with a current density of 5 cm / cm 2
A cycle was performed.

【0037】その後,それぞれの電池を60℃の環境下
で高温サイクル試験を実施した。充電終止電圧を4.2
V,放電終止電圧を3.0Vとし,1.1mA/cm2
の電流密度の定電流で充放電を100サイクル実施し
た。尚,充電終了後,および,放電終了後に10分間充
放電を休止させた。60℃の環境下でのサイクル試験に
おける,100サイクル目の放電容量と1サイクル目の
放電容量との比率を容量維持率として定義した。すなわ
ち,[容量維持率]=[100サイクル目の放電容量]
/[1サイクル目の放電容量]×100(%)とした。
上記高温サイクル試験の結果として,実施例1〜7およ
び比較例1〜3のそれぞれのリチウム二次電池の容量維
持率を下記表1に掲げる。
After that, each battery was subjected to a high-temperature cycle test at 60 ° C. Charge end voltage is 4.2
V, the discharge end voltage is 3.0 V, and 1.1 mA / cm 2
100 cycles of charging and discharging were performed at a constant current having a current density of. It should be noted that charging and discharging were suspended for 10 minutes after charging and discharging were completed. The ratio between the discharge capacity at the 100th cycle and the discharge capacity at the first cycle in a cycle test in an environment at 60 ° C. was defined as a capacity retention ratio. That is, [capacity retention rate] = [discharge capacity at 100th cycle]
/ [Discharge capacity at first cycle] × 100 (%).
As a result of the high-temperature cycle test, the capacity retention rates of the lithium secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3 are shown in Table 1 below.

【0038】[0038]

【表1】 [Table 1]

【0039】上記表1から明らかなように,メタアルミ
ン酸塩またはメタ珪酸塩のいずれかを添加した実施例1
〜4のリチウム二次電池は,それらを添加していない比
較例1のリチウム二次電池と比較して容量維持率の値が
大きく,良好な高温サイクル特性を示すことがわかる。
また,比較例2,3より明らかなようにメタホウ酸リチ
ウムを添加した場合には,添加後の熱処理が必要であ
る。これに対して,メタアルミン酸塩またはメタ珪酸塩
のいずれかを添加した本実施例のリチウム二次電池は,
添加後の熱処理が必要でなくコスト的に有利であること
がわかる。さらに,メタアルミン酸塩またはメタ珪酸塩
のいずれかを添加した本実施例のリチウム二次電池は,
実施例5〜7から明らかなように必要に応じて添加後に
熱処理を行っても,良好な高温サイクル特性が得られる
ことがわかる。この結果から,本発明のリチウム二次電
池は,低コストで高温サイクル特性に優れたリチウム二
次電池であることが確認できる。
As is clear from Table 1 above, Example 1 in which either a metaaluminate or a metasilicate was added.
It can be seen that the lithium secondary batteries of Nos. To 4 have a larger capacity retention ratio than the lithium secondary batteries of Comparative Example 1 to which they are not added, and show good high-temperature cycle characteristics.
Further, as is apparent from Comparative Examples 2 and 3, when lithium metaborate is added, heat treatment after the addition is necessary. In contrast, the lithium secondary battery of this embodiment to which either a metaaluminate or a metasilicate was added,
It can be seen that heat treatment after the addition is not required and the cost is advantageous. Further, the lithium secondary battery of this embodiment to which either a metaaluminate or a metasilicate is added,
As is clear from Examples 5 to 7, it is understood that good high-temperature cycle characteristics can be obtained even if heat treatment is performed after addition as necessary. From these results, it can be confirmed that the lithium secondary battery of the present invention is a low-cost lithium secondary battery having excellent high-temperature cycle characteristics.

【0040】<負極上のマンガン堆積量の定量>60℃
でのサイクル試験を100サイクル実施した放電状態の
実施例1および比較例1のリチウム二次電池の負極を取
り出し,ジエチルカーボネートでよく洗浄した後,IC
P発光分析法にて負極電極材単位重量当りに堆積したマ
ンガン量を定量した。結果を表2に掲げる。
<Quantification of Manganese Deposition on Negative Electrode> 60 ° C.
The negative electrodes of the lithium secondary batteries of Example 1 and Comparative Example 1 in the discharged state after 100 cycles of the cycle test were taken out, washed well with diethyl carbonate, and then washed with IC.
The amount of manganese deposited per unit weight of the negative electrode material was determined by P emission analysis. The results are listed in Table 2.

【0041】[0041]

【表2】 [Table 2]

【0042】上記表2の結果より,本発明のリチウム二
次電池は,正極に添加したメタアルミン酸塩またはメタ
珪酸塩の作用により,正極活物質であるリチウムマンガ
ン複合酸化物と電解液との反応が抑制されてリチウムマ
ンガン複合酸化物からのマンガンの溶出が抑制されたた
めに,高温サイクル寿命が向上したことが確認できる。
From the results shown in Table 2, the lithium secondary battery of the present invention shows that the reaction between the lithium manganese composite oxide, which is the positive electrode active material, and the electrolyte is caused by the action of metaaluminate or metasilicate added to the positive electrode. It can be confirmed that the high-temperature cycle life was improved because the dissolution of manganese from the lithium manganese composite oxide was suppressed by suppressing manganese.

【0043】[0043]

【発明の効果】上述のごとく,本発明によれば,正極を
改善することにより,高温寿命の長いLiMn24等の
リチウムマンガン複合酸化物を正極活物質に用いたリチ
ウム二次電池を提供することができる。
As described above, according to the present invention, a lithium secondary battery using a lithium manganese composite oxide such as LiMn 2 O 4 having a long life at high temperature as a positive electrode active material is provided by improving a positive electrode. can do.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 康仁 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 5H029 AJ01 AK03 AL06 AL12 AM03 AM04 AM05 AM07 EJ11 HJ01 5H050 AA05 BA17 CA08 CA09 CB08 CB12 DA02 DA09 EA22 EA24 HA01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasuhito Kondo 41-1, Oku-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture F-term in Toyota Central R & D Laboratories Co., Ltd. 5H029 AJ01 AK03 AL06 AL12 AM03 AM04 AM05 AM07 EJ11 HJ01 5H050 AA05 BA17 CA08 CA09 CB08 CB12 DA02 DA09 EA22 EA24 HA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質の少なくとも一部にリチウム
マンガン複合酸化物を含む正極と,リチウムを可逆的に
吸蔵・放出可能な物質からなる負極と,リチウム塩を有
機溶媒に溶解した非水電解液を主要な構成要素として構
成されるリチウム二次電池において,上記正極は,メタ
アルミン酸塩またはメタ珪酸塩から選ばれる添加剤を1
種以上含むことを特徴とするリチウム二次電池。
1. A positive electrode comprising a lithium manganese composite oxide in at least a part of a positive electrode active material, a negative electrode comprising a material capable of reversibly storing and releasing lithium, and a non-aqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent. In a lithium secondary battery comprising a liquid as a main component, the above-mentioned positive electrode contains one or more additives selected from metaaluminate and metasilicate.
A lithium secondary battery comprising at least one species.
【請求項2】 請求項1において,上記メタアルミン酸
塩およびメタ珪酸塩は,アルカリ金属塩またはアルカリ
土類金属塩であることを特徴とするリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the metaaluminate and the metasilicate are an alkali metal salt or an alkaline earth metal salt.
【請求項3】 請求項1又は2において,上記正極は,
上記メタアルミン酸塩およびメタ珪酸塩を正極活物質の
重量に対して0.1〜10重量%含むことを特徴とする
リチウム二次電池。
3. The method according to claim 1, wherein the positive electrode is
A lithium secondary battery comprising the metaaluminate and the metasilicate in an amount of 0.1 to 10% by weight based on the weight of the positive electrode active material.
JP2000141967A 2000-05-15 2000-05-15 Lithium secondary cell Pending JP2001325960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000141967A JP2001325960A (en) 2000-05-15 2000-05-15 Lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141967A JP2001325960A (en) 2000-05-15 2000-05-15 Lithium secondary cell

Publications (1)

Publication Number Publication Date
JP2001325960A true JP2001325960A (en) 2001-11-22

Family

ID=18649014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141967A Pending JP2001325960A (en) 2000-05-15 2000-05-15 Lithium secondary cell

Country Status (1)

Country Link
JP (1) JP2001325960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100070A1 (en) * 2011-12-27 2013-07-04 三井金属鉱業株式会社 Spinel-type lithium manganese transition metal oxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100070A1 (en) * 2011-12-27 2013-07-04 三井金属鉱業株式会社 Spinel-type lithium manganese transition metal oxide
KR20140112044A (en) * 2011-12-27 2014-09-22 미쓰이금속광업주식회사 Spinel-type lithium manganese transition metal oxide
GB2514021A (en) * 2011-12-27 2014-11-12 Mitsui Mining & Smelting Co Spinel-type lithium manganese transition metal oxide
JPWO2013100070A1 (en) * 2011-12-27 2015-05-11 三井金属鉱業株式会社 Spinel type lithium manganese transition metal oxide
KR101637410B1 (en) 2011-12-27 2016-07-07 미쓰이금속광업주식회사 Spinel-type lithium manganese transition metal oxide
US9893355B2 (en) 2011-12-27 2018-02-13 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium manganese transition metal oxide

Similar Documents

Publication Publication Date Title
JP3439082B2 (en) Non-aqueous electrolyte secondary battery
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP2000138072A (en) Nonaqueous electrolyte secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP2004039491A (en) Nonaqueous electrolyte secondary battery
JP2001052699A (en) Lithium secondary battery
JP2001222995A (en) Lithium ion secondary battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP4649691B2 (en) Positive electrode for lithium secondary battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP2002128526A (en) Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JPH1154120A (en) Lithium ion secondary battery
JP2002117845A (en) Lithium iron complex oxide for lithium secondary battery positive electrode active material
JP2002117832A (en) Lithium secondary battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JP2002025626A (en) Aging method for lithium secondary battery
JP2000149943A (en) Process for lithium manganese compound oxide for lithium secondary battery positive active material
JP2001216965A (en) Positive electrode for lithium secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP4565287B2 (en) Non-aqueous electrolyte secondary battery
JP2845069B2 (en) Organic electrolyte secondary battery
JP2001325960A (en) Lithium secondary cell