JP2016080473A - Phase difference measuring method for optical films, optical film manufacturing method, phase difference measuring device for optical films, and optical film manufacturing device - Google Patents

Phase difference measuring method for optical films, optical film manufacturing method, phase difference measuring device for optical films, and optical film manufacturing device Download PDF

Info

Publication number
JP2016080473A
JP2016080473A JP2014210844A JP2014210844A JP2016080473A JP 2016080473 A JP2016080473 A JP 2016080473A JP 2014210844 A JP2014210844 A JP 2014210844A JP 2014210844 A JP2014210844 A JP 2014210844A JP 2016080473 A JP2016080473 A JP 2016080473A
Authority
JP
Japan
Prior art keywords
phase difference
measurement
measuring device
difference measuring
optical film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014210844A
Other languages
Japanese (ja)
Other versions
JP6641682B2 (en
Inventor
祐哉 平野
Yuya Hirano
祐哉 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2014210844A priority Critical patent/JP6641682B2/en
Publication of JP2016080473A publication Critical patent/JP2016080473A/en
Application granted granted Critical
Publication of JP6641682B2 publication Critical patent/JP6641682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a phase difference measuring method for optical films and related techniques that enable the in-plane phase difference Re and the thickness direction phase difference Rth to be accurately measured at many measuring points in large areas of film faces without sacrificing the product quality and manufacturing smoothness in the manufacture of optical films.SOLUTION: A phase difference measuring method for optical films carried along a carriage route comprises a step of measuring phase differences at a plurality of measuring points on the faces of the optical films passing measuring positions at each of multiple measuring positions separated from one another in a TD direction with a plurality of phase difference measuring tools separated from one another in the TD direction of the carriage route and measuring phase differences in a plurality of polar angle directions at two or more of the measuring points with two or more of the phase difference measuring tools.SELECTED DRAWING: Figure 1

Description

本発明は、光学フィルムの位相差の測定方法、光学フィルムの製造方法、光学フィルム位相差の測定装置、及び光学フィルムの製造装置に関する。   The present invention relates to an optical film retardation measurement method, an optical film manufacturing method, an optical film retardation measurement device, and an optical film manufacturing device.

光学フィルムの製造に際しては、その位相差を、フィルムの面の広い領域において精密に制御することが求められる。光学フィルムの製造に際してはまた、その製造効率の向上のため、製造ラインにおいて高速且つ連続的な製造を行うことが求められる。したがって、高速且つ連続的に搬送される光学フィルムの面の広い領域の位相差を、製造ラインにおいて正確且つ迅速に測定し、それにより測定の結果をフィルム形成の工程にフィードバックしたり、位相差が規格外である部分を最終製品から除去したりする手段が求められる。   When manufacturing an optical film, it is required to precisely control the retardation in a wide area of the film surface. In manufacturing an optical film, it is also required to perform high-speed and continuous manufacturing on a manufacturing line in order to improve the manufacturing efficiency. Therefore, the phase difference of a wide area of the surface of the optical film transported at high speed and continuously can be measured accurately and quickly on the production line, and the measurement result can be fed back to the film forming process. There is a need for means to remove non-standard parts from the final product.

位相差の制御においては、面内位相差Re及び厚さ方向位相差Rthが精密に制御されることが求められる場合が多い。Re及びRthを測定する装置としては、フィルム面上のある1点において測定を行う位相差測定器(例えば特許文献1)がこれまで広く用いられている。搬送される光学フィルムについてこれらを測定する場合、そのような位相差測定器を、TD方向に搖動させ、それにより位相差測定器を、搬送されるフィルムに対して波状の軌道を描くよう移動させ、TD方向及びMD方向に広がりを有する測定範囲における測定を行うことが、これまで広く行われている。   In controlling the phase difference, it is often required that the in-plane phase difference Re and the thickness direction phase difference Rth are precisely controlled. As an apparatus for measuring Re and Rth, a phase difference measuring device (for example, Patent Document 1) that measures at a certain point on a film surface has been widely used. When measuring these on the transported optical film, such a phase difference measuring device is swung in the TD direction, thereby moving the phase difference measuring device so as to draw a wavy trajectory with respect to the conveyed film. Measurements in a measurement range having a spread in the TD direction and the MD direction have been widely performed so far.

また、近年、フィルム面の複数の位置において同時に、面内位相差Reを測定する位相差測定器も提案されている(特許文献2)。   In recent years, there has also been proposed a phase difference measuring device that simultaneously measures an in-plane phase difference Re at a plurality of positions on a film surface (Patent Document 2).

特開平8−201277号公報JP-A-8-2012277 特開2007−263593号公報JP 2007-263593 A

位相差測定器を製造ラインにおいて搖動させる場合、位相差測定器を移動させる移動装置からの異物の落下、並びに移動装置の駆動部分とフィルムとの接触による不良の発生及び製造の障害等の不所望な現象が発生しうる。また、搬送されるフィルムに対して波状の軌道を描く測定においては、フィルム全面のうち測定されない箇所が広く存在し、それにより規格外の位相差を有する箇所が看過されることがある。このような測定されない箇所は、フィルムを高速に搬送した場合特に増加する。   When the phase difference measuring device is swung in the production line, it is undesirable to drop foreign matter from the moving device that moves the phase difference measuring device, and to generate defects due to contact between the driving unit of the moving device and the film, or to obstruct manufacturing. May occur. Further, in the measurement of drawing a wavy trajectory with respect to the film to be conveyed, there are a wide range of portions that are not measured on the entire surface of the film, thereby overlooking a portion having a phase difference outside the standard. Such a part which is not measured increases especially when a film is conveyed at high speed.

一方、特許文献2に記載の位相差測定器を用いた測定を行った場合、Reと同時にRthを測定することができない。また、フィルム面の位相差測定器から遠い箇所においては、斜め方向からの測定を行うことになるため、フィルム面の位相差測定器から近い測定箇所と、位相差測定器から遠い測定箇所とで、位相差の測定の基準となる極角が異なってしまうという問題点がある。   On the other hand, when the measurement using the phase difference measuring device described in Patent Document 2 is performed, Rth cannot be measured simultaneously with Re. In addition, since the measurement is performed in an oblique direction at a location far from the phase difference measuring device on the film surface, the measurement location near the phase difference measuring device on the film surface and the measurement location far from the phase difference measurement device. There is a problem that polar angles serving as a reference for phase difference measurement are different.

本発明の目的は、光学フィルムの製造における製品の品質及び製造の円滑性を妨げず、且つフィルム面の広い領域の多数の測定点において、面内位相差Re及び厚さ方向位相差Rthを精密に測定しうる、光学フィルムの位相差の測定方法及び光学フィルム位相差の測定装置を提供することにある。
本発明のさらなる目的は、面内位相差Re及び厚さ方向位相差Rthが精密に制御された高品質の光学フィルムを、円滑に製造しうる、光学フィルムの製造方法及び光学フィルムの製造装置を提供することにある。
The object of the present invention is to prevent in-plane retardation Re and thickness direction retardation Rth at many measurement points in a wide area of the film surface without impeding product quality and manufacturing smoothness in optical film production. An object of the present invention is to provide an optical film retardation measuring method and an optical film retardation measuring apparatus that can be measured in the following manner.
A further object of the present invention is to provide an optical film manufacturing method and an optical film manufacturing apparatus capable of smoothly manufacturing a high-quality optical film in which the in-plane retardation Re and the thickness direction retardation Rth are precisely controlled. It is to provide.

本発明らは前記課題を解決するべく検討した結果、フィルム面の複数の位置において同時に、面内位相差Reを測定する位相差測定器を2以上組み合わせて用い、それらから得られる情報を元に、Re及びRthを同時に多数の点において測定しうることを見出し、本発明を完成した。
すなわち、本発明は以下の通りである。
As a result of studies to solve the above-mentioned problems, the present inventors have used a combination of two or more phase difference measuring devices that measure the in-plane phase difference Re at a plurality of positions on the film surface, and based on information obtained from them. , Re and Rth can be measured at a number of points simultaneously, and the present invention has been completed.
That is, the present invention is as follows.

〔1〕 搬送経路において搬送される光学フィルムの位相差の測定方法であって、
前記搬送経路のTD方向に離隔して設けられた複数の位相差測定器により、TD方向に離隔する複数の測定箇所のそれぞれにおいて、前記測定箇所を通過する前記光学フィルムの面上の複数の測定点の位相差を計測する工程であって、2以上の前記測定点のそれぞれにおいて、前記位相差測定器のうちの2以上により、複数の極角方向から位相差を計測する、計測工程(i)、及び
前記計測工程(i)において計測された複数の位相差の値に基づいて、前記測定点のそれぞれにおいて、面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を計算する計算工程(ii)
を含む、測定方法。
〔2〕 前記計測工程(i)において、
前記複数の位相差測定器が、中央部測定用の位相差測定器(C)、一方の端部測定用の位相差測定器(L)及び他方の端部測定用の位相差測定器(R)を含み、
前記測定箇所が、中央部の測定箇所(C)、前記位相差測定器(L)が位置する側の端部の測定箇所(L)及び前記位相差測定器(R)が位置する側の端部の測定箇所(R)を含み、
前記測定箇所(C)における位相差の計測を、前記位相差測定器(C)、および前記位相差測定器(C)以外の一以上の位相差測定器により行い、
前記測定箇所(L)における位相差の計測を、前記位相差測定器(L)、および前記位相差測定器(L)以外の一以上の位相差測定器により行い、
前記測定箇所(R)における位相差の計測を、前記位相差測定器(R)、および前記位相差測定器(R)以外の一以上の位相差測定器により行う
〔1〕に記載の測定方法。
〔3〕 光学フィルムの製造方法であって、
光学フィルムを連続的に形成する工程(I)、
工程(I)において形成された光学フィルムを搬送経路において搬送し、搬送される前記光学フィルムの面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を測定する工程(II)、及び
工程(II)において測定された前記面内位相差Re、厚さ方向位相差Rth、又はこれらの両方の値に基づいて、工程(I)における形成の条件を調節し、前記面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を所定の値に調整するフィードバック工程(III)
を含み、
前記工程(II)は、
前記搬送経路のTD方向に離隔して設けられた複数の位相差測定器により、TD方向に離隔する複数の測定箇所のそれぞれにおいて、前記測定箇所を通過する前記光学フィルムの面上の複数の測定点の位相差を計測する工程であって、2以上の前記測定点のそれぞれにおいて、前記位相差測定器のうちの2以上により、複数の極角方向から位相差を計測する、計測工程(i)、及び
前記計測工程(i)において計測された複数の位相差の値に基づいて、前記測定点のそれぞれにおいて、面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を計算する計算工程(ii)
を含む、製造方法。
〔4〕 前記計測工程(i)において、
前記複数の位相差測定器が、中央部測定用の位相差測定器(C)、一方の端部測定用の位相差測定器(L)及び他方の端部測定用の位相差測定器(R)を含み、
前記測定箇所が、中央部の測定箇所(C)、前記位相差測定器(L)が位置する側の端部の測定箇所(L)及び前記位相差測定器(R)が位置する側の端部の測定箇所(R)を含み、
前記測定箇所(C)における位相差の計測を、前記位相差測定器(C)、および前記位相差測定器(C)以外の一以上の位相差測定器により行い、
前記測定箇所(L)における位相差の計測を、前記位相差測定器(L)、および前記位相差測定器(L)以外の一以上の位相差測定器により行い、
前記測定箇所(R)における位相差の計測を、前記位相差測定器(R)、および前記位相差測定器(R)以外の一以上の位相差測定器により行う
〔3〕に記載の製造方法。
〔5〕 光学フィルムの位相差の測定装置であって、
光学フィルムを搬送経路において搬送する搬送器、
前記搬送経路のTD方向に離隔して設けられ、TD方向に離隔する複数の測定箇所のそれぞれにおいて、前記測定箇所を通過する前記光学フィルムの面上の複数の測定点の位相差を計測する複数の位相差測定器であって、2以上の前記測定点のそれぞれにおいて、前記位相差測定器のうちの2以上により、複数の極角方向から位相差を計測する、位相差測定器(i)、及び
前記位相差測定器(i)において計測された複数の位相差の値に基づいて、前記測定点のそれぞれにおいて、面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を計算する計算器(ii)
を含む、測定装置。
〔6〕 前記複数の位相差測定器(i)が、中央部測定用の位相差測定器(C)、一方の端部測定用の位相差測定器(L)及び他方の端部測定用の位相差測定器(R)を含み、
前記測定箇所が、中央部の測定箇所(C)、前記位相差測定器(L)が位置する側の端部の測定箇所(L)及び前記位相差測定器(R)が位置する側の端部の測定箇所(R)を含み、
前記位相差測定器(C)、および前記位相差測定器(C)以外の一以上の位相差測定器が、前記測定箇所(C)における位相差の計測を行うよう設けられ、
前記位相差測定器(L)、および前記位相差測定器(L)以外の一以上の位相差測定器が、前記測定箇所(L)における位相差の計測を行うよう設けられ、
前記位相差測定器(R)、および前記位相差測定器(R)以外の一以上の位相差測定器が、前記測定箇所(R)における位相差の計測を行うよう設けられた
〔5〕に記載の測定装置。
〔7〕 光学フィルムの製造装置であって、
光学フィルムを連続的に形成する形成装置(I)、
形成器(I)により形成された光学フィルムを搬送経路において搬送し、搬送される前記光学フィルムの面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を測定する測定装置(II)、及び
測定装置(II)により測定された前記面内位相差Re、厚さ方向位相差Rth、又はこれらの両方の値に基づいて、形成装置(I)による形成の条件を調節し、前記面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を所定の値に調整するフィードバック装置(III)
を含み、
前記測定装置(II)が、
光学フィルムを搬送経路において搬送する搬送器、
前記搬送経路のTD方向に離隔して設けられ、TD方向に離隔する複数の測定箇所のそれぞれにおいて、前記測定箇所を通過する前記光学フィルムの面上の複数の測定点の位相差を計測する複数の位相差測定器であって、2以上の前記測定点のそれぞれにおいて、前記位相差測定器のうちの2以上により、複数の極角方向から位相差を計測する、位相差測定器(i)、及び
前記位相差測定器(i)において計測された複数の位相差の値に基づいて、前記測定点のそれぞれにおいて、面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を計算する計算器(ii)
を含む、製造装置。
〔8〕 前記複数の位相差測定器(i)が、中央部測定用の位相差測定器(C)、一方の端部測定用の位相差測定器(L)及び他方の端部測定用の位相差測定器(R)を含み、
前記測定箇所が、中央部の測定箇所(C)、前記位相差測定器(L)が位置する側の端部の測定箇所(L)及び前記位相差測定器(R)が位置する側の端部の測定箇所(R)を含み、
前記位相差測定器(C)、および前記位相差測定器(C)以外の一以上の位相差測定器が、前記測定箇所(C)における位相差の計測を行うよう設けられ、
前記位相差測定器(L)、および前記位相差測定器(L)以外の一以上の位相差測定器が、前記測定箇所(L)における位相差の計測を行うよう設けられ、
前記位相差測定器(R)、および前記位相差測定器(R)以外の一以上の位相差測定器が、前記測定箇所(R)における位相差の計測を行うよう設けられた
〔7〕に記載の製造装置。
[1] A method for measuring a retardation of an optical film conveyed in a conveyance path,
A plurality of measurements on the surface of the optical film passing through the measurement location in each of a plurality of measurement locations separated in the TD direction by a plurality of phase difference measuring devices provided separately in the TD direction of the transport path. A step of measuring a phase difference between points, wherein at each of the two or more measurement points, the phase difference is measured from a plurality of polar angle directions by two or more of the phase difference measuring devices. ), And in-plane phase difference Re, thickness direction phase difference Rth, or both are calculated at each of the measurement points based on a plurality of phase difference values measured in measurement step (i). Calculation step (ii)
Including a measuring method.
[2] In the measurement step (i),
The plurality of phase difference measuring devices include a phase difference measuring device (C) for measuring a central portion, a phase difference measuring device (L) for measuring one end portion, and a phase difference measuring device (R) for measuring the other end portion. )
The measurement location is a measurement location (C) at the center, an end measurement location (L) on the side where the phase difference measuring device (L) is located, and an end on the side where the phase difference measurement device (R) is located. Including the measurement point (R) of the part,
Measurement of the phase difference at the measurement location (C) is performed by one or more phase difference measuring devices other than the phase difference measuring device (C) and the phase difference measuring device (C),
Measurement of the phase difference at the measurement location (L) is performed by one or more phase difference measuring devices other than the phase difference measuring device (L) and the phase difference measuring device (L),
The measurement method according to [1], wherein the phase difference at the measurement location (R) is measured by one or more phase difference measuring devices other than the phase difference measuring device (R) and the phase difference measuring device (R). .
[3] A method for producing an optical film,
Step (I) of continuously forming an optical film,
A step (II) of measuring the in-plane retardation Re, the thickness direction retardation Rth, or both of the optical film conveyed in the conveyance path by conveying the optical film formed in the step (I); and Based on the values of the in-plane retardation Re, the thickness direction retardation Rth, or both measured in the step (II), the formation conditions in the step (I) are adjusted, and the in-plane retardation Re , Thickness direction phase difference Rth, or both of them are adjusted to a predetermined value (III)
Including
The step (II)
A plurality of measurements on the surface of the optical film passing through the measurement location in each of a plurality of measurement locations separated in the TD direction by a plurality of phase difference measuring devices provided separately in the TD direction of the transport path. A step of measuring a phase difference between points, wherein at each of the two or more measurement points, the phase difference is measured from a plurality of polar angle directions by two or more of the phase difference measuring devices. ), And in-plane phase difference Re, thickness direction phase difference Rth, or both are calculated at each of the measurement points based on a plurality of phase difference values measured in measurement step (i). Calculation step (ii)
Manufacturing method.
[4] In the measurement step (i),
The plurality of phase difference measuring devices include a phase difference measuring device (C) for measuring a central portion, a phase difference measuring device (L) for measuring one end portion, and a phase difference measuring device (R) for measuring the other end portion. )
The measurement location is a measurement location (C) at the center, an end measurement location (L) on the side where the phase difference measuring device (L) is located, and an end on the side where the phase difference measurement device (R) is located. Including the measurement point (R) of the part,
Measurement of the phase difference at the measurement location (C) is performed by one or more phase difference measuring devices other than the phase difference measuring device (C) and the phase difference measuring device (C),
Measurement of the phase difference at the measurement location (L) is performed by one or more phase difference measuring devices other than the phase difference measuring device (L) and the phase difference measuring device (L),
The phase difference measurement at the measurement location (R) is performed by the phase difference measurement device (R) and one or more phase difference measurement devices other than the phase difference measurement device (R). .
[5] An optical film retardation measuring device,
A transporter for transporting the optical film in the transport path;
A plurality of measurement points which are provided separately in the TD direction of the transport path and measure the phase differences of a plurality of measurement points on the surface of the optical film passing through the measurement point in each of the plurality of measurement points spaced in the TD direction. A phase difference measuring device (i) that measures a phase difference from a plurality of polar angle directions by two or more of the phase difference measuring devices at each of two or more of the measurement points. Based on a plurality of phase difference values measured by the phase difference measuring device (i), in-plane phase difference Re, thickness direction phase difference Rth, or both are calculated at each of the measurement points. Calculator (ii)
Including a measuring device.
[6] The plurality of phase difference measuring devices (i) include a phase difference measuring device (C) for measuring the central portion, a phase difference measuring device (L) for measuring one end portion, and a device for measuring the other end portion. Including a phase difference measuring device (R),
The measurement location is a measurement location (C) at the center, an end measurement location (L) on the side where the phase difference measuring device (L) is located, and an end on the side where the phase difference measurement device (R) is located. Including the measurement point (R) of the part,
One or more phase difference measuring devices other than the phase difference measuring device (C) and the phase difference measuring device (C) are provided to measure the phase difference at the measurement location (C),
One or more phase difference measuring devices other than the phase difference measuring device (L) and the phase difference measuring device (L) are provided to measure the phase difference at the measurement location (L),
One or more phase difference measuring devices other than the phase difference measuring device (R) and the phase difference measuring device (R) are provided to measure the phase difference at the measurement location (R). The measuring device described.
[7] An optical film manufacturing apparatus,
Forming apparatus (I) for continuously forming an optical film,
Measuring device (II) for measuring the in-plane retardation Re, the thickness direction retardation Rth, or both of the optical film conveyed by the forming device (I) in the conveying path. And adjusting the conditions of formation by the forming device (I) based on the in-plane retardation Re, the thickness direction retardation Rth, or both values measured by the measuring device (II), Feedback device (III) for adjusting the internal phase difference Re, the thickness direction phase difference Rth, or both of them to a predetermined value
Including
The measuring device (II)
A transporter for transporting the optical film in the transport path;
A plurality of measurement points which are provided separately in the TD direction of the transport path and measure the phase differences of a plurality of measurement points on the surface of the optical film passing through the measurement point in each of the plurality of measurement points spaced in the TD direction. A phase difference measuring device (i) that measures a phase difference from a plurality of polar angle directions by two or more of the phase difference measuring devices at each of two or more of the measurement points. Based on a plurality of phase difference values measured by the phase difference measuring device (i), in-plane phase difference Re, thickness direction phase difference Rth, or both are calculated at each of the measurement points. Calculator (ii)
Including manufacturing equipment.
[8] The plurality of phase difference measuring devices (i) include a phase difference measuring device (C) for measuring the central portion, a phase difference measuring device (L) for measuring one end portion, and a device for measuring the other end portion. Including a phase difference measuring device (R),
The measurement location is a measurement location (C) at the center, an end measurement location (L) on the side where the phase difference measuring device (L) is located, and an end on the side where the phase difference measurement device (R) is located. Including the measurement point (R) of the part,
One or more phase difference measuring devices other than the phase difference measuring device (C) and the phase difference measuring device (C) are provided to measure the phase difference at the measurement location (C),
One or more phase difference measuring devices other than the phase difference measuring device (L) and the phase difference measuring device (L) are provided to measure the phase difference at the measurement location (L),
The phase difference measuring device (R) and one or more phase difference measuring devices other than the phase difference measuring device (R) are provided to measure the phase difference at the measurement location (R). The manufacturing apparatus as described.

本発明の測定方法及び測定装置によれば、光学フィルムの製造における製品の品質及び製造の円滑性を妨げず、且つフィルム面の広い領域の多数の測定点において、面内位相差Re及び厚さ方向位相差Rthを精密に測定しうる。
本発明の製造方法及び製造装置によれば、面内位相差Re及び厚さ方向位相差Rthが精密に制御された高品質の光学フィルムを、円滑に製造しうる。
According to the measurement method and the measurement apparatus of the present invention, the in-plane retardation Re and the thickness are not disturbed at many measurement points in a wide region of the film surface without impeding the quality and smoothness of the product in the production of the optical film. The direction phase difference Rth can be accurately measured.
According to the production method and production apparatus of the present invention, a high-quality optical film in which the in-plane retardation Re and the thickness direction retardation Rth are precisely controlled can be produced smoothly.

図1は、本発明の測定装置を含む、本発明の製造装置の一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of the manufacturing apparatus of the present invention including the measuring apparatus of the present invention. 図2は、図1に示した測定装置200における、位相差測定器と、測定箇所における光学フィルム上の測定点との関係を説明する断面図である。FIG. 2 is a cross-sectional view illustrating the relationship between the phase difference measuring instrument and the measurement points on the optical film at the measurement location in the measurement apparatus 200 shown in FIG. 図3は、図2に示した測定点P1における位相差の測定値及び測定角度から、測定点P1における面内位相差Re及び厚さ方向位相差Rthを求める計算を概念的に示すグラフである。FIG. 3 is a graph conceptually showing a calculation for obtaining the in-plane phase difference Re and the thickness direction phase difference Rth at the measurement point P1 from the measurement value and the measurement angle of the phase difference at the measurement point P1 shown in FIG. . 図4は、本発明の第二実施形態の測定装置における、位相差測定器と、測定箇所における光学フィルム上の測定点との関係を説明する断面図である。FIG. 4 is a cross-sectional view illustrating the relationship between the phase difference measuring device and the measurement points on the optical film at the measurement location in the measurement apparatus of the second embodiment of the present invention. 図5は、本発明の第三実施形態の測定装置における、位相差測定器と、測定箇所における光学フィルム上の測定点との関係を説明する断面図である。FIG. 5 is a cross-sectional view illustrating the relationship between the phase difference measuring instrument and the measurement points on the optical film at the measurement location in the measurement apparatus of the third embodiment of the present invention. 図6は、図5に示した測定点P3における位相差の測定値及び測定角度から、測定点P3における面内位相差Re及び厚さ方向位相差Rthを求める計算を概念的に示すグラフである。FIG. 6 is a graph conceptually showing a calculation for obtaining the in-plane phase difference Re and the thickness direction phase difference Rth at the measurement point P3 from the measurement value and measurement angle of the phase difference at the measurement point P3 shown in FIG. .

以下、実施形態及び例示物を示して本発明について詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。   Hereinafter, the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to the following embodiments and exemplifications, and can be implemented with any modifications without departing from the scope of the claims of the present invention and the equivalents thereof.

以下の説明において、「長尺」のフィルムとは、フィルムの幅に対して、5倍程度以上の長さを有するものをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻回されて保管又は運搬される程度の長さを有するものをいう。   In the following description, the “long” film refers to a film having a length of about 5 times or more, preferably 10 times or more of the film width. Refers to those having a length that is wound in a roll and stored or transported.

以下の説明において、要素の方向が「平行」及び「垂直」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。   In the following description, the directions of the elements “parallel” and “vertical” may include errors within a range that does not impair the effect of the present invention, for example, ± 5 °, unless otherwise specified. .

以下の説明において、MD方向(machine direction)は、製造ラインにおいて搬送されるフィルムの流れ方向であり、通常は搬送される長尺のフィルムの長尺方向に相当する方向を表す。また、長尺のフィルムにおいて長尺方向は、通常、そのフィルムの縦方向に一致する。さらに、以下の説明において「上流」又は「下流」という場合、別に断らない限り、MD方向における上流及び下流のことを指す。
また、TD方向(traverse direction)は、搬送されるフィルム面に平行な方向であって、且つMD方向に垂直な方向であり、通常は搬送される長尺のフィルムの幅方向に相当する方向を表す。また、長尺フィルムにおいて幅方向は、通常、そのフィルムの横方向に一致する。さらに、本願においては、MD方向及びTD方向の両方に対し水平な方向を、TH方向と称する場合がある。
In the following description, an MD direction (machine direction) is a flow direction of a film conveyed in a production line, and usually represents a direction corresponding to a long direction of a long film to be conveyed. In the long film, the long direction usually coincides with the vertical direction of the film. Furthermore, in the following description, “upstream” or “downstream” refers to upstream and downstream in the MD direction unless otherwise specified.
The TD direction (traverse direction) is a direction parallel to the film surface to be transported and is perpendicular to the MD direction, and is usually a direction corresponding to the width direction of the long film to be transported. Represent. In the long film, the width direction usually coincides with the lateral direction of the film. Furthermore, in the present application, a direction horizontal to both the MD direction and the TD direction may be referred to as a TH direction.

以下の具体例における説明では、単に説明の便宜上、搬送されるフィルムのTD方向の端部の左側及び右側は、それぞれ、水平に搬送されるフィルムをMD方向上流側から観察した場合における左側及び右側であるものと規定する。本願の図面の一部においては、MD方向、TD方向及びTH方向を、それぞれの符号を付した座標軸により示し、さらに左向きのTD方向及び右向きのTD方向をそれぞれTD(L)及びTD(R)の符号を付した座標軸で示す。   In the description of the specific examples below, for convenience of explanation, the left side and the right side of the end portion in the TD direction of the film to be transported are the left side and the right side when the horizontally transported film is observed from the upstream side in the MD direction, respectively. It is prescribed that In a part of the drawings of the present application, the MD direction, the TD direction, and the TH direction are indicated by coordinate axes with respective signs, and the leftward TD direction and the rightward TD direction are indicated by TD (L) and TD (R), respectively. This is indicated by the coordinate axis with the symbol.

[第一実施形態]
図1は、本発明の測定装置を含む、本発明の製造装置の一例を模式的に示す斜視図である。以下において、この例を第一実施形態として、本発明の測定装置及び製造装置並びに本発明の測定方法及び製造方法を説明する。
[First embodiment]
FIG. 1 is a perspective view schematically showing an example of the manufacturing apparatus of the present invention including the measuring apparatus of the present invention. Below, this example is made into 1st embodiment, and the measuring apparatus and manufacturing apparatus of this invention, and the measuring method and manufacturing method of this invention are demonstrated.

図1に示す製造装置10は、形成装置100、測定装置200、巻き取り装置300、およびフィードバック装置(不図示)を含む。形成装置100、測定装置200及び巻き取り装置300は、製造装置10の製造ラインにおいて、上流から下流にこの順に配置される。   A manufacturing apparatus 10 shown in FIG. 1 includes a forming apparatus 100, a measuring apparatus 200, a winding apparatus 300, and a feedback apparatus (not shown). The forming apparatus 100, the measuring apparatus 200, and the winding apparatus 300 are arranged in this order from upstream to downstream in the manufacturing line of the manufacturing apparatus 10.

この例において形成装置100は、溶融押出成形により長尺のフィルムを連続的に形成する装置であり、ダイ101及びキャストロール102を含む。ダイ101から連続的に吐出された溶融樹脂11は、キャストロール102において冷却され、これにより光学フィルム12が連続的に形成される。形成された光学フィルム12は、水平な搬送経路において搬送され、測定装置200に供給される。   In this example, the forming apparatus 100 is an apparatus that continuously forms a long film by melt extrusion, and includes a die 101 and a cast roll 102. The molten resin 11 continuously discharged from the die 101 is cooled by the cast roll 102, whereby the optical film 12 is continuously formed. The formed optical film 12 is transported along a horizontal transport path and supplied to the measuring apparatus 200.

本発明において、光学フィルムの形成工程を行う形成装置は、第一実施形態において例示する溶融押出成形装置に限られず、他の方式による装置であってもよく、それにより他の方式の形成工程を行ってもよい。形成工程はまた、フィルムの延伸、加熱、冷却等の工程を含んでもよく、形成装置はそのような工程を行うための構成要素を含みうる。   In the present invention, the forming apparatus for performing the optical film forming process is not limited to the melt extrusion molding apparatus exemplified in the first embodiment, and may be an apparatus by another method, thereby forming the forming process of another method. You may go. The forming step may also include steps such as stretching, heating, and cooling the film, and the forming apparatus may include components for performing such steps.

測定装置200は、光学フィルムを搬送経路において搬送する搬送器(不図示)、複数の位相差測定器、光源280及び計算器290を含む。
搬送器は、搬送ローラーを備える搬送器、フィルムを把持して搬送する把持具を備える搬送器等の任意の形態としうる。この例においては、測定装置200内において、光学フィルム12は水平に、矢印A1で示される方向に搬送される。
The measuring apparatus 200 includes a transporter (not shown) that transports the optical film in the transport path, a plurality of phase difference measuring devices, a light source 280, and a calculator 290.
A conveyance machine can be made into arbitrary forms, such as a conveyance machine provided with a conveyance roller, and a conveyance machine provided with a grasping tool which grasps and conveys a film. In this example, in the measuring apparatus 200, the optical film 12 is conveyed horizontally in the direction indicated by the arrow A1.

この例においては、位相差測定器としては、位相差測定器201L及び201Rの2つが設けられている。位相差測定器201L及び201Rは、搬送される光学フィルム12の上側に、光学フィルム12と離隔して、且つ互いに離隔して設けられる。この例においては、位相差測定器201L及び201RはTD方向に整列し、位相差測定器201Lは光学フィルム12の左側の端部に設けられ、位相差測定器201Rは光学フィルム12の右側の端部に設けられる。   In this example, two phase difference measuring devices 201L and 201R are provided as phase difference measuring devices. The phase difference measuring devices 201 </ b> L and 201 </ b> R are provided on the upper side of the conveyed optical film 12 so as to be separated from the optical film 12 and separated from each other. In this example, the phase difference measuring devices 201L and 201R are aligned in the TD direction, the phase difference measuring device 201L is provided at the left end of the optical film 12, and the phase difference measuring device 201R is the right end of the optical film 12. Provided in the section.

位相差測定器201L及び201Rとしては、ある範囲の領域において、光学フィルムの複数の箇所において位相差を同時に測定しうる装置を適宜選択して用いうる。具体的には、透過偏光の方向が領域ごとに異なるようなパターンを有する偏光子と、その各領域を通過した光の強度を独立に受光することのできる受光素子とを備える位相差測定器を用いうる。より具体的には、例えば特許文献2に記載される測定装置を用いうる。さらに具体的には、かかる偏光子としてフォトニック結晶偏光子を備え、受光素子として、ラインスキャンカメラの受光素子又は二次元カメラの受光素子を利用したものを用いうる。   As the phase difference measuring devices 201L and 201R, an apparatus capable of simultaneously measuring the phase difference at a plurality of locations on the optical film in a certain range can be appropriately selected and used. Specifically, a phase difference measuring device including a polarizer having a pattern in which the direction of transmitted polarized light is different for each region and a light receiving element that can independently receive the intensity of light that has passed through each region. Can be used. More specifically, for example, a measuring device described in Patent Document 2 can be used. More specifically, a photonic crystal polarizer can be used as such a polarizer, and a light receiving element using a light receiving element of a line scan camera or a light receiving element of a two-dimensional camera can be used.

位相差測定器201L及び201Rは、通常、光学フィルム12を光学的に観察するものであり、具体的には、光学フィルム12を透過する光を観察するものとしうる。この例においては、測定装置200は、光学フィルムの、位相差測定器201L及び201Rとは反対側の位置に、測定箇所Z1及びZ5を照らす光源280を備える。光源280を設け、かかる光源280から出光し光学フィルム12を透過する光を位相差測定器201L及び201Rで受光し測定を行うよう、これらを配置することにより、かかる観察の精度を高めることができる。光源としては、測定に必要な波長の光を安定して出光することができ、且つ、測定箇所を含む領域において均一な出光を行うことができる、冷陰極管、光ファイバー照明、平面発光光源等の既知の光源を用いうる。   The phase difference measuring devices 201 </ b> L and 201 </ b> R are usually for optically observing the optical film 12, and specifically, can observe light transmitted through the optical film 12. In this example, the measuring apparatus 200 includes a light source 280 that illuminates the measurement points Z1 and Z5 at a position of the optical film opposite to the phase difference measuring devices 201L and 201R. By providing the light source 280 and arranging such that the light emitted from the light source 280 and transmitted through the optical film 12 is received and measured by the phase difference measuring devices 201L and 201R, the accuracy of the observation can be improved. . As a light source, it is possible to stably emit light having a wavelength necessary for measurement, and perform uniform light emission in a region including a measurement location, such as a cold cathode tube, an optical fiber illumination, a planar light source, etc. Known light sources can be used.

位相差測定器201L及び201Rのそれぞれは、TD方向に離隔する複数の測定箇所Z1及びZ5のそれぞれにおいて、測定箇所Z1及びZ5を通過する前記光学フィルム12の面上の複数の測定点P1及びP5の位相差を計測するよう設けられる。即ち、位相差測定器201Lは、固定された状態で測定箇所Z1及びZ5の両方において光学フィルム12の位相差を同時に計測し、位相差測定器201Rも、固定された状態で測定箇所Z1及びZ5の両方において光学フィルム12の位相差を同時に計測するよう設けられる。   Each of the phase difference measuring devices 201L and 201R includes a plurality of measurement points P1 and P5 on the surface of the optical film 12 that passes through the measurement points Z1 and Z5 in each of the plurality of measurement points Z1 and Z5 that are separated in the TD direction. It is provided to measure the phase difference. That is, the phase difference measuring device 201L simultaneously measures the phase difference of the optical film 12 at both the measurement points Z1 and Z5 in a fixed state, and the phase difference measuring device 201R is also fixed at the measurement points Z1 and Z5. In both cases, the phase difference of the optical film 12 is measured simultaneously.

図2は、図1に示した測定装置200における、位相差測定器と、測定箇所における光学フィルム上の測定点との関係を説明する断面図である。図2においては、測定装置200における位相差測定器201L及び201Rと、測定箇所Z1及びZ5における光学フィルム12上の測定点P1及びP5とが示される。図2において、光学フィルム12は、TD方向及びTH方向に平行な面で切断した断面として示される。この例においては、位相差測定器201Lが測定点P1及びP2を観察する方向は、光学フィルム12の垂線Lyに対し、TD(L)方向に傾いており、位相差測定器201Rが測定点P1及びP2を観察する方向は、光学フィルム12の垂線Lyに対し、TD(R)方向に傾いている。   FIG. 2 is a cross-sectional view illustrating the relationship between the phase difference measuring instrument and the measurement points on the optical film at the measurement location in the measurement apparatus 200 shown in FIG. In FIG. 2, phase difference measuring devices 201L and 201R in the measuring apparatus 200 and measurement points P1 and P5 on the optical film 12 at the measurement locations Z1 and Z5 are shown. In FIG. 2, the optical film 12 is shown as a cross section cut by a plane parallel to the TD direction and the TH direction. In this example, the direction in which the phase difference measuring device 201L observes the measurement points P1 and P2 is inclined in the TD (L) direction with respect to the normal line Ly of the optical film 12, and the phase difference measuring device 201R is measured at the measurement point P1. And the direction of observing P2 is inclined in the TD (R) direction with respect to the normal line Ly of the optical film 12.

上で説明した位相差測定器を用いた光学フィルムの測定において、光学フィルムの面に対して垂直な方向から測定を行った場合は、光学フィルムの面内位相差Reを通常測定しうる。しかしながら、光学フィルムの面に対して非垂直な方向から測定を行った場合、当該方向から観察された、斜め方向の位相差が測定される。しかしながら、ある一の測定点について、そのような斜め方向の位相差の測定を、異なる2以上の方向から行うと、測定角度及び測定された2以上の位相差の値を元に面内位相差Re及び厚さ方向位相差Rthを、計算により求めうる。したがって、それぞれの測定点における位相差測定器201L及び201Rによる測定値を、位相差測定器201L及び201Rから出力して計算器290に入力し、加えて計算機290にそれぞれの測定角度の情報を入力し、計算器290において当該計算を行うことにより、それぞれの測定点における面内位相差Re及び厚さ方向位相差Rthを求めうる。   In the measurement of an optical film using the retardation measuring device described above, when the measurement is performed from a direction perpendicular to the surface of the optical film, the in-plane retardation Re of the optical film can be usually measured. However, when measurement is performed from a direction non-perpendicular to the surface of the optical film, an oblique phase difference observed from the direction is measured. However, when the measurement of the phase difference in the oblique direction at one measurement point is performed from two or more different directions, the in-plane phase difference is calculated based on the measurement angle and the measured two or more phase difference values. Re and thickness direction retardation Rth can be obtained by calculation. Therefore, the measurement values obtained by the phase difference measuring devices 201L and 201R at the respective measurement points are output from the phase difference measuring devices 201L and 201R and input to the calculator 290. In addition, information on the respective measurement angles is input to the calculator 290. Then, by performing the calculation in the calculator 290, the in-plane phase difference Re and the thickness direction phase difference Rth at each measurement point can be obtained.

例えば図2に示す例の測定点P1においては、位相差測定器201Lにより、垂線Lyに対して角度θ1L傾いた方向からの位相差が測定され、且つ、位相差測定器201Rにより、垂線Lyに対して角度θ1R傾いた方向からの位相差が測定される。角度θ1L、角度θ1R及びそれぞれの位相差の値から、測定点P1における面内位相差Re及び厚さ方向位相差Rthを、計算により求めうる。   For example, at the measurement point P1 in the example shown in FIG. 2, the phase difference from the direction inclined by the angle θ1L with respect to the perpendicular Ly is measured by the phase difference measuring device 201L, and the perpendicular difference Ly is obtained by the phase difference measuring device 201R. The phase difference from the direction inclined by the angle θ1R is measured. From the angle θ1L, the angle θ1R, and the respective phase difference values, the in-plane phase difference Re and the thickness direction phase difference Rth at the measurement point P1 can be obtained by calculation.

ある一の測定点における複数の位相差の測定値及び測定角度から面内位相差Re及び厚さ方向位相差Rthを求める計算は、楕円の方程式を解くことにより行いうる。図3は、図2に示した測定点P1における位相差の測定値及び測定角度から、測定点P1における面内位相差Re及び厚さ方向位相差Rthを求める計算を概念的に示すグラフである。   The calculation for obtaining the in-plane phase difference Re and the thickness direction phase difference Rth from the measurement values and measurement angles of a plurality of phase differences at one measurement point can be performed by solving an elliptic equation. FIG. 3 is a graph conceptually showing a calculation for obtaining the in-plane phase difference Re and the thickness direction phase difference Rth at the measurement point P1 from the measurement value and the measurement angle of the phase difference at the measurement point P1 shown in FIG. .

図3に示す計算の例では、座標軸に、原点Poを始点とし、y軸に対して角度θ1R傾いた線分32(R)と、原点Poを始点とし、y軸に対して角度θ1L傾いた線分32(L)とを描く。線分32(R)及び32(L)の長さは、それぞれ、位相差測定器201R及び201Lによる位相差の測定値と、ある比例定数で比例する長さとする。線分32(R)の終点P(R)と、線分32(L)の終点P(L)とを通る楕円31の方程式を求め、さらに当該楕円とx軸との交点Px及び当該楕円とy軸との交点Pyの座標を求める。測定点P1における面内位相差Reは、PoとPxとの距離及び前記比例定数に基づいて求めることができ、測定点P1における厚み方向位相差Rthは、PoとPyとの距離及び前記比例定数に基づいて求めることができる。   In the example of calculation shown in FIG. 3, the line 32 (R) having the origin Po as the starting point and the angle θ1R inclined with respect to the y-axis and the origin Po as the starting point and the angle θ1L with respect to the y-axis as the coordinate axis Draw a line segment 32 (L). The lengths of the line segments 32 (R) and 32 (L) are proportional to the phase difference measurement values obtained by the phase difference measuring devices 201R and 201L, respectively, with a certain proportional constant. An equation of an ellipse 31 passing through the end point P (R) of the line segment 32 (R) and the end point P (L) of the line segment 32 (L) is obtained, and the intersection point Px between the ellipse and the x axis and the ellipse The coordinates of the intersection point Py with the y-axis are obtained. The in-plane phase difference Re at the measurement point P1 can be obtained based on the distance between Po and Px and the proportionality constant, and the thickness direction phase difference Rth at the measurement point P1 is calculated based on the distance between Po and Py and the proportionality constant. Can be determined based on

このような計算を、測定点P1及び他の測定点において行うことにより、複数の測定点において、面内位相差Re及び厚さ方向位相差Rthを求めることができる。したがって、このような測定及び計算を、測定箇所Z1及びZ5において繰り返し行うことにより、搬送される光学フィルム12のTD方向に離隔し、且つMD方向に離隔して整列する複数の測定点において、面内位相差Re及び厚さ方向位相差Rthの測定を行うことができる。   By performing such calculation at the measurement point P1 and other measurement points, the in-plane phase difference Re and the thickness direction phase difference Rth can be obtained at a plurality of measurement points. Therefore, by repeatedly performing such measurement and calculation at the measurement points Z1 and Z5, the surface is measured at a plurality of measurement points that are separated in the TD direction and separated in the MD direction. The internal phase difference Re and the thickness direction phase difference Rth can be measured.

単位時間当たりの測定の回数を多くすることにより、MD方向の測定点の分布をより密にすることができ、より詳細な面内位相差Re及び厚さ方向位相差Rthの情報を得ることができる。ひいては、光学フィルム12の搬送速度が高速であっても、詳細な面内位相差Re及び厚さ方向位相差Rthの分布を得ることができる。具体的には、測定の回数は、好ましくは3回/秒以上、より好ましくは10回/秒以上としうる。測定の回数の上限は、位相差測定器及び計算器の性能等の要素により定まり、例えば100回/秒以下としうる。   By increasing the number of times of measurement per unit time, the distribution of the measurement points in the MD direction can be made denser, and more detailed information on the in-plane phase difference Re and the thickness direction phase difference Rth can be obtained. it can. As a result, even if the conveyance speed of the optical film 12 is high, a detailed distribution of the in-plane retardation Re and the thickness direction retardation Rth can be obtained. Specifically, the number of measurements can be preferably 3 times / second or more, more preferably 10 times / second or more. The upper limit of the number of times of measurement is determined by factors such as the performance of the phase difference measuring device and the calculator, and can be, for example, 100 times / second or less.

図1示す通り、第一実施形態では、測定装置200を用いた測定方法を実施した後、光学フィルム12は、巻き取り装置300により巻き取られ、ロールとされる。計算器290による計算結果は、保存し、例えば得られたロール状の光学フィルム12から製品を切り出す際に使用しうる。より具体的には例えば、所望の寸法の矩形の製品を切り出すにあたり、面内位相差Re及び/又は厚さ方向位相差Rthが規格外(即ち所望の値の範囲から外れた状態)である箇所を除外して、高品質の製品を得ることができる。本発明の測定方法を実施することにより、測定点の分布が密である詳細な面内位相差Re及び厚さ方向位相差Rthの情報を得ることができるため、規格外の箇所の看過を低減することができ、規格外箇所の除外をより適切に実行することができる。   As shown in FIG. 1, in the first embodiment, after performing the measuring method using the measuring device 200, the optical film 12 is wound up by the winding device 300 to be a roll. The calculation result by the calculator 290 can be stored and used, for example, when a product is cut out from the obtained roll-shaped optical film 12. More specifically, for example, when cutting out a rectangular product having a desired size, the in-plane phase difference Re and / or the thickness direction phase difference Rth are out of specification (that is, outside the desired value range). Can be used to obtain a high-quality product. By carrying out the measurement method of the present invention, it is possible to obtain detailed information on the in-plane phase difference Re and the thickness direction phase difference Rth with a dense distribution of measurement points, thereby reducing oversight of non-standard locations. Therefore, it is possible to more appropriately execute the exclusion of the nonstandard part.

または、計算器290による計算結果を、通信手段291により形成装置100におけるフィードバック装置(不図示)に送信し、本発明の製造方法を実施することもできる。例えば、計算機290による計算結果を、形成装置100における、位相差に影響を与えうるいずれかの構成要素の操作の調整にフィードバックし、それにより、より均質な光学フィルム12の形成を行うことができる。例えば、ダイ101への樹脂の押出速度、ダイ101の開口の間隔、フィルムの延伸の倍率及びその他の延伸条件、並びに加熱及び冷却の温度及び温度分布等の操作の程度を調整し、それにより所望の面内位相差Re及び厚さ方向位相差Rthを有する光学フィルム12を連続的に製造することができる。   Alternatively, the calculation result by the calculator 290 can be transmitted to the feedback device (not shown) in the forming apparatus 100 by the communication means 291 to implement the manufacturing method of the present invention. For example, the calculation result by the computer 290 can be fed back to the adjustment of the operation of any component that can affect the phase difference in the forming apparatus 100, thereby forming a more uniform optical film 12. . For example, the degree of operation such as the extrusion speed of the resin to the die 101, the gap between the openings of the die 101, the stretching ratio of the film and other stretching conditions, and the heating and cooling temperature and temperature distribution can be adjusted accordingly. The optical film 12 having the in-plane retardation Re and the thickness direction retardation Rth can be continuously produced.

[第二実施形態]
上に述べた第一実施形態では、測定装置200における測定箇所として測定箇所Z1及びZ5の2箇所のみを設定し、光学フィルム12上にMD方向に連続する測定点P1の列及びP5の列の2列のみにおいて測定を行ったが、本発明はこれに限られず、より好ましい態様として、3列以上の測定点において測定を行ってもよい。
[Second Embodiment]
In the first embodiment described above, only two measurement points Z1 and Z5 are set as measurement points in the measuring apparatus 200, and the rows of measurement points P1 and P5 that are continuous in the MD direction on the optical film 12 are set. Although the measurement was performed in only two rows, the present invention is not limited to this, and as a more preferable aspect, the measurement may be performed in three or more measurement points.

第一実施形態における測定箇所を変更した実施形態を、第二実施形態として以下において説明する。図4は、本発明の第二実施形態の測定装置における、位相差測定器と、測定箇所における光学フィルム上の測定点との関係を説明する断面図である。図2と同様図4においても、光学フィルム12は、TD方向及びTH方向に平行な面で切断した断面として示される。   Embodiment which changed the measurement location in 1st embodiment is described below as 2nd embodiment. FIG. 4 is a cross-sectional view illustrating the relationship between the phase difference measuring device and the measurement points on the optical film at the measurement location in the measurement apparatus of the second embodiment of the present invention. 4 as well as FIG. 2, the optical film 12 is shown as a cross section cut along a plane parallel to the TD direction and the TH direction.

図4に示す第二実施形態は、測定箇所として、測定箇所Z1及びZ5に加えて、測定箇所Z2〜Z4が設定され、これらの箇所において位相差の測定を行う点において、第一実施形態と異なる。測定箇所Z1〜Z5が設定されることにより、測定箇所Z1及びZ5を通過する光学フィルム上の測定点P1及びP5に加えて、測定箇所Z2〜Z4を通過する光学フィルム上の測定点P2〜P4おいても位相差が測定され、その結果光学フィルム12上で、MD方向に連続する測定点P1の列、MD方向に連続する測定点P2の列、MD方向に連続する測定点P3の列、MD方向に連続する測定点P4の列、及びMD方向に連続する測定点P5の列の5列において測定が行われる。   The second embodiment shown in FIG. 4 is different from the first embodiment in that, in addition to the measurement points Z1 and Z5, measurement points Z2 to Z4 are set as measurement points, and the phase difference is measured at these points. Different. By setting the measurement points Z1 to Z5, in addition to the measurement points P1 and P5 on the optical film passing through the measurement points Z1 and Z5, the measurement points P2 to P4 on the optical film passing through the measurement points Z2 to Z4. The phase difference is also measured, and as a result, on the optical film 12, a row of measurement points P1 continuous in the MD direction, a row of measurement points P2 continuous in the MD direction, a row of measurement points P3 continuous in the MD direction, Measurement is performed in five rows, that is, a row of measurement points P4 continuous in the MD direction and a row of measurement points P5 continuous in the MD direction.

測定点P1〜P5のそれぞれにおいて、位相差測定器201L及び位相差測定器201Rの両方により、斜め方向の位相差が測定される。それぞれの測定点における位相差測定器201L及び201Rによる測定値を、位相差測定器201L及び201Rから出力して計算器に入力し、加えて計算機にそれぞれの測定角度の情報を入力し、計算器において計算を行うことにより、それぞれの測定点における面内位相差Re及び厚さ方向位相差Rthを求めうる。   At each of the measurement points P1 to P5, the phase difference in the oblique direction is measured by both the phase difference measuring device 201L and the phase difference measuring device 201R. Measurement values obtained by the phase difference measuring devices 201L and 201R at the respective measurement points are output from the phase difference measuring devices 201L and 201R and input to the calculator, and in addition, information on the respective measurement angles is input to the computer. By performing the calculation in, the in-plane phase difference Re and the thickness direction phase difference Rth at each measurement point can be obtained.

このように、第一実施形態より多い測定箇所において測定を行うことにより、TD方向の測定点の分布をより密にすることができ、より詳細な面内位相差Re及び厚さ方向位相差Rthの情報を得ることができる。また、幅の広い光学フィルムの製造においても、詳細な面内位相差Re及び厚さ方向位相差Rthの情報を得ることができる。   Thus, by performing measurement at more measurement points than in the first embodiment, the distribution of measurement points in the TD direction can be made denser, and more detailed in-plane phase difference Re and thickness direction phase difference Rth. Information can be obtained. Further, even in the production of a wide optical film, detailed information on the in-plane retardation Re and the thickness direction retardation Rth can be obtained.

[第三実施形態]
上に述べた第一実施形態では、位相差測定器として光学フィルムの左側及び右側の端部に2の位相差測定器のみを設けたが、本発明はこれに限られず、より好ましい態様として、3以上の位相差測定器を設けてもよい。
[Third embodiment]
In the first embodiment described above, only the two phase difference measuring devices are provided at the left and right end portions of the optical film as the phase difference measuring device, but the present invention is not limited to this, and as a more preferable aspect, Three or more phase difference measuring devices may be provided.

より具体的に説明すると、光学フィルムの左側及び右側の端部に2の位相差測定器のみを設けた場合、両方の位相差測定器から遠い測定箇所においては、両方の位相差測定器の仰角(垂直方向を0°とした観察角度)が大きくなり、測定誤差が大きくなりうる。また、左側及び右側の端部の位相差測定器の両方から等しい距離の位置に、これらの位相差測定器による2の測定値のみでは面内位相差Re及び厚さ方向位相差Rthを求めることができない特異点がある。ここで、左側及び右側の端部の位相差測定器の間に、さらに追加の位相差測定器を設けることにより、測定誤差の低減を図ることができ、且つ、特異点において面内位相差Re及び厚さ方向位相差Rthを求めることを可能としうる。   More specifically, when only two phase difference measuring devices are provided at the left and right end portions of the optical film, the elevation angle of both phase difference measuring devices at a measurement point far from both phase difference measuring devices. (Observation angle with the vertical direction being 0 °) increases, and measurement errors can increase. In addition, the in-plane phase difference Re and the thickness direction phase difference Rth are obtained at the same distance from both of the left and right side phase difference measuring devices by using only two measured values by these phase difference measuring devices. There are singularities that cannot be done. Here, by providing an additional phase difference measuring device between the phase difference measuring devices at the left and right end portions, the measurement error can be reduced, and the in-plane phase difference Re at the singular point can be achieved. In addition, the thickness direction retardation Rth can be obtained.

第二実施形態における位相差測定器の数を変更した実施形態を、第三実施形態として以下において説明する。図5は、本発明の第三実施形態の測定装置における、位相差測定器と、測定箇所における光学フィルム上の測定点との関係を説明する断面図である。図4と同様図5においても、光学フィルム12は、TD方向及びTH方向に平行な面で切断した断面として示される。   An embodiment in which the number of phase difference measuring devices in the second embodiment is changed will be described below as a third embodiment. FIG. 5 is a cross-sectional view illustrating the relationship between the phase difference measuring instrument and the measurement points on the optical film at the measurement location in the measurement apparatus of the third embodiment of the present invention. 5 as well as FIG. 4, the optical film 12 is shown as a cross section cut by a plane parallel to the TD direction and the TH direction.

図5に示す第三実施形態は、複数の位相差測定器として、左側の端部測定用の位相差測定器201L、及び右側の端部測定用の位相差測定器201Rに加えて、測定箇所Z3の垂直上方に設けられた、中央部測定用の位相差測定器201Cを備える点において、第二実施形態と異なる。   In the third embodiment shown in FIG. 5, as a plurality of phase difference measuring devices, in addition to the phase difference measuring device 201 </ b> L for measuring the left end and the phase difference measuring device 201 </ b> R for measuring the right end, The second embodiment is different from the second embodiment in that it includes a phase difference measuring device 201C for measuring the central portion, which is provided vertically above Z3.

この例において、位相差測定器201Cは、測定箇所Z1〜Z5において位相差を測定する。したがって、この例においては、測定箇所Z1〜Z5を通過する光学フィルム12上の測定点P1〜P5のそれぞれにおいて、位相差測定器201L、201C及び201Rの3つの位相差測定器により、斜め方向又は垂直方向から観察した位相差が測定される。それぞれの測定点における3つの位相差測定器による測定値を、位相差測定器から出力して計算器に入力し、加えて計算機にそれぞれの測定角度の情報を入力し、計算器において計算を行うことにより、それぞれの測定点における面内位相差Re及び厚さ方向位相差Rthを求めうる。   In this example, the phase difference measuring device 201C measures the phase difference at the measurement points Z1 to Z5. Therefore, in this example, at each of the measurement points P1 to P5 on the optical film 12 passing through the measurement points Z1 to Z5, the three phase difference measurement devices 201L, 201C, and 201R are used in an oblique direction or The phase difference observed from the vertical direction is measured. The measurement values obtained by the three phase difference measuring devices at each measurement point are output from the phase difference measuring device and input to the calculator. In addition, information on each measurement angle is input to the computer, and the calculation is performed by the calculator. Thus, the in-plane retardation Re and the thickness direction retardation Rth at each measurement point can be obtained.

ある一の測定点における複数の位相差の測定値及び測定角度から面内位相差Re及び厚さ方向位相差Rthを求める計算は、第一実施形態について説明した場合と同様に、楕円の方程式を解くことにより行いうる。但し、第三実施形態では、3つの座標に基づいて楕円の方程式を求めうるので、誤差の補正等を行うことができ、より正確な測定結果を得ることができる。また、2の測定値のみでは面内位相差Re及び厚さ方向位相差Rthを求めることができない特異点においても、測定結果を得ることができる。   The calculation for obtaining the in-plane phase difference Re and the thickness direction phase difference Rth from the measurement values and measurement angles of a plurality of phase differences at a certain measurement point is performed using the elliptic equation as in the case of the first embodiment. It can be done by solving. However, in the third embodiment, an elliptic equation can be obtained based on the three coordinates, so that an error can be corrected and a more accurate measurement result can be obtained. Further, the measurement result can be obtained even at a singular point where the in-plane phase difference Re and the thickness direction phase difference Rth cannot be obtained only by the measured value of 2.

かかる特異点における計算の例を、図6に示す。図6は、図5に示した測定点P3における位相差の測定値及び測定角度から、測定点P3における面内位相差Re及び厚さ方向位相差Rthを求める計算を概念的に示すグラフである。   An example of calculation at such a singular point is shown in FIG. FIG. 6 is a graph conceptually showing a calculation for obtaining the in-plane phase difference Re and the thickness direction phase difference Rth at the measurement point P3 from the measurement value and measurement angle of the phase difference at the measurement point P3 shown in FIG. .

図6に示す計算の例では、座標軸に、原点Poを始点とし、y軸に対して角度θ1R傾いた線分62(R)と、原点Poを始点とし、y軸に対して角度θ1L傾いた線分62(L)と、原点Poを始点とし、y軸に平行な線分62(C)とを描く。線分62(R)、62(C)及び62(L)の長さは、それぞれ、位相差測定器201R、201C及び201Lによる位相差の測定値と、ある比例定数で比例する長さとする。   In the example of the calculation shown in FIG. 6, the line segment 62 (R) tilted at the angle θ1R with respect to the y-axis and the origin Po as the start point and the angle θ1L with respect to the y-axis as the start point on the coordinate axis. A line segment 62 (L) and a line segment 62 (C) starting from the origin Po and parallel to the y-axis are drawn. The lengths of the line segments 62 (R), 62 (C), and 62 (L) are proportional to the measured values of the phase difference by the phase difference measuring devices 201R, 201C, and 201L, respectively, with a certain proportional constant.

この例において測定点P3は、測定器201L及び201Rのいずれとも等しい距離にある特異点であり、従って、図6に示すグラフでは、線分62(R)と線分62(L)とは、y軸を中心に線対称となる。このような場合において、線分62(R)の終点P(R)と、線分62(L)の終点P(L)のみとに基づいて、それらを通る楕円の方程式を求めると、楕円61以外に加えて、例えば楕円63のような他の楕円も求められ、したがって解が一つに定まらない。ここでさらに、線分62(C)の終点P(C)の情報を加えると、楕円61が定まり、これにより、測定点P3における面内位相差Re及び厚み方向位相差Rthを求めることができる。   In this example, the measurement point P3 is a singular point at a distance equal to both of the measuring instruments 201L and 201R. Therefore, in the graph shown in FIG. 6, the line segment 62 (R) and the line segment 62 (L) are Axisymmetric with respect to the y-axis. In such a case, based on only the end point P (R) of the line segment 62 (R) and the end point P (L) of the line segment 62 (L), an ellipse equation passing through them is obtained. In addition to the above, other ellipses such as the ellipse 63 are also obtained, so that the solution is not fixed to one. Here, when information on the end point P (C) of the line segment 62 (C) is further added, an ellipse 61 is determined, whereby the in-plane phase difference Re and the thickness direction phase difference Rth at the measurement point P3 can be obtained. .

[光学フィルム]
本発明の測定装置及び測定方法による測定対象の光学フィルム、及び本発明の製造装置及び製造方法により製造しうる光学フィルムは、特に限定されず、種々の用途に用いる光学フィルムとしうる。具体的には、何等かの形で制御された位相差を有することが求められるフィルムとしうる。
[Optical film]
The optical film to be measured by the measuring apparatus and measuring method of the present invention and the optical film that can be manufactured by the manufacturing apparatus and manufacturing method of the present invention are not particularly limited, and may be an optical film used for various applications. Specifically, it may be a film that is required to have a controlled retardation in some form.

光学フィルムは、単層のフィルムであってもよく、複数の層を有する複層フィルムであってもよい。光学フィルムはまた、延伸フィルムであってもよく、延伸されていないフィルムであってもよい。   The optical film may be a single layer film or a multilayer film having a plurality of layers. The optical film may also be a stretched film or an unstretched film.

光学フィルムは、好ましくは85%〜100%、より好ましくは90%〜100%の全光線透過率を有する。光線透過率は、JIS K0115に準拠して、分光光度計(日本分光社製、紫外可視近赤外分光光度計「V−570」)を用いて測定しうる。   The optical film preferably has a total light transmittance of 85% to 100%, more preferably 90% to 100%. The light transmittance can be measured using a spectrophotometer (manufactured by JASCO Corporation, UV-visible near-infrared spectrophotometer “V-570”) in accordance with JIS K0115.

光学フィルムの厚さは、好ましくは1μm以上、より好ましくは5μm以上、さらに好ましくは10μm以上であり、一方好ましくは300μm以下、より好ましくは200μm以下、さらに好ましくは100μm以下である。   The thickness of the optical film is preferably 1 μm or more, more preferably 5 μm or more, further preferably 10 μm or more, and preferably 300 μm or less, more preferably 200 μm or less, and even more preferably 100 μm or less.

光学フィルムの面内位相差Reは、(nx−ny)×dで表される値である。また、厚さ方向位相差Rthは、{((nx+ny)/2)−nz}×dで表される値である。ここで、nxは、フィルムの厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、フィルムの前記面内方向であってnxの方向に垂直な方向の屈折率を表す。nzは、フィルムの厚み方向の屈折率を表す。dは、フィルムの厚みを表す。   The in-plane retardation Re of the optical film is a value represented by (nx−ny) × d. The thickness direction phase difference Rth is a value represented by {((nx + ny) / 2) −nz} × d. Here, nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the film and giving the maximum refractive index. ny represents a refractive index in the in-plane direction of the film and in a direction perpendicular to the nx direction. nz represents the refractive index in the thickness direction of the film. d represents the thickness of the film.

本発明の測定方法により測定された位相差が有効に測定された値であるか否かは、既知の位相差測定装置(例えば、王子計測機器社製、「KOBRA−21ADH」、フォトニックラティス社製、「WPA−micro」)あるいはセナルモン法を用いて光学フィルムの位相差を別途測定することにより確認しうる。また、位相差の測定波長は、光学フィルムの用途に応じて任意の波長に設定しうるが、通常は550nmとしうる。   Whether or not the phase difference measured by the measurement method of the present invention is a value measured effectively is determined by a known phase difference measurement device (for example, “KOBRA-21ADH” manufactured by Oji Scientific Instruments, Photonic Lattice Co., Ltd.) Manufactured, “WPA-micro”) or by measuring the retardation of the optical film separately using the Senarmon method. Moreover, although the measurement wavelength of a phase difference can be set to arbitrary wavelengths according to the use of an optical film, it can usually be 550 nm.

[変形例]
本発明の測定装置及び製造装置並びに本発明の測定方法及び製造方法は、上に述べた第一〜第三実施形態によるものに限られず、例えばこれらの実施形態をさらに変形したものであってもよい。以下において、そのような変形の例を挙げて説明する。
[Modification]
The measuring apparatus and the manufacturing apparatus of the present invention and the measuring method and the manufacturing method of the present invention are not limited to those according to the first to third embodiments described above. For example, these embodiments may be further modified. Good. Hereinafter, an example of such a modification will be described.

第三実施形態においては、設定された測定箇所Z1〜Z5の5つ全てにおいて、3つの位相差測定器201L、201C及び201Rによる測定を行ったが、本発明はこのように全ての位相差測定器が全ての測定箇所の測定を行う態様に限られない。例えば3つの位相差測定器を用い、一部又は全部の測定箇所においてそれらのうち2つの位相差測定器のみによる測定を行ってもよい。   In the third embodiment, the measurement is performed by the three phase difference measuring devices 201L, 201C, and 201R at all five of the set measurement points Z1 to Z5, but the present invention thus measures all the phase differences. The instrument is not limited to a mode in which all the measurement points are measured. For example, three phase difference measuring devices may be used, and measurement using only two phase difference measuring devices may be performed at some or all of the measurement locations.

具体的には、ある測定箇所において、当該測定箇所に近い一の位相差測定器と、それ以外の一以上の位相差測定器とによる測定を行うことで、その測定箇所における2以上の測定結果を得ることができる。このより具体的な例としては、複数の位相差測定器が、中央部測定用の位相差測定器(C)、一方の端部測定用の位相差測定器(L)及び他方の端部測定用の位相差測定器(R)を含み、測定箇所が、中央部の測定箇所(C)、位相差測定器(L)が位置する側の端部の測定箇所(L)及び位相差測定器(R)が位置する側の端部の測定箇所(R)を含み、測定箇所(C)における位相差の計測を、位相差測定器(C)、および位相差測定器(C)以外の一以上の位相差測定器により行い、測定箇所(L)における位相差の計測を、位相差測定器(L)、および位相差測定器(L)以外の一以上の位相差測定器により行い、測定箇所(R)における位相差の計測を、位相差測定器(R)、および位相差測定器(R)以外の一以上の位相差測定器により行う態様が挙げられる。このように、それぞれの測定箇所において、使用する位相差測定器を適宜選択することにより、比較的誤差が少ない測定箇所からの測定に基づいたデータに基づいた計算を行うことができ、その結果、より正確な面内位相差Re及び厚さ方向位相差Rthを求めることができる。   Specifically, two or more measurement results at the measurement location are obtained by performing measurement with one phase difference measurement device close to the measurement location and one or more other phase difference measurement devices at a measurement location. Can be obtained. As a more specific example, a plurality of phase difference measuring devices include a phase difference measuring device (C) for measuring the central portion, a phase difference measuring device (L) for measuring one end portion, and the other end measuring portion. A phase difference measuring device (R) for measurement, the measurement location is the measurement location (C) at the center, the measurement location (L) at the end where the phase difference measurement device (L) is located, and the phase difference measurement device The measurement of the phase difference at the measurement location (C), including the measurement location (R) at the end on the side where (R) is located, is performed by measuring the phase difference other than the phase measurement device (C) and the phase difference measurement device (C). Measurement is performed with the above phase difference measuring device, and measurement of the phase difference at the measurement location (L) is performed with one or more phase difference measuring devices other than the phase difference measuring device (L) and the phase difference measuring device (L). The phase difference is measured at the location (R) by measuring one or more phase differences other than the phase difference measuring device (R) and the phase difference measuring device (R). Manner of performing the like. Thus, in each measurement location, by appropriately selecting the phase difference measuring device to be used, it is possible to perform a calculation based on the data based on the measurement from the measurement location with a relatively small error, as a result, More accurate in-plane retardation Re and thickness direction retardation Rth can be obtained.

第三実施形態においては、中央部測定用の位相差測定器201Cは、左側の端部測定用の位相差測定器201L、及び右側の端部測定用の位相差測定器201Rの両方から等しい位置に設けたが、本発明なこれに限られず、中央部測定用の位相差測定器は、左側の端部測定用の位相差測定器及び右側の端部測定用の位相差測定器よりも中央部に近い任意の位置に設けうる。例えば、中央部測定用の位相差測定器が、左側の端部測定用の位相差測定器及び右側の端部測定用の位相差測定器のどちらか一方により近い位置に配置されていてもよい。   In the third embodiment, the phase difference measuring device 201C for measuring the central portion is equal in position from both the phase measuring device 201L for measuring the left end portion and the phase difference measuring device 201R for measuring the right end portion. However, the present invention is not limited to this, and the phase difference measuring device for measuring the central portion is more central than the phase difference measuring device for measuring the left end portion and the phase difference measuring device for measuring the right end portion. It can be provided at any position close to the part. For example, the phase difference measuring instrument for measuring the central part may be arranged at a position closer to either one of the phase difference measuring instrument for measuring the left end part and the phase difference measuring instrument for measuring the right end part. .

第一〜第三実施形態において、複数の位相差測定器は、TD方向に離隔して且つTD方向に整列した態様で設けたが、本発明はこれに限られず、例えば一の位相差測定器が他の位相差測定器より上流又は下流に位置していてもよい。より具体的には例えば、光学フィルム12の左側の端部の位相差測定器201Lが、右側の端部の位相差測定器201Rに比べて相対的に下流に位置していてもよい。この場合、搬送される光学フィルム上のある測定点が位相差測定器201Rによる測定箇所を通過し、その後位相差測定器201Lによる測定箇所を通過しうる。この場合、フィルムの搬送速度の情報に基づいて位相差測定器201R及び201Lによる測定の時間的なずれを、計算機290においてオフセットすることにより、ある測定点における、位相差測定器201Lによる測定結果及び位相差測定器201Rによる測定結果の情報を得ることができる。一の位相差測定器を他の位相差測定器より上流又は下流に位置させることにより、それぞれの位相差測定器による測定条件を自由に最適化することが可能となる。   In the first to third embodiments, the plurality of phase difference measuring devices are provided in such a manner that they are separated in the TD direction and aligned in the TD direction. However, the present invention is not limited to this, for example, one phase difference measuring device. May be located upstream or downstream of other phase difference measuring devices. More specifically, for example, the phase difference measuring device 201L at the left end of the optical film 12 may be positioned relatively downstream as compared to the phase difference measuring device 201R at the right end. In this case, a certain measurement point on the conveyed optical film can pass through the measurement point by the phase difference measuring device 201R and then pass through the measurement point by the phase difference measuring device 201L. In this case, the measurement result by the phase difference measuring device 201L at a certain measurement point is obtained by offsetting the time shift of the measurement by the phase difference measuring devices 201R and 201L in the computer 290 based on the information on the film conveyance speed. Information of measurement results obtained by the phase difference measuring device 201R can be obtained. By positioning one phase difference measuring device upstream or downstream of the other phase difference measuring device, it is possible to freely optimize the measurement conditions by each phase difference measuring device.

第一〜第三実施形態においては、測定装置200における位相差測定器は2つ又は3つであり、測定箇所は2箇所又は5か所であったが、本発明はこれに限られず、例えば一つの測定装置に4つ以上の位相差測定器を設けてもよく、また、測定箇所は3箇所、4箇所、6箇所以上等の任意の数としうる。例えば、解像度の高い位相差測定器を用い、TD方向に多数の測定箇所を設けることができる。多数の測定箇所を設け、測定箇所の間隔を短くすることにより、TD方向の測定点の分布をさらにより密にすることができ、より詳細な面内位相差Re及び厚さ方向位相差Rthの情報を得ることができる。測定箇所のTD方向の間隔は、好ましくは100mm以下、より好ましくは25mm以下としうる。
また例えば、位相差測定器のTD方向の数及び位置は、光学フィルムの幅に適合させて適宜調整しうる。位相差測定器を3つ以上設ける場合、その間隔は均等な間隔であってもよいが、不均等な間隔であってもよい。位相差測定器のTD方向の間隔は、狭いほうが、より詳細な測定を正確に行うことができる。具体的には、位相差測定器のTD方向の間隔は、好ましくは1000mm以下、より好ましくは500mm以下としうる。また、位相差測定器と光学フィルムとの間隔は、位相差測定器のTD方向の間隔と同程度にすることが、正確な測定を効率的に行う観点から好ましく、従って、好ましくは1000mm以下、より好ましくは500mm以下としうる。
In the first to third embodiments, the number of phase difference measuring devices in the measuring apparatus 200 is two or three, and the number of measurement points is two or five. However, the present invention is not limited to this, for example, Four or more phase difference measuring devices may be provided in one measuring apparatus, and the number of measurement points may be any number such as three, four, six or more. For example, a high-resolution phase difference measuring device can be used and a large number of measurement locations can be provided in the TD direction. By providing a large number of measurement points and shortening the interval between the measurement points, the distribution of the measurement points in the TD direction can be made even denser, and more detailed in-plane phase difference Re and thickness direction phase difference Rth can be obtained. Information can be obtained. The interval in the TD direction of the measurement locations can be preferably 100 mm or less, more preferably 25 mm or less.
Further, for example, the number and position of the phase difference measuring device in the TD direction can be appropriately adjusted according to the width of the optical film. When three or more phase difference measuring devices are provided, the intervals may be equal intervals, but may be non-uniform intervals. As the interval in the TD direction of the phase difference measuring device is narrower, more detailed measurement can be accurately performed. Specifically, the interval in the TD direction of the phase difference measuring device can be preferably 1000 mm or less, more preferably 500 mm or less. In addition, the distance between the phase difference measuring device and the optical film is preferably about the same as the interval in the TD direction of the phase difference measuring device from the viewpoint of efficiently performing accurate measurement, and therefore preferably 1000 mm or less, More preferably, it may be 500 mm or less.

第一〜第三実施形態においては、位相差測定器は位相差のみを測定し、それに基づいて面内位相差Re及び厚さ方向位相差Rthのみを取得したが、本発明はこれに限られず、例えば、位相差測定器により、位相差に加えて、光学フィルムの光学軸の方位等の他の光学的な情報を併せて測定し、これを計算機において計算し、測定方向の仰角によるずれを補正し、情報として取得してもよい。   In the first to third embodiments, the phase difference measuring device measures only the phase difference and acquires only the in-plane phase difference Re and the thickness direction phase difference Rth based on the phase difference measuring device. However, the present invention is not limited to this. For example, in addition to the phase difference, other optical information such as the azimuth of the optical axis of the optical film is measured together with the phase difference measuring device, and this is calculated by a computer, and the deviation due to the elevation angle in the measurement direction is measured. It may be corrected and acquired as information.

第一〜第三実施形態においては、長尺の光学フィルムを製造及び測定する形態を例示したが、本発明はこれに限られず、例えば、枚葉状のフィルムを連続して製造及び搬送する製造ラインにも適用しうる。   In 1st-3rd embodiment, although the form which manufactures and measures a long optical film was illustrated, this invention is not restricted to this, For example, the manufacturing line which manufactures and conveys a sheet-like film continuously It can also be applied to.

第一〜第三実施形態においては、計算工程は計算機290により行ったが、本発明の測定方法及び本発明の製造方法はこれに限られず、操作者が、位相差測定器から出力された情報に基づいて操作者が手動で計算を行ってもよい。また、第一〜第三実施形態においては、フィードバック工程は、計算機290による計算結果を通信手段291を介してフィードバック装置に送信することによりフィードバック工程を行ったが、本発明の製造方法はこれに限られず、計算機による計算結果又は操作者による手動の計算結果に基づき、操作者が手動でフィードバック工程を行ってもよい。   In the first to third embodiments, the calculation process is performed by the computer 290. However, the measurement method of the present invention and the manufacturing method of the present invention are not limited to this, and the operator outputs information output from the phase difference measuring device. Based on the above, the operator may perform the calculation manually. In the first to third embodiments, the feedback step is performed by transmitting the calculation result by the computer 290 to the feedback device via the communication unit 291. However, the manufacturing method of the present invention is not limited to this. The feedback process may be manually performed by the operator based on the calculation result by the computer or the manual calculation result by the operator.

10:製造装置
100:形成装置
200:測定装置
300:巻き取り装置
101:ダイ
102:キャストロール
11:溶融樹脂
12:光学フィルム
280:光源
290:計算器
201L、201C、201R:位相差測定器
Z1〜Z5:測定装置における測定箇所
P1〜P5:光学フィルム上の測定点
Ly:垂線
Po:原点
32(R):線分
32(L):線分
31:楕円
Px:楕円とx軸との交点
Py:楕円とy軸との交点
62(R):線分
62(L):線分
62(C):線分
61:楕円
63:楕円
DESCRIPTION OF SYMBOLS 10: Manufacturing apparatus 100: Forming apparatus 200: Measuring apparatus 300: Winding apparatus 101: Die 102: Cast roll 11: Molten resin 12: Optical film 280: Light source 290: Calculator 201L, 201C, 201R: Phase difference measuring instrument Z1 -Z5: Measurement points in the measuring device P1-P5: Measurement points on the optical film Ly: Vertical line Po: Origin 32 (R): Line segment 32 (L): Line segment 31: Ellipse Px: Intersection of ellipse and x-axis Py: intersection of ellipse and y-axis 62 (R): line segment 62 (L): line segment 62 (C): line segment 61: ellipse 63: ellipse

Claims (8)

搬送経路において搬送される光学フィルムの位相差の測定方法であって、
前記搬送経路のTD方向に離隔して設けられた複数の位相差測定器により、TD方向に離隔する複数の測定箇所のそれぞれにおいて、前記測定箇所を通過する前記光学フィルムの面上の複数の測定点の位相差を計測する工程であって、2以上の前記測定点のそれぞれにおいて、前記位相差測定器のうちの2以上により、複数の極角方向から位相差を計測する、計測工程(i)、及び
前記計測工程(i)において計測された複数の位相差の値に基づいて、前記測定点のそれぞれにおいて、面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を計算する計算工程(ii)
を含む、測定方法。
A method for measuring a retardation of an optical film conveyed in a conveyance path,
A plurality of measurements on the surface of the optical film passing through the measurement location in each of a plurality of measurement locations separated in the TD direction by a plurality of phase difference measuring devices provided separately in the TD direction of the transport path. A step of measuring a phase difference between points, wherein at each of the two or more measurement points, the phase difference is measured from a plurality of polar angle directions by two or more of the phase difference measuring devices. ), And in-plane phase difference Re, thickness direction phase difference Rth, or both are calculated at each of the measurement points based on a plurality of phase difference values measured in measurement step (i). Calculation step (ii)
Including a measuring method.
前記計測工程(i)において、
前記複数の位相差測定器が、中央部測定用の位相差測定器(C)、一方の端部測定用の位相差測定器(L)及び他方の端部測定用の位相差測定器(R)を含み、
前記測定箇所が、中央部の測定箇所(C)、前記位相差測定器(L)が位置する側の端部の測定箇所(L)及び前記位相差測定器(R)が位置する側の端部の測定箇所(R)を含み、
前記測定箇所(C)における位相差の計測を、前記位相差測定器(C)、および前記位相差測定器(C)以外の一以上の位相差測定器により行い、
前記測定箇所(L)における位相差の計測を、前記位相差測定器(L)、および前記位相差測定器(L)以外の一以上の位相差測定器により行い、
前記測定箇所(R)における位相差の計測を、前記位相差測定器(R)、および前記位相差測定器(R)以外の一以上の位相差測定器により行う
請求項1に記載の測定方法。
In the measurement step (i),
The plurality of phase difference measuring devices include a phase difference measuring device (C) for measuring a central portion, a phase difference measuring device (L) for measuring one end portion, and a phase difference measuring device (R) for measuring the other end portion. )
The measurement location is a measurement location (C) at the center, an end measurement location (L) on the side where the phase difference measuring device (L) is located, and an end on the side where the phase difference measurement device (R) is located. Including the measurement point (R) of the part,
Measurement of the phase difference at the measurement location (C) is performed by one or more phase difference measuring devices other than the phase difference measuring device (C) and the phase difference measuring device (C),
Measurement of the phase difference at the measurement location (L) is performed by one or more phase difference measuring devices other than the phase difference measuring device (L) and the phase difference measuring device (L),
The measurement method according to claim 1, wherein the measurement of the phase difference at the measurement location (R) is performed by one or more phase difference measuring devices other than the phase difference measuring device (R) and the phase difference measuring device (R). .
光学フィルムの製造方法であって、
光学フィルムを連続的に形成する工程(I)、
工程(I)において形成された光学フィルムを搬送経路において搬送し、搬送される前記光学フィルムの面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を測定する工程(II)、及び
工程(II)において測定された前記面内位相差Re、厚さ方向位相差Rth、又はこれらの両方の値に基づいて、工程(I)における形成の条件を調節し、前記面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を所定の値に調整するフィードバック工程(III)
を含み、
前記工程(II)は、
前記搬送経路のTD方向に離隔して設けられた複数の位相差測定器により、TD方向に離隔する複数の測定箇所のそれぞれにおいて、前記測定箇所を通過する前記光学フィルムの面上の複数の測定点の位相差を計測する工程であって、2以上の前記測定点のそれぞれにおいて、前記位相差測定器のうちの2以上により、複数の極角方向から位相差を計測する、計測工程(i)、及び
前記計測工程(i)において計測された複数の位相差の値に基づいて、前記測定点のそれぞれにおいて、面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を計算する計算工程(ii)
を含む、製造方法。
An optical film manufacturing method comprising:
Step (I) of continuously forming an optical film,
A step (II) of measuring the in-plane retardation Re, the thickness direction retardation Rth, or both of the optical film conveyed in the conveyance path by conveying the optical film formed in the step (I); and Based on the values of the in-plane retardation Re, the thickness direction retardation Rth, or both measured in the step (II), the formation conditions in the step (I) are adjusted, and the in-plane retardation Re , Thickness direction phase difference Rth, or both of them are adjusted to a predetermined value (III)
Including
The step (II)
A plurality of measurements on the surface of the optical film passing through the measurement location in each of a plurality of measurement locations separated in the TD direction by a plurality of phase difference measuring devices provided separately in the TD direction of the transport path. A step of measuring a phase difference between points, wherein at each of the two or more measurement points, the phase difference is measured from a plurality of polar angle directions by two or more of the phase difference measuring devices. ), And in-plane phase difference Re, thickness direction phase difference Rth, or both are calculated at each of the measurement points based on a plurality of phase difference values measured in measurement step (i). Calculation step (ii)
Manufacturing method.
前記計測工程(i)において、
前記複数の位相差測定器が、中央部測定用の位相差測定器(C)、一方の端部測定用の位相差測定器(L)及び他方の端部測定用の位相差測定器(R)を含み、
前記測定箇所が、中央部の測定箇所(C)、前記位相差測定器(L)が位置する側の端部の測定箇所(L)及び前記位相差測定器(R)が位置する側の端部の測定箇所(R)を含み、
前記測定箇所(C)における位相差の計測を、前記位相差測定器(C)、および前記位相差測定器(C)以外の一以上の位相差測定器により行い、
前記測定箇所(L)における位相差の計測を、前記位相差測定器(L)、および前記位相差測定器(L)以外の一以上の位相差測定器により行い、
前記測定箇所(R)における位相差の計測を、前記位相差測定器(R)、および前記位相差測定器(R)以外の一以上の位相差測定器により行う
請求項3に記載の製造方法。
In the measurement step (i),
The plurality of phase difference measuring devices include a phase difference measuring device (C) for measuring a central portion, a phase difference measuring device (L) for measuring one end portion, and a phase difference measuring device (R) for measuring the other end portion. )
The measurement location is a measurement location (C) at the center, an end measurement location (L) on the side where the phase difference measuring device (L) is located, and an end on the side where the phase difference measurement device (R) is located. Including the measurement point (R) of the part,
Measurement of the phase difference at the measurement location (C) is performed by one or more phase difference measuring devices other than the phase difference measuring device (C) and the phase difference measuring device (C),
Measurement of the phase difference at the measurement location (L) is performed by one or more phase difference measuring devices other than the phase difference measuring device (L) and the phase difference measuring device (L),
The manufacturing method according to claim 3, wherein the phase difference is measured at the measurement location (R) by one or more phase difference measuring devices other than the phase difference measuring device (R) and the phase difference measuring device (R). .
光学フィルムの位相差の測定装置であって、
光学フィルムを搬送経路において搬送する搬送器、
前記搬送経路のTD方向に離隔して設けられ、TD方向に離隔する複数の測定箇所のそれぞれにおいて、前記測定箇所を通過する前記光学フィルムの面上の複数の測定点の位相差を計測する複数の位相差測定器であって、2以上の前記測定点のそれぞれにおいて、前記位相差測定器のうちの2以上により、複数の極角方向から位相差を計測する、位相差測定器(i)、及び
前記位相差測定器(i)において計測された複数の位相差の値に基づいて、前記測定点のそれぞれにおいて、面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を計算する計算器(ii)
を含む、測定装置。
A device for measuring the retardation of an optical film,
A transporter for transporting the optical film in the transport path;
A plurality of measurement points which are provided separately in the TD direction of the transport path and measure the phase differences of a plurality of measurement points on the surface of the optical film passing through the measurement point in each of the plurality of measurement points spaced in the TD direction. A phase difference measuring device (i) that measures a phase difference from a plurality of polar angle directions by two or more of the phase difference measuring devices at each of two or more of the measurement points. Based on a plurality of phase difference values measured by the phase difference measuring device (i), in-plane phase difference Re, thickness direction phase difference Rth, or both are calculated at each of the measurement points. Calculator (ii)
Including a measuring device.
前記複数の位相差測定器(i)が、中央部測定用の位相差測定器(C)、一方の端部測定用の位相差測定器(L)及び他方の端部測定用の位相差測定器(R)を含み、
前記測定箇所が、中央部の測定箇所(C)、前記位相差測定器(L)が位置する側の端部の測定箇所(L)及び前記位相差測定器(R)が位置する側の端部の測定箇所(R)を含み、
前記位相差測定器(C)、および前記位相差測定器(C)以外の一以上の位相差測定器が、前記測定箇所(C)における位相差の計測を行うよう設けられ、
前記位相差測定器(L)、および前記位相差測定器(L)以外の一以上の位相差測定器が、前記測定箇所(L)における位相差の計測を行うよう設けられ、
前記位相差測定器(R)、および前記位相差測定器(R)以外の一以上の位相差測定器が、前記測定箇所(R)における位相差の計測を行うよう設けられた
請求項5に記載の測定装置。
The plurality of phase difference measuring devices (i) include a phase difference measuring device (C) for measuring a central portion, a phase difference measuring device (L) for measuring one end portion, and a phase difference measuring for measuring the other end portion. Including vessel (R),
The measurement location is a measurement location (C) at the center, an end measurement location (L) on the side where the phase difference measuring device (L) is located, and an end on the side where the phase difference measurement device (R) is located. Including the measurement point (R) of the part,
One or more phase difference measuring devices other than the phase difference measuring device (C) and the phase difference measuring device (C) are provided to measure the phase difference at the measurement location (C),
One or more phase difference measuring devices other than the phase difference measuring device (L) and the phase difference measuring device (L) are provided to measure the phase difference at the measurement location (L),
The phase difference measuring device (R) and one or more phase difference measuring devices other than the phase difference measuring device (R) are provided to measure the phase difference at the measurement location (R). The measuring device described.
光学フィルムの製造装置であって、
光学フィルムを連続的に形成する形成装置(I)、
形成器(I)により形成された光学フィルムを搬送経路において搬送し、搬送される前記光学フィルムの面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を測定する測定装置(II)、及び
測定装置(II)により測定された前記面内位相差Re、厚さ方向位相差Rth、又はこれらの両方の値に基づいて、形成装置(I)による形成の条件を調節し、前記面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を所定の値に調整するフィードバック装置(III)
を含み、
前記測定装置(II)が、
光学フィルムを搬送経路において搬送する搬送器、
前記搬送経路のTD方向に離隔して設けられ、TD方向に離隔する複数の測定箇所のそれぞれにおいて、前記測定箇所を通過する前記光学フィルムの面上の複数の測定点の位相差を計測する複数の位相差測定器であって、2以上の前記測定点のそれぞれにおいて、前記位相差測定器のうちの2以上により、複数の極角方向から位相差を計測する、位相差測定器(i)、及び
前記位相差測定器(i)において計測された複数の位相差の値に基づいて、前記測定点のそれぞれにおいて、面内位相差Re、厚さ方向位相差Rth、又はこれらの両方を計算する計算器(ii)
を含む、製造装置。
An optical film manufacturing apparatus,
Forming apparatus (I) for continuously forming an optical film,
Measuring device (II) for measuring the in-plane retardation Re, the thickness direction retardation Rth, or both of the optical film conveyed by the forming device (I) in the conveying path. And adjusting the conditions of formation by the forming device (I) based on the in-plane retardation Re, the thickness direction retardation Rth, or both values measured by the measuring device (II), Feedback device (III) for adjusting the internal phase difference Re, the thickness direction phase difference Rth, or both of them to a predetermined value
Including
The measuring device (II)
A transporter for transporting the optical film in the transport path;
A plurality of measurement points which are provided separately in the TD direction of the transport path and measure the phase differences of a plurality of measurement points on the surface of the optical film passing through the measurement point in each of the plurality of measurement points spaced in the TD direction. A phase difference measuring device (i) that measures a phase difference from a plurality of polar angle directions by two or more of the phase difference measuring devices at each of two or more of the measurement points. Based on a plurality of phase difference values measured by the phase difference measuring device (i), in-plane phase difference Re, thickness direction phase difference Rth, or both are calculated at each of the measurement points. Calculator (ii)
Including manufacturing equipment.
前記複数の位相差測定器(i)が、中央部測定用の位相差測定器(C)、一方の端部測定用の位相差測定器(L)及び他方の端部測定用の位相差測定器(R)を含み、
前記測定箇所が、中央部の測定箇所(C)、前記位相差測定器(L)が位置する側の端部の測定箇所(L)及び前記位相差測定器(R)が位置する側の端部の測定箇所(R)を含み、
前記位相差測定器(C)、および前記位相差測定器(C)以外の一以上の位相差測定器が、前記測定箇所(C)における位相差の計測を行うよう設けられ、
前記位相差測定器(L)、および前記位相差測定器(L)以外の一以上の位相差測定器が、前記測定箇所(L)における位相差の計測を行うよう設けられ、
前記位相差測定器(R)、および前記位相差測定器(R)以外の一以上の位相差測定器が、前記測定箇所(R)における位相差の計測を行うよう設けられた
請求項7に記載の製造装置。
The plurality of phase difference measuring devices (i) include a phase difference measuring device (C) for measuring a central portion, a phase difference measuring device (L) for measuring one end portion, and a phase difference measuring for measuring the other end portion. Including vessel (R),
The measurement location is a measurement location (C) at the center, an end measurement location (L) on the side where the phase difference measuring device (L) is located, and an end on the side where the phase difference measurement device (R) is located. Including the measurement point (R) of the part,
One or more phase difference measuring devices other than the phase difference measuring device (C) and the phase difference measuring device (C) are provided to measure the phase difference at the measurement location (C),
One or more phase difference measuring devices other than the phase difference measuring device (L) and the phase difference measuring device (L) are provided to measure the phase difference at the measurement location (L),
The phase difference measuring device (R) and one or more phase difference measuring devices other than the phase difference measuring device (R) are provided to measure the phase difference at the measurement location (R). The manufacturing apparatus as described.
JP2014210844A 2014-10-15 2014-10-15 Optical film phase difference measuring method, optical film manufacturing method, optical film phase difference measuring apparatus, and optical film manufacturing apparatus Active JP6641682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014210844A JP6641682B2 (en) 2014-10-15 2014-10-15 Optical film phase difference measuring method, optical film manufacturing method, optical film phase difference measuring apparatus, and optical film manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014210844A JP6641682B2 (en) 2014-10-15 2014-10-15 Optical film phase difference measuring method, optical film manufacturing method, optical film phase difference measuring apparatus, and optical film manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2016080473A true JP2016080473A (en) 2016-05-16
JP6641682B2 JP6641682B2 (en) 2020-02-05

Family

ID=55956109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014210844A Active JP6641682B2 (en) 2014-10-15 2014-10-15 Optical film phase difference measuring method, optical film manufacturing method, optical film phase difference measuring apparatus, and optical film manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6641682B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218133A (en) * 1995-12-05 1997-08-19 Nec Corp Method for inspecting anisotropic thin film
JPH10332533A (en) * 1997-06-03 1998-12-18 Unie Opt:Kk Birefringence evaluation system
JP2001324453A (en) * 2000-03-08 2001-11-22 Fuji Photo Film Co Ltd Apparatus, system and method for inspecting defect of film
JP2009074981A (en) * 2007-09-21 2009-04-09 Fuji Xerox Co Ltd Image evaluating system
JP2009229278A (en) * 2008-03-24 2009-10-08 Fujifilm Corp Double refraction measuring instrument, double refraction measuring method, film producing system and film producing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218133A (en) * 1995-12-05 1997-08-19 Nec Corp Method for inspecting anisotropic thin film
JPH10332533A (en) * 1997-06-03 1998-12-18 Unie Opt:Kk Birefringence evaluation system
JP2001324453A (en) * 2000-03-08 2001-11-22 Fuji Photo Film Co Ltd Apparatus, system and method for inspecting defect of film
JP2009074981A (en) * 2007-09-21 2009-04-09 Fuji Xerox Co Ltd Image evaluating system
JP2009229278A (en) * 2008-03-24 2009-10-08 Fujifilm Corp Double refraction measuring instrument, double refraction measuring method, film producing system and film producing method

Also Published As

Publication number Publication date
JP6641682B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP4779646B2 (en) Film stretching apparatus and film stretching method
JP5582515B2 (en) Glass plate manufacturing method and glass plate strain measuring apparatus
JP4525326B2 (en) Film stretching apparatus and film stretching method
KR102285907B1 (en) Long stretched film and production method therefor
JPWO2009063756A1 (en) Method for producing glass plate and method for measuring residual stress in glass article
JP4544005B2 (en) Method for producing stretched film
JP6641682B2 (en) Optical film phase difference measuring method, optical film manufacturing method, optical film phase difference measuring apparatus, and optical film manufacturing apparatus
JP2005321542A (en) Optical film
JP2005319660A (en) Manufacturing apparatus of long optical film and manufacturing method using it
JP2014227298A (en) Manufacturing system of optical film roll and manufacturing method of optical film roll
WO2013069766A1 (en) Optical film chip cutting device and method for cutting optical film chip
CN103765256B (en) Method for producing pattern phase difference film
KR101757604B1 (en) Method of producing optical film and manufacturing device
KR20140139418A (en) System and method for producing optical film roll
JP2014228845A (en) System for manufacturing optical film roll and method for manufacturing optical film roll
KR102562389B1 (en) Manufacturing method for cut-out product and cutting system
KR102006380B1 (en) System for manufacturing cutting product
KR101476711B1 (en) Cutting method
JP2004314529A (en) Manufacturing method of cellulose ester film
JP2014219596A (en) Production method of optical film
WO2016072759A1 (en) Method and system for producing cut product
JP2014228848A (en) System for manufacturing optical film roll and method for manufacturing optical film roll
JP2014228693A (en) Exposure equipment
JP2012214006A (en) Method of manufacturing biaxially oriented film
JP2015049431A (en) Apparatus for producing optical film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6641682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250