JP2001324453A - Apparatus, system and method for inspecting defect of film - Google Patents

Apparatus, system and method for inspecting defect of film

Info

Publication number
JP2001324453A
JP2001324453A JP2001059713A JP2001059713A JP2001324453A JP 2001324453 A JP2001324453 A JP 2001324453A JP 2001059713 A JP2001059713 A JP 2001059713A JP 2001059713 A JP2001059713 A JP 2001059713A JP 2001324453 A JP2001324453 A JP 2001324453A
Authority
JP
Japan
Prior art keywords
film
inspected
defect
polarizers
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001059713A
Other languages
Japanese (ja)
Other versions
JP4440485B2 (en
JP2001324453A5 (en
Inventor
Kazuhiro Shimoda
一弘 下田
Fumio Goto
文男 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001059713A priority Critical patent/JP4440485B2/en
Publication of JP2001324453A publication Critical patent/JP2001324453A/en
Publication of JP2001324453A5 publication Critical patent/JP2001324453A5/ja
Application granted granted Critical
Publication of JP4440485B2 publication Critical patent/JP4440485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus, a system and a method for inspecting film defects, whereby an optical defect inspection for the films to be inspected can be carried out simply and easily, and moreover, every optical defect generated during a manufacturing process can be accurately detected without being missed. SOLUTION: There are provided a pair of polarizers arranged parallel to each other to both sides of a film face of the film to be inspected, an illumination light source for shedding light to the film to be inspected via one polarizer, a light-intercepting means for receiving the light which is shed by the illumination light source and passes the other polarizer, and a correction film which has double refraction characteristics nearly equal to double refraction characteristics of a part of the film to be inspected having no optical defects and has an arrangement direction set beforehand, according to the double refraction characteristics of the film to be inspected. The optical defect of the film to be inspected is inspected by obtaining luminance signals of the passing light by the light-receiving means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検査フィルムの
光学的欠陥検査を簡易かつ容易に行い、特に、液晶表示
装置等に用いる視野角改善フィルムの製造過程におい
て、欠陥検査を連続的に行う視野角拡大フィルムの欠陥
検査装置、欠陥検査システムおよび欠陥検査方法の技術
分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for easily and easily performing an optical defect inspection on a film to be inspected, and in particular, performing a defect inspection continuously in a manufacturing process of a viewing angle improving film used for a liquid crystal display device or the like. The present invention belongs to the technical field of a defect inspection apparatus, a defect inspection system, and a defect inspection method for a viewing angle widening film.

【0002】[0002]

【従来の技術】今日、液晶表示装置として、TFT液晶
表示装置やDSTN液晶表示装置が広く利用されてい
る。しかし、これらの液晶表示装置は、視認可能な領域
に視角依存性があるため、視認可能な領域からはずれる
と表示画面を見ることが困難になる。たとえば、視角を
上下方向に傾けた場合、全体に表示画面の色が薄くなっ
てコントラストが低下したり、黒表示部分での階調反転
が生じて、視認が困難となる。また、大型の液晶表示装
置の画面では表示画面の拡大に伴い視角が広がるため、
上記コントラストの低下や階調反転が生じ易い。そのた
め、広い視認可能な領域を持つ液晶表示装置が望まれて
いる。
2. Description of the Related Art Today, TFT liquid crystal display devices and DSTN liquid crystal display devices are widely used as liquid crystal display devices. However, in these liquid crystal display devices, the viewable area has a viewing angle dependency, so that it is difficult to see the display screen if the area deviates from the viewable area. For example, when the viewing angle is tilted in the vertical direction, the color of the display screen becomes lighter as a whole and the contrast is reduced, and the grayscale inversion occurs in the black display portion, making it difficult to view. In addition, since the viewing angle of a large liquid crystal display screen increases with the enlargement of the display screen,
The above-mentioned contrast reduction and gradation inversion tend to occur. Therefore, a liquid crystal display device having a wide visible area is desired.

【0003】このような状況下、液晶表示装置の視野角
を改善するために、液晶表示装置の液晶の配向分割方法
や負の複屈折率を持つ光学補償膜を用いた位相差膜等が
種々検討されている。例えば、本出願人により開示され
た特開平6−214116号公報では、光学異方素子及
びその製造方法が提案されている。それによると、液晶
表示装置の液晶セルの液晶分子は、電圧印加時、液晶表
示装置の基板の法線方向から若干傾くので、液晶表示装
置はこの法線方向から若干傾いた方向に光軸を持つ正の
一軸光学異方素子とみなすことができる。そのため、こ
の傾きに合わせて負の一軸光学異方素子の光学軸を若干
傾け、液晶セルによる位相差を光学異方素子の位相差で
補償することによって、視角依存性のない良好な液晶表
示装置を得ることができる。そして、本出願人から液晶
用視野角改善フィルムが市販されている。
Under these circumstances, in order to improve the viewing angle of the liquid crystal display device, various methods for dividing the liquid crystal of the liquid crystal display device and a retardation film using an optical compensation film having a negative birefringence are used. Are being considered. For example, Japanese Patent Laying-Open No. 6-214116 disclosed by the present applicant proposes an optically anisotropic element and a method for manufacturing the same. According to this, the liquid crystal molecules of the liquid crystal cell of the liquid crystal display device slightly tilt from the normal direction of the substrate of the liquid crystal display device when a voltage is applied, and the liquid crystal display device shifts the optical axis in a direction slightly tilted from this normal direction. It can be regarded as a positive uniaxial optically anisotropic element having. Therefore, the optical axis of the negative uniaxial optically anisotropic element is slightly tilted in accordance with the tilt, and the phase difference due to the liquid crystal cell is compensated for by the phase difference of the optically anisotropic element, so that a good liquid crystal display device having no viewing angle dependence is provided. Can be obtained. Then, a viewing angle improving film for liquid crystal is commercially available from the present applicant.

【0004】ところで、光学異方素子である低分子液晶
から成る上記液晶用視野角改善フィルムは、最適化され
た液晶セルの補償状態を画面上で均一に維持するため、
厳しい均質性が要求されているものの、たとえば上記液
晶用視野角改善フィルムは、可撓性支持体上に液晶を塗
布し乾燥し、さらに配向し、膜を硬化する各種複雑な工
程を経て製造されるため、製造工程中に異物が混入した
り、付着により低分子液晶の配向方向が大小様々に、あ
るいはランダムに変化して乱れ、また、塗布むら等によ
ってレターデーション値が変化して、所望の光学特性を
持たない欠陥部分が種々生じる。このような欠陥部分
は、複雑な製造工程を経て得られる上記液晶用視野角改
善の製造ラインにおいて、漏れなくしかも精度よく検出
され、このような欠陥部分を有する液晶用視野角改善フ
ィルムを市場に提供しないことが望まれている。
By the way, the viewing angle improving film for a liquid crystal, which is composed of a low molecular liquid crystal as an optically anisotropic element, maintains the optimized compensation state of the liquid crystal cell uniformly on the screen.
Although strict homogeneity is required, for example, the viewing angle improving film for liquid crystal is manufactured through various complicated processes of applying liquid crystal on a flexible support, drying the liquid crystal, and further aligning and curing the film. Therefore, foreign substances are mixed during the manufacturing process, the orientation direction of the low-molecular liquid crystal is varied in size due to adhesion, or is randomly changed and disturbed, and the retardation value is changed due to uneven coating or the like, and a desired value is obtained. Various defective portions having no optical characteristics are generated. Such defective portions are accurately detected without omission in the liquid crystal viewing angle improving production line obtained through a complicated manufacturing process, and a liquid crystal viewing angle improving film having such defective portions is marketed. It is desired not to provide.

【0005】[0005]

【発明が解決しようとする課題】ところで、搬送される
液晶用視野角改善フィルムの製造ラインにおける欠陥検
査方法として、液晶用視野角改善フィルムの一方の側に
搬送方向と平行な偏向透過光軸を、他方の側に搬送方向
と直交する偏向透過光軸を持つ一対の偏光子、すなわち
クロスニコルに配置された一対の偏光子を挟み、その外
側の一方から検査用照明光を投光し、反対側から透過さ
れる透過光をラインセンサ等で受光して透過光の輝度信
号を得、輝度信号の変化から、例えば、輝度信号に微分
処理等を行って、フィルム面の欠陥部分を検出する方法
が行われている。
As a defect inspection method in a production line for a viewing angle improving film for a liquid crystal to be conveyed, a deflection transmission optical axis parallel to the conveying direction is provided on one side of the viewing angle improving film for a liquid crystal. On the other side, a pair of polarizers having a deflecting transmission optical axis orthogonal to the transport direction, that is, a pair of polarizers arranged in crossed Nicols, and projecting inspection illumination light from one of the outside, A method of receiving a transmitted light transmitted from the side by a line sensor or the like, obtaining a luminance signal of the transmitted light, and performing a differential process or the like on the luminance signal from a change in the luminance signal to detect a defective portion on the film surface. Has been done.

【0006】しかし、この方法では、CCDカメラ等で
撮影される輝度信号を画像として表示した場合、欠陥部
分が正常な部分を背景として明るい部分を形成するもの
の、正常な部分の透過光量が、液晶用視野角改善フィル
ム自体の視角依存性のために不均一であり、欠陥部分に
対応した明るい部分の輝度信号のSN比が低く、欠陥検
出精度が低いといった問題がある。また、シェーディン
グ補正により演算を施して正常な部分の不均一な背景部
分を取り除くこともできるが、演算することによって、
輝度信号に含まれる情報も処理されるため、精度の高い
欠陥の検出ができない。
However, in this method, when a luminance signal photographed by a CCD camera or the like is displayed as an image, although a defective portion forms a bright portion with a normal portion as a background, the transmitted light amount of the normal portion is lower than that of a liquid crystal. The viewing angle improving film itself is non-uniform due to the viewing angle dependence, and the SN ratio of the luminance signal of a bright portion corresponding to the defective portion is low, and the defect detection accuracy is low. In addition, the calculation can be performed by shading correction to remove the uneven background portion of the normal portion, but by performing the calculation,
Since information included in the luminance signal is also processed, it is not possible to detect a defect with high accuracy.

【0007】また、上記方法は、一対の偏光子を液晶用
視野角改善フィルムの両側に搬送方向と平行な偏向透過
光軸を持たせクロスニコルに配置することによって、欠
陥部分の検出を比較的容易にするものであるが、液晶用
視野角改善フィルムの液晶の配向方向が偏向透過光軸と
略直交するため、正常なフィルム面の透過光量は少ない
一方、明るい領域を形成する欠陥部分においても透過光
量は全体的に少ないため、欠陥部分の輝度信号のSN比
は低く、欠陥検出精度が低いといった問題もある。
In the above method, defective portions can be relatively detected by arranging a pair of polarizers on both sides of a viewing angle improving film for a liquid crystal with a deflecting and transmitting optical axis parallel to the conveying direction and arranging them in crossed Nicols. Although this facilitates, since the orientation direction of the liquid crystal of the viewing angle improving film for liquid crystal is substantially orthogonal to the deflecting transmission optical axis, the amount of transmitted light on the normal film surface is small, but even in a defective portion forming a bright region. Since the amount of transmitted light is small as a whole, there is also a problem that the SN ratio of the luminance signal at the defective portion is low, and the defect detection accuracy is low.

【0008】また、上記方法では、搬送される液晶視野
角改善フィルムの欠陥検査を、搬送方向と直交する方向
に固体撮像素子を一列に配置したラインセンサを用いて
行うが、固体撮像素子の配列方向と平行に、連続的にあ
るいは周期的に、発生する欠陥、例えば、塗布むら等に
よる段ムラの欠陥は、上記ラインセンサで得られる輝度
信号の変化から精度良く検出することはできないといっ
た問題もある。
In the above method, the defect inspection of the transported liquid crystal viewing angle improving film is performed using a line sensor in which the solid-state image sensors are arranged in a line in a direction perpendicular to the transport direction. In parallel with the direction, a defect that occurs continuously or periodically, for example, a step unevenness defect due to uneven coating or the like, cannot be accurately detected from a change in the luminance signal obtained by the line sensor. is there.

【0009】このため、製造工程中に生じるすべての欠
陥を漏れることなく精度よく検出することはできない。
このような問題は、液晶視野角改善フィルムのみなら
ず、複屈折率を利用する位相差膜全体に共通する問題で
ある。
For this reason, it is not possible to accurately detect all defects generated during the manufacturing process without leaking.
Such a problem is a problem common to not only the liquid crystal viewing angle improving film but also the entire retardation film using the birefringence.

【0010】そこで、本発明は、上記問題点を解消し、
製造ライン等において被検査フィルムの光学的欠陥検査
を簡易かつ容易に行い、さらに、製造工程中に生じるす
べての光学的欠陥を漏れることなく精度よく検出するフ
ィルムの欠陥検査装置、欠陥検査システムおよび欠陥検
査方法、特に、液晶表示装置等に用いる視野角改善フィ
ルムの製造過程において、異物の混入や配向ムラや段ム
ラ等に起因する欠陥の検出を漏れなく精度良く連続的に
行うフィルムの欠陥検査システムを提供することを目的
とする。
Therefore, the present invention solves the above problems,
A film defect inspection apparatus, a defect inspection system, and a defect that easily and easily perform an optical defect inspection of a film to be inspected on a production line, and further accurately detect all optical defects generated during a manufacturing process without leaking. Inspection method, in particular, a film defect inspection system that accurately and continuously detects defects caused by mixing of foreign substances, uneven alignment and uneven steps in the manufacturing process of a viewing angle improving film used for a liquid crystal display device or the like without omission. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、光学的欠陥を検査する被検査フィルムの
フィルム面の両側に被検査フィルムと平行に配置する一
対の偏光子と、この一対の偏光子間の外側に配置し、こ
の一対の偏光子の一方の偏光子を介して、被検査フィル
ムに投光する照明光源と、前記一対の偏光子間の外側
の、前記照明光源の配置位置の反対側に配置し、前記照
明光源によって投光されて他方の偏光子から透過される
透過光を受光する受光手段と、複屈折特性が、被検査フ
ィルムの光学的欠陥のない部分の複屈折特性と略同一な
フィルムであって、被検査フィルムの複屈折特性に応じ
て配置方向が予め設定され、前記一対の偏光子と被検査
フィルムとの間の一方の隙間に被検査フィルムと平行に
配置される補正フィルムとを有し、前記被検査フィル
ム、前記補正フィルムおよび前記一対の偏光子を透過し
た透過光の輝度信号を、前記受光手段により得ることに
よって被検査フィルムの光学的欠陥を検査するフィルム
の欠陥検査装置を提供するものである。
In order to achieve the above object, the present invention provides a pair of polarizers arranged on both sides of a film surface of a film to be inspected for optical defects in parallel with the film to be inspected. An illumination light source disposed outside between the pair of polarizers and projected onto the film to be inspected through one of the pair of polarizers, and the illumination light source outside between the pair of polarizers A light receiving unit that is disposed on the opposite side of the arrangement position and receives transmitted light that is emitted by the illumination light source and transmitted from the other polarizer, and a portion where the birefringence characteristic has no optical defect of the film to be inspected. The film is substantially the same as the birefringence characteristics of the film to be inspected, the arrangement direction is preset according to the birefringence characteristics of the film to be inspected, and the film to be inspected is placed in one gap between the pair of polarizers and the film to be inspected. Correction field A defect of the film for inspecting an optical defect of the film to be inspected by obtaining, by the light receiving means, a luminance signal of transmitted light transmitted through the film to be inspected, the correction film, and the pair of polarizers. An inspection device is provided.

【0012】ここで、前記補正フィルムは、光学的欠陥
のない被検査フィルムを、フィルム面内で180度回転
した状態で、あるいは光学的欠陥のない被検査フィルム
のフィルム面を表裏反転した状態で配置したものであっ
てもよく、また、前記補正フィルムは前記一対の偏光子
の一方の偏光子に貼り合わせてなるものであってもよ
い。また、前記受光手段と前記一対の偏光子の前記受光
手段側に配置される偏光子との間の透過光の光路中に透
過光を前記受光手段に集光させる光学系が備えられるの
が好ましい。また、前記受光手段は、固体撮像素子であ
るのが好ましい。ここで、被検査フィルムの光学的欠陥
の検査が被検査フィルムの搬送中に行われる場合、前記
受光手段は、前記被検査フィルムの搬送方向と直交する
方向に対して傾斜して一列に配置される複数の固体撮像
素子であるのが好ましい。
Here, the correction film is obtained by rotating the film to be inspected having no optical defect by 180 degrees in the film plane or by turning the film surface of the film to be inspected having no optical defect upside down. The correction film may be disposed, and the correction film may be bonded to one of the pair of polarizers. Further, it is preferable that an optical system for condensing the transmitted light on the light receiving unit is provided in an optical path of the transmitted light between the light receiving unit and the polarizer disposed on the light receiving unit side of the pair of polarizers. . Preferably, the light receiving means is a solid-state image sensor. Here, when the inspection for the optical defect of the film to be inspected is performed during the transportation of the film to be inspected, the light receiving unit is arranged in a line in a slant with respect to a direction orthogonal to the transport direction of the film to be inspected. It is preferable that the plurality of solid-state imaging devices be a plurality of solid-state imaging devices.

【0013】また、本発明は、連続搬送される被検査フ
ィルムの光学的欠陥を検査するフィルム欠陥システムで
あって、光学的欠陥を検査する被検査フィルムのフィル
ム面の両側に被検査フィルムと平行に配置する一対の偏
光子と、この一対の偏光子間の外側に配置し、この一対
の偏光子の一方の偏光子を介して、被検査フィルムに投
光する照明光源と、前記一対の偏光子間の外側の、前記
照明光源の配置位置の反対側に配置し、前記照明光源に
よって投光されて他方の偏光子から透過される透過光を
受光する受光手段と、複屈折特性が、被検査フィルムの
光学的欠陥のない部分の複屈折特性と略同一なフィルム
であって、被検査フィルムの複屈折特性に応じて配置方
向が予め設定され、前記一対の偏光子と被検査フィルム
との間の一方の隙間に被検査フィルムと平行に配置され
る補正フィルムとを備えるフィルム欠陥検査装置が被検
査フィルムの搬送路中に複数配置され、前記複数のフィ
ルム欠陥検査装置の前記一対の偏光子の偏向透過軸の方
向が、クロスニコルに配置された状態で、連続搬送され
る前記被検査フィルムの搬送方向に対してそれぞれ異な
った角度に設定されていることを特徴とするフィルムの
欠陥検査システムを提供するものである。
The present invention also relates to a film defect system for inspecting an optical defect of a film to be inspected which is continuously conveyed, wherein the film is inspected for an optical defect on both sides of the film surface in parallel with the film to be inspected. A pair of polarizers, disposed outside the pair of polarizers, via one of the pair of polarizers, an illumination light source that projects light on the film to be inspected, and the pair of polarized light A light-receiving means disposed outside the space between the light sources and opposite to the position where the illumination light source is arranged to receive transmitted light emitted by the illumination light source and transmitted from the other polarizer; The film is substantially the same as the birefringence characteristic of the portion of the inspection film without optical defects, the arrangement direction is preset according to the birefringence characteristics of the film to be inspected, and the pair of polarizer and the film to be inspected One gap between A plurality of film defect inspection devices including a film to be inspected and a correction film arranged in parallel to the film to be inspected are arranged in the transport path of the film to be inspected, and the plurality of film defect inspection devices have a deflection transmission axis of the pair of polarizers. The direction is provided in a crossed Nicol state, and provides a film defect inspection system characterized by being set at different angles with respect to the transport direction of the film to be inspected which is continuously transported. is there.

【0014】ここで、前記フィルム欠陥検査装置が3台
以上配置され、少なくとも3台のフィルム欠陥検査装置
における前記一対の偏光子の偏向透過軸の、前記被検査
フィルムの光学的欠陥のない部分の遅相軸に対する交差
角が、それぞれ、略0度および5度以上15度以下の範
囲および35度以上45度以下の範囲になるように、前
記一対の偏光子が配置されるのが好ましい。また、前記
フィルム欠陥検査装置の少なくとも1つは、前記受光手
段が、前記被検査フィルムの搬送方向と直交する方向に
対して傾斜して一列に複数配置された固体撮像素子であ
るのが好ましい。
[0014] Here, three or more film defect inspection devices are arranged, and at least three film defect inspection devices have a deflection transmission axis of the pair of polarizers in a portion of the film to be inspected having no optical defect. It is preferable that the pair of polarizers is arranged so that the crossing angles with respect to the slow axis are in a range of approximately 0 degree, 5 degrees or more and 15 degrees or less, and 35 degrees or more and 45 degrees or less, respectively. It is preferable that at least one of the film defect inspection apparatuses is a solid-state imaging device in which a plurality of the light receiving units are arranged in a row in a slant with respect to a direction orthogonal to a transport direction of the film to be inspected.

【0015】また、本発明は、一対の偏光子の間に平行
に配置した被検査フィルムの光学的欠陥を、一対の偏光
子の一方の偏光子の外側から照明光を投光し、他方の偏
光子から透過する透過光を受光することによって光学的
欠陥を検査する際に、前記一対の偏光子と被検査フィル
ムとの間の一方の隙間に、複屈折特性が被検査フィルム
の光学的欠陥のない部分の複屈折特性と略同一な補正フ
ィルムを被検査フィルムのフィルム面と平行に配置する
とともに、この補正フィルムの配置方向を被検査フィル
ムの複屈折特性に応じて予め設定することを特徴とする
フィルムの欠陥検査方法を提供するものである。ここ
で、前記一対の偏光子の偏向透過光軸の配置方向は、被
検査フィルムの欠陥の種類に応じて設定されるのが好ま
しい。
Further, according to the present invention, an optical defect of a film to be inspected arranged in parallel between a pair of polarizers is irradiated with illumination light from outside of one of the pair of polarizers and illuminated by the other. When inspecting an optical defect by receiving transmitted light transmitted from a polarizer, a birefringence characteristic is generated in one gap between the pair of polarizers and the film to be inspected. A correction film having substantially the same birefringence characteristics as that of the part without the film is arranged parallel to the film surface of the film to be inspected, and the arrangement direction of the correction film is set in advance according to the birefringence characteristics of the film to be inspected. To provide a method for inspecting a film for defects. Here, it is preferable that the arrangement direction of the deflection transmission optical axes of the pair of polarizers is set according to the type of defect of the film to be inspected.

【0016】[0016]

【発明の実施の形態】以下、本発明のフィルムの欠陥検
査装置について、添付の図面に示される好適実施例を基
に詳細に説明する。図1は、本発明のフィルムの欠陥検
査装置の好適実施例である視野角改善フィルムの欠陥を
検出するフィルム欠陥検査装置10の概略の構成を示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a film defect inspection apparatus according to the present invention will be described in detail based on a preferred embodiment shown in the accompanying drawings. FIG. 1 shows a schematic configuration of a film defect inspection apparatus 10 for detecting a defect of a viewing angle improving film, which is a preferred embodiment of a film defect inspection apparatus of the present invention.

【0017】フィルム欠陥検査装置10は、視野角改善
フィルム(以降、被検査フィルムという)Fの光学的欠
陥部分、すなわち、複屈折特性が正常な部分と異なる欠
陥部分を検出するための輝度信号を得る装置であって、
得られた輝度信号は欠陥検出のための欠陥検出装置22
に送られる。フィルム欠陥検査装置10は、照明光源1
2と、被検査フィルムFを両面から挟む偏光子14aお
よび偏光子14bからなる一対の偏光子14と、液晶補
正フィルム16と、光学系18と、CCDカメラ20と
を主に有して構成される。
The film defect inspection apparatus 10 generates a luminance signal for detecting an optically defective portion of a viewing angle improving film (hereinafter, referred to as a film to be inspected) F, that is, a defective portion having a different birefringence characteristic from a normal portion. A device for obtaining
The obtained luminance signal is used as a defect detection device 22 for defect detection.
Sent to The film defect inspection apparatus 10 includes the illumination light source 1
2, a pair of polarizers 14a and 14b sandwiching the film F to be inspected from both sides, a liquid crystal correction film 16, an optical system 18, and a CCD camera 20. You.

【0018】照明光源12は、被検査フィルムFのフィ
ルム面を偏光子14aを介して一様に平行光を投光する
ための照明光源で、例えば伝送ライトが用いられる。投
光する光は白色光が好ましいが、可視域にスペクトルを
有する投影光の光源であれば制限されない。また、照明
光源12は、被検査フィルムFのフィルム面の一定の領
域を一様に投光する面光源であっても、被検査フィルム
Fのフィルム面の一方向を一様に投光する線光源であっ
てもよい。
The illumination light source 12 is an illumination light source for uniformly projecting parallel light on the film surface of the film F to be inspected via the polarizer 14a. For example, a transmission light is used. The light to be projected is preferably white light, but is not limited as long as it is a light source of projection light having a spectrum in the visible region. The illumination light source 12 may be a surface light source that uniformly projects a certain area on the film surface of the inspection target film F, or a line that uniformly emits light in one direction of the film surface of the inspection target film F. It may be a light source.

【0019】一対の偏光子14は、偏光子14aおよび
偏光子14bからなり、偏光子14aは、被検査フィル
ムFのフィルム面と平行に配置され、照明光源12から
照射される光を直線偏向あるいは、ほぼ直線偏向して、
被検査フィルムFに入射させる部位である。偏光子14
bは、偏光子14aとクロスニコルの状態(偏光子14
aの偏向透過光軸と偏光子14bとの偏向透過光軸を直
交させた状態)で被検査フィルムFのフィルム面に平行
に配置され、被検査フィルムFおよび後述する液晶補正
フィルム16を透過した透過光Lの一部分、すなわち、
偏光子14bの偏向透過光軸方向の透過光Lの成分を透
過させる部位である。偏光子14aおよび14bともに
公知の偏光子が用いられる。
The pair of polarizers 14 includes a polarizer 14a and a polarizer 14b. The polarizer 14a is arranged in parallel with the film surface of the film F to be inspected, and linearly deflects or deflects light emitted from the illumination light source 12. , Almost linearly deflected,
This is a part to be incident on the film to be inspected F. Polarizer 14
b indicates the state of crossed Nicols with the polarizer 14a (the polarizer 14a).
(a) with the deflecting transmission optical axis of a and the deflecting transmission optical axis of the polarizer 14b being orthogonal to each other) and being arranged parallel to the film surface of the film F to be inspected and transmitting through the film F to be inspected and a liquid crystal correction film 16 described later. Part of the transmitted light L, ie,
This is a portion that transmits the component of the transmitted light L in the direction of the polarized transmitted light axis of the polarizer 14b. Known polarizers are used as the polarizers 14a and 14b.

【0020】光学系18は、偏光子14bを透過した平
行光である透過光LをCCDカメラ20の受光面に結像
するために集光する光学系レンズであり、公知の光学系
レンズが用いられる。本実施例において、光学系18を
用いて透過光Lを平行光から集光してCCDカメラ20
の受光面に結像させるのは、光学系18がないと、CC
Dカメラ20の受光面で受光する際の透過光Lの光量に
よって得られる輝度信号の値がCCDカメラ20の受光
面の受光位置によって変化する視角依存性が生じるから
である。このように、光学系18は、上記視角依存性を
なくし、シェーディング補正を不要とする輝度信号を得
るために視角補正レンズとして用いるものであるが、後
述する液晶補正フィルム16の作用によって、視角依存
性を小さくし、シェーディング補正を不要とする輝度信
号を得ることができることから、必ずしも光学系18は
必須のものではない。しかし、より視角依存性を小さく
し、精度の高い欠陥部分の検出を行う場合や、輝度信号
の値が小さく欠陥部分のSN比が小さい場合等に、特に
光学系18を用いることが好ましい。
The optical system 18 is an optical system lens for condensing transmitted light L, which is parallel light transmitted through the polarizer 14b, to form an image on the light receiving surface of the CCD camera 20, and a known optical system lens is used. Can be In this embodiment, the transmitted light L is condensed from the parallel light by using the optical
The image is formed on the light receiving surface of
This is because the value of the luminance signal obtained by the amount of the transmitted light L when the light is received by the light receiving surface of the D camera 20 has a viewing angle dependency that changes depending on the light receiving position of the light receiving surface of the CCD camera 20. As described above, the optical system 18 is used as a viewing angle correction lens to eliminate the above viewing angle dependency and obtain a luminance signal that does not require shading correction. The optical system 18 is not always indispensable because the luminance signal can be obtained and a luminance signal that does not require shading correction can be obtained. However, it is particularly preferable to use the optical system 18 when detecting a highly defective portion with a smaller viewing angle dependency or when the luminance signal value is small and the SN ratio of the defective portion is small.

【0021】CCDカメラ20は、偏光子14a、被検
査フィルムF、液晶補正フィルム16よび偏光子14b
を介して透過され、光学系18によって集光された透過
光Lを受光し、透過光Lの輝度信号を得る受光手段であ
り、受光面上の固体撮像素子が一方向に線状に並んだラ
インセンサが用いられる。なお、本発明においては、受
光面上の固体撮像素子がエリア状に配置されたエリアセ
ンサであってもよい。また、本発明においては、固体撮
像素子を受光面に持つCCDカメラに限定されず、CM
OS型撮像素子等の公知の固体撮像素子が用いられても
よい。
The CCD camera 20 includes a polarizer 14a, a film to be inspected F, a liquid crystal correction film 16, and a polarizer 14b.
The light receiving means receives the transmitted light L transmitted through the optical system 18 and collected by the optical system 18 and obtains a luminance signal of the transmitted light L. The solid-state imaging devices on the light receiving surface are linearly arranged in one direction. A line sensor is used. In the present invention, the solid-state imaging device on the light receiving surface may be an area sensor arranged in an area. In the present invention, the present invention is not limited to a CCD camera having a solid-state imaging device on a light receiving surface.
A known solid-state imaging device such as an OS-type imaging device may be used.

【0022】液晶補正フィルム16は、本発明の特徴と
する部分であって、光学的欠陥のないことが予め確認さ
れている被検査フィルムFの一定範囲の部分を取り出
し、フィルム面内で180度回転し、あるいはフィルム
面を表裏反転して被検査フィルムFに平行に配置したも
のである。このように被検査フィルムFと同一の複屈折
特性を備える液晶補正フィルム16をフィルム面内で1
80度回転し、あるいはフィルム面を表裏反転して用い
るのは、以下の理由によるためである。すなわち、被検
査フィルムFは、所定の複屈折特性を持つように作られ
るため、液晶補正フィルム16がない場合、CCDカメ
ラ20によって得られる輝度信号は、CCDカメラ20
の受光素子の受光位置に依存する視角依存性を持つの
で、正常なフィルム面の輝度信号は一様なレベルの信号
とならず、そのため、正常なフィルム面の輝度信号から
欠陥部分を検出する検出精度が低下する。そのため、正
常なフィルム面の輝度信号が、受光位置によらず一定レ
ベルとなるように、すなわち輝度信号のレベルが一様に
なるように液晶補正フィルム16を用いて輝度信号を補
正するのである。
The liquid crystal correction film 16 is a feature of the present invention, and takes out a portion of a predetermined range of the film F to be inspected which has been confirmed in advance to be free from optical defects. The film is rotated or turned upside down and arranged in parallel to the film F to be inspected. In this way, the liquid crystal correction film 16 having the same birefringence characteristics as the film F to be inspected is placed in the
The reason why the film is rotated by 80 degrees or the film surface is turned upside down is as follows. That is, since the film to be inspected F is made to have a predetermined birefringence characteristic, if the liquid crystal correction film 16 is not provided, the luminance signal obtained by the CCD camera 20 is
Has a viewing angle dependence that depends on the light receiving position of the light receiving element, so that the luminance signal of the normal film surface does not become a signal of a uniform level. Therefore, the detection that detects a defective portion from the luminance signal of the normal film surface is performed. Accuracy decreases. Therefore, the luminance signal is corrected by using the liquid crystal correction film 16 so that the luminance signal on the normal film surface becomes a constant level regardless of the light receiving position, that is, the luminance signal level becomes uniform.

【0023】例えば、図2(a)には、液晶補正フィル
ム16を用いない通常の欠陥検査装置が示されており、
ここでは、光学系18のない例が示されている。欠陥検
査装置30は、照明光源32から投光され偏光子34
a、被検査フィルムFおよび偏光子34bを通過した透
過光を、ラインセンサを受光面とするCCDカメラ36
で受光して輝度信号を得るが、輝度信号は図2(b)に
示される様に正常なフィルム面の輝度信号Gのレベルが
図中右方向に傾斜する視角依存性を持つ。そのため、正
常な輝度信号Gに乗る欠陥部分の輝度信号NのSN比が
低く、欠陥検出精度が低い。一方、本発明における液晶
補正フィルムを用いる欠陥検査装置の一例である欠陥検
査装置40(図2(c)参照)は、照明光源42から投
光され偏光子44a、被検査フィルムF、液晶補正フィ
ルム46(液晶補正フィルム16に対応)および偏光子
44bを通過した透過光を、ラインセンサを受光面とす
るCCDカメラ48で受光して輝度信号を得るものであ
るが、液晶補正フィルム46を用いることによって、一
様なレベル(勿論ノイズ成分を含んでいる)にある正常
なフィルム部分の輝度信号G’上に欠陥部分の輝度信号
N’が乗る輝度信号が得られる(図2(d)参照)。こ
れによって、輝度信号Gから欠陥部分をシェーディング
補正することなく検出することができる。
For example, FIG. 2A shows a normal defect inspection apparatus that does not use the liquid crystal correction film 16,
Here, an example without the optical system 18 is shown. The defect inspection device 30 emits light from the illumination light source 32 and
a, a CCD camera 36 using the transmitted light passing through the film F to be inspected and the polarizer 34b as a light receiving surface of a line sensor.
2B, a luminance signal is obtained, and the luminance signal has a viewing angle dependency in which the level of the luminance signal G of the normal film surface is inclined rightward in the figure as shown in FIG. Therefore, the S / N ratio of the luminance signal N of the defective portion on the normal luminance signal G is low, and the defect detection accuracy is low. On the other hand, a defect inspection apparatus 40 (see FIG. 2C), which is an example of a defect inspection apparatus using the liquid crystal correction film according to the present invention, includes a polarizer 44a, a film F to be inspected, 46 (corresponding to the liquid crystal correction film 16) and the transmitted light passing through the polarizer 44b are received by a CCD camera 48 having a line sensor as a light receiving surface to obtain a luminance signal. As a result, a luminance signal is obtained in which the luminance signal N 'of the defective portion is superimposed on the luminance signal G' of the normal film portion at a uniform level (of course including a noise component) (see FIG. 2D). . As a result, a defective portion can be detected from the luminance signal G without performing shading correction.

【0024】このように、フィルム欠陥検査装置10に
おいて、液晶補正フィルム16を用いることで、図2で
示した様な撮像位置に依存しない一定のレベルの輝度信
号を得ることができ、欠陥部分の輝度信号のSN比が向
上するほか、CCDカメラ20が受光する透過光の光量
も増大し、輝度信号のレベルも上昇することによってS
N比が向上し、検出精度も向上する。
As described above, the use of the liquid crystal correction film 16 in the film defect inspection apparatus 10 makes it possible to obtain a luminance signal at a constant level independent of the image pickup position as shown in FIG. In addition to improving the S / N ratio of the luminance signal, the amount of transmitted light received by the CCD camera 20 also increases, and the level of the luminance signal also increases.
The N ratio is improved, and the detection accuracy is also improved.

【0025】このような液晶補正フィルム16は、光学
的欠陥のない被検査フィルムFをフィルム面内で180
度回転し、あるいはフィルム面を表裏反転して配置した
ものであるが、本発明においては、これに限定されず、
複屈折特性が、光学的欠陥のない被検査フィルムの複屈
折特性と略同一である液晶補正フィルムを用い、上述し
た様に、CCDカメラ20で得られる輝度信号の視角依
存性をなくし、一定レベルの輝度信号を得られるよう
に、被検査フィルムFの所定の複屈折特性に応じて配置
方向が予め設定されるものであれば、どのような補正フ
ィルムであってもよい。ここで、複屈折特性が略同一と
は、検出対象の欠陥の程度に依存するものであるが、例
えば、レターデション値((遅相軸の複屈折率−遅相軸
と直交する軸の複屈折率)×厚み)の差異が±30n
m、好ましくは±10nm以下であるものをいう。ま
た、液晶補正フィルム16は、偏光子14aまたは14
bに貼り合わせたものであってもよい。また、フィルム
欠陥検査装置10では、液晶補正フィルム16を被検査
フィルムFと偏光子14bとの間に配置するものである
が、偏光子14aと被検査フィルムFとの間に配置する
ものであってもよい。
The liquid crystal correction film 16 has a film F to be inspected having no optical defects within a film plane of 180 degrees.
It is rotated by degrees or arranged with the film surface upside down, but in the present invention, it is not limited to this,
Using a liquid crystal correction film whose birefringence characteristics are substantially the same as the birefringence characteristics of a film to be inspected having no optical defects, as described above, the viewing angle dependency of the luminance signal obtained by the CCD camera 20 is eliminated, and a certain level is obtained. Any correction film may be used as long as the arrangement direction is set in advance in accordance with the predetermined birefringence characteristics of the film F to be inspected so as to obtain the luminance signal. Here, the term “substantially the same birefringence characteristic” depends on the degree of a defect to be detected. For example, the retardation value ((birefringence of slow axis−birefringence of axis orthogonal to slow axis) ± 30n difference in refractive index) x thickness)
m, preferably ± 10 nm or less. In addition, the liquid crystal correction film 16 includes the polarizer 14a or 14
It may be bonded to b. In the film defect inspection apparatus 10, the liquid crystal correction film 16 is disposed between the inspection target film F and the polarizer 14b, but is disposed between the polarizer 14a and the inspection target film F. You may.

【0026】欠陥検出装置22は、所定の強調回路、例
えば微分処理回路や空間フィルタ回路等と、欠陥の種類
に対応した検出回路、たとえば「スジ検出回路」や「薄
汚れ検出回路」を有し、微分処理やフィルタ処理された
輝度信号が検出回路において処理されて欠陥の有無が判
定される。
The defect detecting device 22 has a predetermined emphasizing circuit, for example, a differentiation processing circuit, a spatial filter circuit, and the like, and a detecting circuit corresponding to the type of defect, for example, a "streak detecting circuit" or a "light stain detecting circuit". Then, the luminance signal subjected to the differential processing and the filter processing is processed in the detection circuit to determine the presence or absence of a defect.

【0027】なお、上述したように、フィルム欠陥検査
装置10のCCDカメラ20は、固体撮像素子が一列に
並んだラインセンサで構成しているが、この固体撮像素
子の配列方向は、図1の紙面中の左右方向であってもよ
いし、紙面に垂直方向であってもよいし、紙面に対して
傾斜した方向であってもよい。しかし、被検査フィルム
Fが長尺物であって、被検査フィルムFが、搬送中にフ
ィルム欠陥検査装置10によって検査される場合、CC
Dカメラ20の固体撮像素子を、被検査フィルムFの搬
送方向と直交する方向に対して傾斜して配列するのが好
ましい。
As described above, the CCD camera 20 of the film defect inspection apparatus 10 is constituted by a line sensor in which solid-state image pickup devices are arranged in a line, and the arrangement direction of the solid-state image pickup devices is as shown in FIG. The direction may be a horizontal direction in the plane of the paper, a direction perpendicular to the plane of the paper, or a direction inclined with respect to the plane of the paper. However, when the film F to be inspected is a long object and the film F to be inspected is inspected by the film defect inspecting apparatus 10 during transportation, CC
It is preferable that the solid-state imaging devices of the D camera 20 are arranged to be inclined with respect to a direction orthogonal to the transport direction of the film F to be inspected.

【0028】このような例が図3に示されている。ここ
では、理解を容易にする点から、フィルム欠陥検査装置
10のCCDカメラ20と被検査フィルムFとの関係を
示し、照明光源12、一対の偏光子14、補正フィルム
16および光学系18を省略している。ここで、CCD
カメラ20は、固体撮像素子が一列に並んだラインセン
サで、被検査フィルムFの搬送方向と直交する方向に対
して45度の傾斜が付くように、CCDカメラ20が配
置されている。すなわち、CCDカメラ20の固体撮像
素子は、被検査フィルムFの搬送方向と直交する方向に
対して45度傾斜して一列に配列される。このようなC
CDカメラ20の配置により、可撓性支持体上に液晶を
塗布する被検査フィルムFの作製工程中の塗装むらによ
って生じる段ムラF1 〜F5 が搬送方向と直交する方向
に発生しても、欠陥検出装置22に送られる輝度信号A
(図3参照)は、段ムラF2 〜F5 に対応して輝度信号
値が変化する。欠陥検出装置22は、この輝度信号Aを
微分処理回路で微分処理して、輝度信号の変化を求め微
分処理輝度信号Bを得る。これによって、欠陥を強調
し、微分処理輝度信号Bの信号値と閾値との比較から容
易に欠陥を検出することができる。このような処理輝度
信号Aあるいは微分処理輝度信号Bは、被検査フィルム
Fの搬送方向が画面上で水平あるいは垂直となるよう
に、画像の回転処理が施されて、モニタに画面Cが表示
される。
Such an example is shown in FIG. Here, for ease of understanding, the relationship between the CCD camera 20 of the film defect inspection apparatus 10 and the film F to be inspected is shown, and the illumination light source 12, the pair of polarizers 14, the correction film 16, and the optical system 18 are omitted. are doing. Where CCD
The camera 20 is a line sensor in which solid-state imaging devices are arranged in a line, and the CCD camera 20 is arranged so that the CCD camera 20 is inclined at 45 degrees with respect to a direction orthogonal to the transport direction of the film F to be inspected. That is, the solid-state imaging devices of the CCD camera 20 are arranged in a row at an angle of 45 degrees with respect to a direction orthogonal to the transport direction of the film F to be inspected. Such a C
The arrangement of the CD camera 20, a flexible on a support stage unevenness F 1 to F 5 caused by coating unevenness in the manufacturing process of the inspection film F for applying the liquid crystal be generated in the direction perpendicular to the transport direction , The luminance signal A sent to the defect detection device 22
(See FIG. 3), the luminance signal value corresponding to the step unevenness F 2 to F 5 is changed. The defect detection device 22 differentiates the luminance signal A by a differentiation processing circuit to obtain a change in the luminance signal and obtains a differentially processed luminance signal B. This makes it possible to emphasize the defect and easily detect the defect by comparing the signal value of the differential processing luminance signal B with the threshold. The processing luminance signal A or the differential processing luminance signal B is subjected to image rotation processing so that the transport direction of the film F to be inspected is horizontal or vertical on the screen, and the screen C is displayed on a monitor. You.

【0029】一方、図4に示すように、CCDカメラ2
0’の固体撮像素子の配列方向を被検査フィルムFの搬
送方向と直交する方向とした場合、段ムラF3 を撮像す
る場合であっても、その段ムラの輝度信号Dは、段ムラ
のない正常な部分の輝度信号Hと比べてDC成分のレベ
ルが変わるだけである(図4参照)。従って、微分処理
を行って得られる微分処理輝度信号Eも、欠陥のない正
常な部分の微分処理輝度信号Iと同様に、輝度信号値に
大きな変化を持たず、輝度信号値と閾値との比較から欠
陥を検出することはできない。
On the other hand, as shown in FIG.
If the arrangement direction of the solid-state imaging device 0 'and a direction perpendicular to the conveying direction of the inspected film F, even when imaging a step unevenness F 3, the luminance signal D of the stage unevenness of step unevenness Only the level of the DC component changes as compared to the luminance signal H of the normal part (see FIG. 4). Accordingly, the differentiated luminance signal E obtained by performing the differential processing does not have a large change in the luminance signal value similarly to the differential processed luminance signal I of the normal portion without a defect, and the luminance signal value is compared with the threshold value. No defect can be detected from the data.

【0030】このように、CCDカメラ20は、段ムラ
等のような一方向に発生しやすい欠陥の発生方向を予め
想定して、配置方向を定めるのがよい。図3の例では、
固体撮像素子の配列方向は、被検査フィルムFの搬送方
向と直交する方向に対して45度傾斜するが、本発明に
おいては、この傾斜角度は限定されない。しかし、図示
されないモニタ画面上で搬送方向を水平方向あるいは垂
直方向にして画面表示する場合を考慮して、画像の回転
処理を施し易いように、傾斜角度を45度とするのが好
ましい。フィルム欠陥検査装置10および欠陥検出装置
22は以上の様に構成される。
As described above, it is preferable that the arrangement direction of the CCD camera 20 is determined by assuming in advance the direction in which a defect such as step unevenness which is likely to occur in one direction is generated in advance. In the example of FIG.
The arrangement direction of the solid-state imaging devices is inclined by 45 degrees with respect to the direction perpendicular to the transport direction of the film F to be inspected, but the inclination angle is not limited in the present invention. However, in consideration of the case where the image is displayed on a monitor screen (not shown) with the transport direction being the horizontal direction or the vertical direction, the inclination angle is preferably set to 45 degrees so that the image can be easily rotated. The film defect inspection device 10 and the defect detection device 22 are configured as described above.

【0031】このようなフィルム欠陥検査装置10で
は、照明光源12から一様に投光された光は、偏光子1
4aによって一方向に直線偏向した成分のみとなり、被
検査フィルムFに入射する。被検査フィルムFでは、直
線偏向した光が被検査フィルムFの複屈折特性によって
楕円偏向して、被検査フィルムFから透過する。さら
に、液晶補正フィルム16の複屈折特性によって楕円偏
向を受けて液晶補正フィルム16から透過する。液晶補
正フィルム16から透過した楕円偏向した光は、偏光子
14aとクロスニコルに配置された偏光子14bによっ
て、偏光子14bの偏向透過光軸方向の成分のみが透過
し、光学系18によって集光されてCCDカメラ20に
よって受光される。
In such a film defect inspection apparatus 10, light uniformly emitted from the illumination light source 12 is applied to the polarizer 1.
Only the component linearly deflected in one direction by 4a is incident on the film F to be inspected. In the test film F, the linearly polarized light is elliptically deflected by the birefringence characteristic of the test film F, and is transmitted from the test film F. Further, the light is subjected to elliptical deflection by the birefringence characteristic of the liquid crystal correction film 16 and is transmitted from the liquid crystal correction film 16. The elliptically-polarized light transmitted from the liquid crystal correction film 16 is transmitted by the polarizer 14a and the polarizer 14b arranged in crossed Nicols so that only the component in the direction of the polarization transmission optical axis of the polarizer 14b is transmitted, and is condensed by the optical system 18. Then, the light is received by the CCD camera 20.

【0032】ここで、被検査フィルムFに欠陥が含まれ
る場合、この欠陥部分を通過する光の楕円偏向成分は、
欠陥のない正常な部分を透過する光の楕円偏向成分と異
なる。従って、CCDカメラ20で受光して得られる輝
度信号においても、欠陥部分の輝度信号値が大きく変化
し、例えば輝度信号値が高くなる。また、液晶補正フィ
ルム16の作用により、CCDカメラ20で得られる
輝度信号は、視角依存性を持たない一様なレベルの信号
となる。なお、本発明では、被検査フィルムFの複屈折
特性によって光が楕円偏向するのを、液晶補正フィルム
16の複屈折特性によって直線偏向に戻す訳でなく、つ
まり、被検査フィルムFの複屈折率の異方性を液晶補正
フィルム16の複屈折率の異方性を用いて補償する訳で
なく、被検査フィルムFの複屈折特性によってできるC
CDカメラの視覚依存性、すなわち、受光素子の受光位
置によって輝度信号の値が変化する視角依存性を、液晶
補正フィルム16の複屈折特性を利用して補正すること
によって、輝度信号を一様なレベルに保たせるものであ
る。このような輝度信号は、欠陥検出装置22に送ら
れ、微分処理や空間フィルタ処理が施され、一様なレベ
ルの輝度信号の中からノイズ成分と区別して欠陥部分の
輝度信号を識別して検出する種々の検出回路に送られ、
輝度信号から欠陥検出が行われる。
Here, if the film F to be inspected contains a defect, the elliptical deflection component of the light passing through the defective portion is:
It is different from the elliptical polarization component of the light transmitted through the normal portion without any defect. Therefore, even in the luminance signal obtained by receiving light by the CCD camera 20, the luminance signal value of the defective portion greatly changes, for example, the luminance signal value increases. In addition, by the action of the liquid crystal correction film 16, it is obtained by the CCD camera 20.
The luminance signal is a signal of a uniform level having no viewing angle dependency. In the present invention, the elliptical deflection of light due to the birefringence characteristic of the film F to be inspected does not mean that the light is linearly polarized due to the birefringence characteristic of the liquid crystal correction film 16; Is not compensated for using the anisotropy of the birefringence of the liquid crystal correction film 16, but the C
By correcting the visual dependency of the CD camera, that is, the viewing angle dependency in which the value of the luminance signal changes depending on the light receiving position of the light receiving element, using the birefringence characteristic of the liquid crystal correction film 16, the luminance signal can be made uniform. It is what keeps it at the level. Such a luminance signal is sent to the defect detection device 22 and subjected to a differentiation process and a spatial filter process. The luminance signal of the defective portion is identified and detected by distinguishing it from noise components from the luminance signal of a uniform level. Sent to various detection circuits,
Defect detection is performed from the luminance signal.

【0033】このように本発明のフィルムの欠陥検査装
置は、視角依存性のない一様なレベルの輝度信号を得る
ために液晶補正フィルムを用いるものであるが、このフ
ィルム欠陥検査装置を被検査フィルム(液晶用視野角改
善フィルム)Fの製造工程に用い、被検査フィルムFの
製造工程中に生じるすべての光学的欠陥を漏れることな
く精度よく検出することができる。以下、本発明のフィ
ルムの欠陥検査装置を被検査フィルムFの製造工程に適
用した本発明のフィルムの欠陥検査システムについて説
明する。
As described above, the film defect inspection apparatus according to the present invention uses a liquid crystal correction film to obtain a uniform level of luminance signal having no viewing angle dependency. Used in the manufacturing process of the film (liquid crystal viewing angle improving film) F, it is possible to accurately detect all optical defects generated during the manufacturing process of the film F to be inspected without leaking. Hereinafter, a film defect inspection system of the present invention in which the film defect inspection apparatus of the present invention is applied to the manufacturing process of the film to be inspected F will be described.

【0034】図5は、本発明に係る欠陥検査システムの
一例である、液晶用視野角改善フィルム(被検査フィル
ム)Fの欠陥検査を行うフィルム欠陥検査システム50
を示す。フィルム欠陥検査システム50は、本発明に係
るフィルムの欠陥検査装置の構成を備えるフィルム欠陥
検査装置58、60および62および欠陥検出装置64
を備える。ここで、検査の対象である被検査フィルムF
は、可撓性支持体上に液晶を塗布し乾燥し、さらに配向
し、膜を硬化する各種工程を経て製造されたものであ
る。フィルム欠陥検査システム50は、製造された被検
査フィルムFを巻き取りロール52から、ローラ56a
〜56jを介し、巻き取りロール54に最終的に連続搬
送する搬送路中に、フィルム欠陥検査装置58、60お
よび62を配置したシステムで、フィルム欠陥検査装置
58、60および62の各々によって輝度信号を得、こ
の輝度信号を欠陥検出装置64に送り、欠陥検出を行う
ものである。
FIG. 5 shows an example of a defect inspection system according to the present invention, which is a film defect inspection system 50 for inspecting a defect of a viewing angle improving film for liquid crystal (film to be inspected) F.
Is shown. The film defect inspection system 50 includes film defect inspection devices 58, 60, and 62 and a defect detection device 64 having the configuration of the film defect inspection device according to the present invention.
Is provided. Here, the inspection target film F to be inspected is
Is manufactured by applying various steps of applying a liquid crystal on a flexible support, drying the liquid crystal, further aligning the liquid crystal, and curing the film. The film defect inspection system 50 rolls the produced film F to be inspected from the take-up roll 52 to the roller 56a.
In a system in which the film defect inspection devices 58, 60 and 62 are arranged in a transport path for finally and continuously transporting the film to the take-up roll 54 via the control signals 56 to 56j, the luminance signal is output by each of the film defect inspection devices 58, 60 and 62. The luminance signal is sent to the defect detection device 64 to detect a defect.

【0035】欠陥検出装置64は、欠陥検出装置22と
同様に、微分処理回路や空間フィルタ回路と、欠陥の種
類に対応した検出回路、たとえば「スジ検出回路」や
「薄汚れ検出回路」を有し、送られてきたフィルム欠陥
検査装置58、60および62各々の輝度信号を微分処
理回路や空間フィルタ回路で処理し、検出回路において
欠陥の有無を判定し、欠陥を検出する。
The defect detection device 64, like the defect detection device 22, has a differential processing circuit and a spatial filter circuit, and a detection circuit corresponding to the type of defect, for example, a "streak detection circuit" or a "light stain detection circuit". Then, the received luminance signals of the film defect inspection devices 58, 60 and 62 are processed by a differentiation processing circuit or a spatial filter circuit, and the presence or absence of a defect is determined by a detection circuit to detect the defect.

【0036】フィルム欠陥検査装置58は、照明光源5
8a、偏光子58b、液晶補正フィルム58c、偏光子
58d、光学系58eおよびCCDカメラ58fを備
え、これらは、上述したフィルム欠陥検査装置10の照
明光源12、偏光子14a、液晶補正フィルム16、偏
光子14b、光学系18およびCCDカメラ20に対応
するもので、構成や作用は同一であるので説明は省略す
る。ここで、偏光子58bと偏光子58dはクロスニコ
ルに偏向透過光軸が配置されると共に、偏光子58bま
たは偏光子58dの偏向透過光軸の一方は、搬送方向と
平行に配置される。すなわち、一対の偏光子の偏向透過
軸の搬送方向に対する交差角(搬送方向に対する交差角
とは、一対の偏光子のうちどちらか一方の偏光子の偏向
透過光軸の搬送方向に対する交差角をいう)は、略0度
に設定される。ここで略0度とは、被検査フィルムFの
複屈折特性によってその許容範囲は異なるが、例えば±
2〜3度以内をいう。
The film defect inspection device 58 includes the illumination light source 5
8a, a polarizer 58b, a liquid crystal correction film 58c, a polarizer 58d, an optical system 58e, and a CCD camera 58f. These are the illumination light source 12, the polarizer 14a, the liquid crystal correction film 16, It corresponds to the subunit 14b, the optical system 18, and the CCD camera 20, and the configuration and the operation are the same, so that the description is omitted. Here, the polarizer 58b and the polarizer 58d are arranged such that the deflecting and transmitting optical axes are arranged in crossed Nicols, and one of the deflecting and transmitting optical axes of the polarizer 58b and the polarizer 58d is arranged in parallel with the transport direction. That is, the crossing angle of the polarization transmission axis of the pair of polarizers with respect to the transport direction (the crossing angle of the polarization direction with respect to the transport direction refers to the crossing angle of one of the polarizers with respect to the transport direction of the deflection transmission optical axis. ) Is set to approximately 0 degrees. Here, the term “approximately 0 degrees” is different depending on the birefringence characteristics of the film F to be inspected.
It means within 2-3 degrees.

【0037】フィルム欠陥検査装置60は、照明光源6
0a、偏光子60b、液晶補正フィルム60c、偏光子
60dおよびCCDカメラ60eを備え、これらは、上
述した欠陥検査装置10の照明光源12、偏光子14
a、液晶補正フィルム16、偏光子14bおよびCCD
カメラ20に対応するもので、これらの構成や作用は、
照明光源12、偏光子14a、液晶補正フィルム16、
偏光子14bおよびCCDカメラ20と同一であるの
で、説明は省略する。また、フィルム欠陥検査装置60
には、光学系18が含まれない。また、偏光子60bと
偏光子60dはクロスニコルに偏向透過光軸が配置され
ると共に、偏光子60bまたは偏光子60dの偏向透過
光軸の一方は、搬送方向に対して僅かに傾き、例えば、
5度以上15度以下の範囲に傾斜して配置される。すな
わち、一対の偏光子の偏向透過軸の搬送方向に対する交
差角は、例えば5度以上15度以下、好ましくは、例え
ば略10度に設定される。
The film defect inspection device 60 includes the illumination light source 6
0a, a polarizer 60b, a liquid crystal correction film 60c, a polarizer 60d, and a CCD camera 60e. These are the illumination light source 12 and the polarizer 14 of the defect inspection apparatus 10 described above.
a, liquid crystal correction film 16, polarizer 14b and CCD
It corresponds to the camera 20, and these configurations and operations are as follows.
Illumination light source 12, polarizer 14a, liquid crystal correction film 16,
Since they are the same as the polarizer 14b and the CCD camera 20, the description is omitted. In addition, the film defect inspection device 60
Does not include the optical system 18. In addition, the polarizer 60b and the polarizer 60d have a polarization transmission optical axis arranged in crossed Nicols, and one of the polarization transmission optical axes of the polarizer 60b or the polarizer 60d is slightly inclined with respect to the transport direction, for example,
It is arranged to be inclined in a range of 5 degrees or more and 15 degrees or less. That is, the intersection angle of the deflection transmission axis of the pair of polarizers with the transport direction is set to, for example, 5 degrees or more and 15 degrees or less, and preferably, for example, to about 10 degrees.

【0038】フィルム欠陥検査装置62は、照明光源6
2a、偏光子62b、液晶補正フィルム62c、偏光子
62dおよびCCDカメラ62eを備え、これらは、上
述したフィルム欠陥検査装置10の照明光源12、偏光
子14a、液晶補正フィルム16、偏光子14bおよび
CCDカメラ20に対応するもので、これらの構成や作
用は、照明光源12、偏光子14a、液晶補正フィルム
16、偏光子14bおよびCCDカメラ20と同一であ
るので、説明は省略する。なお、フィルム欠陥検査装置
62には、光学系18が含まれない。また、偏光子62
bと偏光子62dはクロスニコルに偏向透過光軸が配置
されると共に、偏光子62bまたは偏光子62dの偏向
透過光軸の一方は、搬送方向に対して略45度程度、例
えば35度以上45度以下の範囲に傾斜して配置され
る。すなわち、一対の偏光子の偏向透過軸の搬送方向に
対する交差角は、例えば35度以上45度以下、好まし
くは、例えば略45度に設定される。
The film defect inspection device 62 includes the illumination light source 6
2a, a polarizer 62b, a liquid crystal correction film 62c, a polarizer 62d, and a CCD camera 62e. These are the illumination light source 12, the polarizer 14a, the liquid crystal correction film 16, the polarizer 14b, and the CCD of the above-described film defect inspection device 10. Since they correspond to the camera 20 and have the same configuration and operation as those of the illumination light source 12, the polarizer 14a, the liquid crystal correction film 16, the polarizer 14b, and the CCD camera 20, their description will be omitted. The film defect inspection device 62 does not include the optical system 18. The polarizer 62
b and the polarizer 62d are arranged in a crossed Nicols with a deflecting and transmitting optical axis, and one of the deflecting and transmitting optical axes of the polarizer 62b or the polarizer 62d is about 45 degrees with respect to the transport direction, for example, 35 degrees or more and 45 degrees or more. It is arranged at an angle in the range below degrees. That is, the crossing angle of the pair of polarizers with respect to the transport direction of the deflection transmission axis is set to, for example, 35 degrees or more and 45 degrees or less, and preferably, for example, to about 45 degrees.

【0039】このようにフィルム欠陥検査装置58、6
0および62において、偏光子の偏向透過軸の交差角を
変えるのは、被検査フィルムFの欠陥の種類や欠陥の程
度に応じて、最もSN比の高い状態で輝度信号を得るた
めである。以下、その作用について説明する。図6に
は、フィルム欠陥検査装置10において、被検査フィル
ムFのレターデーション値((遅相軸の複屈折率−遅相
軸と直交する軸の複屈折率)×被検査フィルムFの厚み
の値)が22nmである時の、一対の偏光子14の偏向
透過軸と被検査フィルムFの遅相軸との交差角(遅相軸
との交差角は、一対の偏光子のうちのどちらか一方の偏
光子の偏向透過軸と被検査フィルムFの遅相軸の交差角
をいう)に対して、一方の偏光子に入射される光量に対
する他方の偏光子から透過する透過光量の比率(透過光
量比)がどのように変化するかを示したものである。
As described above, the film defect inspection devices 58 and 6
The reason why the crossing angle of the polarization transmission axis of the polarizer in 0 and 62 is changed is to obtain a luminance signal in a state where the SN ratio is the highest according to the type and the degree of the defect of the film F to be inspected. Hereinafter, the operation will be described. FIG. 6 shows that in the film defect inspection apparatus 10, the retardation value of the film F to be inspected ((birefringence of slow axis−birefringence of axis perpendicular to the slow axis) × thickness of film F to be inspected). When the value is 22 nm, the intersection angle between the deflection transmission axis of the pair of polarizers 14 and the slow axis of the film F to be inspected (the intersection angle with the slow axis is one of the pair of polarizers). The ratio of the amount of light transmitted through the other polarizer to the amount of light incident on one polarizer (meaning the angle of intersection between the polarization transmission axis of one polarizer and the slow axis of the film F). (Light amount ratio) changes.

【0040】図6によると、被検査フィルムFの遅相軸
と偏向透過軸の交差角が0度、すなわち、被検査フィル
ムFの遅相軸と一方の偏光子の偏向透過軸とが平行であ
る場合、被検査フィルムFに入射された光は偏光子14
aによって受けた直線偏向の状態のまま被検査フィルム
Fを透過するため、クロスニコルに配置された偏光子1
4bから透過することはなく、従って透過光量比は0で
ある。しかし、被検査フィルムFの遅相軸と偏向透過軸
の交差角が増えるに連れて、偏光子14aによって直線
偏向を受けた光が被検査フィルムFの複屈折特性の影響
を受けて楕円偏向成分が強くなる。そのため、偏光子1
4bから透過する透過光の光量は交差角にともなって次
第に増大し透過光量比は増大する。
According to FIG. 6, the crossing angle between the slow axis of the film F to be inspected and the deflection transmission axis is 0 degree, that is, the slow axis of the film F to be inspected is parallel to the deflection transmission axis of one polarizer. In some cases, the light incident on the film to be inspected F is a polarizer 14.
a, the polarizer 1 arranged in crossed Nicols to transmit through the film to be inspected F in the state of linear deflection received by
No light is transmitted from the light-receiving portion 4b, so that the transmitted light amount ratio is zero. However, as the intersection angle between the slow axis and the deflecting transmission axis of the film F to be inspected increases, the light linearly deflected by the polarizer 14a becomes affected by the birefringence characteristic of the film F to be inspected, so that the elliptical deflection component is generated. Becomes stronger. Therefore, the polarizer 1
The amount of transmitted light transmitted from 4b gradually increases with the crossing angle, and the transmitted light ratio increases.

【0041】ここで、被検査フィルムFに欠陥が存在
し、すなわち、被検査フィルムFの遅相軸の方向が乱
れ、遅相軸と偏向透過軸の交差角が変動する場合を考え
る。例えば、被検査フィルムFの欠陥が液晶の配向欠陥
によって遅相軸が所定角度以上傾く、例えば5度以上傾
くような大きな配向欠陥の場合、被検査フィルムFの正
常な部分の遅相軸と偏向透過軸の交差角が0度であって
も、大きな配向欠陥では、その欠陥部分の遅相軸の方向
が大きくずれ偏向透過軸と大きな交差角を形成するた
め、図6に示される交差角に対応して透過光量は大きく
変化する。したがって、得られる欠陥部分の輝度信号は
大きな信号の変化として検出される。
Here, a case is considered where a defect exists in the film F to be inspected, that is, the direction of the slow axis of the film F to be inspected is disturbed, and the intersection angle between the slow axis and the deflection transmission axis fluctuates. For example, when the defect of the film F to be inspected is a large alignment defect in which the slow axis is inclined by a predetermined angle or more, for example, 5 degrees or more due to the alignment defect of the liquid crystal, the slow axis and the deflection of the normal part of the film F to be inspected are deflected. Even when the crossing angle of the transmission axis is 0 degree, in the case of a large orientation defect, the direction of the slow axis of the defect portion is largely shifted to form a large crossing angle with the deflection transmission axis. Correspondingly, the amount of transmitted light changes greatly. Therefore, the obtained luminance signal of the defective portion is detected as a large signal change.

【0042】一方、配向欠陥の遅相軸が偏光子14の偏
向透過軸に対して傾いているが、その角度が所定角度未
満である小さな配向欠陥、例えば5度未満の配向欠陥の
場合、被検査フィルムFの正常な部分の遅相軸と偏向透
過軸の交差角が略0度の時、図6に示されるように、交
差角0度の近傍では、交差角の僅かな変化に対して透過
光量比が十分に変化しないため、小さな配向欠陥を輝度
信号として検出することは難しい。そこで、被検査フィ
ルムFの遅相軸と偏向透過軸の交差角を5度以上15度
以下に、例えば10度に設定することで、遅相軸の向き
のわずかな変化に対する透過光量比の変化を増幅するこ
とができる。すなわち、小さな配向欠陥の場合、正常な
被検査フィルムFの遅相軸と偏光子14の偏向透過軸の
交差角を5度以上15以下に設定することで、小さな配
向欠陥による透過光量比の変化を大きくして輝度信号の
変化を増幅し、SN比を向上して欠陥検出の精度を高め
ることができる。
On the other hand, when the slow axis of the alignment defect is inclined with respect to the polarization transmission axis of the polarizer 14, but the angle is smaller than a predetermined angle, for example, when the alignment defect is smaller than 5 degrees, the alignment defect is reduced. When the intersection angle between the slow axis and the deflecting transmission axis of the normal portion of the inspection film F is substantially 0 degree, as shown in FIG. Since the transmitted light amount ratio does not change sufficiently, it is difficult to detect a small alignment defect as a luminance signal. Therefore, by setting the crossing angle between the slow axis and the deflection transmission axis of the film F to be inspected to 5 degrees or more and 15 degrees or less, for example, 10 degrees, the change in the transmitted light amount ratio with respect to a slight change in the direction of the slow axis. Can be amplified. That is, in the case of a small alignment defect, the crossing angle between the normal slow axis of the film F to be inspected and the deflection transmission axis of the polarizer 14 is set to 5 degrees or more and 15 or less, thereby changing the transmitted light amount ratio due to the small alignment defects. Can be increased to amplify the change in the luminance signal, the S / N ratio can be improved, and the accuracy of defect detection can be increased.

【0043】本実施例においては、上記交差角を5度以
上15度以下に限定することによって、被検査フィルム
Fの正常な部分の輝度信号のレベルを低く抑えつつ、小
さな配向欠陥の輝度信号を効果的に検出することができ
るが、本発明においては、被検査フィルムFの複屈折特
性によっては、上記交差角を5度以上15度以下に限定
する必要はなく、図6に示される様な交差角に対する透
過光量比の曲線に応じて、交差角を適宜設定するとよ
い。
In this embodiment, by limiting the intersection angle to 5 degrees or more and 15 degrees or less, the luminance signal of a small alignment defect can be reduced while the level of the luminance signal of the normal portion of the film F to be inspected is kept low. Although it can be effectively detected, in the present invention, it is not necessary to limit the crossing angle to 5 degrees or more and 15 degrees or less depending on the birefringence characteristics of the film F to be inspected, and as shown in FIG. The intersection angle may be appropriately set according to the curve of the ratio of the amount of transmitted light to the intersection angle.

【0044】また、被検査フィルムFでは、配向欠陥は
ないが、製造工程における塗布むら等によってレターデ
ーション値が変動する位相差欠陥、すなわち、上述した
段ムラも発生する。図6に示す遅相軸と偏光子14の偏
向透過軸の交差角が小さい場合、透過光量比が元々小さ
いため、上記位相差欠陥によるレターデーション値の変
化に対応して透過光量比は大きく変化しない。一方、上
記交差角が大きい場合、図7に上記交差角が45度の場
合のレターデーション値に対する透過光量比の変化が示
されているように、透過光量自体が多いため、レターデ
ーション値に対する透過光量比の変化が大きい。そのた
め、レターデーション値の変化する位相差欠陥の場合
は、上記交差角を大きく、例えば35度以上45度以
下、好ましくは例えば45度に設定することによって、
レターデーション値の変化に対する透過光量比を大きく
変化させることができ、位相差欠陥部分における輝度信
号の変化を増幅し、SN比を向上させて位相差欠陥の検
出の精度を高めることができる。上述した様に好ましい
交差角の態様は45度であるが、この理由は、偏光子1
4がクロスニコルに配置されているため、交差角45度
において透過光量比が最大となり、この交差角でのレタ
ーデーション値に対する透過光量比の変化が最大になる
からである。なお、本発明において、被検査フィルムF
の複屈折特性によっては、上記交差角を35度以上45
度以下に限定する必要はなく、図6に示される様な交差
角に対する透過光量比の曲線に応じて、交差角を適宜設
定するとよい。
In the film F to be inspected, there are no alignment defects, but a phase difference defect whose retardation value fluctuates due to coating unevenness in the manufacturing process, that is, the above-mentioned step unevenness also occurs. When the intersection angle between the slow axis and the polarization transmission axis of the polarizer 14 shown in FIG. 6 is small, the transmitted light amount ratio is originally small, so that the transmitted light amount ratio largely changes in response to the change in the retardation value due to the phase difference defect. do not do. On the other hand, when the crossing angle is large, the transmission light amount itself is large as shown in FIG. 7 showing a change in the transmission light amount ratio with respect to the retardation value when the crossing angle is 45 degrees. The change in the light amount ratio is large. Therefore, in the case of a phase difference defect in which the retardation value changes, the above-mentioned intersection angle is set to a large value, for example, 35 degrees or more and 45 degrees or less, preferably, for example, 45 degrees.
The transmitted light amount ratio with respect to the change in the retardation value can be largely changed, the change in the luminance signal in the phase difference defect portion can be amplified, the SN ratio can be improved, and the detection accuracy of the phase difference defect can be increased. As described above, the preferred mode of the crossing angle is 45 degrees.
4 are arranged in crossed Nicols, the transmission light amount ratio becomes maximum at an intersection angle of 45 degrees, and the change in the transmission light amount ratio with respect to the retardation value at this intersection angle becomes maximum. In the present invention, the film to be inspected F
Depending on the birefringence characteristics of
It is not necessary to limit the angle to the degree or less, and the intersection angle may be appropriately set according to a curve of the transmitted light amount ratio with respect to the intersection angle as shown in FIG.

【0045】このように、欠陥の種類や欠陥の程度に応
じて、被検査フィルムFの正常な部分の遅相軸と偏光子
の偏向透過軸との交差角を変えることによって、欠陥を
漏れなく精度よく検出することができる。
As described above, by changing the intersection angle between the slow axis of the normal portion of the film F to be inspected and the deflection transmission axis of the polarizer in accordance with the type and the degree of the defect, the defect can be completely leaked. It can be detected with high accuracy.

【0046】フィルム欠陥検査システム50では、上述
した原理に基づき、さらに、搬送される被検査フィルム
Fの遅相軸が搬送方向と直交する方向に向いて製造され
ることを利用して、フィルム欠陥検査装置58、60お
よび62における偏光子の偏向透過軸を搬送方向に対し
て所定の方向に変化させたものである。すなわち、フィ
ルム欠陥検査装置58では、大きな配向欠陥を精度よく
検出できる様に、被検査フィルムFの遅相軸と偏光子5
8bまたは58dの偏向透過光軸の交差角を略0度、即
ち略平行に設定するために、偏光子58bまたは58d
の偏向透過光軸を搬送方向に対して略0度、即ち略平行
に配置する。これによって、欠陥検査装置58は、大き
な配向欠陥を精度よく検出できる輝度信号を得ることが
できる他、さらに、遅相軸の方向が様々に変動しレター
デーション値も様々に変動する異物混入による欠陥も精
度よく検出できる輝度信号を得ることができる。
The film defect inspection system 50 utilizes the fact that the film to be inspected F to be transported is manufactured with the slow axis directed in a direction orthogonal to the transport direction based on the above-described principle. The deflection transmission axes of the polarizers in the inspection devices 58, 60 and 62 are changed in a predetermined direction with respect to the transport direction. That is, in the film defect inspection device 58, the slow axis of the film F to be inspected and the polarizer 5 are detected so that a large alignment defect can be detected with high accuracy.
In order to set the crossing angle of the deflecting transmission optical axis of 8b or 58d to substantially 0 degree, that is, substantially parallel, the polarizer 58b or 58d
Are arranged at substantially 0 degrees, that is, substantially parallel to the transport direction. Accordingly, the defect inspection apparatus 58 can obtain a luminance signal capable of accurately detecting a large alignment defect, and further, a defect due to foreign matter contamination in which the direction of the slow axis varies in various ways and the retardation value varies in various ways. It is also possible to obtain a luminance signal that can be detected with high accuracy.

【0047】フィルム欠陥検査装置60では、小さな配
向欠陥を精度よく検出できる様に、被検査フィルムFの
遅相軸と偏光子60bまたは60dの偏向透過光軸の交
差角を略10度に設定し、従って、偏光子60bまたは
60dの偏向透過光軸を搬送方向に対して略10度に配
置する。これによって、フィルム欠陥検査装置60は、
小さな配向欠陥を精度よく検出できる輝度信号を得るこ
とができる他、大きな配向欠陥は勿論、遅相軸の方向が
様々に変動するとともに、レターデーション値も様々に
変動する異物混入による欠陥も精度よく検出できる輝度
信号を得ることができる。
In the film defect inspection apparatus 60, the intersection angle between the slow axis of the film F to be inspected and the deflecting transmission optical axis of the polarizer 60b or 60d is set to about 10 degrees so that small alignment defects can be detected with high accuracy. Therefore, the polarization transmission optical axis of the polarizer 60b or 60d is arranged at approximately 10 degrees with respect to the transport direction. Thereby, the film defect inspection device 60
In addition to obtaining a luminance signal that can accurately detect small alignment defects, not only large alignment defects, but also the direction of the slow axis varies in various ways and the retardation values vary in various ways. A detectable luminance signal can be obtained.

【0048】フィルム欠陥検査装置62では、遅相軸の
向きが変化した配向欠陥でなく、レターデーション値が
変化した位相差欠陥を精度よく検出できる様に、被検査
フィルムFの遅相軸と偏光子62bまたは62dの偏向
透過光軸の交差角を略45度に設定し、従って、偏光子
62bまたは62dの偏向透過光軸を搬送方向に対して
略45度に配置する。これによって、フィルム欠陥検査
装置62は、位相差欠陥を精度よく検出できる輝度信号
を得ることができる。
In the film defect inspection apparatus 62, not the alignment defect in which the direction of the slow axis has changed but the phase difference defect in which the retardation value has changed can be detected with high accuracy so that the slow axis of the film F to be inspected can be detected. The crossing angle of the deflecting transmission optical axis of the polarizer 62b or 62d is set to approximately 45 degrees, and therefore, the deflecting transmission optical axis of the polarizer 62b or 62d is disposed at approximately 45 degrees with respect to the transport direction. As a result, the film defect inspection device 62 can obtain a luminance signal that can accurately detect a phase difference defect.

【0049】このように、欠陥検査システム50は、被
検査フィルムFの光学的欠陥を遅相軸の向きのズレによ
る配向欠陥を程度に応じて大きな配向欠陥や小さな配向
欠陥に分類して欠陥検出を可能とし、さらには、レター
デーション値がずれる位相差欠陥を検出可能とし、さら
に異物混入による欠陥等も検出可能とする。欠陥検査シ
ステム50では、欠陥検査装置の一対の偏光子の偏向透
過光軸を搬送方向に対して略0度、略10度および略4
5度に交差して3台の欠陥検査装置を配置するが、本発
明の欠陥検査システムでは、台数に限定はなく、また、
交差角度も限定されず、被検査フィルムFの遅相軸の向
きやレターデーション値等の複屈折特性に応じて、上記
交差角を種々変化すればよい。
As described above, the defect inspection system 50 classifies the optical defects of the film F to be inspected into large or small alignment defects depending on the degree of misalignment of the direction of the slow axis. In addition, it is possible to detect a phase difference defect in which the retardation value is deviated, and it is also possible to detect a defect or the like due to foreign matter mixing. In the defect inspection system 50, the deflecting transmission optical axes of the pair of polarizers of the defect inspection apparatus are set to approximately 0 degrees, approximately 10 degrees, and approximately 4 degrees with respect to the transport direction.
Although three defect inspection devices are arranged to intersect at five degrees, the defect inspection system of the present invention does not limit the number of defect inspection devices.
The crossing angle is not limited, and the crossing angle may be variously changed according to the birefringence characteristics such as the direction of the slow axis of the film F to be inspected and the retardation value.

【0050】このようなフィルム欠陥検査システム50
のフィルム欠陥検査装置58、60および62では、被
検査フィルムFの幅に合わせて複数台のCCDカメラが
配置される。例えば、フィルム欠陥検査装置60では、
図8に示される様に、連続搬送される被検査フィルムF
の幅に合わせて、CCDカメラ60e1 〜60e6 から
なるCCDカメラ60eによって幅方向全体の透過光を
受光して輝度信号を欠陥検出装置64に送る。
Such a film defect inspection system 50
In the film defect inspection devices 58, 60 and 62, a plurality of CCD cameras are arranged in accordance with the width of the film F to be inspected. For example, in the film defect inspection device 60,
As shown in FIG. 8, the film to be inspected F continuously transported
To fit the width and sends a luminance signal by receiving the light transmitted through the full width by a CCD camera 60e consisting of CCD camera 60e 1 ~60e 6 for defect detection device 64.

【0051】上記欠陥検査システム50では、例えば毎
分18mの速度で連続的に搬送される被検査フィルムF
を上述した様に幅方向に6台のCCDカメラを配置し、
カメラによる分解能を例えば0.125mmとし、フィ
ルム欠陥検査装置60で得られる輝度信号に対して、微
分回路や空間フィルタ回路等および「薄汚れ検出回路」
を通すことによって、フィルム欠陥検査装置60で得ら
れる輝度信号に対しては、微分処理回路や空間フィルタ
回路および「スジ検出回路」を通すことによって所望の
欠陥検査をインラインで行う。
In the defect inspection system 50, for example, the film F to be inspected continuously conveyed at a speed of 18 m / min.
6 CCD cameras are arranged in the width direction as described above,
The resolution by the camera is set to, for example, 0.125 mm, and the luminance signal obtained by the film defect inspection device 60 is compared with a differentiation circuit, a spatial filter circuit, etc.
For the luminance signal obtained by the film defect inspection apparatus 60 by passing through, a desired defect inspection is performed in-line by passing through a differential processing circuit, a spatial filter circuit, and a "streak detection circuit".

【0052】特に、上述した被検査フィルムFの製造中
の塗布むらは、搬送方向と直交する方向に発生する段ム
ラとなり、レターデーション値が変化する位相差欠陥と
なるので、偏向透過光軸が搬送方向に対して略45度に
傾斜した偏光子60bまたは60dを有するフィルム欠
陥検査装置60を用いて段ムラを検出する場合、CCD
カメラ60e1 〜60e6 を用い、あるいは、上述した
ように被検査フィルムFの幅に合わせて複数台、例えば
6台のCCDカメラを用い、被検査フィルムFの搬送方
向と直交する方向に対して傾斜して、例えば45度に傾
斜して撮像するとよい。その際、欠陥検出装置64にお
いて、画面上水平あるいは垂直の搬送方向となるように
画像回転の処理を行うとよい。こうして、段ムラの発生
周期や段ムラの強度を定量化することができる。
In particular, the above-mentioned coating unevenness during the production of the film to be inspected F causes unevenness in the level generated in the direction perpendicular to the transport direction, resulting in a phase difference defect in which the retardation value changes. When detecting step unevenness using the film defect inspection apparatus 60 having the polarizer 60b or 60d inclined at approximately 45 degrees with respect to the transport direction,
Using the camera 60e 1 ~60e 6, or a plurality in accordance with the width of the test film F as described above, for example using a six CCD cameras, with respect to a direction perpendicular to the conveying direction of the inspected film F The image may be taken at an angle, for example, at 45 degrees. At this time, it is preferable that the defect detection device 64 performs an image rotation process so as to be in a horizontal or vertical transport direction on the screen. In this manner, the generation cycle of the step unevenness and the strength of the step unevenness can be quantified.

【0053】以上、本発明のフィルムの欠陥検査装置、
欠陥検査システムおよび欠陥検査方法について詳細に説
明したが、本発明は上記実施例に限定はされず、本発明
の要旨を逸脱しない範囲において、各種の改良および変
更を行ってもよいのはもちろんである。
As described above, the film defect inspection apparatus of the present invention
Although the defect inspection system and the defect inspection method have been described in detail, the present invention is not limited to the above embodiment, and various improvements and changes may be made without departing from the spirit of the present invention. is there.

【0054】[0054]

【発明の効果】以上、詳細に説明したように、光学的欠
陥のない被検査フィルムの複屈折特性と略同一なフィル
ムであって、被検査フィルムの複屈折特性に応じて配置
方向が予め設定される補正フィルムを用いることによっ
て、輝度信号の信号レベルを一定にし、さらに透過光量
も増加させることができるので、欠陥部分の輝度信号の
SN比を大きくし、欠陥検出精度を向上させることがで
き、製造ライン等において被検査フィルムの光学的欠陥
検査を簡易かつ容易に行うことができる。さらに、一対
の偏光子の偏向透過軸の向きを変えることによって、製
造工程中に生じるすべての光学的欠陥を漏れることなく
精度よく検出するすることができる。特に、液晶表示装
置等に用いる視野角改善フィルムの製造過程において、
異物の混入や配向ムラや段ムラ等に起因する欠陥の検出
を連続的に漏れなく行うことができ、製造工程でのイン
ライン全数検査において有効である。特に、段ムラは、
輝度信号の輝度信号値によって検出できるので、微分処
理や画像処理を用いて、段ムラの発生周期や段ムラの強
度を定量化することができる。
As described above in detail, the film to be inspected has substantially the same birefringence characteristics as that of the film to be inspected without optical defects, and the arrangement direction is set in advance according to the birefringence characteristics of the film to be inspected. By using the correction film, the signal level of the luminance signal can be made constant and the amount of transmitted light can be increased, so that the SN ratio of the luminance signal of the defective portion can be increased and the defect detection accuracy can be improved. In addition, an optical defect inspection of a film to be inspected can be easily and easily performed on a production line or the like. Further, by changing the direction of the polarization transmission axis of the pair of polarizers, all optical defects generated during the manufacturing process can be accurately detected without leaking. In particular, in the manufacturing process of a viewing angle improving film used for a liquid crystal display device and the like,
It is possible to continuously detect a defect caused by mixing of a foreign substance, alignment unevenness, step unevenness, and the like without omission, which is effective in in-line total inspection in a manufacturing process. In particular, step unevenness,
Since the detection can be performed based on the luminance signal value of the luminance signal, the occurrence period of the step unevenness and the intensity of the step unevenness can be quantified by using the differential processing and the image processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のフィルムの欠陥検査装置の一例の概
略を説明する概略構成図である。
FIG. 1 is a schematic configuration diagram for explaining an outline of an example of a film defect inspection apparatus of the present invention.

【図2】 (a)は、従来のフィルム検査装置を説明す
る説明図であり、(b)は(a)の 検査装置で得られ
る輝度信号の一例を示す図であり、(c)は本発明のフ
ィルムの欠陥検査装置の他の例の概略を説明する説明図
であり、(d)は(c)の検査装置で得られる輝度信号
の一例を示す図である。
2A is an explanatory view illustrating a conventional film inspection apparatus, FIG. 2B is a view illustrating an example of a luminance signal obtained by the inspection apparatus in FIG. 2A, and FIG. It is explanatory drawing explaining the outline of another example of the film defect inspection apparatus of this invention, and (d) is a figure which shows an example of the luminance signal obtained by the inspection apparatus of (c).

【図3】 本発明のフィルム欠陥検査装置の受光手段の
配置の一例を説明する図である。
FIG. 3 is a diagram illustrating an example of an arrangement of light receiving means of the film defect inspection device according to the present invention.

【図4】 従来のフィルム欠陥検査装置の受光手段の配
置の一例を説明する図である。
FIG. 4 is a diagram illustrating an example of an arrangement of light receiving means of a conventional film defect inspection device.

【図5】 本発明のフィルムの欠陥検査システムの一例
の概略を説明する概略構成図である。
FIG. 5 is a schematic configuration diagram illustrating an outline of an example of a film defect inspection system of the present invention.

【図6】 本発明のフィルムの欠陥検査装置によって得
られる透過光量比の特性を示す図である。
FIG. 6 is a diagram showing characteristics of a transmitted light amount ratio obtained by the film defect inspection apparatus of the present invention.

【図7】 本発明のフィルムの欠陥検査装置によって得
られる透過光量比の他の特性を示す図である。
FIG. 7 is a view showing another characteristic of the transmitted light amount ratio obtained by the film defect inspection apparatus of the present invention.

【図8】 本発明の欠陥検査システムに用いられる本発
明のフィルムの欠陥検査装置の一例の概略を説明する概
略構成図である。
FIG. 8 is a schematic configuration diagram illustrating an outline of an example of a film defect inspection apparatus of the present invention used in the defect inspection system of the present invention.

【符号の説明】[Explanation of symbols]

10,30,40,58,60,62 フィルム欠陥検
査装置 12,32,42,58a,60a,62a 照明光源 14 一対の偏光子 14a,14b,34a,34b,44a、44b,5
8c,60c,62c偏光子 16,46,58c,60c,62c 液晶補正フィル
ム 18,58e 光学系 20,36,48,58f,60e,62e CCDカ
メラ 22,64 欠陥検出装置
10, 30, 40, 58, 60, 62 Film defect inspection device 12, 32, 42, 58a, 60a, 62a Illumination light source 14 A pair of polarizers 14a, 14b, 34a, 34b, 44a, 44b, 5
8c, 60c, 62c Polarizer 16, 46, 58c, 60c, 62c Liquid crystal correction film 18, 58e Optical system 20, 36, 48, 58f, 60e, 62e CCD camera 22, 64 Defect detection device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G051 AA41 AB02 BA08 BA11 BA20 CA03 CA04 CB02 DA08 DA20 EA08 EA30 FA10 2G086 EE05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G051 AA41 AB02 BA08 BA11 BA20 CA03 CA04 CB02 DA08 DA20 EA08 EA30 FA10 2G086 EE05

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】光学的欠陥を検査する被検査フィルムのフ
ィルム面の両側に被検査フィルムと平行に配置する一対
の偏光子と、 この一対の偏光子間の外側に配置し、この一対の偏光子
の一方の偏光子を介して、被検査フィルムに投光する照
明光源と、 前記一対の偏光子間の外側の、前記照明光源の配置位置
の反対側に配置し、前記照明光源によって投光されて他
方の偏光子から透過される透過光を受光する受光手段
と、 複屈折特性が、被検査フィルムの光学的欠陥のない部分
の複屈折特性と略同一なフィルムであって、被検査フィ
ルムの複屈折特性に応じて配置方向が予め設定され、前
記一対の偏光子と被検査フィルムとの間の一方の隙間に
被検査フィルムと平行に配置される補正フィルムとを有
し、 前記被検査フィルム、前記補正フィルムおよび前記一対
の偏光子を透過した透過光の輝度信号を、前記受光手段
により得ることによって被検査フィルムの光学的欠陥を
検査することを特徴とするフィルムの欠陥検査装置。
1. A pair of polarizers arranged in parallel with the film to be inspected on both sides of a film surface of the film to be inspected for inspecting an optical defect, and a pair of polarizers arranged outside between the pair of polarizers. An illumination light source for projecting light to the film to be inspected through one of the polarizers; and an outer light source between the pair of polarizers, opposite to the position where the illumination light source is arranged, and light emitted by the illumination light source. A light receiving means for receiving the transmitted light transmitted through the other polarizer; and a film having a birefringence characteristic substantially the same as the birefringence characteristic of a portion of the film to be inspected having no optical defect. The arrangement direction is set in advance according to the birefringence characteristics of the film to be inspected, and a correction film is disposed in parallel with the film to be inspected in one gap between the pair of polarizers and the film to be inspected. Film, correction film And a film defect inspection apparatus for inspecting an optical defect of a film to be inspected by obtaining a luminance signal of transmitted light transmitted through the pair of polarizers by the light receiving unit.
【請求項2】前記補正フィルムは、被検査フィルムの光
学的欠陥のない部分を、フィルム面内で180度回転し
た状態で、あるいは被検査フィルムの光学的欠陥のない
部分のフィルム面を表裏反転した状態で配置したもので
あることを特徴とする請求項1に記載のフィルムの欠陥
検査装置。
2. The correction film according to claim 1, wherein a portion having no optical defect of the film to be inspected is rotated by 180 degrees in a film surface, or a film surface of a portion having no optical defect of the film to be inspected is turned upside down. The film defect inspection apparatus according to claim 1, wherein the film defect inspection apparatus is arranged in a state where the film is arranged.
【請求項3】前記補正フィルムが前記一対の偏光子の一
方の偏光子に貼り合わせてなることを特徴とする請求項
1または2に記載のフィルムの欠陥検査装置。
3. The film defect inspection apparatus according to claim 1, wherein the correction film is bonded to one of the pair of polarizers.
【請求項4】前記受光手段と前記一対の偏光子の前記受
光手段側に配置される偏光子との間の透過光の光路中に
透過光を前記受光手段に集光させる光学系が備えられる
ことを特徴とする請求項1〜3のいずれかに記載のフィ
ルムの欠陥検査装置。
4. An optical system for condensing transmitted light on said light receiving means in an optical path of transmitted light between said light receiving means and a polarizer arranged on said light receiving means side of said pair of polarizers. The film defect inspection apparatus according to claim 1, wherein:
【請求項5】前記受光手段は、固体撮像素子である請求
項1〜4のいずれかに記載のフィルムの欠陥検査装置。
5. The film defect inspection apparatus according to claim 1, wherein said light receiving means is a solid-state image sensor.
【請求項6】被検査フィルムの光学的欠陥の検査が被検
査フィルムの搬送中に行われる場合、前記受光手段は、
前記被検査フィルムの搬送方向と直交する方向に対して
傾斜して一列に配置される複数の固体撮像素子であるこ
とを特徴とする請求項5に記載のフィルムの欠陥検査装
置。
6. When the inspection for the optical defect of the film to be inspected is performed during the transport of the film to be inspected, the light receiving means includes:
The film defect inspection device according to claim 5, wherein the plurality of solid-state imaging devices are arranged in a row in a slant with respect to a direction orthogonal to a transport direction of the film to be inspected.
【請求項7】連続搬送される被検査フィルムの光学的欠
陥を検査するフィルム欠陥システムであって、 光学的欠陥を検査する被検査フィルムのフィルム面の両
側に被検査フィルムと平行に配置する一対の偏光子と、 この一対の偏光子間の外側に配置し、この一対の偏光子
の一方の偏光子を介して、被検査フィルムに投光する照
明光源と、 前記一対の偏光子間の外側の、前記照明光源の配置位置
の反対側に配置し、前記照明光源によって投光されて他
方の偏光子から透過される透過光を受光する受光手段
と、 複屈折特性が、被検査フィルムの光学的欠陥のない部分
の複屈折特性と略同一なフィルムであって、被検査フィ
ルムの複屈折特性に応じて配置方向が予め設定され、前
記一対の偏光子と被検査フィルムとの間の一方の隙間に
被検査フィルムと平行に配置される補正フィルムとを備
えるフィルム欠陥検査装置が被検査フィルムの搬送路中
に複数配置され、 前記複数のフィルム欠陥検査装置の前記一対の偏光子の
偏向透過軸の方向が、クロスニコルに配置された状態
で、連続搬送される前記被検査フィルムの搬送方向に対
してそれぞれ異なった角度に設定されていることを特徴
とするフィルムの欠陥検査システム。
7. A film defect system for inspecting an optical defect of a film to be inspected which is continuously conveyed, comprising a pair arranged on both sides of a film surface of the film to be inspected for an optical defect in parallel with the film to be inspected. And a light source disposed outside the pair of polarizers, and an illumination light source for projecting the film to be inspected through one of the pair of polarizers, and an outer side between the pair of polarizers. A light receiving means for receiving the transmitted light emitted by the illumination light source and transmitted from the other polarizer, and a birefringence characteristic of an optical element of the film to be inspected. A film that is substantially the same as the birefringence characteristic of the portion having no target defect, the arrangement direction is preset according to the birefringence characteristic of the film to be inspected, and one of the pair of polarizers and the film to be inspected Inspection A plurality of film defect inspection devices comprising a correction film arranged in parallel with the film are arranged in the transport path of the film to be inspected, the direction of the deflection transmission axis of the pair of polarizers of the plurality of film defect inspection devices, A film defect inspection system, wherein the film inspection system is set at different angles with respect to the transport direction of the film to be inspected which is continuously transported in a crossed Nicols state.
【請求項8】前記フィルム欠陥検査装置が3台以上配置
され、 少なくとも3台のフィルム欠陥検査装置における前記一
対の偏光子の偏向透過軸の、前記被検査フィルムの光学
的欠陥のない部分の遅相軸に対する交差角が、それぞ
れ、略0度および5度以上15度以下および35度以上
45度以下になるように、前記一対の偏光子が配置され
ることを特徴とする請求項7に記載のフィルムの欠陥検
査システム。
8. A film defect inspection device comprising at least three film defect inspection devices, wherein at least three film defect inspection devices have a deflection transmission axis of the pair of polarizers at a position where a portion of the film to be inspected has no optical defect. The pair of polarizers are arranged so that the crossing angles with respect to the phase axis are approximately 0 degree, 5 degrees or more and 15 degrees or less, and 35 degrees or more and 45 degrees or less, respectively. Film defect inspection system.
【請求項9】前記フィルム欠陥検査装置の少なくとも1
つは、前記受光手段が、前記被検査フィルムの搬送方向
と直交する方向に対して傾斜して一列に複数配置された
固体撮像素子であることを特徴とする請求項7または8
に記載のフィルムの欠陥検査システム。
9. At least one of said film defect inspection devices
9. The solid-state imaging device according to claim 7, wherein the light receiving unit is a plurality of solid-state imaging devices that are arranged in a row in a slant with respect to a direction orthogonal to a transport direction of the film to be inspected.
2. The film defect inspection system according to 1.
【請求項10】一対の偏光子の間に平行に配置した被検
査フィルムの光学的欠陥を、一対の偏光子の一方の偏光
子の外側から照明光を投光し、他方の偏光子から透過す
る透過光を受光することによって光学的欠陥を検査する
際に、 前記一対の偏光子と被検査フィルムとの間の一方の隙間
に、複屈折特性が被検査フィルムの光学的欠陥のない部
分の複屈折特性と略同一な補正フィルムを被検査フィル
ムのフィルム面と平行に配置するとともに、この補正フ
ィルムの配置方向を被検査フィルムの複屈折特性に応じ
て予め設定することを特徴とするフィルムの欠陥検査方
法。
10. An optical defect of a film to be inspected arranged in parallel between a pair of polarizers is irradiated with illumination light from outside the one polarizer of the pair of polarizers and transmitted from the other polarizer. When inspecting an optical defect by receiving transmitted light, the gap between one pair of the polarizer and the film to be inspected, the birefringence characteristics of the portion of the film to be inspected without optical defects A correction film having substantially the same birefringence characteristics is arranged in parallel with the film surface of the film to be inspected, and the arrangement direction of the correction film is set in advance according to the birefringence characteristics of the film to be inspected. Defect inspection method.
【請求項11】前記一対の偏光子の偏向透過光軸の配置
方向は、被検査フィルムの欠陥の種類に応じて設定され
ることを特徴とする請求項10に記載のフィルムの欠陥
検査方法。
11. The film defect inspection method according to claim 10, wherein an arrangement direction of the deflection transmission optical axes of the pair of polarizers is set according to a type of a defect of the film to be inspected.
JP2001059713A 2000-03-08 2001-03-05 Film defect inspection apparatus, defect inspection system, defect inspection method, and method for manufacturing film having birefringence characteristics Expired - Fee Related JP4440485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001059713A JP4440485B2 (en) 2000-03-08 2001-03-05 Film defect inspection apparatus, defect inspection system, defect inspection method, and method for manufacturing film having birefringence characteristics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-63027 2000-03-08
JP2000063027 2000-03-08
JP2001059713A JP4440485B2 (en) 2000-03-08 2001-03-05 Film defect inspection apparatus, defect inspection system, defect inspection method, and method for manufacturing film having birefringence characteristics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008071132A Division JP2008151814A (en) 2000-03-08 2008-03-19 Defect inspection device for film, and defect inspection method for film

Publications (3)

Publication Number Publication Date
JP2001324453A true JP2001324453A (en) 2001-11-22
JP2001324453A5 JP2001324453A5 (en) 2006-03-30
JP4440485B2 JP4440485B2 (en) 2010-03-24

Family

ID=26586989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001059713A Expired - Fee Related JP4440485B2 (en) 2000-03-08 2001-03-05 Film defect inspection apparatus, defect inspection system, defect inspection method, and method for manufacturing film having birefringence characteristics

Country Status (1)

Country Link
JP (1) JP4440485B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307678A (en) * 2002-04-12 2003-10-31 Jai Corporation Imaging apparatus with compound prism optical system
JP2005274383A (en) * 2004-03-25 2005-10-06 Sumitomo Chemical Co Ltd Inspection method for hole defect of oriented film
JP2006250715A (en) * 2005-03-10 2006-09-21 Fuji Photo Film Co Ltd Device and method for inspecting defect of film
JP2006250843A (en) * 2005-03-14 2006-09-21 Nikon Corp Surface inspection device
JP2006337630A (en) * 2005-06-01 2006-12-14 Sumitomo Chemical Co Ltd Method for manufacturing multilayer optical film
JP2007017400A (en) * 2005-07-11 2007-01-25 Sony Corp View angle characteristic measuring method and view angle characteristic measuring device
WO2007080867A1 (en) * 2006-01-11 2007-07-19 Nitto Denko Corporation Layered film fabrication method, layered film defect detection method, layered film defect detection device, layered film, and image display device
JP2007327915A (en) * 2006-06-09 2007-12-20 Fujifilm Corp Apparatus and method for inspecting defect of film
KR20090103726A (en) * 2008-03-28 2009-10-01 후지필름 가부시키가이샤 Method and device for detecting defect
JP2009236825A (en) * 2008-03-28 2009-10-15 Fujifilm Corp Defect detector and defect detection method
KR101125997B1 (en) * 2003-07-31 2012-03-19 스미또모 가가꾸 가부시키가이샤 A method for examinning a foreign substance on a transparent film
JP2012163533A (en) * 2011-02-09 2012-08-30 Fujifilm Corp Defect inspection apparatus and method for lenticular sheet
JP2013210245A (en) * 2012-03-30 2013-10-10 Dainippon Printing Co Ltd Film inspection system, and film inspection method
KR101613738B1 (en) 2009-10-28 2016-04-19 코닝 인코포레이티드 Off-axis sheet-handling apparatus and technique for transmission-mode measurements
JP2016080473A (en) * 2014-10-15 2016-05-16 日本ゼオン株式会社 Phase difference measuring method for optical films, optical film manufacturing method, phase difference measuring device for optical films, and optical film manufacturing device
CN111024707A (en) * 2019-03-12 2020-04-17 住华科技股份有限公司 Optical film detection device and detection method of optical film
CN112945984A (en) * 2021-02-01 2021-06-11 深圳市华星光电半导体显示技术有限公司 Detection method and detection device for display panel

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502104B2 (en) * 2002-04-12 2010-07-14 株式会社ジェイエイアイコーポレーション Image pickup apparatus having compound prism optical system
JP2003307678A (en) * 2002-04-12 2003-10-31 Jai Corporation Imaging apparatus with compound prism optical system
KR101125997B1 (en) * 2003-07-31 2012-03-19 스미또모 가가꾸 가부시키가이샤 A method for examinning a foreign substance on a transparent film
JP2005274383A (en) * 2004-03-25 2005-10-06 Sumitomo Chemical Co Ltd Inspection method for hole defect of oriented film
JP2006250715A (en) * 2005-03-10 2006-09-21 Fuji Photo Film Co Ltd Device and method for inspecting defect of film
JP4628824B2 (en) * 2005-03-10 2011-02-09 富士フイルム株式会社 Film defect inspection apparatus and film manufacturing method
JP2006250843A (en) * 2005-03-14 2006-09-21 Nikon Corp Surface inspection device
JP4696607B2 (en) * 2005-03-14 2011-06-08 株式会社ニコン Surface inspection device
JP2006337630A (en) * 2005-06-01 2006-12-14 Sumitomo Chemical Co Ltd Method for manufacturing multilayer optical film
JP2007017400A (en) * 2005-07-11 2007-01-25 Sony Corp View angle characteristic measuring method and view angle characteristic measuring device
WO2007080867A1 (en) * 2006-01-11 2007-07-19 Nitto Denko Corporation Layered film fabrication method, layered film defect detection method, layered film defect detection device, layered film, and image display device
KR101249119B1 (en) 2006-01-11 2013-03-29 닛토덴코 가부시키가이샤 Layered film fabrication method, layered film defect detection method, layered film defect detection device, layered film, and image display device
US7850801B2 (en) 2006-01-11 2010-12-14 Nitto Denko Corporation Layered film fabrication method, layered film defect detection method, layered film defect detection device, layered film, and image display device
JP2007212442A (en) * 2006-01-11 2007-08-23 Nitto Denko Corp Method of manufacturing laminated film, method of detecting defect in laminated film, detector for detecting defect of laminated film, laminated film, and image display
KR101376648B1 (en) * 2006-06-09 2014-03-20 후지필름 가부시키가이샤 Apparatus and method for inspecting film defect
US7428049B2 (en) 2006-06-09 2008-09-23 Fujifilm Corporation Apparatus and method for inspecting film defect
JP2007327915A (en) * 2006-06-09 2007-12-20 Fujifilm Corp Apparatus and method for inspecting defect of film
KR101676333B1 (en) * 2008-03-28 2016-11-15 후지필름 가부시키가이샤 Method and device for detecting defect
KR20090103726A (en) * 2008-03-28 2009-10-01 후지필름 가부시키가이샤 Method and device for detecting defect
JP2009236825A (en) * 2008-03-28 2009-10-15 Fujifilm Corp Defect detector and defect detection method
KR101613738B1 (en) 2009-10-28 2016-04-19 코닝 인코포레이티드 Off-axis sheet-handling apparatus and technique for transmission-mode measurements
JP2012163533A (en) * 2011-02-09 2012-08-30 Fujifilm Corp Defect inspection apparatus and method for lenticular sheet
JP2013210245A (en) * 2012-03-30 2013-10-10 Dainippon Printing Co Ltd Film inspection system, and film inspection method
JP2016080473A (en) * 2014-10-15 2016-05-16 日本ゼオン株式会社 Phase difference measuring method for optical films, optical film manufacturing method, phase difference measuring device for optical films, and optical film manufacturing device
CN111024707A (en) * 2019-03-12 2020-04-17 住华科技股份有限公司 Optical film detection device and detection method of optical film
CN111024707B (en) * 2019-03-12 2022-11-18 住华科技股份有限公司 Optical film detection device and detection method of optical film
CN112945984A (en) * 2021-02-01 2021-06-11 深圳市华星光电半导体显示技术有限公司 Detection method and detection device for display panel

Also Published As

Publication number Publication date
JP4440485B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP2012137502A (en) Inspection method and manufacturing method for component having double refraction characteristic
US7428049B2 (en) Apparatus and method for inspecting film defect
JP2001324453A (en) Apparatus, system and method for inspecting defect of film
US7408633B2 (en) Apparatus and method for inspecting film defect
KR101744606B1 (en) Film defect inspection device, defect inspection method, and release film
KR101441876B1 (en) Method for measuring optical anisotropy parameter and measurement apparatus
EP2018542A2 (en) Apparatus and method for characterizing defects in a transparent substrate
JPH0552762A (en) Detecting apparatus of foreign matter of glass plate
JP2008045959A (en) Device and method for inspecting liquid crystal display panel
JPH06235624A (en) Inspecting method and apparatus for transparent sheet
JP4663529B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP2000028546A (en) Defect inspecting method and device for optically compensating film
JP2013205091A (en) Film inspection system, and film inspection method
JP2005009919A (en) Inspection device and inspecting method for polarization plate with protective film
JP3803999B2 (en) Defect inspection equipment
EP1494014B1 (en) System with a ferro-electric liquid crystal for two-fold optical inspection of containers
CA2003528A1 (en) Methods and apparatus for optically enhancing selected features in an image
US11906442B2 (en) Foreign material inspection system of display unit
JP2003065962A (en) Apparatus and method for inspecting liquid crystal panel substrate
EP1107050B1 (en) Antiferroelectric liquid crystal device and method for manufacturing the same
KR100246727B1 (en) A measuring method of a pretilt angle of a liquid crystal cell using a prism
JP2008241469A (en) Defect inspection apparatus
JP2001124659A (en) Quality inspecting method and quality inspection device for flat display device
JPS63269045A (en) Image processing type double refractive index meter
JP2009025593A (en) Inspection method of optical compensation plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4440485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees