JP2004115331A - Tool for firing electronic component - Google Patents

Tool for firing electronic component Download PDF

Info

Publication number
JP2004115331A
JP2004115331A JP2002282684A JP2002282684A JP2004115331A JP 2004115331 A JP2004115331 A JP 2004115331A JP 2002282684 A JP2002282684 A JP 2002282684A JP 2002282684 A JP2002282684 A JP 2002282684A JP 2004115331 A JP2004115331 A JP 2004115331A
Authority
JP
Japan
Prior art keywords
zirconia
electronic component
surface layer
firing
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002282684A
Other languages
Japanese (ja)
Inventor
Hitoshi Kajino
梶野 仁
Kazutomo Hoshino
星野 和友
Yasuhisa Izutsu
井筒 靖久
Koji Horiuchi
堀内 幸士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002282684A priority Critical patent/JP2004115331A/en
Priority to EP03797580A priority patent/EP1547991A4/en
Priority to PCT/JP2003/011655 priority patent/WO2004026791A1/en
Priority to US10/528,389 priority patent/US20050257740A1/en
Priority to AU2003264407A priority patent/AU2003264407A1/en
Priority to KR1020057004777A priority patent/KR20050073455A/en
Priority to MXPA05003082A priority patent/MXPA05003082A/en
Publication of JP2004115331A publication Critical patent/JP2004115331A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tool for firing an electronic component with which the release of a gas produced from a binder in firing the electronic component is made smooth, the reaction between the zirconia surface layer and the electronic component can be suppressed, and the electronic component can be efficiently fired since the surface roughness of the zirconia surface layer is maintained at an appropriate level. <P>SOLUTION: The tool for firing the electronic component is composed of a base material, an intermediate layer applied on the surface of the base material, and the zirconia surface layer formed on the intermediate layer, and characterized in that the arithmetic average roughness Ra of the zirconia surface layer is 5-40μm or the ten point average roughness is 30-130μm or the maximum height Ry is 40-200μm, and further the asymmetry degree (distortion) Rsk is -0.5 to 0.5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、誘電体、積層コンデンサ、セラミックコンデンサ、圧電素子、サーミスタ等の電子部品を焼成する際に用いる、セッター、棚板、匣鉢等の電子部品焼成用治具に関する。
【0002】
【従来の技術】
電子部品焼成用治具として必要な性能は耐熱性や機械的強度の他に、焼成するセラミック電子部品と反応しないことが要求される。誘電体等の電子部品ワークが焼成用治具と接触し反応すると、融着したり、ワークの組成変動によって特性低下が生ずる等の問題点がある。これらの問題点を解決するために、粗粒ジルコニアと微粒ジルコニアにより表面層を形成する手法が提案されている(例えば、特許文献1参照。)。また、コーティング表面層の算術平均粗さRaを特定する手法が提案されている(例えば、特許文献2参照。)。
【0003】
【特許文献1】
特公平8−13710号公報
【特許文献2】
特開2002−60277号公報
【0004】
通常これらの電子部品焼成用治具の基材として、アルミナ系材料、アルミナームライト系材料、アルミナージルコニア系材料、アルミナーマグネシア系スピネル材料、アルミナームライトーコージェライト系材料、又はこれらの組み合わせによる材料が使用されている。
【0005】
例えばアルミナームライト系材料は熱間強度が高く熱スポーリング性は良好であるが、電子部品ワークとの反応が起こりやすく、この反応を防止するために、基材表面にジルコニア(酸化ジルコニウム)を被覆する方法が採用されている。
ジルコニアは基材との反応性は低いが、該基材との熱膨張係数の差が大きいため繰り返し熱サイクルが生ずる使用環境下では治具の被覆に亀裂が生じたり、剥離するといった問題がある。また治具を繰り返し使用する場合、表面のジルコニア層に含まれる粒子が脱落する耐脱粒性や耐摩耗性が低いと、電子部品に微粒子が混入し著しい問題となる。
【0006】
更にジルコニアは略1100℃近傍で単斜晶から正方晶への相変化が起こる。その結果繰り返し熱サイクルによる相変態に伴う熱膨張係数の変化により、ジルコニアの被覆層が脱離し易いという問題点がある。なお未安定化ジルコニアを使用する場合には、相変態に伴う粉化が生じやすく耐脱粒性が低下する。
【0007】
【発明が解決しようとする課題】
従来からジルコニア表面層のこれらの問題点を解決するために、粗粒ジルコニアと微粒ジルコニアにより表面層を形成する手法が提案されている(例えば特公平8−13710号公報)。この手法は粗粒ジルコニアを使用することにより、気孔が多く形成されて基材や中間層と表面層との間の熱膨張係数の差を緩和又は吸収して亀裂の発生やジルコニア表面層の剥離が防止できる。そして微粒ジルコニアを使用するとジルコニア表面層の焼結性が上昇して機械的強度が良好になる。この粗粒ジルコニア微粒とジルコニアにより表面層を形成する手法は、高性能の電子部品焼成用治具を製造するための優れた手法であるが、焼成対象である電子部品の保護及び焼成の効率化という面からは必ずしも満足できる方法とは言えない。
【0008】
また、誘電体等の電子部品ワークが焼成用治具と接触する際に、反応・融着するという問題点を解決するために、コーティング表面層の算術平均粗さRaを特定する手法が提案されている(例えば特開2002−60277)。しかしながら、当該手法では算術平均粗さRaは凹凸の程度のみを表しており、コーティング表面層の算術平均粗さRaを特定するだけでは電子部品焼成用治具として良好な性質を提供することができない。
【0009】
本発明は、粗粒ジルコニアと微粒ジルコニアの併用が望ましい電子部品焼成用治具において焼成対象である電子部品の性能を損なうことなく、より良い効率で焼成を行える電子部品焼成用治具を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、基材、該基材表面に被覆された中間層、及び該中間層上に形成されたジルコニア表面層を含んで成る電子部品焼成用治具において、ジルコニア表面層の表面粗さが算術平均粗さRaで5〜40μmであり、あるいは十点平均粗さRzが30〜130μmであり、あるいは最大高さRyが40〜200μmであるものの中で、非対称度(ゆがみ)Rskが−0.5〜0.5であることを特長とする電子部品焼成用治具である。ジルコニア表面層の非対称度(ゆがみ)を特定する事で、ジルコニア表面層の表面形状を特定する事ができる。ジルコニア表面層は50〜75重量%の80〜300メッシュの粗粒骨材と、50〜25重量%の平均粒径0.1〜10μmの微粒ボンド相を含んでなる事が望ましい。また、本発明では中間層を設けず、基材上に直接ジルコニア表面層を形成しても良い。
【0011】
以下本発明を詳細に説明する。従来から電子部品、例えば積層チップコンデンサーを焼成する場合には数百℃に加熱して添加されたバインダーを分解し脱バインダーする必要がある。そして本発明者らの検討により、この脱バインダーの際に電子部品焼成用治具の表面層の状態が分解したバインダーに起因するガス等の表面層からの脱離に大きく関与することが見出された。つまりこの脱バインダーを円滑に進行させるためには生成するガスの抜けを良好にすることが望ましく、そのためにはジルコニア表面層の表面を適度な粗さに維持することが必要になる。
【0012】
更に電子部品を1000℃を超える高温で焼成する場合に、ジルコニア表面層に接触して置かれる電子部品とジルコニア表面層が密着し過ぎると、両者間で望ましくない反応が生じてしまう。本発明者等はこの反応発生の抑制を検討し、該反応発生の抑制も、ジルコニア表面層の表面を適度な粗さ、かつ適度な形状に維持することにより達成できることを見出した。
【0013】
従って,本発明は、所望割合の粗粒ジルコニア及び微粒ジルコニア等で構成したジルコニア表面層の表面粗さ(凹凸の程度)を特定し、かつ表面の凹凸の形状を特定することで、より効率良く電子部品の焼成を実施できる電子部品焼成用治具を実現するものである。
【0014】
本発明に係わる電子部品焼成用治具の基材の材質は、従来と同様で良く、例えばアルミナ系材料、アルミナームライト系材料、アルミナージルコニア系材料、アルミナーマグネシア系スピネル材料、アルミナームライトーコージェライト系材料、又はこれらの組み合わせによる材料が使用されている
【0015】
この基材上に中間層を形成する場合,該中間層は1又は2以上の金属酸化物を高温焼成することにより得られる。この中間層を構成する金属酸化物としては、酸化アルミニウム(アルミナ、Al2O3)、酸化ジルコニウム(ジルコニア、ZrO2)、酸化イットリウム(イットリア、Y2O3)、酸化カルシウム(カルシア、CaO)、酸化マグネシウム(マグネシア、MgO)、酸化ストロンチウム(ストロンチア、SrO)及びアルミナ・マグネシアスピネル複合酸化物(Al2O3・MgO、以下「スピネル酸化物」ともいう)があり、これらを単独で,又は2種類以上を選択して使用する。具体的には、アルミナと他の金属酸化物を組み合わせることが望ましく、例えばアルミナ−スピネル酸化物やアルミナ−カルシア−イットリアの組み合わせにより優れた特性を有する中間層が得られる。
【0016】
この中間層を構成する金属酸化物の粒径は特に限定されずランダムな粒径の金属酸化で中間層を構成しても良いが、粗粒子と微粒子を混合して、例えば平均粒径30〜500μmの粗粒子と平均粒径0.1〜5μmの微粒子を混合して存在させると、気孔率の大きい粗粒子金属酸化物により中間層に空隙が形成され、ジルコニア表面層と中間層間、及び中間層と基材間の熱膨張係数の差を吸収し緩和することができ、急熱及び急冷を繰り返す熱サイクル環境下で使用しても、比較的長期間剥離することなく使用できる。
【0017】
中間層の厚さは特に限定されないが、微粒子金属酸化物のみで形成する場合は50〜200μmの厚さが好ましい。次いでこの中間層を高温焼成し、固相焼結又は部分的に溶融させて中間層を形成する。その焼成温度は実際に電子部品を焼成するより高い温度にして本発明の電子部品焼成用治具が使用時に劣化しないようにすることが望ましい。通常の電子部品の焼成温度は1200〜1400℃であるので、中間層の焼成温度は1400〜1800℃とすることが好ましい。なお中間層の焼成はジルコニア表面層を形成した後に該ジルコニア表面層の焼成と同時に行っても良く、それより焼成工程の回数を減らすことができる。
【0018】
このように形成される中間層上に、又は前記基材上に直接ジルコニア表面層を形成する。このジルコニア表面層は、塗布−熱分解法、スプレー法,及びディップコート法等により形成できる。塗布−熱分解法は対応金属の硝酸塩等の金属塩水溶液を基材表面に塗布し熱分解により対応する金属酸化物に変換し基材表面に被覆する方法である。スプレー法は、所定の粒径の金属酸化物粒子を溶媒に懸濁させてこの溶媒を基材表面に噴射しかつ溶媒を飛散させて金属酸化物を基材表面に被覆する方法である。又ディップコート法は対応金属酸化物を溶解又は懸濁させた溶液に基材を浸して金属酸化物を含有する液層を基材表面に形成しかつ乾燥して溶液を除去して金属酸化物層を形成する方法である。塗布−熱分解法及びディップコート法は生成する金属酸化物粒子の粒径を調節しにくい。所望の粒径分布の金属酸化物を含んで成ることが好ましい、本発明のジルコニア表面層を形成する場合には、所定の粒径の金属酸化物粒子を直接噴霧するスプレー法によることが望ましい。
【0019】
このジルコニア表面層は、80〜300メッシュ、特に100〜200メッシュの粗粒骨材(粗粒子ジルコニア)と、平均粒径0.1〜10μm特に1〜5μmの微粒ボンド相(微粒子ジルコニア)を含んでなることが望ましい。このように粗粒子ジルコニアと微粒子ジルコニアを共存させると、気孔率の大きい粗粒子ジルコニアによりジルコニア表面層内に空隙が形成され、ジルコニア表面層と中間層との熱膨張係数の差をより完全に吸収し緩和でき、更に微粒子ジルコニアにより緻密で焼結性に優れた表面層が形成できる。ジルコニア表面層の材質として具体的には、未安定化ジルコニア、部分安定化ジルコニア及び安定化ジルコニア等が使用できるが、該ジルコニア表面層は電子部品と直接接触するため、該電子部品に悪影響を与えるものであってはならず、従ってイットリア、カルシア、及びマグネシア等により部分安定化または安定化させたジルコニア又はそれらの混合物を使用することが望ましい。ジルコニアは室温では単斜晶系であり、温度の上昇とともに、単斜晶系→(〜1170℃)→正方晶系→(〜1170℃)→立方晶系の相変態が起こるが、ジルコニアにイットリアやマグネシア等の部分溶融結合材(安定化剤)を固溶させることにより、高温相である正方晶や立方晶を室温で「安定化」できる。
【0020】
本発明のジルコニア表面層は粗粒骨材と微粒ボンド相とから成っていても、他の成分を含んでいても良いが、粗粒骨材と微粒ボンド相のみから成る場合は、前者が50〜75重量%、特に60〜70重量%、後者が50〜25重量%、特に40〜30重量%とすることが好ましい。75重量%を超える粗粒骨材でジルコニア表面層を形成すると焼結性が悪く、ぼろつきが発生しやすくなる。又粗粒骨材が50重量%未満、つまり微粒ボンド相が50重量%を超えると微粒ボンド相の焼結が進行し過ぎて素材との熱膨張の差を吸収又は緩和できず、素材に反りが生じたり、表面に亀裂が発生しやすくなる。
【0021】
本発明では、前述した通り電子部品焼成時のバインダーから発生するガスの抜けを良好にしたり、ジルコニア表面層と電子部品間の反応を防止したりするために、このような材質から形成されるジルコニア表面層の粗さ(凹凸の程度)を表面粗さが算術平均粗さRaで5〜40μmであり、あるいは十点平均粗さRzが30〜130μmであり、あるいは最大高さRyが40〜200μmであるものの中で、非対称度(ゆがみ)Rskが−0.5〜0.5としている。この算術平均粗さRa、十点平均粗さRz、最大高さRyはJISB0601−1994に規程されている。
【0022】
非対称度(ゆがみ)が−0.5未満であると、電子部品の焼成により生成するガスが抜け難くなり、更にジルコニア表面層と電子部品との接触面積が増大して両者間に反応が生じ易くなる。また、均一に加熱されないため焼きムラが生じ易くなる。また、非対称度(ゆがみ)が0.5をこえると、摩耗に弱くなり、ジルコニア表面層のぼろつきが生じ易く、十分な強度を有するジルコニア表面層が得難くなる。
【0023】
これらの表面粗さは、ジルコニア表面層自体を構成する粒子の粒径、粒度分布、組成などを調整して所望のものを得る。また、スプレーコートに使用するスラリーの水分量や粘度、スプレーコートする際の基材の温度などを調整してもよい。また、中間層を設ける場合は、中間層表面が所望の表面粗さになるように調整し、その中間層表面にほぼ整合するようにジルコニア表面層を被覆形成するようにしても良く、これは中間層を粗粒骨材と微粒ボンド相とで構成し、該粗粒骨材の粗さがジルコニア表面層を構成する粗粒骨材の粗さ以上とすることで達成できる。
【0024】
【発明の実施の形態】
本発明の電子部品焼成用治具の製造に関する実施例を記載するが、該実施例は本発明を限定するものではない。
【0025】
(実施例1)
基材として、シリカ成分が約10重量%までのアルミナ−ムライト基材を使用した。中間層としては、100メッシュのアルミナ粗粒骨材を70重量%および平均粒径約3μmのアルミナ微粉を30重量%を準備した。これらをボールミル中で均一に混合し、水とバインダーであるポリビニルアルコールを加えてスラリーとした。このスラリーを前記基材表面にスプレーコートし、約100℃で乾燥した。得られた中間層の厚さは約100μmであった。
【0026】
ジルコニア表面層の粗粒骨材として100メッシュのイットリア(Y2O3)安定化ジルコニア骨材を70重量%、微粒ボンド相として平均粒径3μmのイットリア安定化ジルコニア粉末を30重量%準備した。これらをボールミル中で均一に混合し、水とバインダーであるポリビニルアルコールを加えてスラリーとした。このスラリーを前記中間層表面にスプレーコートし、約100℃で乾燥した。ジルコニア表面層の厚さは約100μmであった。この2層コート積層体を1450℃で2時間保持し、電子部品焼成用治具を作製した。
【0027】
この電子部品焼成用治具の表面粗さを表面粗さ計で測定した所、Raは18.8μm、Rzは73.5μm、Ryは104.3μm、Rskは0.07であった。
ついで、この電子部品焼成用治具を1300℃までの急熱、および室温までの急冷を繰り返した(50サイクル)後にジルコニア表面層を手でこすり、ぼろつきの有無を調べた。また、ジルコニア表面層の亀裂の有無を調べた。その結果ぼろつき及び亀裂は生じなかった。また、バインダーとしてポリビニルアルコール水溶液を添加したチタン酸バリウム誘電体をφ10mm、厚み2mmのペレット状に成型し、この電子部品焼成用治具の上に乗せ、1300℃で1時間保持し冷却後、ジルコニア表面層および誘電体の反応の有無、誘電体の焼きムラの有無を調べた。その結果、反応は無く、焼きムラも生じなかった。その結果を表1に示す。
【0028】
【表1】

Figure 2004115331
【0029】
(実施例2)
ジルコニア表面層の粗粒骨材を200メッシュのイットリア安定化ジルコニア骨材60重量%、微粒ボンド相を平均粒径3μmの未安定化ジルコニア粉末40重量%、中間層を平均粒径3μmのアルミナ100重量%の微粉ボンド相のみとした事以外は実施例1と同様にして電子部品焼成用治具を作製した。この電子部品焼成用治具の表面粗さを表面粗さ計で測定した所、Raは12.2μm、Rzは51.2μm、Ryは80.6μm、Rskは0.05であった。
さらに実施例1と同様にしてテストを行った結果、ぼろつき及び亀裂、反応、焼きムラは生じなかった。その結果を表1に示す。
【0030】
(実施例3)
ジルコニア表面層の粗粒骨材を200メッシュのイットリア安定化ジルコニア骨材50重量%、微粒ボンド相を平均粒径3μmのイットリア安定化ジルコニア粉末50重量%とした事以外は実施例1と同様にして電子部品焼成用治具を作製した。この電子部品焼成用治具の表面粗さを表面粗さ計で測定した所、Raは8.1μm、Rzは43.4μm、Ryは68.8μm、Rskは0.03であった。
さらに実施例1と同様にしてテストを行った結果、ぼろつき及び亀裂、反応、焼きムラは生じなかった。その結果を表1に示す。
【0031】
(実施例4)
中間層を設けなかった事以外は実施例1と同様にして電子部品焼成用治具を作製した。この電子部品焼成用治具の表面粗さを表面粗さ計で測定した所、Raは14.5μm、Rzは66.7μm、Ryは92.5μm、Rskは0.06であった。
さらに実施例1と同様にしてテストを行った結果、ぼろつき及び亀裂、反応、焼きムラは生じなかった。その結果を表1に示す。
【0032】
(比較例1)
ジルコニア表面層の粗粒骨材を200メッシュのイットリア安定化ジルコニア骨材40重量%、微粉ボンド相を平均粒径3μmの未安定化ジルコニア粉末60重量%、中間層を平均粒径3μmのアルミナ100重量%の微粉ボンド相のみとした事以外は実施例1と同様にして電子部品焼成用治具を作製した。この電子部品焼成用治具の表面粗さを表面粗さ計で測定した所、Raは5.3μm、Rzは38.6μm、Ryは57.4μm、Rskは−0.53であった。
さらに実施例1と同様にしてテストを行った結果、大きな亀裂が観察され、さらに焼きムラがみられた。その結果を表1に示す。
【0033】
(比較例2)
ジルコニア表面層の粗粒骨材を60メッシュのイットリア安定化ジルコニア骨材90重量%、微粉ボンド相を平均粒径5μmの未安定化ジルコニア粉末10重量%とした事以外は実施例1と同様にして電子部品焼成用治具を作製した。この電子部品焼成用治具の表面粗さを表面粗さ計で測定した所、Raは44.5μm、Rzは133.2μm、Ryは211.3μm、Rskは0.52であった。
さらに実施例1と同様にしてテストを行った結果、ぼろつきが多く観察された。
結果を表1に示す。
【0034】
【発明の効果】
本発明は基材、該基材表面に被覆された中間層、及び該中間層上に形成されたジルコニア表面層を含んで成る電子部品焼成用治具において、ジルコニア表面層の表面粗さにおいて算術平均粗さRaが5〜40μmであり、あるいは十点平均粗さRzが30〜130μmであり、あるいは最大高さRyが40〜200μmであるものの中で、非対称度(ゆがみ)Rskが−0.5〜0.5であることを特長とする電子部品焼成用治具(請求項2)である。
【0035】
本発明に係わる電子部品焼成用治具では、ジルコニア表面層の表面粗さが適度なレベルに維持されているため、電子部品焼成時のバインダーから発生するガスの抜けを良好にし、かつジルコニア表面層と電子部品間の反応を抑制して効率よく電子部品の焼成を実施できる。
また、中間層を設けず基材表面に直接ジルコニア表面層を形成してもほぼ同等の効果が得られる(請求項1)。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a jig for firing electronic components such as setters, shelves, and saggers used for firing electronic components such as dielectrics, multilayer capacitors, ceramic capacitors, piezoelectric elements, and thermistors.
[0002]
[Prior art]
The performance required as a jig for firing electronic components requires not only heat resistance and mechanical strength but also that it does not react with ceramic electronic components to be fired. When an electronic component work such as a dielectric comes into contact with and reacts with a firing jig, there are problems such as fusing or a change in the composition of the work resulting in a deterioration in characteristics. In order to solve these problems, a method of forming a surface layer using coarse zirconia and fine zirconia has been proposed (for example, see Patent Document 1). In addition, a method for specifying the arithmetic average roughness Ra of the coating surface layer has been proposed (for example, see Patent Document 2).
[0003]
[Patent Document 1]
Japanese Patent Publication No. Hei 8-13710 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-60277
Usually, as a base material of these electronic component firing jigs, an alumina-based material, an aluminame-lite-based material, an alumina-zirconia-based material, an alumina-magnesia-based spinel material, an aluminame-lite cordierite-based material, or a combination thereof is used. Materials are used.
[0005]
For example, an aluminate-based material has a high hot strength and a good thermal spalling property, but a reaction with an electronic component work is likely to occur. To prevent this reaction, zirconia (zirconium oxide) is coated on the surface of the base material. A coating method is employed.
Although zirconia has low reactivity with the substrate, there is a problem that the coating of the jig is cracked or peeled off in a use environment where repeated thermal cycles occur due to a large difference in thermal expansion coefficient from the substrate. . In addition, when the jig is used repeatedly, if the particles contained in the zirconia layer on the surface fall off and have a low shedding resistance and abrasion resistance, fine particles are mixed into the electronic component, which poses a serious problem.
[0006]
Furthermore, zirconia undergoes a phase change from monoclinic to tetragonal at around 1100 ° C. As a result, there is a problem that the zirconia coating layer is easily detached due to a change in the thermal expansion coefficient accompanying the phase transformation due to repeated thermal cycling. In addition, when unstabilized zirconia is used, powdering accompanying phase transformation is apt to occur, and the dropping resistance is reduced.
[0007]
[Problems to be solved by the invention]
Conventionally, in order to solve these problems of the zirconia surface layer, a method of forming a surface layer using coarse zirconia and fine zirconia has been proposed (for example, Japanese Patent Publication No. 8-13710). This method uses coarse-grained zirconia, so that many pores are formed, and the difference in thermal expansion coefficient between the substrate and the intermediate layer and the surface layer is relaxed or absorbed, thereby generating cracks and peeling of the zirconia surface layer. Can be prevented. When fine zirconia is used, the sinterability of the zirconia surface layer is increased and the mechanical strength is improved. This method of forming a surface layer using coarse zirconia fine particles and zirconia is an excellent method for manufacturing a high-performance electronic component firing jig, but it is necessary to protect the electronic component to be fired and to improve the efficiency of firing. This is not always a satisfactory method.
[0008]
Also, in order to solve the problem of reaction and fusion when an electronic component work such as a dielectric comes into contact with a firing jig, a method for specifying an arithmetic average roughness Ra of a coating surface layer has been proposed. (For example, JP-A-2002-60277). However, in this method, the arithmetic average roughness Ra represents only the degree of unevenness, and merely specifying the arithmetic average roughness Ra of the coating surface layer cannot provide good properties as an electronic component firing jig. .
[0009]
The present invention provides an electronic component firing jig that can be fired with higher efficiency without impairing the performance of the electronic component to be fired in an electronic component firing jig in which coarse zirconia and fine zirconia are preferably used in combination. The purpose is to:
[0010]
[Means for Solving the Problems]
The present invention provides an electronic component firing jig comprising a substrate, an intermediate layer coated on the substrate surface, and a zirconia surface layer formed on the intermediate layer, wherein the surface roughness of the zirconia surface layer is Arithmetic average roughness Ra is 5 to 40 μm, or ten-point average roughness Rz is 30 to 130 μm, or maximum height Ry is 40 to 200 μm, and the degree of asymmetry (distortion) Rsk is −0. It is a jig for firing electronic parts, characterized in that the thickness is from 0.5 to 0.5. The surface shape of the zirconia surface layer can be specified by specifying the degree of asymmetry (distortion) of the zirconia surface layer. The zirconia surface layer desirably comprises 50 to 75% by weight of a coarse aggregate of 80 to 300 mesh and 50 to 25% by weight of a fine bond phase having an average particle size of 0.1 to 10 μm. In the present invention, a zirconia surface layer may be formed directly on a substrate without providing an intermediate layer.
[0011]
Hereinafter, the present invention will be described in detail. Conventionally, when firing an electronic component, for example, a multilayer chip capacitor, it is necessary to decompose and remove the added binder by heating to several hundred degrees Celsius. The present inventors have studied and found that the state of the surface layer of the electronic component firing jig is greatly involved in the desorption of gases and the like from the surface layer due to the decomposed binder during the binder removal. Was done. In other words, in order to make the debinder proceed smoothly, it is desirable to improve the escape of the generated gas. For that purpose, it is necessary to maintain the surface of the zirconia surface layer at an appropriate roughness.
[0012]
Further, when the electronic component is fired at a high temperature exceeding 1000 ° C., if the electronic component placed in contact with the zirconia surface layer and the zirconia surface layer are too closely adhered, an undesirable reaction occurs between them. The present inventors have studied the suppression of the occurrence of this reaction, and found that the suppression of the occurrence of the reaction can also be achieved by maintaining the surface of the zirconia surface layer at an appropriate roughness and an appropriate shape.
[0013]
Therefore, the present invention specifies the surface roughness (degree of unevenness) of a zirconia surface layer composed of a desired ratio of coarse-grained zirconia and fine-grained zirconia, and specifies the shape of the unevenness on the surface, thereby more efficiently. An electronic component firing jig capable of firing electronic components is realized.
[0014]
The material of the base material of the electronic component firing jig according to the present invention may be the same as the conventional one, and may be, for example, an alumina-based material, an aluminame-lite-based material, an alumina-zirconia-based material, an alumina-magnesia-based spinel material, or an aluminame-lite. A cordierite-based material or a material based on a combination thereof is used.
When an intermediate layer is formed on the substrate, the intermediate layer is obtained by firing one or more metal oxides at a high temperature. Metal oxides constituting this intermediate layer include aluminum oxide (alumina, Al2O3), zirconium oxide (zirconia, ZrO2), yttrium oxide (yttria, Y2O3), calcium oxide (calcia, CaO), and magnesium oxide (magnesia, MgO). ), Strontium oxide (strontia, SrO), and alumina-magnesia spinel composite oxide (Al2O3.MgO, hereinafter also referred to as "spinel oxide"). These may be used alone or as a combination of two or more. Specifically, it is desirable to combine alumina with another metal oxide. For example, an intermediate layer having excellent properties can be obtained by combining alumina-spinel oxide or alumina-calcia-yttria.
[0016]
The particle size of the metal oxide constituting the intermediate layer is not particularly limited, and the intermediate layer may be constituted by metal oxidation having a random particle size. When 500 μm coarse particles and fine particles having an average particle diameter of 0.1 to 5 μm are mixed and present, voids are formed in the intermediate layer by the coarse metal oxide having a high porosity, and the zirconia surface layer, the intermediate layer, and the intermediate layer are formed. The difference in the coefficient of thermal expansion between the layer and the substrate can be absorbed and reduced, and even when used in a thermal cycle environment in which rapid heating and rapid cooling are repeated, it can be used without peeling for a relatively long time.
[0017]
The thickness of the intermediate layer is not particularly limited, but is preferably 50 to 200 μm when the intermediate layer is formed only of the fine metal oxide. The intermediate layer is then fired at a high temperature and solid phase sintered or partially melted to form an intermediate layer. It is desirable that the firing temperature be higher than the temperature at which the electronic component is actually fired so that the electronic component firing jig of the present invention does not deteriorate during use. Since the firing temperature of a normal electronic component is 1200 to 1400 ° C., the firing temperature of the intermediate layer is preferably 1400 to 1800 ° C. The baking of the intermediate layer may be performed simultaneously with the baking of the zirconia surface layer after the formation of the zirconia surface layer, whereby the number of baking steps can be reduced.
[0018]
A zirconia surface layer is formed on the intermediate layer thus formed or directly on the substrate. This zirconia surface layer can be formed by a coating-pyrolysis method, a spray method, a dip coating method, or the like. The coating-thermal decomposition method is a method in which an aqueous solution of a metal salt such as a nitrate of a corresponding metal is applied to the surface of a base material, converted into a corresponding metal oxide by thermal decomposition, and coated on the surface of the base material. The spray method is a method in which metal oxide particles having a predetermined particle size are suspended in a solvent, the solvent is sprayed on the surface of the substrate, and the solvent is scattered to coat the metal oxide on the surface of the substrate. In the dip coating method, the substrate is immersed in a solution in which the corresponding metal oxide is dissolved or suspended, a liquid layer containing the metal oxide is formed on the surface of the substrate, and the solution is removed by drying to remove the metal oxide. This is a method of forming a layer. In the coating-pyrolysis method and the dip coating method, it is difficult to control the particle size of the generated metal oxide particles. When forming the zirconia surface layer of the present invention, which preferably comprises a metal oxide having a desired particle size distribution, it is desirable to employ a spray method of directly spraying metal oxide particles having a predetermined particle size.
[0019]
The zirconia surface layer contains a coarse-grained aggregate (coarse-grained zirconia) of 80 to 300 mesh, especially 100 to 200 mesh, and a fine-grained bond phase (fine-grained zirconia) having an average particle size of 0.1 to 10 μm, particularly 1 to 5 μm. Desirably, When coarse zirconia and fine zirconia coexist in this way, voids are formed in the zirconia surface layer by the large porosity coarse zirconia, and the difference in thermal expansion coefficient between the zirconia surface layer and the intermediate layer is more completely absorbed. In addition, a fine surface layer excellent in sinterability can be formed by the fine particle zirconia. Specifically, as the material of the zirconia surface layer, unstabilized zirconia, partially stabilized zirconia, stabilized zirconia, and the like can be used. However, since the zirconia surface layer directly contacts an electronic component, the electronic component has an adverse effect. Therefore, it is desirable to use zirconia or a mixture thereof partially stabilized or stabilized by yttria, calcia, magnesia, or the like. Zirconia is monoclinic at room temperature, and as the temperature rises, a phase transformation of monoclinic → (~ 1170 ° C) → tetragonal → (~ 1170 ° C) → cubic occurs. By solid-solving a partially molten binder (stabilizer) such as iron or magnesia, a high-temperature phase of a tetragonal or cubic crystal can be "stabilized" at room temperature.
[0020]
The zirconia surface layer of the present invention may be composed of a coarse-grained aggregate and a fine-grained bond phase, or may contain other components. It is preferred that the content be 75 to 75% by weight, especially 60 to 70% by weight, and the latter 50 to 25% by weight, particularly 40 to 30% by weight. If the zirconia surface layer is formed with a coarse-grained aggregate exceeding 75% by weight, sinterability is poor and ragging is likely to occur. On the other hand, if the amount of the coarse aggregate is less than 50% by weight, that is, if the amount of the fine particle bond phase exceeds 50% by weight, the sintering of the fine particle bond phase proceeds excessively and the difference in thermal expansion with the material cannot be absorbed or reduced, and the material is warped. And cracks are easily generated on the surface.
[0021]
In the present invention, as described above, zirconia formed from such a material is used in order to improve the escape of gas generated from the binder during firing of the electronic component and to prevent a reaction between the zirconia surface layer and the electronic component. The roughness of the surface layer (degree of unevenness) is such that the surface roughness is 5 to 40 μm in terms of arithmetic average roughness Ra, or 10-point average roughness Rz is 30 to 130 μm, or the maximum height Ry is 40 to 200 μm. Among them, the degree of asymmetry (distortion) Rsk is -0.5 to 0.5. The arithmetic average roughness Ra, the ten-point average roughness Rz, and the maximum height Ry are specified in JISB0601-1994.
[0022]
When the degree of asymmetry (distortion) is less than -0.5, gas generated by firing the electronic component is difficult to escape, and the contact area between the zirconia surface layer and the electronic component increases, so that a reaction easily occurs between the two. Become. In addition, uneven heating tends to occur because the heating is not performed uniformly. On the other hand, when the degree of asymmetry (distortion) exceeds 0.5, the zirconia surface layer is susceptible to wear, and the zirconia surface layer is apt to be ragged, making it difficult to obtain a zirconia surface layer having sufficient strength.
[0023]
The desired surface roughness is obtained by adjusting the particle size, particle size distribution, composition and the like of the particles constituting the zirconia surface layer itself. Further, the amount of water and viscosity of the slurry used for the spray coating, the temperature of the substrate at the time of spray coating, and the like may be adjusted. When the intermediate layer is provided, the surface of the intermediate layer may be adjusted to have a desired surface roughness, and the zirconia surface layer may be coated so as to substantially match the surface of the intermediate layer. The intermediate layer can be achieved by forming the coarse-grained aggregate and the fine-grained bond phase, and setting the roughness of the coarse-grained aggregate to be equal to or greater than the roughness of the coarse-grained aggregate constituting the zirconia surface layer.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment relating to the manufacture of the electronic component firing jig of the present invention will be described, but the embodiment does not limit the present invention.
[0025]
(Example 1)
As a substrate, an alumina-mullite substrate having a silica component of up to about 10% by weight was used. As the intermediate layer, 70% by weight of alumina coarse aggregate of 100 mesh and 30% by weight of alumina fine powder having an average particle size of about 3 μm were prepared. These were uniformly mixed in a ball mill, and water and polyvinyl alcohol as a binder were added to form a slurry. This slurry was spray-coated on the surface of the substrate and dried at about 100 ° C. The thickness of the obtained intermediate layer was about 100 μm.
[0026]
70% by weight of 100 mesh yttria (Y2O3) -stabilized zirconia aggregate was prepared as a coarse-grained aggregate of the zirconia surface layer, and 30% by weight of yttria-stabilized zirconia powder having an average particle size of 3 μm was prepared as a fine-grained bond phase. These were uniformly mixed in a ball mill, and water and polyvinyl alcohol as a binder were added to form a slurry. The slurry was spray-coated on the surface of the intermediate layer and dried at about 100 ° C. The thickness of the zirconia surface layer was about 100 μm. This two-layer coated laminate was held at 1450 ° C. for 2 hours to produce a jig for firing electronic components.
[0027]
When the surface roughness of this electronic component firing jig was measured with a surface roughness meter, Ra was 18.8 μm, Rz was 73.5 μm, Ry was 104.3 μm, and Rsk was 0.07.
Next, the jig for firing electronic components was repeatedly heated rapidly to 1300 ° C. and rapidly cooled to room temperature (50 cycles), and then the zirconia surface layer was rubbed by hand to check for rags. In addition, the presence or absence of cracks in the zirconia surface layer was examined. As a result, rags and cracks did not occur. A barium titanate dielectric to which a polyvinyl alcohol aqueous solution is added as a binder is formed into a pellet having a diameter of 10 mm and a thickness of 2 mm, placed on a jig for firing electronic components, kept at 1300 ° C. for 1 hour, cooled, and then cooled with zirconia. The presence or absence of a reaction between the surface layer and the dielectric and the presence or absence of unevenness in the firing of the dielectric were examined. As a result, there was no reaction, and no baking unevenness occurred. Table 1 shows the results.
[0028]
[Table 1]
Figure 2004115331
[0029]
(Example 2)
The coarse aggregate of the zirconia surface layer is composed of 200 mesh of yttria-stabilized zirconia aggregate of 60 mesh%, the fine bond phase is composed of 40% by weight of unstabilized zirconia powder having an average particle diameter of 3 μm, and the intermediate layer is formed of alumina 100 having an average particle diameter of 3 μm. An electronic component firing jig was prepared in the same manner as in Example 1 except that only the fine powder bond phase was used in an amount of 1% by weight. When the surface roughness of this electronic component firing jig was measured with a surface roughness meter, Ra was 12.2 μm, Rz was 51.2 μm, Ry was 80.6 μm, and Rsk was 0.05.
Further, as a result of conducting a test in the same manner as in Example 1, no rag and crack, no reaction, and no uneven baking occurred. Table 1 shows the results.
[0030]
(Example 3)
The same as Example 1 except that the coarse-grained aggregate of the zirconia surface layer was 200 mesh yttria-stabilized zirconia aggregate of 50% by weight and the fine bond phase was 50% by weight of yttria-stabilized zirconia powder having an average particle size of 3 μm. Thus, an electronic component firing jig was manufactured. When the surface roughness of this electronic component firing jig was measured with a surface roughness meter, Ra was 8.1 μm, Rz was 43.4 μm, Ry was 68.8 μm, and Rsk was 0.03.
Further, as a result of conducting a test in the same manner as in Example 1, no rag and crack, no reaction, and no uneven baking occurred. Table 1 shows the results.
[0031]
(Example 4)
An electronic component firing jig was produced in the same manner as in Example 1 except that the intermediate layer was not provided. When the surface roughness of the electronic component firing jig was measured with a surface roughness meter, Ra was 14.5 μm, Rz was 66.7 μm, Ry was 92.5 μm, and Rsk was 0.06.
Further, as a result of conducting a test in the same manner as in Example 1, no rag and crack, no reaction, and no uneven baking occurred. Table 1 shows the results.
[0032]
(Comparative Example 1)
The coarse-grained aggregate of the zirconia surface layer is 40% by weight of yttria-stabilized zirconia aggregate of 200 mesh, the fine powder bond phase is 60% by weight of unstabilized zirconia powder having an average particle size of 3 μm, and the intermediate layer is alumina 100 having an average particle size of 3 μm. An electronic component firing jig was prepared in the same manner as in Example 1 except that only the fine powder bond phase was used in an amount of 1% by weight. When the surface roughness of this electronic component firing jig was measured with a surface roughness meter, Ra was 5.3 μm, Rz was 38.6 μm, Ry was 57.4 μm, and Rsk was −0.53.
Further, as a result of performing a test in the same manner as in Example 1, large cracks were observed, and further unevenness in baking was observed. Table 1 shows the results.
[0033]
(Comparative Example 2)
The same procedure as in Example 1 was carried out except that the coarse-grained aggregate of the zirconia surface layer was changed to 90% by weight of yttria-stabilized zirconia aggregate of 60 mesh, and the fine powder bond phase was changed to 10% by weight of unstabilized zirconia powder having an average particle size of 5 μm. Thus, an electronic component firing jig was manufactured. When the surface roughness of the electronic component firing jig was measured with a surface roughness meter, Ra was 44.5 μm, Rz was 133.2 μm, Ry was 211.3 μm, and Rsk was 0.52.
Further, as a result of performing a test in the same manner as in Example 1, much ragging was observed.
Table 1 shows the results.
[0034]
【The invention's effect】
The present invention relates to an electronic component firing jig comprising a substrate, an intermediate layer coated on the substrate surface, and a zirconia surface layer formed on the intermediate layer. Among those having an average roughness Ra of 5 to 40 μm, a ten-point average roughness Rz of 30 to 130 μm, or a maximum height Ry of 40 to 200 μm, the degree of asymmetry (distortion) Rsk is −0.05 μm. A jig for firing electronic parts, characterized in that the number is from 5 to 0.5.
[0035]
In the electronic component firing jig according to the present invention, since the surface roughness of the zirconia surface layer is maintained at an appropriate level, the release of gas generated from the binder during firing of the electronic component is improved, and the zirconia surface layer is removed. The reaction between the electronic component and the electronic component can be suppressed, and the electronic component can be efficiently fired.
Even if a zirconia surface layer is formed directly on the surface of the substrate without providing an intermediate layer, substantially the same effect can be obtained (claim 1).

Claims (3)

基材、及び該基材上に形成されたジルコニア表面層を含んで成る電子部品焼成用治具において、ジルコニア表面層の表面粗さが算術平均粗さRaで5〜40μmであり、あるいは十点平均粗さRzが30〜130μmであり、あるいは最大高さRyが40〜200μmであるものの中で、非対称度(ゆがみ)Rskが−0.5〜0.5であることを特徴とする電子部品焼成用治具。In a jig for firing an electronic component, comprising a base material and a zirconia surface layer formed on the base material, the surface roughness of the zirconia surface layer is 5 to 40 μm in arithmetic average roughness Ra, or 10 points. An electronic component having an average roughness Rz of 30 to 130 μm or a maximum height Ry of 40 to 200 μm, and an asymmetry (distortion) Rsk of −0.5 to 0.5; Jig for firing. 基材、該基材表面に被覆された中間層、及び該中間層上に形成されたジルコニア表面層を含んで成る電子部品焼成用治具において、ジルコニア表面層の表面粗さが算術平均粗さRaで5〜40μmであり、あるいは十点平均粗さRzが30〜130μmであり、あるいは最大高さRyが40〜200μmであるものの中で、非対称度(ゆがみ)Rskが−0.5〜0.5であることを特徴とする電子部品焼成用治具。In a jig for firing an electronic component comprising a substrate, an intermediate layer coated on the surface of the substrate, and a zirconia surface layer formed on the intermediate layer, the surface roughness of the zirconia surface layer is an arithmetic average roughness. Ra of 5 to 40 μm, or ten-point average roughness Rz of 30 to 130 μm, or maximum height Ry of 40 to 200 μm, the degree of asymmetry (distortion) Rsk of −0.5 to 0 5. A jig for firing electronic parts, characterized in that: ジルコニア表面層が50〜75重量%の80〜300メッシュの粗粒骨材と、50〜25重量%の平均粒径0.1〜10μmの微粒ボンド相を含んでなる請求項1又は請求項2記載の電子部品焼成用治具。The zirconia surface layer comprises 50 to 75% by weight of 80 to 300 mesh coarse aggregate and 50 to 25% by weight of a fine bond phase having an average particle size of 0.1 to 10 [mu] m. The electronic component firing jig described in the above.
JP2002282684A 2002-09-18 2002-09-27 Tool for firing electronic component Pending JP2004115331A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002282684A JP2004115331A (en) 2002-09-27 2002-09-27 Tool for firing electronic component
EP03797580A EP1547991A4 (en) 2002-09-18 2003-09-11 Electronic component burning jig
PCT/JP2003/011655 WO2004026791A1 (en) 2002-09-18 2003-09-11 Electronic component burning jig
US10/528,389 US20050257740A1 (en) 2002-09-18 2003-09-11 Electronic component burning jig
AU2003264407A AU2003264407A1 (en) 2002-09-18 2003-09-11 Electronic component burning jig
KR1020057004777A KR20050073455A (en) 2002-09-18 2003-09-11 Jig for calcining electronic component
MXPA05003082A MXPA05003082A (en) 2002-09-18 2003-09-11 Electronic component burning jig.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002282684A JP2004115331A (en) 2002-09-27 2002-09-27 Tool for firing electronic component

Publications (1)

Publication Number Publication Date
JP2004115331A true JP2004115331A (en) 2004-04-15

Family

ID=32276771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002282684A Pending JP2004115331A (en) 2002-09-18 2002-09-27 Tool for firing electronic component

Country Status (1)

Country Link
JP (1) JP2004115331A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252089A (en) * 2007-03-07 2008-10-16 Toda Kogyo Corp Molded ferrite sheet, sintered ferrite substrate and antenna module
JP2017052657A (en) * 2015-09-07 2017-03-16 三井金属鉱業株式会社 Kiln furniture
JP2020073432A (en) * 2019-10-23 2020-05-14 三井金属鉱業株式会社 Ceramic lattice body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252089A (en) * 2007-03-07 2008-10-16 Toda Kogyo Corp Molded ferrite sheet, sintered ferrite substrate and antenna module
JP2017052657A (en) * 2015-09-07 2017-03-16 三井金属鉱業株式会社 Kiln furniture
JP2020073432A (en) * 2019-10-23 2020-05-14 三井金属鉱業株式会社 Ceramic lattice body

Similar Documents

Publication Publication Date Title
KR101196685B1 (en) Jig for electronic part firing
JP2004115332A (en) Tool for firing electronic component
JP7225376B2 (en) Refractories
TWI451056B (en) Calcination with a loader
EP1547991A1 (en) Electronic component burning jig
JP2004115331A (en) Tool for firing electronic component
JP2004107125A (en) Jig for baking electronic component
JP2002128583A (en) Tool for calcinating electronic part
JP3549099B2 (en) Manufacturing method of electronic component firing jig
JP3643022B2 (en) Electronic component firing jig
JP2002316877A (en) Burning tool for electronic parts
JP3413146B2 (en) Materials for firing electronic components
JP2004161585A (en) Electronic component-firing tool
KR100549030B1 (en) materials and jig for baking electronic parts
JP4255671B2 (en) Electronic component firing jig
JP4277950B2 (en) Electronic component firing jig
JP3819352B2 (en) Electronic component firing jig
JP5100726B2 (en) Setter
JP2004091245A (en) Tool for firing electronic parts
JPH10139572A (en) Jig for firing of electronic parts
JP2017024916A (en) Jig for electronic component firing
JPH05178673A (en) Jig for sintering electronic parts
JP2005041777A (en) Electronic component firing tool
JP3936007B2 (en) Firing jig
JP2003238246A (en) Zirconia-based firing tool and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050726

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060207