JP2001322875A - Implement for calcination of electronic parts - Google Patents

Implement for calcination of electronic parts

Info

Publication number
JP2001322875A
JP2001322875A JP2000137812A JP2000137812A JP2001322875A JP 2001322875 A JP2001322875 A JP 2001322875A JP 2000137812 A JP2000137812 A JP 2000137812A JP 2000137812 A JP2000137812 A JP 2000137812A JP 2001322875 A JP2001322875 A JP 2001322875A
Authority
JP
Japan
Prior art keywords
intermediate layer
oxide
zirconia
partially molten
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000137812A
Other languages
Japanese (ja)
Other versions
JP3549099B2 (en
Inventor
Yasuhisa Izutsu
靖久 井筒
Kazutomo Hoshino
和友 星野
Tomihiro Uchida
富大 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2000137812A priority Critical patent/JP3549099B2/en
Priority to TW090101615A priority patent/TWI286128B/en
Priority to TW096112387A priority patent/TWI296267B/en
Priority to KR1020010004120A priority patent/KR100549030B1/en
Publication of JP2001322875A publication Critical patent/JP2001322875A/en
Application granted granted Critical
Publication of JP3549099B2 publication Critical patent/JP3549099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Furnace Charging Or Discharging (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve peeling resistance and strength against stress between the base body and a zirconia surface layer of a conventional implement for calcination of electronic parts manufactured by applying the zirconia layer on the surface of the base body. SOLUTION: A partially molten intermediate layer consisting of two or more kinds of metal oxides is formed between the base body and the zirconia surface layer of the implement for calcination of electronic parts. Unlike a conventional implement for calcination of electronic parts, the partially molten intermediate layer is formed by using two or more kinds of metal oxides and partially molten, therefore, the molten oxide as a liquid phase improves the adhesion property between the zirconia surface layer and the base body and gives good peeling resistance to the zirconia surface layer. Further, the sintering property of the partially molten intermediate layer is improved, which improves the strength against stress.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体、積層コン
デンサ、セラミックコンデンサ、圧電素子、サーミスタ
等の電子部品を焼成する際に用いる、セッター、棚板、
匣鉢等の電子部品焼成用治具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a setter, a shelf, and the like used for firing electronic components such as dielectrics, multilayer capacitors, ceramic capacitors, piezoelectric elements, and thermistors.
The present invention relates to a jig for firing electronic components such as a sagger.

【0002】[0002]

【従来の技術】電子部品焼成用治具は、耐熱性や機械的
強度の他に、焼成するセラミック電子部品と反応しない
ことが要求される。誘電体等の電子部品ワークが焼成用
治具と接触し反応すると、融着したり、ワークの組成変
動によって特性低下が生ずる等の問題点がある。通常は
これらの電子部品焼成用治具の基材として、熱間強度が
高く、熱スポーリング性の良好なアルミナ・ムライト系
基材が頻繁に使用される。しかしこのアルミナ・ムライ
ト系基材は電子部品ワークとの反応が起こり易く、この
反応を防止するために、基材表面にジルコニアを被覆す
る方法が採用されている。
2. Description of the Related Art A jig for firing electronic parts is required to not react with ceramic electronic parts to be fired in addition to heat resistance and mechanical strength. When an electronic component work such as a dielectric material comes into contact with and reacts with a firing jig, there are problems such as fusing or a change in the composition of the work resulting in deterioration of characteristics. Usually, an alumina-mullite base material having a high hot strength and a good thermal spalling property is frequently used as a base material for these electronic component firing jigs. However, this alumina-mullite base material easily reacts with the electronic component work, and in order to prevent this reaction, a method of coating the surface of the base material with zirconia has been adopted.

【0003】[0003]

【発明が解決しようとする課題】ジルコニアは基材との
反応性は低いが、該基材との熱膨張係数の差が大きいた
め繰り返し熱サイクルが生ずる使用環境下では治具の被
覆に亀裂が生じたり、剥離するといった問題がある。更
にジルコニアは〜1100℃近傍で単斜晶から正方晶への相
変化が起こる。その結果繰り返し熱サイクルによる相変
態に伴う熱膨張係数の変化により、ジルコニアの被覆層
が脱離しやすいという問題点がある。なお未安定化ジル
コニアを表面層として使用する場合には、相変態に伴う
粉化が生ずるという問題点もある。
Although zirconia has low reactivity with a substrate, the zirconia has a large difference in coefficient of thermal expansion with the substrate, so that cracks may occur in the coating of the jig in a use environment in which repeated thermal cycles occur. There is a problem that it occurs or peels off. Furthermore, zirconia undergoes a phase change from monoclinic to tetragonal at around 1100 ° C. As a result, there is a problem that the zirconia coating layer is easily detached due to a change in the thermal expansion coefficient accompanying the phase transformation due to repeated thermal cycling. When unstabilized zirconia is used as the surface layer, there is a problem that powdering occurs due to phase transformation.

【0004】このような問題点を解決するために、ジル
コニア表面層と基材の間にアルミナから成る中間層を存
在させた電子部品焼成用治具が提案されている。しかし
この電子部品焼成用治具では、アルミナの燒結性が悪
く、ジルコニア表面層と基材との中間層として十分な密
着性を持たず、更に剥離が満足できるレベルで防止でき
ないという欠点がある。従って本発明は、従来のアルミ
ナ単独の中間層に代えて、各種特性特に耐剥離性及び強
度に優れた中間層を有する電子部品焼成用治具を提供す
ることを目的とする。
In order to solve such problems, there has been proposed a jig for firing electronic parts in which an intermediate layer made of alumina is present between a zirconia surface layer and a substrate. However, this electronic component firing jig has the disadvantage that the sinterability of alumina is poor, the adhesive does not have sufficient adhesion as an intermediate layer between the zirconia surface layer and the substrate, and peeling cannot be prevented at a satisfactory level. Accordingly, an object of the present invention is to provide an electronic component firing jig having an intermediate layer having various properties, particularly excellent peeling resistance and strength, instead of the conventional intermediate layer made of alumina alone.

【0005】[0005]

【課題を解決するための手段】本発明は、基材、該基材
表面に被覆された2種類以上の金属酸化物から成る部分
溶融中間層、及び該部分溶融中間層上に形成されたジル
コニア表面層を含んで成ることを特徴とする電子部品焼
成用治具である。
SUMMARY OF THE INVENTION The present invention provides a substrate, a partially molten intermediate layer comprising two or more metal oxides coated on the surface of the substrate, and zirconia formed on the partially molten intermediate layer. An electronic component firing jig comprising a surface layer.

【0006】以下本発明を詳細に説明する。本発明の電
子部品焼成用治具は、基材とジルコニア表面層間に、2
種類以上の金属酸化物から成る部分溶融中間層(なお本
明細書では焼成前の層を単に「中間層」と称し、焼成後
の層を「部分溶融中間層」と称する)を有することを特
徴とする。本発明に係る電子部品焼成用治具の基材の材
質は、従来と同様で良く、例えばアルミナ系材料、アル
ミナ−ムライト系材料、アルミナ−マグネシア系スピネ
ル材料、アルミナ−ムライト−コージェライト系材料、
又はこれらの組合せによる材料が使用される。
Hereinafter, the present invention will be described in detail. The jig for firing an electronic component of the present invention comprises a
It is characterized by having a partially molten intermediate layer composed of more than one kind of metal oxide (in this specification, the layer before firing is simply referred to as “intermediate layer”, and the layer after firing is referred to as “partially molten intermediate layer”). And The material of the substrate of the electronic component firing jig according to the present invention may be the same as the conventional one, for example, alumina-based material, alumina-mullite-based material, alumina-magnesia-based spinel material, alumina-mullite-cordierite-based material,
Alternatively, a material based on a combination thereof is used.

【0007】この基材上に形成される部分溶融中間層は
2種類以上の金属酸化物の混合物を高温焼成することに
より得られる。この部分溶融中間層を構成する金属酸化
物としては、酸化アルミニウム(アルミナ、Al
2 3 )、酸化ジルコニウム(ジルコニア、Zr
2 )、酸化イットリウム(イットリア、Y2 3 )、
酸化カルシウム(カルシア、CaO)、酸化マグネシウ
ム(MgO、マグネシア)、酸化ストロンチウム(スト
ロンチア、SrO)及びアルミナ・マグネシアスピネル
複合酸化物(Al2 3 ・MgO、以下「スピネル酸化
物」という)があり、これらから2種類以上を選択す
る。具体的には、アルミナと他の金属酸化物を組み合わ
せることが望ましく、例えばアルミナ−スピネル酸化物
−マグネシアやアルミナ−カルシア−イットリアの組合
せにより優れた特性を有する部分溶融中間層が得られ
る。
The partially molten intermediate layer formed on the substrate is obtained by firing a mixture of two or more metal oxides at a high temperature. Aluminum oxide (alumina, Al
2 O 3 ), zirconium oxide (zirconia, Zr
O 2 ), yttrium oxide (yttria, Y 2 O 3 ),
There are calcium oxide (calcia, CaO), magnesium oxide (MgO, magnesia), strontium oxide (strontia, SrO) and alumina-magnesia spinel composite oxide (Al 2 O 3 .MgO, hereinafter referred to as “spinel oxide”). Two or more types are selected from these. Specifically, it is desirable to combine alumina with another metal oxide. For example, a combination of alumina-spinel oxide-magnesia or alumina-calcia-yttria can provide a partially melted intermediate layer having excellent properties.

【0008】金属酸化物の混合割合は特に限定されない
が、1種類の金属酸化物の含有量が90重量%を越える
と、2種類以上の金属酸化物の混合物を使用する効果が
少なくなるため好ましくない。この部分溶融中間層を構
成する金属酸化物の粒径は特に限定されずランダムな粒
径の金属酸化物で部分溶融中間層又は中間層を構成して
も良いが、粗粒子と微粒子を混合して、例えば平均粒径
30〜500 μmの粗粒子と平均粒径0.1 〜10μmの微粒子
を混合して存在させると、気孔率の大きい粗粒子金属酸
化物により部分溶融中間層中に空隙が形成され、ジルコ
ニア表面層と部分溶融中間層間、及び部分溶融中間層と
基材間の熱膨張率の差を吸収し緩和することができ、急
熱及び急冷を繰り返す熱サイクル環境下で使用しても、
比較的長期間剥離することなく使用できる。但し部分溶
融中間層全体に対する粗粒子の量は90重量%以下とす
る。90重量%を越えると部分溶融の効果が得られず、又
膜が緻密化せずに強度面で不都合が生ずることがあるか
らである。
The mixing ratio of the metal oxide is not particularly limited. However, when the content of one type of metal oxide exceeds 90% by weight, the effect of using a mixture of two or more types of metal oxides is reduced, which is preferable. Absent. The particle size of the metal oxide constituting the partial melt intermediate layer is not particularly limited, and the partial melt intermediate layer or the intermediate layer may be formed of a metal oxide having a random particle size. The average particle size
When a mixture of coarse particles of 30 to 500 μm and fine particles of an average particle diameter of 0.1 to 10 μm is present, voids are formed in the partially molten intermediate layer by the coarse metal oxide having a high porosity, and the zirconia surface layer and the It can absorb and reduce the difference in the coefficient of thermal expansion between the molten intermediate layer, and the partially molten intermediate layer and the base material, and can be used in a thermal cycle environment where rapid heating and rapid cooling are repeated.
Can be used without peeling for a relatively long time. However, the amount of the coarse particles with respect to the entire partially melted intermediate layer is 90% by weight or less. If the content exceeds 90% by weight, the effect of partial melting cannot be obtained, and the film may not be densified, which may cause a problem in strength.

【0009】前記中間層は塗布−熱分解法、スプレー法
及びディップコート法等により基材表面に形成できる。
塗布−熱分解法は対応金属の硝酸塩等の金属塩水溶液を
基材表面に塗布し熱分解により対応する金属酸化物に変
換し基材表面に被覆する方法である。スプレー法は所定
の粒径の金属酸化物粒子を溶媒に懸濁させてこの溶媒を
基材表面に噴射しかつ溶媒を飛散させて金属酸化物を基
材表面に被覆する方法である。又ディップコート法は対
応金属酸化物を溶解又は懸濁させた溶液に基材を浸して
金属酸化物を含有する液層を基材表面に形成しかつ乾燥
して溶媒を除去して金属酸化物層を形成する方法であ
る。塗布−熱分解法及びディップコート法は生成する金
属酸化物粒子の粒径を調節しにくく、所望の粒径分布の
金属酸化物、例えば前述の粗粒子と微粒子から成る金属
酸化物の中間層を形成する場合には所定の粒径の金属酸
化物粒子を直接噴霧するスプレー法によることが望まし
い。
The intermediate layer can be formed on the surface of the substrate by a coating-pyrolysis method, a spray method, a dip coating method, or the like.
The coating-thermal decomposition method is a method in which an aqueous solution of a metal salt such as a nitrate of a corresponding metal is applied to the surface of a substrate, converted to a corresponding metal oxide by thermal decomposition, and coated on the surface of the substrate. The spray method is a method in which metal oxide particles having a predetermined particle size are suspended in a solvent, the solvent is sprayed on the surface of the substrate, and the solvent is scattered to coat the metal oxide on the surface of the substrate. In the dip coating method, the substrate is immersed in a solution in which the corresponding metal oxide is dissolved or suspended, a liquid layer containing the metal oxide is formed on the substrate surface, and the solvent is removed by drying to remove the metal oxide. This is a method of forming a layer. The coating-pyrolysis method and the dip coating method make it difficult to control the particle size of the generated metal oxide particles, and form a metal oxide having a desired particle size distribution, for example, an intermediate layer of the above-described metal oxide composed of coarse particles and fine particles. In the case of forming, it is desirable to use a spray method of directly spraying metal oxide particles having a predetermined particle size.

【0010】部分溶融中間層の厚さは特に限定されない
が、金属酸化物の微粒子のみで形成する場合は10〜200
μmが好ましく、各製造法における基材への金属や金属
化合物の噴霧量又は金属や金属化合物の溶液の被覆量及
び除去される溶媒量を考慮することにより、形成される
中間層の厚さを任意に調節できる。このようにして形成
した中間層は高温焼成することにより、部分溶融中間層
に変換する。その焼成温度は実際に電子部品を焼成する
温度より高い温度にして本発明の電子部品焼成用治具が
使用時に劣化しないようにすることが望ましい。通常の
電子部品の焼成温度は1200〜1400℃であるので、中間層
焼成温度は1300〜1600℃程度とすることが好ましい。な
お中間層の焼成はジルコニア表面層を形成した後に該ジ
ルコニア表面層の焼成と同時に行っても良く、それによ
り焼成工程の回数を減らすことができる。
[0010] The thickness of the partially molten intermediate layer is not particularly limited.
μm is preferable, and in consideration of the spray amount of the metal or the metal compound on the substrate or the coating amount of the solution of the metal or the metal compound and the amount of the solvent to be removed in each production method, the thickness of the formed intermediate layer is reduced. Can be adjusted arbitrarily. The intermediate layer thus formed is converted into a partially molten intermediate layer by firing at a high temperature. It is desirable that the firing temperature be higher than the temperature at which the electronic component is actually fired so that the electronic component firing jig of the present invention does not deteriorate during use. Since the firing temperature of a normal electronic component is 1200 to 1400 ° C., the firing temperature of the intermediate layer is preferably about 1300 to 1600 ° C. The firing of the intermediate layer may be performed simultaneously with the firing of the zirconia surface layer after the formation of the zirconia surface layer, whereby the number of firing steps can be reduced.

【0011】このように形成される部分溶融中間層(又
は中間層)上にジルコニア表面層を形成する。その製法
は前記中間層と同様に、塗布−熱分解法、スプレー法及
びディップコート法等がある。このジルコニア層はラン
ダムな粒径のジルコニアを焼成することにより形成して
も良いが、前記中間層の場合と同様に粗粒子と微粒子を
混合して、例えば平均粒径30〜500 μmのジルコニア粗
粒子と平均粒径0.1 〜10μmのジルコニア微粒子を混合
して存在させると、気孔率の大きいジルコニア粗粒子に
より表面層に空隙が形成され、部分溶融中間層による空
隙形成能に加えてジルコニア表面層の空隙形成能により
ジルコニア表面層と部分溶融中間層との熱膨張率の差を
より完全に吸収し緩和することができる。なおジルコニ
ア表面層の場合も粗粒子は全体に対して90重量%以下と
することが望ましい。
A zirconia surface layer is formed on the partially molten intermediate layer (or the intermediate layer) thus formed. Similar to the above-mentioned intermediate layer, the production method includes a coating-pyrolysis method, a spray method, a dip coating method and the like. This zirconia layer may be formed by firing zirconia having a random particle size.However, as in the case of the intermediate layer, coarse particles and fine particles are mixed, for example, zirconia coarse particles having an average particle size of 30 to 500 μm. When particles and zirconia fine particles having an average particle size of 0.1 to 10 μm are mixed and present, voids are formed in the surface layer by the zirconia coarse particles having a high porosity, and in addition to the void forming ability of the partially molten intermediate layer, the zirconia surface layer has The difference in thermal expansion coefficient between the zirconia surface layer and the partially molten intermediate layer can be more completely absorbed and reduced by the void forming ability. In the case of the zirconia surface layer as well, the amount of the coarse particles is desirably 90% by weight or less based on the whole.

【0012】又ジルコニア表面層の材質として具体的に
は未安定化ジルコニア、部分安定化ジルコニア及び安定
化ジルコニア等が使用できるが、該ジルコニア表面層は
電子部品と直接接触するため、該電子部品に悪影響を与
えるものであってはならず、従ってイットリア、カルシ
ア及びマグネシア等により部分安定化又は安定化させた
ジルコニア又はそれらの混合物を使用することが望まし
い。ジルコニアは室温では単斜晶系であり、温度上昇と
ともに、単斜晶系→(〜1170℃)→正方晶系→(〜2370
℃)→立方晶系の相変態が起こるが、ジルコニアにイッ
トリアやマグネシア等の部分溶融結合材(安定化剤)を
固溶させることにより、高温相である正方晶や立方晶を
室温下で「安定化」できる。
As the material of the zirconia surface layer, specifically, unstabilized zirconia, partially stabilized zirconia, stabilized zirconia, and the like can be used. It should not be detrimental, and it is therefore desirable to use zirconia partially stabilized or stabilized with yttria, calcia and magnesia, or mixtures thereof. Zirconia is monoclinic at room temperature, and monoclinic → (~ 1170 ° C) → tetragonal → (~ 2370
℃) → The cubic phase transformation occurs, but the solid-state binder (stabilizer) such as yttria or magnesia is dissolved in zirconia to form a high-temperature phase of tetragonal or cubic at room temperature. Stabilization ".

【0013】このように製造される本発明の電子部品焼
成用治具は、中間層を2種類以上の金属酸化物で構成
し、加熱焼成時にそのうちの一部を溶融させて成る部分
溶融中間層を有し、部分溶融により形成された液相がジ
ルコニア表面層及び基材の両者と反応し、これによって
各層及び基材間の密着力が著しく改善され、換言すると
ジルコニア表面層が基材から剥離にしくくなる。なお液
相量が多過ぎると、液相が固化する際に収縮して膜や基
材が変形することがあるため、加熱焼成の条件を適切に
設定することが望ましい。更に部分溶融中間層として2
種類の金属酸化物を使用しているため、1種類の金属酸
化物の燒結性が劣っていても、他の金属酸化物の燒結性
により補完されて、全体としての燒結性が向上して部分
溶融中間層としての強度が改善される。又金属酸化物を
2種類使用することにより、その融点が金属酸化物単独
(例えばアルミナの融点は約2000℃)の場合より低下
し、好ましい焼成温度である1300〜1600℃での焼成が容
易になる。従って、従来の1種類のみの金属酸化物で形
成した中間層を有する電子部品焼成用治具では実質的に
達成できなかった、基材とジルコニア表面層間の熱膨張
率の差異の減少による剥離防止、及び部分溶融中間層の
強度向上が達成できる。
[0013] The electronic component firing jig of the present invention manufactured as described above has an intermediate layer made of two or more kinds of metal oxides, and a partially melted intermediate layer formed by melting part of the intermediate layer during heating and firing. The liquid phase formed by partial melting reacts with both the zirconia surface layer and the base material, thereby significantly improving the adhesion between each layer and the base material, in other words, the zirconia surface layer is separated from the base material. It becomes difficult. If the amount of the liquid phase is too large, the film and the substrate may be deformed due to shrinkage when the liquid phase is solidified. Therefore, it is desirable to appropriately set the heating and firing conditions. Furthermore, 2
Since one kind of metal oxide is used, even if one kind of metal oxide is inferior in sinterability, it is complemented by the sinterability of other metal oxides, and the sinterability as a whole is improved. The strength as a molten intermediate layer is improved. In addition, by using two types of metal oxides, the melting point is lower than that of a metal oxide alone (for example, the melting point of alumina is about 2000 ° C.), and firing at a preferable firing temperature of 1300 to 1600 ° C. is easy. Become. Therefore, separation prevention due to a reduction in the difference in the coefficient of thermal expansion between the substrate and the zirconia surface layer, which could not be substantially achieved by the conventional electronic component firing jig having the intermediate layer formed of only one type of metal oxide, was not achieved. , And the strength of the partially molten intermediate layer can be improved.

【0014】[0014]

【発明の実施の形態】本発明の電子部品焼成用治具の製
造に関する実施例を記載するが、該実施例は本発明を限
定するものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment relating to the production of a jig for firing an electronic component according to the present invention will be described, but the present invention is not limited to the embodiment.

【0015】実施例1 基材として、シリカ成分が約10重量%までのアルミナ−
ムライト基材を使用した。それぞれが微粒状のアルミナ
(70重量%)、カルシア(28重量%)及びマグネシア
(3重量%)をボールミル中で均一に混合し、水とバイ
ンダーであるポリビニルアルコールを加えてスラリーと
した。このスラリーを前記基材表面にスプレーコートし
約100 ℃で乾燥した。得られた中間層の厚さは約100 μ
mであった。次いでこの中間層の表面にイットリア(Y2
O3)で安定化したジルコニア表面層をスプレーコートし
約100 ℃で乾燥した。ジルコニア表面層の厚さは約100
μmであった。この積層体を1400〜1600℃で2時間保持
し、前記中間層を部分溶融中間層に変換し電子部品焼成
用治具を作製した。
Example 1 As a substrate, alumina containing up to about 10% by weight of a silica component
A mullite substrate was used. Alumina (70% by weight), calcia (28% by weight) and magnesia (3% by weight), each of which was finely divided, were uniformly mixed in a ball mill, and water and polyvinyl alcohol as a binder were added to form a slurry. The slurry was spray-coated on the surface of the substrate and dried at about 100 ° C. The thickness of the obtained intermediate layer is about 100 μ
m. Next, the surface of this intermediate layer is coated with yttria (Y 2
The zirconia surface layer stabilized with O 3 ) was spray-coated and dried at about 100 ° C. The thickness of the zirconia surface layer is about 100
μm. This laminate was kept at 1400 to 1600 ° C. for 2 hours, and the intermediate layer was converted into a partially melted intermediate layer to prepare a jig for firing electronic parts.

【0016】この電子部品焼成用治具のジルコニア表面
層、部分溶融中間層及び基材との剥離を調べるために電
気炉で500 ℃から1300℃まで3時間掛けて急熱し、次い
で1300℃から500 ℃まで3時間掛けて急冷することを繰
り返し、剥離までの熱サイクル数を調べた。その結果、
150 サイクルを経ても剥離は生じなかった。その結果を
表1に示した。
In order to examine the separation of the electronic component firing jig from the zirconia surface layer, the partially melted intermediate layer, and the substrate, the jig was heated rapidly from 500 ° C. to 1300 ° C. over 3 hours, and then heated from 1300 ° C. to 500 ° C. The rapid cooling to 3 ° C. over 3 hours was repeated, and the number of heat cycles until peeling was examined. as a result,
No delamination occurred after 150 cycles. The results are shown in Table 1.

【0017】実施例2〜14 部分溶融中間層のアルミナの40重量%を粗粒子状とした
こと以外は実施例1と同様にし(実施例2)、又部分溶
融中間層のアルミナの80重量%を粗粒子状としたこと及
びジルコニア表面層の材質をイットリア安定化ジルコニ
アと未安定化ジルコニアの混合物としたこと以外は実施
例1と同様にし(実施例3)、又アルミナ、カルシア及
びマグネシアの重量%をそれぞれ、66重量%、30重量%
及び4重量%としたこと以外は実施例1と同様にし(実
施例4)、又アルミナ、カルシア及びマグネシアの重量
%をそれぞれ、69重量%、13重量%及び18重量%とした
こと以外は実施例1と同様にして(実施例5)電子部品
焼成用治具を作製した。
Examples 2 to 14 The procedure of Example 1 was repeated except that 40% by weight of the alumina in the partially molten intermediate layer was in the form of coarse particles (Example 2), and 80% by weight of the alumina in the partially molten intermediate layer. Was made in the same manner as in Example 1 (Example 3) except that the zirconia surface layer was made of a mixture of yttria-stabilized zirconia and unstabilized zirconia (Example 3), and the weight of alumina, calcia, and magnesia was changed. 66% by weight and 30% by weight, respectively
And 4% by weight as in Example 1 (Example 4), except that alumina, calcia and magnesia were 69%, 13% and 18% by weight, respectively. An electronic component firing jig was produced in the same manner as in Example 1 (Example 5).

【0018】更にマグネシアの代わりにスピネル酸化物
(Al2O3 ・MgO 又はMgAl2O4 )を使用し、アルミナ、ス
ピネル酸化物及びカルシアをそれぞれ55重量%、15重量
%及び30重量%としたこと以外は実施例1と同様にし
(実施例6)、又アルミナ及びスピネル酸化物の粗粒子
の割合をそれぞれ50%及び20%としたこと以外は実施例
6と同様にし(実施例7)、又アルミナ、スピネル酸化
物及びカルシアをそれぞれ24重量%、63重量%及び13重
量%としかつジルコニア表面層の材質をイットリアで部
分安定化したジルコニアとしたこと以外は実施例1と同
様にし(実施例8)、又スピネル酸化物の粗粒子の割合
を50%としたこと及びジルコニア表面層の材質をイット
リア安定化ジルコニアと未安定化ジルコニアの混合物と
したこと以外は実施例8と同様にして(実施例9)電子
部品焼成用治具を作製した。
Further, spinel oxide (Al 2 O 3 .MgO or MgAl 2 O 4 ) was used in place of magnesia, and alumina, spinel oxide and calcia were 55% by weight, 15% by weight and 30% by weight, respectively. Except for this, the same as Example 1 (Example 6), and the same as Example 6 except that the proportions of coarse particles of alumina and spinel oxide were 50% and 20%, respectively (Example 7). The same procedure as in Example 1 was repeated except that alumina, spinel oxide and calcia were 24%, 63% and 13% by weight, respectively, and the material of the zirconia surface layer was zirconia partially stabilized with yttria. 8) Same as Example 8 except that the proportion of coarse particles of spinel oxide was 50% and the material of the zirconia surface layer was a mixture of yttria-stabilized zirconia and unstabilized zirconia. It was manufactured (Example 9) electronic components firing jig.

【0019】スピネル酸化物の代わりにイットリアを使
用し、アルミナ、カルシア及びマグネシアの重量%をそ
れぞれ、56重量%、23重量%及び21重量%としたこと及
びジルコニア表面層の材質をイットリア安定化ジルコニ
アと未安定化ジルコニアの混合物としたこと以外は実施
例1と同様にし(実施例10)、又部分溶融中間層のアル
ミナの60重量%を粗粒子状としたこと以外は実施例10と
同様にし(実施例11)、又アルミナ、カルシア及びイッ
トリアの重量%をそれぞれ、54重量%、5重量%及び41
重量%としたこと以外は実施例1と同様にして(実施例
12)、電子部品焼成用治具を作製した。部分溶融中間層
として47重量%のアルミナ及び53重量%のストロンチア
を使用したこと以外は実施例12と同様にし(実施例1
3)、部分溶融中間層として29重量%のアルミナ、19重
量%のカルシア及び52重量%のストロンチアを使用した
こと以外は実施例1と同様にして(実施例14)、電子部
品焼成用治具を作製した。
Yttria was used in place of the spinel oxide, and the weight percentages of alumina, calcia and magnesia were 56%, 23% and 21%, respectively, and the material of the zirconia surface layer was yttria-stabilized zirconia. And a mixture of unstabilized zirconia and the same as in Example 1 (Example 10), and also as in Example 10 except that 60% by weight of the alumina in the partially molten intermediate layer was made into coarse particles. (Example 11) Also, the weight percentages of alumina, calcia and yttria were 54%, 5% and 41%, respectively.
(Example 2)
12) A jig for firing electronic components was manufactured. Example 12 was repeated except that 47% by weight of alumina and 53% by weight of strontia were used as the partially molten intermediate layer (Example 1).
3) A jig for firing electronic parts, in the same manner as in Example 1 (Example 14) except that 29% by weight of alumina, 19% by weight of calcia, and 52% by weight of strontia were used as the partially molten intermediate layer. Was prepared.

【0020】実施例2〜14で作製した部分溶融中間層を
含む電子部品焼成用治具に対して実施例1と同様にして
熱サイクルテストを行った。各実施例の電子部品焼成用
治具で剥離が生ずるまでの熱サイクル数を調べた。それ
らの結果を表1に示した。表1から、部分溶融中間層が
アルミナ−カルシア−マグネシアから成る場合(実施例
1〜5)及びアルミナ−カルシア−イットリアから成る
場合(実施例10〜12)は電子部品焼成用治具の耐剥離性
が特に良好で、それら以外の他の組成の場合も100 回以
上の熱サイクルに耐えられることが分かった。又部分溶
融中間層の構成酸化物の一部を粗粒子状とすると(実施
例6及び7参照)耐剥離性が向上することも分かった。
A thermal cycle test was performed in the same manner as in Example 1 for the electronic component firing jig including the partially melted intermediate layers produced in Examples 2 to 14. The number of heat cycles until peeling occurred in the electronic component firing jig of each example was examined. The results are shown in Table 1. From Table 1, it can be seen that the jig for baking electronic components was resistant to peeling when the partially molten intermediate layer was made of alumina-calcia-magnesia (Examples 1 to 5) and alumina-calcia-yttria (Examples 10 to 12). The properties were particularly good, and other compositions were found to be able to withstand more than 100 thermal cycles. In addition, it was also found that when a part of the constituent oxide of the partially melted intermediate layer was formed into coarse particles (see Examples 6 and 7), the peeling resistance was improved.

【0021】[0021]

【表1】 [Table 1]

【0022】比較例1〜5 実施例の部分溶融中間層に相当する単一中間層をアルミ
ナ100 %としたこと以外は実施例1と同様にし(比較例
1)、又アルミナの70重量%を粗粒子状としたこと以外
は比較例1と同様にし(比較例2)、又ジルコニア表面
層の材質をイットリア安定化ジルコニアと未安定化ジル
コニアの混合物としたこと以外は比較例2と同様にして
(比較例3)電子部品焼成用治具を作製した。単一中間
層をスピネル酸化物100 %としたこと以外は比較例1と
同様にし(比較例4)、又スピネル酸化物の50重量%を
粗粒子状としたこと以外は比較例4と同様にして(比較
例5)電子部品焼成用治具を作製した。各比較例の中間
層を有する電子部品焼成用治具で剥離が生ずるまでの熱
サイクル数を調べた。それらの結果を表2に示した。表
2から、中間層が単一の酸化物又はスピネル酸化物であ
ると、50回未満の熱サイクル数にしか耐えられないこと
が分かった。
Comparative Examples 1 to 5 The procedure of Example 1 was repeated except that the single intermediate layer corresponding to the partially melted intermediate layer of Example 1 was made of 100% alumina (Comparative Example 1). The same as Comparative Example 1 except that coarse particles were used (Comparative Example 2), and the same as Comparative Example 2 except that the material of the zirconia surface layer was a mixture of yttria-stabilized zirconia and unstabilized zirconia. Comparative Example 3 An electronic component firing jig was manufactured. The same as Comparative Example 1 except that the single intermediate layer was 100% spinel oxide (Comparative Example 4), and the same as Comparative Example 4 except that 50% by weight of the spinel oxide was coarse. (Comparative Example 5) An electronic component firing jig was manufactured. The number of heat cycles until peeling occurred in the electronic component firing jig having the intermediate layer of each comparative example was examined. Table 2 shows the results. Table 2 shows that when the intermediate layer is a single oxide or spinel oxide, it can withstand less than 50 thermal cycles.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明は、基材、該基材表面に被覆され
た2種類以上の金属酸化物から成る部分溶融中間層、及
び該部分溶融中間層上に形成されたジルコニア表面層を
含んで成ることを特徴とする電子部品焼成用治具(請求
項1)である。この電子部品焼成用治具では、従来のア
ルミナ単独の中間層と異なり、2種類以上の金属酸化物
を使用ししかも一部を溶融しているため、液相となった
溶融酸化物がジルコニア表面層及び基材の両者との密着
性を向上させてジルコニア表面層に良好な耐剥離性を付
与する。しかも部分溶融中間層の生成時の高温焼成によ
り部分溶融中間層の燒結性が向上して応力に対する強度
も改善される。従って急熱及び急冷を繰り返す熱サイク
ルの環境でも、かなり長期に亘って電子部品焼成用治具
として使用できる。
The present invention includes a substrate, a partially molten intermediate layer composed of two or more metal oxides coated on the surface of the substrate, and a zirconia surface layer formed on the partially molten intermediate layer. An electronic component firing jig (claim 1) characterized by the following. Unlike the conventional alumina-only intermediate layer, this electronic component firing jig uses two or more types of metal oxides and partially melts them. It improves the adhesion to both the layer and the substrate, and imparts good peel resistance to the zirconia surface layer. In addition, sintering at a high temperature during the formation of the partially molten intermediate layer improves the sinterability of the partially molten intermediate layer and improves the strength against stress. Therefore, it can be used as an electronic component firing jig for a considerably long time even in a thermal cycle environment in which rapid heating and rapid cooling are repeated.

【0025】部分溶融中間層を形成する金属酸化物は、
酸化アルミニウム、酸化ジルコニウム、酸化イットリウ
ム、酸化カルシウム、酸化マグネシウム、酸化ストロン
チウム及び酸化アルミニウム・酸化マグネシウムスピネ
ル複合酸化物から成る群から選択される2種類以上の金
属酸化物であり(請求項2)、特にアルミナ−スピネル
酸化物−マグネシアの組合せやアルミナ−カルシア−イ
ットリアの組合せにより優れた特性を有する部分溶融中
間層が得られる。部分溶融中間層を形成する金属酸化物
が、平均粒径30〜500 μmの粗粒子と平均粒径0.1 〜10
μmの微粒子とから成る場合(請求項3)は、気孔率の
大きい粗粒子金属酸化物により中間層中に空隙が形成さ
れ、ジルコニア表面層と中間層間、及び中間層と基材間
の熱膨張率の差を吸収し緩和することができる。
The metal oxide forming the partially molten intermediate layer is
Two or more metal oxides selected from the group consisting of aluminum oxide, zirconium oxide, yttrium oxide, calcium oxide, magnesium oxide, strontium oxide, and aluminum oxide / magnesium oxide spinel composite oxide (claim 2), particularly The combination of alumina-spinel oxide-magnesia and the combination of alumina-calcia-yttria provide a partially molten intermediate layer having excellent properties. The metal oxide forming the partially molten intermediate layer is composed of coarse particles having an average particle size of 30 to 500 μm and average particles of 0.1 to 10 μm.
In the case of fine particles having a particle diameter of μm (claim 3), voids are formed in the intermediate layer by the coarse metal oxide having a high porosity, and the thermal expansion between the zirconia surface layer and the intermediate layer and between the intermediate layer and the substrate. The rate difference can be absorbed and mitigated.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基材、該基材表面に被覆された2種類以
上の金属酸化物から成る部分溶融中間層、及び該部分溶
融中間層上に形成されたジルコニア表面層を含んで成る
ことを特徴とする電子部品焼成用治具。
1. A method comprising: a substrate; a partially molten intermediate layer comprising two or more metal oxides coated on the surface of the substrate; and a zirconia surface layer formed on the partially molten intermediate layer. Characteristic jig for firing electronic components.
【請求項2】 部分溶融中間層を形成する金属酸化物
が、酸化アルミニウム、酸化ジルコニウム、酸化イット
リウム、酸化カルシウム、酸化マグネシウム、酸化スト
ロンチウム及びアルミナ・マグネシアスピネル複合酸化
物から成る群から選択される2種類以上の金属酸化物で
ある請求項1に記載の電子部品焼成用治具。
2. The metal oxide forming the partially molten intermediate layer is selected from the group consisting of aluminum oxide, zirconium oxide, yttrium oxide, calcium oxide, magnesium oxide, strontium oxide and alumina / magnesia spinel composite oxide. The electronic component firing jig according to claim 1, wherein the jig is at least one kind of metal oxide.
【請求項3】 部分溶融中間層を形成する金属酸化物
が、平均粒径30〜500μmの粗粒子と平均粒径0.1 〜10
μmの微粒子とを含む請求項1又は2に記載の電子部品
焼成用治具。
3. The method according to claim 1, wherein the metal oxide forming the partially molten intermediate layer comprises coarse particles having an average particle size of 30 to 500 μm and coarse particles having an average particle size of 0.1 to 10 μm.
The electronic component firing jig according to claim 1, further comprising: μm fine particles.
JP2000137812A 2000-01-28 2000-05-10 Manufacturing method of electronic component firing jig Expired - Fee Related JP3549099B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000137812A JP3549099B2 (en) 2000-05-10 2000-05-10 Manufacturing method of electronic component firing jig
TW090101615A TWI286128B (en) 2000-01-28 2001-01-29 Calcinated material and jigs for electronic parts
TW096112387A TWI296267B (en) 2000-01-28 2001-01-29 Calcinated jigs for electronic parts
KR1020010004120A KR100549030B1 (en) 2000-01-28 2001-01-29 materials and jig for baking electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000137812A JP3549099B2 (en) 2000-05-10 2000-05-10 Manufacturing method of electronic component firing jig

Publications (2)

Publication Number Publication Date
JP2001322875A true JP2001322875A (en) 2001-11-20
JP3549099B2 JP3549099B2 (en) 2004-08-04

Family

ID=18645523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137812A Expired - Fee Related JP3549099B2 (en) 2000-01-28 2000-05-10 Manufacturing method of electronic component firing jig

Country Status (1)

Country Link
JP (1) JP3549099B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601442B2 (en) 2002-08-30 2009-10-13 Mitsu Mining & Smelting Co., Ltd. Jig for calcining electronic component
JP2012076940A (en) * 2010-09-30 2012-04-19 Covalent Materials Corp SiC TOOL MATERIAL FOR FIRING

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601442B2 (en) 2002-08-30 2009-10-13 Mitsu Mining & Smelting Co., Ltd. Jig for calcining electronic component
JP2012076940A (en) * 2010-09-30 2012-04-19 Covalent Materials Corp SiC TOOL MATERIAL FOR FIRING

Also Published As

Publication number Publication date
JP3549099B2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
KR101196685B1 (en) Jig for electronic part firing
WO2004020364A1 (en) Electronic component burning jig
JP3549099B2 (en) Manufacturing method of electronic component firing jig
TWI451056B (en) Calcination with a loader
JP2008137860A (en) Ceramics burning tool material for electronic components
JP2004115332A (en) Tool for firing electronic component
JP3413146B2 (en) Materials for firing electronic components
EP1547991A1 (en) Electronic component burning jig
JP3643022B2 (en) Electronic component firing jig
KR100549030B1 (en) materials and jig for baking electronic parts
JP2002128583A (en) Tool for calcinating electronic part
JP2004115331A (en) Tool for firing electronic component
JP4255671B2 (en) Electronic component firing jig
JP3981425B2 (en) Ceramic material firing jig
JP2004107125A (en) Jig for baking electronic component
JP4116593B2 (en) Baking tool material
JPH05178673A (en) Jig for sintering electronic parts
JP2003073183A (en) Material for electronic component firing
JP3819352B2 (en) Electronic component firing jig
JP3644015B2 (en) Electronic component firing jig
JP2004091245A (en) Tool for firing electronic parts
JPH10139572A (en) Jig for firing of electronic parts
JP4054098B2 (en) Firing jig
JP3663445B2 (en) Electronic component firing jig
JP2004161585A (en) Electronic component-firing tool

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3549099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees