JP2001289788A - Surface-flaw inspecting device - Google Patents

Surface-flaw inspecting device

Info

Publication number
JP2001289788A
JP2001289788A JP2000108096A JP2000108096A JP2001289788A JP 2001289788 A JP2001289788 A JP 2001289788A JP 2000108096 A JP2000108096 A JP 2000108096A JP 2000108096 A JP2000108096 A JP 2000108096A JP 2001289788 A JP2001289788 A JP 2001289788A
Authority
JP
Japan
Prior art keywords
oil
inspected
angle
imaging
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000108096A
Other languages
Japanese (ja)
Other versions
JP3642255B2 (en
Inventor
Kiyoshi Yoshida
田 清 吉
Noritaka Usui
井 徳 貴 臼
Kazuhide Itami
丹 和 秀 伊
Kazuo Yamada
田 和 男 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000108096A priority Critical patent/JP3642255B2/en
Publication of JP2001289788A publication Critical patent/JP2001289788A/en
Application granted granted Critical
Publication of JP3642255B2 publication Critical patent/JP3642255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent wrong detections of a boundary part of an oil adhering part as an edge in image processing due to excessive oil adhering to an inspected face, when a vehicle body panel is inspected in-line in a pressing process, for example, by means of a conventional surface-flaw inspecting device. SOLUTION: This surface-flaw inspecting device is provided with an inspected body conveying means 1 for conveying an inspected body P, a pantoscopic lighting means 2 radiating illumination light to the inspected surface, photographing means 3 and 4 photographing the inspected surface, an inspection processing means 5 for detecting a surface flaw from a received optical image, a surface inspecting means 51 for inspecting a surface condition of the inspected surface, an oil condition determining means 52 determining an oil adhering condition on the basis of the surface condition of the inspected surface, and an oil countermeasure directing means 53 for outputting a countermeasure instruction directing one of a change of illumination light irradiation angle, a change of a photographing angle, and control of an oil adhering amount on the inspected surface, according to the determination result from the oil condition determining means 52, and consequently, influence due to excessive oil causing erroneous detection is surface flaw inspection can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検査体の表面欠
陥を検査する装置であって、例えば、自動車の製造にお
いて、プレス形成された車体パネルの表面における凹凸
等の表面欠陥を検査するのに用いられる表面欠陥検査装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for inspecting a surface defect of an object to be inspected, for example, for inspecting a surface defect such as unevenness on the surface of a press-formed body panel in manufacturing an automobile. The present invention relates to a surface defect inspection device used for a device.

【0002】[0002]

【従来の技術】従来の表面欠陥検査装置としては、例え
ば、特開平8−5573号公報などに示されたものがあ
る。
2. Description of the Related Art A conventional surface defect inspection apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 8-5573.

【0003】同公報に開示された表面欠陥検査装置は、
図24(a)に示すように、被検査体100の一方側斜
め上方に位置して被検査体100の表面に面状の照明光
を照射する面状光源101と、被検査体100の他方側
斜め上方に位置して被検査体100の表面を撮像するエ
リアセンサカメラ102を備え、被検査体100の表面
に存在する異物や突起を検出するようになっている。ま
た、同公報に開示された他の表面欠陥検査装置は、図2
4(b)に示すように、被検査体100の一方側斜め上
方に位置して被検査体100の表面に線状の照明光を照
射する線状光源103と、被検査体100の他方側斜め
上方に位置して被検査体100の表面を撮像するライン
センサカメラ104を備え、被検査体100の表面に存
在する微小突起等をも検出するようになっている。
The surface defect inspection apparatus disclosed in the publication is
As shown in FIG. 24A, a surface light source 101 that is positioned diagonally above one side of the device under test 100 and irradiates the surface of the device under test 100 with planar illumination light, and the other of the device under test 100. An area sensor camera 102, which is positioned diagonally above and side and captures an image of the surface of the device under test 100, is provided to detect foreign substances and protrusions present on the surface of the device under test 100. Another surface defect inspection apparatus disclosed in the publication is shown in FIG.
As shown in FIG. 4 (b), a linear light source 103 positioned diagonally above one side of the device under test 100 and irradiating linear illumination light to the surface of the device under test 100, and the other side of the device under test 100 A line sensor camera 104 that is positioned diagonally above and captures an image of the surface of the device under test 100 is provided, and also detects minute protrusions and the like existing on the surface of the device under test 100.

【0004】上記の両表面欠陥検査装置において、光源
101,103による照明光の照射角度αとカメラ10
2,104による撮像角度βは、10度以下の低角度で
あると共に、いずれもほぼ同一の角度になっている。し
たがって、撮像画像105としては、照明光の正反射光
を捕らえることになり、被検査体100の表面に存在す
る異物や欠陥を影として、すなわち、明部105a中の
暗点105bとして撮像したものとなる。
In the above two-surface defect inspection apparatus, the illumination angle α of the illumination light from the light sources 101 and 103 and the camera 10
2 and 104, the imaging angle β is a low angle of 10 degrees or less, and both are almost the same angle. Therefore, the captured image 105 captures the specular reflection light of the illumination light, and captures a foreign object or a defect existing on the surface of the inspection object 100 as a shadow, that is, an image captured as a dark spot 105b in the bright portion 105a. Becomes

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
たような従来の表面欠陥検査装置にあっては、例えば自
動車の車体パネルのプレスラインに設置して、インライ
ンで車体パネルを検査しようとすると、次のような問題
点があった。すなわち、プレスの前工程で行った洗浄に
よる洗浄油の付着状態(量、分布)に大きなばらつきが
あり、油が過剰に付着した被検査面を撮像して画像処理
を行うと、油付着部分の境界部がエッジとして誤検出さ
れるため、表面欠陥を精度良く検出することができなく
なり、欠陥検出の信頼度が低下するためにインライン化
を行うことが困難であるという問題点があった。
However, in the above-described conventional surface defect inspection apparatus, if it is installed on a press line of a body panel of an automobile and the body panel is to be inspected in-line, for example, There was such a problem. That is, there is a large variation in the state (amount and distribution) of the cleaning oil adhered by the cleaning performed in the previous process of the press. Since the boundary is erroneously detected as an edge, surface defects cannot be detected with high accuracy, and the reliability of defect detection decreases, so that it is difficult to perform in-line processing.

【0006】[0006]

【発明の目的】本発明は、上記従来の状況に鑑みて成さ
れたものであり、被検査面に油が過剰に付着している場
合に、誤検出の原因である過剰な油の付着の影響を極力
減少させることを可能にして、インラインにおいて精度
の高い欠陥検出を行うことができる表面欠陥検査装置を
提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional situation, and when excessive oil is adhered to a surface to be inspected, excessive oil adherence which is a cause of erroneous detection. It is an object of the present invention to provide a surface defect inspection apparatus capable of minimizing the influence and performing highly accurate defect detection in-line.

【0007】[0007]

【課題を解決するための手段】本発明に係わる表面欠陥
検査装置は、請求項1として、被検査体を一方向に搬送
する被検査体搬送手段と、移動する被検査体の被検査面
に対して照明光を所定の照射角度で照射する照明手段
と、照明光の照射角度よりも大きい撮像角度で照明光の
反射光を撮像する撮像手段と、撮像手段からの受光画像
に基づいて被検査面の表面欠陥を検出する検査処理手段
と、照明手段および撮像手段に対して被検査体搬送方向
の上流側に配置され且つ被検査面の表面状態を検査する
表面検査手段と、表面検査手段からの被検査面の表面状
態に基づいて油の付着状態を判定する油状態判定手段
と、油状態判定手段からの油付着状態に基づいて、照明
光の照射角度の変更、撮像角度の変更、被検査面の油付
着量の制御のうちの少なくとも1つを対策指示として出
力する油対策指示手段を備えた構成とし、請求項2とし
て、照明手段が、被検査体搬送方向の上流側および下流
側に照明光の照射が可能であり且つ移動する被検査体の
被検査面に対して照明光を所定の照射角度で照射する広
角度照明手段であると共に、撮像手段が、広角度照明手
段を間にして被検査体搬送方向の上流側および下流側に
配置され且つ広角度照明手段に対向して照明光の照射角
度よりも大きい撮像角度で照明光の反射光を撮像する上
流側および下流側の撮像手段である構成としており、上
記構成をもって従来の課題を解決するための手段として
いる。なお、上記の構成において、照明手段による照明
光の照射角度は、反射光分布の指向性を高め且つ高い反
射率を得るために、被検査面(被検査面が曲面の場合は
照射ポイントの接線)に対して10度以下とするのが望
ましく、また、撮像手段による撮像角度は、同じく被検
査面に対して10〜30度の範囲とするのが望ましい。
According to a first aspect of the present invention, there is provided a surface defect inspection apparatus for transporting an object to be inspected in one direction and a surface to be inspected of a moving object to be inspected. An illumination unit that irradiates the illumination light at a predetermined illumination angle, an imaging unit that captures reflected light of the illumination light at an imaging angle larger than the illumination angle of the illumination light, and an inspection target based on a light reception image from the imaging unit. Inspection processing means for detecting surface defects of the surface, surface inspection means arranged upstream of the illumination means and the imaging means in the transport direction of the object to be inspected, and inspecting the surface condition of the surface to be inspected; Oil state determining means for determining the state of oil adhesion based on the surface state of the surface to be inspected, and changing the irradiation angle of illumination light, changing the imaging angle, and Some of the controls on the amount of oil on the inspection surface At least one is provided with oil countermeasure instructing means for outputting as a countermeasure instruction. As a second aspect, the illuminating means is capable of irradiating illumination light on the upstream side and the downstream side in the inspection object transport direction, and Wide-angle illumination means for irradiating the inspection surface of the moving inspection object with illumination light at a predetermined irradiation angle, and the imaging means is located upstream of the inspection object transport direction with the wide-angle illumination means interposed therebetween. And upstream-side and downstream-side imaging means for imaging reflected light of the illumination light at an imaging angle larger than the illumination angle of the illumination light opposite to the wide-angle illumination means. This is a means for solving the conventional problem. In the above-described configuration, the irradiation angle of the illumination light by the illumination means may be adjusted so as to increase the directivity of the reflected light distribution and obtain a high reflectance. ) Is preferably set to 10 degrees or less, and the imaging angle by the imaging unit is also preferably in the range of 10 to 30 degrees with respect to the surface to be inspected.

【0008】また、本発明に係わる表面欠陥検査装置
は、請求項3として、移動する被検査面に対する照明光
の照射角度および撮像角度が所定の値になるように照明
手段および撮像手段の各々の角度および各々の高さを制
御し、且つ油対策指示手段からの対策指示に基づいて照
明手段および撮像手段のうちの少なくとも一方の角度お
よび高さを制御する照明/撮像制御手段を備えた構成と
し、請求項4として、表面検査手段が、被検査面を光学
的に検査して表面状態を輝度のレベルで出力する手段で
あると共に、油付着状態判定手段が、表面検査手段から
得た輝度および予め求めた輝度と油付着量との関係に基
づいて被検査面の油付着状態を判定する手段である構成
とし、請求項5として、照明手段および撮像手段に対し
て被検査体搬送方向の上流側に配置され且つ油対策指示
手段からの対策指示に基づいて被検査面の油付着量を制
御する油付着量制御手段を備えた構成とし、請求項6と
して、油付着量制御手段が、被検査面に回転接触する油
絞り用ロールと、被検査面に対する油絞り用ロールの圧
接力を制御する圧接力制御手段を備えている構成とし、
請求項7として、照明手段および撮像手段に対して被検
査体搬送方向の上流側に配置され且つ油対策指示手段か
らの対策指示ならびに油の蒸発特性に基づいて被検査面
の油を蒸発させる油蒸発制御手段を備えた構成とし、請
求項8として、油蒸発制御手段が、被検査面に対して空
気を吹き付ける送風手段と、送風手段からの空気量を変
化させる風量切換え手段と、送風手段からの空気の温度
を変化させる熱量切換え手段を備えている構成とし、請
求項9として、照明手段および撮像手段に対して被検査
体搬送方向の上流側に配置され且つ油対策指示手段から
の対策指示に基づいて被検査面の油を拭き取る油拭き取
り手段を備えた構成としており、上記構成をもって従来
の課題を解決するための手段としている。
According to a third aspect of the present invention, there is provided a surface defect inspection apparatus according to the third aspect of the present invention, wherein each of the illuminating means and the imaging means has a predetermined value so that the irradiation angle and the imaging angle of the illuminating light with respect to the moving inspection surface become predetermined values. A configuration including illumination / imaging control means for controlling the angle and each height and controlling the angle and height of at least one of the illumination means and the imaging means based on a countermeasure instruction from the oil countermeasure instruction means; According to a fourth aspect of the present invention, the surface inspection means is means for optically inspecting the surface to be inspected and outputting a surface state at a luminance level, and the oil adhesion state determination means is configured to determine the luminance and the luminance obtained from the surface inspection means. The inspection means is configured to determine an oil adhesion state on the surface to be inspected based on a relationship between the luminance and the oil adhesion amount obtained in advance. An oil adhering amount control means disposed on the upstream side and controlling the oil adhering amount on the surface to be inspected based on a countermeasure instruction from the oil countermeasure instructing means is provided. An oil-squeezing roll that is in rotational contact with the surface to be inspected, and a pressing force control unit that controls a pressing force of the oil-squeezing roll against the surface to be inspected,
According to a seventh aspect of the present invention, there is provided an oil which is disposed upstream of the illumination means and the imaging means in the transport direction of the test object and which evaporates oil on the surface to be inspected based on a measure instruction from the oil measure instruction means and an oil evaporation characteristic. According to claim 8, the oil evaporation control means includes a blower that blows air to the surface to be inspected, an air volume switching device that changes an amount of air from the blower, and a blower. And a heat quantity switching means for changing the temperature of the air, wherein a measure instruction from the oil measure instruction means is disposed upstream of the illumination means and the image pickup means in the test object transport direction with respect to the illumination means and the image pickup means. And an oil wiping means for wiping the oil on the surface to be inspected based on the above.

【0009】[0009]

【発明の作用】本発明の請求項1に係わる表面欠陥検査
装置では、ベルトコンベアなどの被検査体搬送手段によ
って被検査体を一定速度で搬送すると共に、被検査体搬
送手段の上側において、照明手段および撮像手段を角度
調整可能に且つ高さ調整可能にして対向配置し、照明手
段により、移動する被検査体の被検査面に対して搬送方
向一方側の斜め上方から所定の照射角度で照明光を照射
すると共に、撮像手段により、被検査面に対して搬送方
向他方側の斜め上方から照射角度よりも大きい撮像角度
で被検査面からの反射光を撮像する。このとき、照明手
段および撮像手段は、被検査面に対する照明光の照射角
度および撮像角度が常に所定の値となるように角度や高
さの制御が成されている。また、照明手段による照明光
の照射角度は、被検査面に対して10度以下の浅い角度
とし、撮像手段による撮像角度は、被検査面に対して1
0〜30度の範囲とする。つまり、所定の照射角度で照
射された照明光のうち、表面欠陥の無い部分に当たった
光は、照射角度と同じ角度で正反射するので撮像手段に
撮像されず、表面欠陥に当たって照射角度よりも大きい
角度で乱反射した光のみが撮像手段に撮像される。した
がって、撮像手段により、表面欠陥を高輝度で捕らえた
受光画像が得られる。
In the surface defect inspection apparatus according to the first aspect of the present invention, the inspection object is transported at a constant speed by the inspection object transporting means such as a belt conveyor, and the illumination is provided above the inspection object transporting means. The means and the imaging means are opposed to each other so that the angle can be adjusted and the height can be adjusted, and the illuminating means illuminates the surface to be inspected of the moving object to be inspected at a predetermined irradiation angle from an obliquely upper side on one side in the transport direction. While irradiating the light, the imaging means images the reflected light from the surface to be inspected at an imaging angle larger than the irradiation angle from obliquely above the other side in the transport direction with respect to the surface to be inspected. At this time, the illuminating means and the imaging means are controlled in angle and height so that the irradiation angle of the illuminating light on the surface to be inspected and the imaging angle always have predetermined values. The illumination angle of the illumination light by the illumination means is a shallow angle of 10 degrees or less with respect to the inspection surface, and the imaging angle of the imaging means is 1 with respect to the inspection surface.
The range is 0 to 30 degrees. In other words, of the illumination light irradiated at the predetermined irradiation angle, the light that hits a portion having no surface defect is not reflected by the image pickup means because it is regularly reflected at the same angle as the irradiation angle, and hits the surface defect and is smaller than the irradiation angle. Only the light diffusely reflected at a large angle is imaged by the imaging means. Therefore, a light receiving image in which the surface defect is captured with high luminance can be obtained by the imaging means.

【0010】このようにして得られた受光画像は、検査
処理手段に取り込まれ、検査処理手段において、エッジ
抽出処理、平滑化処理、2値化処理および表面欠陥の抽
出処理といった画像処理が行われる。なお、表面欠陥の
検出結果は、CRTやプリンタなどの表示手段に表示す
ることが可能である。
The light-receiving image thus obtained is taken into the inspection processing means, which performs image processing such as edge extraction processing, smoothing processing, binarization processing, and surface defect extraction processing. . The detection result of the surface defect can be displayed on a display such as a CRT or a printer.

【0011】ここで、被検査体が例えば自動車の車体パ
ネルである場合、被検査体は、洗浄油による洗浄が行わ
れた後に所定の形状にプレス成形される。このようなプ
レスラインに対して、当該表面欠陥検査装置をインライ
ンで用いる場合、プレス成形された被検査体の被検査面
には油が付着しており、その油が過剰に残っていると表
面欠陥の誤検出の原因となる。つまり、図10に示すよ
うに、被検査面における照明光の拡散反射光は、正反射
光の部分で強度が明らかに大きくなるのであるが、図1
0(a)に示す油の無い面に対して、図10(b)に示
す油付着面においては、全体の強度が減少するとともに
正反射光の部分の強度が増大する。このため、被検査面
に油が過剰に付着していると、撮像手段で捕らえる光の
強度が減少し、表面欠陥の検出精度が低下することにな
る。
Here, when the object to be inspected is, for example, a car body panel, the object to be inspected is press-molded into a predetermined shape after being cleaned with a cleaning oil. When such a surface defect inspection apparatus is used inline for such a press line, oil adheres to the surface to be inspected of the press-formed inspection object, and if the oil remains excessively, the surface is inspected. This causes erroneous detection of defects. That is, as shown in FIG. 10, the intensity of the diffuse reflection light of the illumination light on the surface to be inspected clearly increases in the part of the regular reflection light.
In contrast to the oil-free surface shown in FIG. 10A, the oil-coated surface shown in FIG. 10B has a reduced overall intensity and an increased intensity of the specularly reflected light. For this reason, if the oil is excessively adhered to the surface to be inspected, the intensity of light captured by the imaging means decreases, and the accuracy of detecting surface defects decreases.

【0012】これに対して、表面欠陥検査装置では、受
光画像から被検査面の表面欠陥を検出する前に、表面検
査手段において、被検査面の表面状態を検査し、油状態
判定手段において、表面検査手段からの被検査面の表面
状態に基づいて油の付着量などの付着状態を判定し、油
対策指示手段において、油状態判定手段からの油付着状
態に基づいて、照明光の照射角度の変更、撮像角度の変
更、被検査面の油付着量の制御のうちの少なくとも1つ
を対策指示として選択して出力する。
On the other hand, in the surface defect inspection apparatus, before detecting the surface defect of the inspected surface from the received light image, the surface inspecting unit inspects the surface state of the inspected surface, and the oil state determining unit inspects the surface state of the inspected surface. Based on the surface state of the surface to be inspected from the surface inspection means, the adhesion state such as the amount of oil adhesion is determined, and in the oil countermeasure instruction means, the irradiation angle of the illumination light is determined based on the oil adhesion state from the oil state determination means. At least one of the change of the image pickup angle, the change of the imaging angle, and the control of the amount of oil adhering to the surface to be inspected is selected and output as a countermeasure instruction.

【0013】すなわち、先の図10において、照明光の
照射角度をαとし、撮像角度をβとし、油の無い面の拡
散反射光の強度をΦ1とし、油付着面の拡散反射光の強
度をΦ2とした場合、撮像手段の受光強度が減少する油
付着面を精度良く検査するには、油の無い面の拡散反射
光の強度Φ1と油付着面の拡散反射光の強度Φ2との差
ΔΦを小さくすれば良く、その差ΔΦを小さくするに
は、撮像角度βを照明光の正反射角度(α)に近付けれ
ば良い。
That is, in FIG. 10, the irradiation angle of the illumination light is α, the imaging angle is β, the intensity of the diffuse reflection light on the oil-free surface is Φ1, and the intensity of the diffuse reflection light on the oil-attached surface is In the case of Φ2, to accurately inspect the oil-adhered surface where the light receiving intensity of the imaging means decreases, the difference ΔΦ between the intensity Φ1 of the diffuse reflected light on the oil-free surface and the intensity Φ2 of the diffuse reflected light on the oil-applied surface is used. May be reduced, and the difference ΔΦ may be reduced by making the imaging angle β closer to the regular reflection angle (α) of the illumination light.

【0014】そこで、当該表面欠陥検査装置では、例え
ば油状態判定手段で判定した油付着量が比較的少ない場
合には、油対策指示手段において、照明光の照射角度の
変更および/または撮像角度の変更を対策指示として出
力するようにし、より具体的には、図10(b)におい
て、照明光の照射角度αを増大させる対策指示および/
または撮像角度βを減少させる対策指示を出力する。こ
れにより、撮像角度βが照明光の正反射角度(α)に近
付くこととなり、撮像手段の受光強度が増大して油付着
面における欠陥検出が精度良く行われる。
In the surface defect inspection apparatus, for example, when the oil adhesion amount determined by the oil state determination means is relatively small, the oil countermeasure instruction means changes the irradiation angle of the illumination light and / or changes the imaging angle. The change is output as a countermeasure instruction. More specifically, in FIG. 10B, a countermeasure instruction for increasing the illumination angle α of the illumination light and / or
Alternatively, a countermeasure instruction to reduce the imaging angle β is output. As a result, the imaging angle β approaches the regular reflection angle (α) of the illumination light, the light receiving intensity of the imaging unit increases, and the defect detection on the oil adhering surface is performed with high accuracy.

【0015】また、油状態判定手段で判定した油付着量
が多い場合には、油対策指示手段において、被検査面の
油の除去を対策指示として出力し、あるいは被検査面の
油付着量の制御に加えて上記の照射角度αおよび撮像角
度βの変更も対策指示として出力する。このとき、被検
査面の油の除去は、当該表面欠陥検査装置をプレスのイ
ンラインで用いる場合、プレス前の被検査体の被検査面
あるいはプレス後の被検査体の被検査面に対して行うこ
とが可能であり、油をほとんど除去しても良いし、油の
付着量を減少させる制御を行っても良い。このように、
被検査面の油付着量の制御の対策指示を選択した場合に
は、誤検出の原因である油そのものの付着量を制御する
ことが可能になるので、過剰に付着した油の影響を受け
ることなく欠陥検出が精度良く行われる。
If the amount of oil adhering determined by the oil condition judging means is large, the oil countermeasure instructing means outputs removal of oil from the surface to be inspected as a countermeasure instruction, or the amount of oil adhering to the surface to be inspected is output. In addition to the control, the change of the irradiation angle α and the imaging angle β is output as a countermeasure instruction. At this time, the oil on the surface to be inspected is removed from the surface to be inspected before the press or from the surface to be inspected after the press when the surface defect inspection apparatus is used in a press in-line. It is possible to remove most of the oil, or to perform control to reduce the amount of oil adhesion. in this way,
If the countermeasure instruction for controlling the amount of oil adhering to the surface to be inspected is selected, it is possible to control the amount of oil adhering, which is the cause of erroneous detection. Defect detection is performed with high accuracy.

【0016】本発明の請求項2に係わる表面欠陥検査装
置では、被検査体搬送手段により被検査体を一方向に移
動させる間において、広角度照明手段を被検査体搬送方
向の上流側に向けて被検査面に照明光を照射すると共
に、上流側の撮像手段で被検査面を撮像する。そして、
被検査体が一定距離移動したところで、広角度照明手段
を被検査体搬送方向の下流側に向けて被検査面に照明光
を照射すると共に、下流側の撮像手段で被検査面を撮像
する。つまり、被検査体が例えば車体パネルであり、被
検査面が曲面状であって、搬送方向の前後で被検査面の
傾斜方向が逆向きとなる場合、被検査面を前後の検査範
囲に分割し、広角度照明手段と上流側の撮像手段とで被
検査面の後半部を検査したのち、向きを変えた広角度照
明手段と下流側の撮像手段とで被検査面の前半部を検査
する。これにより、照明手段および撮像手段の高さを大
きく変えずに、曲面状の被検査面に対して照明光の所定
の照射角度および撮像角度を維持し得ることとなる。
In the surface defect inspection apparatus according to a second aspect of the present invention, the wide-angle illumination means is directed upstream in the transport direction of the inspection object while the inspection object is moved in one direction by the inspection object transport means. In addition, the surface to be inspected is irradiated with illumination light, and the surface to be inspected is imaged by the imaging means on the upstream side. And
When the object to be inspected has moved by a predetermined distance, the wide-angle illumination unit irradiates the surface to be inspected with illumination light toward the downstream side in the transport direction of the object to be inspected, and an image of the surface to be inspected is captured by the imaging unit on the downstream side. In other words, if the object to be inspected is, for example, a vehicle body panel, the surface to be inspected is curved, and the inclined direction of the surface to be inspected is opposite before and after the transport direction, the surface to be inspected is divided into the front and rear inspection ranges. Then, after inspecting the second half of the surface to be inspected by the wide-angle illumination unit and the upstream imaging unit, the first half of the inspection surface is inspected by the wide-angle illumination unit whose direction has been changed and the downstream imaging unit. . This makes it possible to maintain the predetermined irradiation angle and the imaging angle of the illumination light with respect to the curved surface to be inspected without largely changing the heights of the illumination unit and the imaging unit.

【0017】本発明の請求項3に係わる表面欠陥検査装
置では、照明/撮像制御手段において、移動する被検査
面に対する照明光の照射角度および撮像角度が所定の値
になるように照明手段および撮像手段の各々の角度およ
び各々の高さを制御する。このような制御には、被検査
体搬送手段により移動する被検査体の位置データおよび
予め入力した被検査面の曲面形状データを用いることが
でき、照明手段および撮像手段の角度や高さを段階的あ
るいは連続的に変化させる。また、照明/撮像制御手段
では、先の油対策指示手段からの対策指示に基づいて、
照明手段および撮像手段のうちの少なくとも一方の角度
および高さを制御し、これにより照明光の照射角度およ
び/または撮像角度を変化させて、油付着面における欠
陥検出が精度良く行われるようにする。
In the surface defect inspection apparatus according to a third aspect of the present invention, in the illumination / imaging control means, the illuminating means and the imaging means are arranged such that the irradiation angle and the imaging angle of the illuminating light on the moving inspected surface become predetermined values. Control each angle and each height of the means. For such control, the position data of the inspection object moved by the inspection object transporting means and the previously input curved surface shape data of the inspection surface can be used, and the angles and heights of the illuminating means and the imaging means can be adjusted stepwise. Target or continuously. In the lighting / imaging control means, based on the countermeasure instruction from the previous oil countermeasure instruction means,
The angle and height of at least one of the illumination means and the imaging means are controlled, thereby changing the illumination angle and / or the imaging angle of the illumination light so that the defect detection on the oil-adhered surface can be accurately performed. .

【0018】本発明の請求項4に係わる表面欠陥検査装
置では、被検査面を光学的手段で撮像した場合に、油が
ほとんど付着していない部分と、油が付着している部分
とで輝度が異なり、また、油の付着量(油膜の厚さ)に
よっても輝度が異なることから、表面検査手段におい
て、被検査面を光学的に検査して表面状態を輝度のレベ
ルで出力する。つまり、油の付着量が多いほど輝度が高
くなる。そして、油付着状態判定手段において、表面検
査手段から得た輝度および予め求めた輝度と油付着量と
の関係に基づいて被検査面の油付着状態すなわち油の付
着量の度合いを判定し、その判定結果を油対策指示手段
に送る。
In the surface defect inspection apparatus according to the fourth aspect of the present invention, when an image of the surface to be inspected is taken by an optical means, the luminance of the portion to which almost no oil adheres and the luminance of the portion to which oil adheres are determined. In addition, since the luminance also differs depending on the amount of oil adhered (the thickness of the oil film), the surface inspection means optically inspects the surface to be inspected and outputs the surface state at a luminance level. That is, the larger the amount of oil attached, the higher the luminance. Then, the oil adhesion state determination means determines the oil adhesion state of the surface to be inspected, that is, the degree of the oil adhesion amount, based on the luminance obtained from the surface inspection means and the relationship between the previously obtained luminance and the oil adhesion amount. The judgment result is sent to the oil measure instruction means.

【0019】本発明の請求項5に係わる表面欠陥検査装
置では、油付着量制御手段により、油対策指示手段から
の対策指示に基づいて被検査面の油付着量を制御するの
で、その後に行われる被検査面の欠陥検出において、誤
検出の原因となる過剰な油による影響が低減される。
In the surface defect inspection apparatus according to claim 5 of the present invention, the oil adhesion amount control means controls the oil adhesion amount on the surface to be inspected based on the countermeasure instruction from the oil countermeasure instruction means. In the defect detection of the inspected surface, the influence of excess oil which causes erroneous detection is reduced.

【0020】本発明の請求項6に係わる表面欠陥検査装
置では、油付着量制御手段が油絞り用ロールと圧接力制
御手段を備えており、被検査面に油絞り用ロールを回転
接触させることで同被検査面に過剰に付着した油を絞る
ように除去し、この際、油の付着量に応じて被検査面に
対する油絞り用ロールの圧接力を変化させることで、油
の付着量を少なく且つ均一なものにする。
In the surface defect inspection apparatus according to claim 6 of the present invention, the oil adhering amount control means includes an oil squeezing roll and a pressing force control means, and the oil squeezing roll is brought into rotational contact with the surface to be inspected. The oil adhering excessively to the surface to be inspected is removed by squeezing, and at this time, the amount of oil adhering is changed by changing the pressing force of the oil squeezing roll against the surface to be inspected in accordance with the amount of oil adhering. Make it small and uniform.

【0021】本発明の請求項7に係わる表面欠陥検査装
置では、油蒸発制御手段により、油対策指示手段からの
対策指示ならびに油の蒸発特性に基づいて被検査面に付
着した過剰な油を蒸発させるので、その後に行われる被
検査面の欠陥検出において、誤検出の原因となる過剰な
油による影響が低減される。
In the surface defect inspection apparatus according to a seventh aspect of the present invention, the oil evaporation control means evaporates excess oil adhering to the surface to be inspected based on the countermeasure instruction from the oil countermeasure instruction means and the oil evaporation characteristic. Therefore, in the subsequent defect detection of the surface to be inspected, the influence of excess oil, which causes erroneous detection, is reduced.

【0022】本発明の請求項8に係わる表面欠陥検査装
置では、油蒸発制御手段が、送風手段、風量切換え手段
および熱量切換え手段を備えており、被検査面に対して
送風を行うことで同被検査面に付着した過剰な油を蒸発
させて除去し、この際、油の付着量に応じて送風手段か
らの空気量や空気の温度を変化させることで、油の付着
量を少なく且つ均一なものにする。
In the surface defect inspection apparatus according to claim 8 of the present invention, the oil evaporation control means includes an air blowing means, an air flow rate switching means and a heat quantity switching means. Excessive oil adhering to the surface to be inspected is evaporated and removed. At this time, the amount of oil adhering is reduced and uniform by changing the amount of air from the blower and the temperature of the air according to the amount of oil adhering. Something.

【0023】本発明の請求項9に係わる表面欠陥検査装
置では、油拭き取り手段により、油対策指示手段からの
対策指示に基づいて被検査面に付着した過剰な油を拭き
取るので、その後に行われる被検査面の欠陥検出におい
て、誤検出の原因となる過剰な油の影響が低減される。
In the surface defect inspection apparatus according to the ninth aspect of the present invention, the excess oil adhering to the surface to be inspected is wiped by the oil wiping means based on the countermeasure instruction from the oil countermeasure instruction means, and the inspection is performed thereafter. In detecting a defect on a surface to be inspected, the influence of excess oil which causes erroneous detection is reduced.

【0024】[0024]

【発明の効果】本発明の請求項1に係わる表面欠陥検査
装置によれば、被検査体を移動させながら被検査面に対
する照明光の照射および撮像を行って、撮像した受光画
像から被検査面の凹凸等の表面欠陥を検出するに際し、
表面検査手段、油状態判定手段および油対策指示手段を
採用したことにより、被検査面の油付着状態に応じて、
照明光の照射角度の変更、撮像角度の変更、被検査面の
油付着量の制御のうちの少なくとも1つを対策指示とす
ることで、誤検出の原因である過剰に付着した油の影響
を極力減少させることが可能になり、これにより精度の
高い欠陥検出を行うことができる。したがって、被検査
面に油が付着している場合、例えば被検査体が自動車の
車体パネルであって、車体パネルのプレスラインにおい
て油が付着した被検査面をインラインで検査する場合で
あっても、過剰に付着した油の影響を減少させて欠陥検
出を行うことが可能になり、高精度な欠陥検出を安定し
て行うことができる。
According to the surface defect inspection apparatus according to the first aspect of the present invention, illumination light irradiation and imaging are performed on the inspected surface while moving the inspected object, and the inspected surface is inspected based on the received light image. When detecting surface defects such as unevenness of
By adopting the surface inspection means, oil state determination means and oil countermeasure instruction means, according to the oil adhesion state on the inspection surface,
By setting at least one of the change of the irradiation angle of the illumination light, the change of the imaging angle, and the control of the amount of oil adhering to the surface to be inspected as a countermeasure instruction, the influence of the excessive oil adhering to the erroneous detection can be reduced. This makes it possible to reduce as much as possible, thereby enabling highly accurate defect detection. Therefore, when oil is attached to the surface to be inspected, for example, even when the object to be inspected is a vehicle body panel and the surface to be inspected with oil is inspected in-line in a press line of the vehicle body panel. In addition, it is possible to perform the defect detection while reducing the influence of the excessively attached oil, and it is possible to stably perform the highly accurate defect detection.

【0025】本発明の請求項2に係わる表面欠陥検査装
置によれば、請求項1と同様の効果を得ることができる
うえに、照明手段として広角度照明手段を採用し、撮像
手段として上流側および下流側の撮像手段を採用したこ
とにより、曲面状の被検査面の検査に非常に好適なもの
となり、例えば自動車の車体パネルのように、搬送方向
の前後で被検査面の傾斜方向が逆向きになるような被検
査体であっても、被検査面を搬送方向の前後に分割して
検査を行うことで、照明手段および撮像手段の高さを大
きく変えずに、被検査面に対する照明光の照射角度およ
び撮像角度を所定の値に維持することができ、欠陥検出
の精度向上に貢献することができる。
According to the surface defect inspection apparatus of the second aspect of the present invention, the same effects as those of the first aspect can be obtained, and a wide angle illumination means is employed as the illumination means, and the upstream side is employed as the imaging means. By adopting the imaging means on the downstream side and the downstream side, it becomes very suitable for inspection of a curved surface to be inspected. For example, as in a car body panel of an automobile, the inclination direction of the surface to be inspected is reversed before and after in the transport direction. Even when the inspection target is oriented, the inspection surface is divided into front and rear portions in the transport direction to perform the inspection, so that the illumination on the inspection surface can be performed without largely changing the height of the illumination unit and the imaging unit. The light irradiation angle and the imaging angle can be maintained at predetermined values, which can contribute to improving the accuracy of defect detection.

【0026】本発明の請求項3に係わる表面欠陥検査装
置によれば、請求項1および2と同様の効果を得ること
ができるうえに、照明/撮像制御手段を採用したことか
ら、被検査面が曲面状を成す場合であっても、被検査面
に対する照明光の照射角度および撮像角度を所定の値に
維持しながら高精度の欠陥検出を行うことができ、ま
た、油対策指示手段からの対策指示に基づいて照明手段
および撮像手段のうちの少なくとも一方の角度および高
さを制御することで、油が過剰に付着している被検査面
を撮像して画像処理をした際に、油付着部分の境界部の
エッジ検出レベルを小さくし、誤検出の原因となる過剰
な油の影響を解消して、油付着面における欠陥検出を高
精度で行うことができる。
According to the surface defect inspection apparatus according to the third aspect of the present invention, the same effects as those of the first and second aspects can be obtained, and further, since the illumination / imaging control means is employed, the inspection target surface is inspected. Is curved, high-accuracy defect detection can be performed while maintaining the irradiation angle and the imaging angle of illumination light on the surface to be inspected at predetermined values. By controlling the angle and the height of at least one of the illumination means and the imaging means based on the countermeasure instruction, when an image of the surface to be inspected with excessive oil is taken and image processing is performed, The edge detection level at the boundary between the portions is reduced, and the influence of excessive oil that causes erroneous detection is eliminated, so that the defect detection on the oil-adhered surface can be performed with high accuracy.

【0027】本発明の請求項4に係わる表面欠陥検査装
置によれば、請求項1〜3と同様の効果を得ることがで
きるうえに、被検査面を光学的に検査して表面状態を輝
度のレベルで出力する表面検査手段と、表面検査手段か
ら得た輝度および予め求めた輝度と油付着量との関係に
基づいて被検査面の油付着状態を判定する油付着状態判
定手段を採用したことにより、きわめて簡単な構造で被
検査面における油の付着状態を正確に判定することがで
きる。これにより、その後の油対策指示手段における対
策指示もより適切なものにすることができ、ひいては欠
陥検出の高精度化に貢献することができる。
According to the surface defect inspection apparatus of the fourth aspect of the present invention, the same effects as those of the first to third aspects can be obtained. Surface inspection means for outputting at a level of oil, and oil adhesion state determination means for determining the oil adhesion state of the inspected surface based on the luminance obtained from the surface inspection means and the relationship between the previously obtained luminance and the oil adhesion amount. This makes it possible to accurately determine the oil adhesion state on the surface to be inspected with a very simple structure. As a result, the subsequent countermeasure instruction in the oil countermeasure instruction unit can be made more appropriate, which can contribute to higher accuracy of defect detection.

【0028】本発明の請求項5に係わる表面欠陥検査装
置によれば、請求項1〜4と同様の効果を得ることがで
きるうえに、油付着量制御手段を採用したことにより、
被検査面の余分な油を早期に絞り除去することができ、
その後に行われる被検査面の欠陥検出の高精度化に貢献
することができる。
According to the surface defect inspection apparatus according to the fifth aspect of the present invention, the same effects as those of the first to fourth aspects can be obtained.
The excess oil on the surface to be inspected can be squeezed and removed early,
This can contribute to higher accuracy of the defect detection of the inspection surface performed thereafter.

【0029】本発明の請求項6に係わる表面欠陥検査装
置によれば、請求項5と同様の効果を得ることができる
うえに、とくに、油付着量制御手段において油絞り用ロ
ールと圧接力制御手段を採用したことにより、被検査面
の油付着量に応じた油の絞り除去を行うことができ、被
検査面の油の付着量を少なく且つ均一なものにすること
ができる。
According to the surface defect inspection apparatus according to the sixth aspect of the present invention, the same effect as that of the fifth aspect can be obtained, and in particular, the oil adhesion amount control means controls the oil pressing roll and the pressing force control. By adopting the means, the oil can be squeezed and removed in accordance with the amount of oil adhered to the surface to be inspected, and the amount of oil adhered to the surface to be inspected can be reduced and made uniform.

【0030】本発明の請求項7に係わる表面欠陥検査装
置によれば、請求項1〜6と同様の効果を得ることがで
きるうえに、油蒸発制御手段を採用したことにより、被
検査面の余分な油を早期に蒸発除去することができ、そ
の後に行われる被検査面の欠陥検出の高精度化に貢献す
ることができる。
According to the surface defect inspection apparatus according to the seventh aspect of the present invention, the same effects as those of the first to sixth aspects can be obtained. Excess oil can be removed by evaporation at an early stage, which contributes to higher accuracy of a defect detection of a surface to be inspected performed later.

【0031】本発明の請求項8に係わる表面欠陥検査装
置によれば、請求項7と同様の効果を得ることができる
うえに、とくに、油蒸発制御手段において送風手段、風
量切換え手段および熱量切換え手段を採用したことによ
り、被検査面の油付着量に応じた油の蒸発除去を行うこ
とができ、被検査面の油の付着量を少なく且つ均一なも
のにすることができる。
According to the surface defect inspection apparatus according to the eighth aspect of the present invention, the same effect as that of the seventh aspect can be obtained, and in particular, in the oil evaporation control means, the blowing means, the air flow rate switching means, and the heat quantity switching means. By employing the means, the oil can be evaporated and removed in accordance with the amount of oil adhered to the surface to be inspected, and the amount of oil adhered to the surface to be inspected can be reduced and made uniform.

【0032】本発明の請求項9に係わる表面欠陥検査装
置によれば、請求項1〜8と同様の効果を得ることがで
きるうえに、油拭き取り手段を採用したことにより、被
検査面の余分な油を早期に拭き取り除去することがで
き、その後に行われる被検査面の欠陥検出の高精度化に
貢献することができる。
According to the surface defect inspection apparatus according to the ninth aspect of the present invention, the same effects as those of the first to eighth aspects can be obtained, and the use of oil wiping means makes the surface to be inspected extra. Oil can be wiped off and removed at an early stage, which can contribute to higher accuracy of the subsequent detection of defects on the surface to be inspected.

【0033】[0033]

【実施例】図1〜図13は、本発明に係わる表面欠陥検
査装置の一実施例を説明する図である。この実施例の表
面欠陥検査装置は、プレス成形された自動車の車体パネ
ルを被検査体とし、その被検査面における凹凸等の表面
欠陥をプレス工程のインラインで検査するものである。
1 to 13 are views for explaining an embodiment of a surface defect inspection apparatus according to the present invention. The surface defect inspection apparatus according to this embodiment uses a body panel of a press-formed automobile as an object to be inspected, and inspects surface defects such as irregularities on the surface to be inspected in-line in a pressing process.

【0034】図1に示す表面欠陥検査装置は、検査部E
Dにおいて、被検査体Pを図中矢印Lで示す水平方向に
一定速度で搬送するベルトコンベア等の被検査体搬送手
段1と、被検査体搬送手段1の搬送方向上流側および下
流側に照明光の照射が可能であり且つ移動する被検査体
Pの上面すなわち被検査面に対して照明光を所定の照射
角度αで照射する照明手段としての広角度照明手段2
と、広角度照明手段2を間にして被検査体搬送方向の上
流側および下流側に配置され且つ広角度照明手段2に対
向して照明光の照射角度αよりも大きい撮像角度βで照
明光の反射光を撮像する撮像手段としての上流側撮像手
段3および下流側撮像手段4と、各撮像手段3,4によ
り得た受光画像に基づいて被検査面の表面欠陥を検出す
る検査処理手段5を備えた構成になっている。
The surface defect inspection apparatus shown in FIG.
In D, the inspection object transporting means 1 such as a belt conveyor for transporting the inspection object P at a constant speed in the horizontal direction indicated by the arrow L in the drawing, and the upstream and downstream of the inspection object transporting means 1 in the transport direction. A wide-angle illuminating unit 2 as an illuminating unit that irradiates light at a predetermined irradiation angle α to an upper surface of a moving object P, that is, a surface to be inspected, which is capable of irradiating light.
Illumination light at an imaging angle β larger than the illumination angle α of the illumination light, which is disposed upstream and downstream in the transport direction of the inspection object with the wide-angle illumination means 2 interposed therebetween and faces the wide-angle illumination means 2 Upstream imaging means 3 and downstream imaging means 4 as imaging means for imaging reflected light from the light source, and inspection processing means 5 for detecting surface defects on the surface to be inspected based on the light receiving images obtained by the respective imaging means 3 and 4. It has a configuration with.

【0035】また、表面欠陥検査装置は、検査部EDに
おいて、被検査面の搬送方向における位置情報を検出す
る被検査面位置検出手段として、広角度照明手段2の上
流側および下流側に、上流側位置検出手段6および下流
側位置検出手段7を備えると共に、各位置検出手段6,
7からの位置データに基づいて、広角度照明手段2によ
る照明光の照射方向の切換えや両撮像手段3,4の切換
え、および検査処理手段5による表面欠陥の検出開始を
行うようにしている。
In the surface defect inspection apparatus, the inspection unit ED detects the position information of the surface to be inspected in the transport direction in the inspection section ED. Side position detecting means 6 and downstream position detecting means 7, and each position detecting means 6,
Based on the position data from 7, switching of the direction of illumination light irradiation by the wide-angle illumination means 2, switching between the two imaging means 3 and 4, and detection of surface defects by the inspection processing means 5 are performed.

【0036】検査処理手段5は、上流側および下流側の
位置検出手段6,7からの信号によって上流側および下
流側の撮像手段3,4からの画像入力を切換える画像入
力切換え手段5Aと、画像処理を行って表面欠陥を検出
する画像処理手段5Bと、検出結果を出力するCRTあ
るいはプリンタ等の表示手段5Cを備えている。
The inspection processing means 5 includes an image input switching means 5A for switching image input from the upstream and downstream imaging means 3 and 4 according to signals from the upstream and downstream position detecting means 6 and 7, An image processing unit 5B that performs a process to detect a surface defect and a display unit 5C such as a CRT or a printer that outputs a detection result are provided.

【0037】さらに、表面欠陥検査装置は、検査部ED
において、被検査面の種類を入力する被検査面種入力手
段8と、被検査面種入力手段8からの種類データに対応
した被検査面の曲面形状データを選定する被検査面形状
選定手段9を備えると共に、先の位置検出手段6,7か
らの位置データおよび被検査面形状選定手段9からの曲
面形状データに基づいて、照明手段および撮像手段の各
々の角度および各々の高さを制御する照明/撮像制御手
段10を備えている。
Further, the surface defect inspection apparatus includes an inspection unit ED
In the above, the inspection surface type input means 8 for inputting the type of the inspection surface, and the inspection surface shape selection means 9 for selecting the curved surface shape data of the inspection surface corresponding to the type data from the inspection surface type input means 8 And controls the angles and heights of the illumination means and the imaging means based on the position data from the position detection means 6 and 7 and the curved surface shape data from the inspection surface shape selection means 9. An illumination / imaging control unit 10 is provided.

【0038】被検査面種入力手段8は、この実施例では
被検査体Pが車体パネルであることから、各種車体パネ
ルの諸寸法を種類データとして有するものであって、具
体的には車体パネルの設計に用いたCADデータを利用
することができる。被検査面形状選定手段9は、被検査
面種入力手段8からの入力に対応して、被検査面の湾曲
度(角度,高さ)を算出し、これを曲面形状データとし
て照明/撮像制御手段10に入力する。照明/撮像制御
手段10は、広角度照明手段2の角度および高さを制御
する照明制御手段10Aと、両撮像手段3,4の角度お
よび高さを制御する撮像制御手段10Bを備えており、
被検査面に対する照明光の照射角度αおよび撮像角度β
が常に所定の値となるように、広角度照明手段2および
両撮像手段3,4を制御する。なお、被検査面形状選定
手段9や照明/撮像制御手段10は、ホストコンピュー
タに組み込むことができる。
The inspected surface type input means 8 has various dimensions of various vehicle body panels as type data since the inspected body P is a vehicle body panel in this embodiment. CAD data used for the design can be used. The inspected surface shape selecting means 9 calculates the degree of curvature (angle, height) of the inspected surface in accordance with the input from the inspected surface type input means 8, and uses this as curved surface shape data for illumination / imaging control. Input to means 10. The illumination / imaging control unit 10 includes an illumination control unit 10A that controls the angle and height of the wide-angle illumination unit 2 and an imaging control unit 10B that controls the angle and height of both imaging units 3 and 4.
Irradiation angle α and imaging angle β of illumination light to the surface to be inspected
Is controlled to a predetermined value at all times, the wide-angle illumination means 2 and both imaging means 3 and 4 are controlled. The inspection surface shape selection means 9 and the illumination / imaging control means 10 can be incorporated in a host computer.

【0039】さらに、表面欠陥検査装置は、検査部ED
よりも被検査体搬送方向の上流側において、上流側撮像
手段3に対して被検査体搬送方向の上流側に配置され且
つ被検査面の表面状態を検査する表面検査手段51と、
表面検査手段51からの被検査面の表面状態に基づいて
油の付着状態を判定する油状態判定手段52と、油状態
判定手段52からの油付着状態に基づいて、照明光の照
射角度αの変更、撮像角度βの変更、被検査面の油付着
量の制御のうちの少なくとも1つを対策指示として出力
する油対策指示手段53を備えている。
Further, the surface defect inspection apparatus includes an inspection unit ED
A surface inspection unit 51 that is arranged on the upstream side in the inspection object transport direction with respect to the upstream imaging unit 3 in the inspection object transport direction and that inspects the surface state of the inspection surface;
An oil state determining unit 52 that determines the state of oil adhesion based on the surface state of the surface to be inspected from the surface inspection unit 51, and an irradiation angle α of the illumination light based on the oil adhesion state from the oil state determining unit 52. An oil countermeasure instructing unit 53 is provided which outputs at least one of the change, the change of the imaging angle β, and the control of the oil adhesion amount on the surface to be inspected as a countermeasure instruction.

【0040】ここで、この実施例では、照明/撮像制御
手段10が、油対策指示手段53からの対策指示に基づ
いて両撮像手段3,4の角度および高さを制御するもの
となっている。表面検査手段51は、被検査面に対して
照明光を照射する照射部51Aと、被検査面からの反射
光を撮像する撮像部51Bを備えたものであって、被検
査面を光学的に検査して表面状態を輝度のレベルで出力
する。このとき、輝度のレベルは、油の付着量すなわち
油膜の厚さが増大するのに伴って高くなる傾向にある。
油付着状態判定手段52は、移動する被検査体Pの位置
を検出する位置センサ54からの信号によって処理を開
始し、表面検査手段51から得た輝度および予め求めた
輝度と油付着量との関係に基づいて被検査面の油付着状
態を判定する。
In this embodiment, the illumination / imaging control means 10 controls the angles and heights of the imaging means 3 and 4 based on the countermeasure instruction from the oil countermeasure instruction means 53. . The surface inspection means 51 includes an irradiating unit 51A for irradiating the inspection surface with illumination light, and an imaging unit 51B for imaging reflected light from the inspection surface. Inspect and output the surface condition at the luminance level. At this time, the luminance level tends to increase as the amount of oil adhesion, that is, the thickness of the oil film increases.
The oil adhesion state determination means 52 starts processing according to a signal from the position sensor 54 which detects the position of the moving inspection object P, and determines the luminance obtained from the surface inspection means 51 and the luminance obtained in advance and the oil adhesion amount. The state of oil adhesion on the inspection surface is determined based on the relationship.

【0041】上記構成における広角度照明手段2および
両撮像手段3,4をさらに具体的に説明する。
The wide-angle illumination means 2 and the two image pickup means 3 and 4 in the above configuration will be described more specifically.

【0042】広角度照明手段2は、上流側撮像手段3と
の間において、被検査体Pの被検査面の搬送方向後半部
Prに照明光を照射すると共に、下流側撮像手段4との
間において、被検査面の搬送方向前半部Pfに照明光を
照射する。このとき、広角度照明手段2は、被検査体搬
送方向に対して、その上流側および下流側の2か所の定
位置に照明光を照射する。つまり、広角度照明手段2に
よる2か所の照明光の照射位置に対して被検査体Pを通
過させることにより、表面欠陥の検査が行われる。
The wide-angle illuminating means 2 irradiates illumination light to the second half Pr in the transport direction of the surface to be inspected of the inspection object P between the wide-angle illuminating means 2 and the downstream-side imaging means 4. In step (1), illumination light is applied to the first half Pf in the transport direction of the surface to be inspected. At this time, the wide-angle illuminating means 2 irradiates the illumination light to two fixed positions on the upstream side and the downstream side in the transport direction of the inspection object. That is, the inspection of the surface defect is performed by passing the inspection object P to the two irradiation positions of the illumination light by the wide-angle illumination unit 2.

【0043】広角度照明手段2は、図2および図3に示
すように、被検査体搬送方向(L)を横切るライン状の
照明光を形成する照射手段12と、照射手段12からの
照明光を反射して照射する鏡面反射手段13と、鏡面反
射手段13を回転させて照明光の照射方向を変化させる
照明用回転駆動手段14と、各手段12,13,14を
一体的に昇降させる照明用昇降駆動手段15を備えてい
る。
As shown in FIGS. 2 and 3, the wide-angle illuminating means 2 includes an illuminating means 12 for forming a linear illuminating light transverse to the inspection object transport direction (L), and an illuminating light from the illuminating means 12. Mirror reflecting means 13 for reflecting and irradiating the light, illumination rotation driving means 14 for rotating the mirror reflecting means 13 to change the irradiation direction of the illumination light, and illumination for integrally raising and lowering each means 12, 13, 14 Lifting drive means 15 is provided.

【0044】照明用昇降駆動手段15は、被検査体搬送
手段1の上側の図示しない梁に、スライド体16を上下
動させる図外のモータを内蔵した駆動機構17を備えて
いる。スライド体16の下端部には、フレーム(図示
略)が設けてあり、このフレームにより照射手段12、
鏡面反射手段13および照明用回転駆動手段14を保持
している。
The illumination raising / lowering drive means 15 is provided with a drive mechanism 17 having a built-in motor (not shown) for vertically moving the slide body 16 on a beam (not shown) above the inspection object transporting means 1. At the lower end of the slide body 16, a frame (not shown) is provided.
It holds the mirror reflection means 13 and the illumination rotation drive means 14.

【0045】照射手段12は、図示しない光源からの光
を伝送する光ファイバーケーブル18と、レンズによる
光学機構を内蔵し且つ光ファイバーケーブル18からの
光をライン状に集光するライトガイド19とを4組備え
ると共に、これらを直列に配置したものであって、ライ
ン状に形成した照明光を下向きに照射する。このよう
に、別の固定部位に設置した光源から光ファイバーケー
ブル18でライトガイド19に光を伝送して、ライン状
の照明光を形成する照射手段12とすることにより、広
角度照明手段2における可動部位の構造の簡略化や軽量
化が成されていると共に、広範囲の被検査面に対処し得
るようになっている。
The irradiating means 12 includes four sets of an optical fiber cable 18 for transmitting light from a light source (not shown) and a light guide 19 having a built-in optical mechanism using a lens and condensing the light from the optical fiber cable 18 into a line. In addition, these are arranged in series, and are illuminated downward with linearly formed illumination light. As described above, light is transmitted from the light source installed at another fixed portion to the light guide 19 via the optical fiber cable 18 to form the illuminating unit 12 that forms linear illumination light. The structure of the part is simplified and the weight is reduced, and a wide range of surfaces to be inspected can be dealt with.

【0046】この照射手段12には、例えば、ハロゲン
ランプ、メタルハライドランプおよびキセノンメタルハ
ライドランプ等の強力な光源が用いられる。また、比較
的大きい幅(200〜300mm程度)のライトガイド
19を用いることにより、ライトガイド19の数自体を
も少なく抑えるようにしている。
For the irradiating means 12, for example, a powerful light source such as a halogen lamp, a metal halide lamp, and a xenon metal halide lamp is used. Further, by using the light guide 19 having a relatively large width (about 200 to 300 mm), the number of the light guides 19 itself is reduced.

【0047】鏡面反射手段13は、鏡面体を主体とする
軽量なものであって、照射手段12の下側すなわち照明
光の照射口に沿って配置され、フレームに設けた照明用
回転駆動手段14によって一端部が保持してあると共
に、同じくフレームに設けたベアリング20によって他
端部が回転自在に保持してある。照明用回転駆動手段1
4は、モータ類が用いられ、鏡面反射手段13をその長
手方向の軸回りに180度以上の範囲で回転させる。
The mirror reflecting means 13 is a lightweight one mainly composed of a mirror body, is disposed below the irradiating means 12, that is, along the irradiation port of the illuminating light, and is provided with an illumination rotary driving means 14 provided on a frame. , And the other end is rotatably held by a bearing 20 also provided on the frame. Lighting rotation driving means 1
A motor 4 is used to rotate the mirror reflection means 13 around its longitudinal axis in a range of 180 degrees or more.

【0048】上記の構成を備えた広角度照明手段2は、
先述した照明/撮像制御手段10の照明制御手段10A
からの信号により、照明用回転駆動手段14および照明
用昇降駆動手段15が所定の方向に駆動され、被検査体
搬送方向の上流側および下流側に対する照明光の照射方
向の切換えと、移動する曲面状の被検査面に対して照射
角度αを常に所定の値にするための照射方向(角度)お
よび高さの調整が行われる。
The wide angle illuminating means 2 having the above configuration is
The illumination control means 10A of the illumination / imaging control means 10 described above.
, The illumination rotation drive means 14 and the illumination elevation drive means 15 are driven in a predetermined direction, and the illumination light irradiation directions are switched with respect to the upstream and downstream sides of the test object transport direction, and the moving curved surface is moved. The irradiation direction (angle) and the height are adjusted so that the irradiation angle α is always set to a predetermined value with respect to the inspection target surface.

【0049】両撮像手段3,4は、図2に示すように、
ほぼ同一の構成を備えて相対向する状態に配置されてお
り、図4に上流側撮像手段3を示すように、照明光の反
射光を受光するカメラとしての複数のCCDカメラ21
と、各CCDカメラ21を回動させて撮像方向を変化さ
せる撮像用回転駆動手段22と、各CCDカメラ21お
よび撮像用回転駆動手段22を一体的に昇降させる撮像
用昇降駆動手段23を備えている。
As shown in FIG. 2, both imaging means 3 and 4
As shown in FIG. 4, the plurality of CCD cameras 21 serving as cameras for receiving reflected light of the illumination light are arranged so as to face each other with substantially the same configuration.
And an imaging rotation drive unit 22 that rotates each CCD camera 21 to change the imaging direction, and an imaging elevation drive unit 23 that integrally moves each CCD camera 21 and imaging rotation drive unit 22 up and down. I have.

【0050】撮像用昇降駆動手段23は、被検査体搬送
手段1の上側の図示しない梁に、モータ24を含む駆動
機構25を備えると共に、駆動機構25によって上下に
駆動されるフレーム26を備え、フレーム26によって
被検査体搬送方向を横切る方向に配置したビーム27を
保持している。このビーム27は、フレーム26の一方
側において、撮像用回転駆動手段22により一端部が保
持してあると共に、フレーム26の他端側において、他
端部が回転自在に保持してあり、その上面に、4個のC
CDカメラ21が撮像方向を同一にして等間隔で取付け
てある。撮像用回転駆動手段22は、モータ類が用いら
れ、ビーム27とともに各CCDカメラ21を一斉に回
動させる。このように、複数のCCDカメラ21を用い
ることにより、撮像手段3,4の構造の簡略化や軽量化
が成されていると共に、広範囲の被検査面に対処し得る
ようになっている。
The imaging elevation drive means 23 includes a drive mechanism 25 including a motor 24 on a beam (not shown) above the inspection object transporting means 1 and a frame 26 driven up and down by the drive mechanism 25. The frame 26 holds a beam 27 arranged in a direction crossing the inspection object transport direction. One end of the beam 27 is held on one side of the frame 26 by the rotation driving means 22 for imaging, and the other end is rotatably held on the other end of the frame 26. And four C
The CD cameras 21 are mounted at equal intervals with the same imaging direction. The imaging rotation drive unit 22 uses motors, and simultaneously rotates the CCD cameras 21 together with the beam 27. As described above, by using the plurality of CCD cameras 21, the structures of the imaging units 3 and 4 are simplified and lightened, and a wide range of surfaces to be inspected can be dealt with.

【0051】上記の構成を備えた前後の撮像手段3,4
は、先述した照明/撮像制御手段10の撮像制御手段1
0Bからの信号により、撮像用回転駆動手段22および
撮像用昇降駆動手段23が所定の方向に駆動され、移動
する曲面状の被検査面に対して撮像角度βを常に所定の
値にするための撮像方向(角度)および高さの調整が行
われる。
The front and rear imaging means 3 and 4 having the above configuration
Is the imaging control unit 1 of the illumination / imaging control unit 10 described above.
0B, the imaging rotation drive unit 22 and the imaging elevation drive unit 23 are driven in a predetermined direction, and the imaging angle β is always set to a predetermined value with respect to the moving curved inspection surface. Adjustment of the imaging direction (angle) and height is performed.

【0052】ここで、上記の構成において、広角度照明
手段2は、被検査面が中間を頂部領域とする曲面状を成
すことから、照明光の照射ポイントの接線に対する照射
角度αが10度以下の低角度となるように照射方向(角
度)および高さが制御され、他方、各撮像手段3,4
は、広角度照明手段2による照射位置に対向して、照明
光の照射ポイントの接線に対する撮像角度βが10〜3
0度の範囲すなわち照射角度αよりも大きい中間角度と
なるように撮像方向(角度)および高さが制御される。
Here, in the above configuration, the wide-angle illuminating means 2 has an irradiation angle α of 10 degrees or less with respect to the tangent line of the irradiation point of the illumination light because the surface to be inspected has a curved shape with the middle being the top region. The irradiation direction (angle) and the height are controlled so that the angle is low, while each of the imaging units 3 and 4 is controlled.
Is opposite to the irradiation position by the wide-angle illumination means 2, and the imaging angle β with respect to the tangent of the irradiation point of the illumination light is 10 to 3
The imaging direction (angle) and height are controlled so as to be in a range of 0 degrees, that is, an intermediate angle larger than the irradiation angle α.

【0053】上記のような照射角度αおよび撮像角度β
を設定することで、真横に近い低角度で照明光が照射さ
れると共に、凹凸等の表面欠陥による乱反射光を高輝度
で捕えることができる。
The irradiation angle α and the imaging angle β as described above
By setting, it is possible to irradiate the illumination light at a low angle close to the side, and to capture irregularly reflected light due to a surface defect such as unevenness with high luminance.

【0054】この原理を図5に基づいて説明する。広角
度照明手段2から被検査体Pの被検査面に対して照射角
度αで照明光を照射すると、表面欠陥の無い部分で反射
した光は、照射角度αと同じ反射角度(α)の正反射光
となる。これに対して、傾斜角度θを有する凸状の表面
欠陥Qで反射した光は、照射角度αよりも大きい反射角
度(α+θ=β)の乱反射光となる。つまり、所定の照
射角度αで照射した照明光のうち、表面欠陥の無い部分
に当たった正反射光は、撮像手段3,4に受光されず、
表面欠陥に当たって照射角度αよりも大きい反射角度
(α+θ=β)の乱反射光のみが撮像手段3,4に受光
される。これにより、撮像手段3,4により、被検査面
の表面欠陥を高輝度で捕らえることができる。
This principle will be described with reference to FIG. When the wide-angle illuminating means 2 irradiates the inspection surface of the inspection object P with illumination light at the illumination angle α, the light reflected at the portion having no surface defect has a positive reflection angle (α) equal to the illumination angle α. It becomes reflected light. On the other hand, light reflected by the convex surface defect Q having the inclination angle θ is irregularly reflected light having a reflection angle (α + θ = β) larger than the irradiation angle α. In other words, among the illumination light irradiated at the predetermined irradiation angle α, the specular reflection light hitting a portion having no surface defect is not received by the imaging units 3 and 4,
Only the irregularly reflected light having a reflection angle (α + θ = β) larger than the irradiation angle α upon the surface defect is received by the imaging means 3 and 4. As a result, surface defects on the surface to be inspected can be captured with high luminance by the imaging means 3 and 4.

【0055】このとき、広角度照明手段2による照明光
の照射角度αは、被検査面に対して10度以下という低
角度であるため、反射光分布の指向性が高まるシーン現
象によって高い反射率が得られる。これにより、欠陥部
以外の散乱表面による反射角度の反射光分布と、表面欠
陥Qによる反射角度の反射光分布とが、明確に区別でき
るようになる。そして、図6に示すように、照明光の照
射角度αが10度以下であれば、図5に示すように表面
欠陥Qの画像が高輝度で得られることになり、この傾向
は、図6に示すように照射角度αが小さいほど顕著にな
る。
At this time, since the irradiation angle α of the illumination light by the wide-angle illumination means 2 is as low as 10 degrees or less with respect to the surface to be inspected, a high reflectivity due to a scene phenomenon in which the directivity of the reflected light distribution increases. Is obtained. This makes it possible to clearly distinguish the distribution of the reflected light at the angle of reflection by the scattering surface other than the defect portion and the distribution of the reflected light at the angle of reflection by the surface defect Q. Then, as shown in FIG. 6, if the irradiation angle α of the illumination light is 10 degrees or less, an image of the surface defect Q can be obtained with high luminance as shown in FIG. As shown in the figure, the smaller the irradiation angle α becomes, the more remarkable.

【0056】また、撮像手段3,4で撮像する際の感度
は、撮像角度βが反射角度α+θの乱反射光を捕えるよ
うな角度のときが最も高くなるが、反射光は角度的に分
布をもっており、さらに、表面欠陥Qの傾斜角度θが緩
やかなほど正反射角度と乱反射角度とが近づくため、撮
像角度βとしては、正反射光の反射角度からできるだけ
遠ざけ、かつ、乱反射光の反射角度(α+θ)にできる
だけ近づけた角度が好ましい。例えば、図7に示すよう
に、撮像角度βを10度〜30度の範囲に設定すること
により、欠陥等を高輝度で捕えることができる。
The sensitivity at the time of image pickup by the image pickup means 3 and 4 is highest when the image pickup angle β is an angle at which irregularly reflected light having a reflection angle α + θ is captured, but the reflected light has an angular distribution. Furthermore, since the regular reflection angle and the irregular reflection angle become closer as the inclination angle θ of the surface defect Q becomes gentler, the imaging angle β is set as far as possible from the reflection angle of the regular reflection light, and the reflection angle of the irregular reflection light (α + θ). ) Is preferred. For example, as shown in FIG. 7, by setting the imaging angle β in a range of 10 degrees to 30 degrees, a defect or the like can be captured with high luminance.

【0057】なお、撮像手段3,4のCCDカメラ21
は、被検査体Pの被検査面に対して角度をもって設置さ
れることから、被写界深度が浅く前後端の画像にぼけを
生じる場合がある。この場合、照明光の照度を高くして
強力に照射する一方、CCDカメラ21の絞りを絞って
できるだけ被写界深度を深くすることで、傾斜角度θが
緩やかで高さが非常に低い欠陥部でも、この欠陥部のみ
を高輝度部分として捕えることができる。
Incidentally, the CCD camera 21 of the imaging means 3, 4
Is installed at an angle with respect to the inspection surface of the inspection object P, so that the depth of field is shallow and the images at the front and rear ends may be blurred. In this case, while increasing the illuminance of the illuminating light and irradiating it strongly, the aperture of the CCD camera 21 is squeezed to increase the depth of field as much as possible, so that the defect angle is gentle and the height is very low. However, only this defective portion can be captured as a high luminance portion.

【0058】次に、上記構成を備えた表面欠陥検査装置
の作用を説明する。なお、当該表面欠陥検査装置は、先
にも述べたように車体パネルである被検査体Pをプレス
工程においてインラインで検査するものであるため、被
検査体Pの被検査面には誤検出の原因になり得る油が付
着しており、このような状態の被検査面に対して検査を
行うことになる。そこで、当該表面欠陥検査装置では、
先に被検査面の表面状態を検査し、その検査結果を検査
部EDによる表面欠陥の検出過程に用いるのであるが、
まずは検査部EDによる表面欠陥の検出過程について説
明する。
Next, the operation of the surface defect inspection apparatus having the above configuration will be described. As described above, the surface defect inspection apparatus inspects the object P, which is a vehicle body panel, in-line in the pressing process. Oil that may be a cause is attached, and the inspection is performed on the inspection surface in such a state. Therefore, in the surface defect inspection apparatus,
First, the surface condition of the surface to be inspected is inspected, and the inspection result is used in a process of detecting a surface defect by the inspection unit ED.
First, a process of detecting a surface defect by the inspection unit ED will be described.

【0059】被検査体搬送手段1によって被検査体Pが
搬入されてくると、この被検査体Pを上流側位置検出手
段6により検出し、広角度照明手段2から被検査体Pの
搬送方向後半部Prにライン状の照明光を照射すると共
に、上流側撮像手段3による撮像を開始する。この照明
光の照射および撮像は、搬送方向後半部Prのパネル中
央側から開始する。
When the inspection object P is carried in by the inspection object transport means 1, the inspection object P is detected by the upstream position detecting means 6, and the transport direction of the inspection object P from the wide angle illumination means 2 is detected. The second half Pr is irradiated with linear illumination light, and imaging by the upstream imaging means 3 is started. The irradiation of the illumination light and the imaging are started from the center of the panel in the second half Pr in the transport direction.

【0060】その一方では、被検査面種入力手段8から
被検査面形状選定手段9に被検査面の種類データが入力
され、被検査面形状選定手段9において、種類データに
対応した被検査面の曲面形状データを選定してこれを照
明/撮像制御手段10に入力し、照明/撮像制御手段1
0(10A,10B)により、被検査面に対する広角度
照明手段2の照明光の照射角度α、および被検査面に対
する上流側撮像手段3の撮像角度βを所定の値にする制
御を行っており、被検査体Pの移動に伴って、その被検
査面に対する照明光の照射角度αおよび撮像角度βが常
に所定の値に維持されるように、広角度照明手段2の照
射方向(角度)および高さと、上流側撮像手段3の撮像
方向(角度)および高さを変化させている。
On the other hand, the type data of the inspected surface is input from the inspected surface type input means 8 to the inspected surface shape selecting means 9, and the inspected surface shape selecting means 9 checks the inspected surface corresponding to the type data. Is selected and input to the illumination / imaging control means 10, and the illumination / imaging control means 1 is selected.
With 0 (10A, 10B), control is performed such that the irradiation angle α of the illumination light of the wide-angle illumination unit 2 with respect to the inspection surface and the imaging angle β of the upstream imaging unit 3 with respect to the inspection surface are set to predetermined values. The irradiation direction (angle) of the wide-angle illuminating means 2 and the irradiation angle α and the imaging angle β of the illumination light with respect to the surface to be inspected are always maintained at predetermined values with the movement of the object P. The height, the imaging direction (angle) and the height of the upstream imaging means 3 are changed.

【0061】また、上流側撮像手段3により撮像された
画像は、検査処理手段5において、画像入力切換え手段
5Aを介して画像処理手段5Bに入力され、画像処理が
行われる。画像処理手段5Bは、図8に処理フローを示
すように、ステップS1において画像の取り込みが行わ
れると、ステップS2においてエッジ抽出処理を行った
のち、ステップS3において2値化処理を行い、ステッ
プS4において欠陥抽出処理を行う。このようにして欠
陥抽出が成された画像は、表示手段5Cにおいて表示さ
れる。
The image picked up by the upstream image pick-up means 3 is input to the image processing means 5B via the image input switching means 5A in the inspection processing means 5, where the image processing is performed. As shown in the processing flow of FIG. 8, when an image is captured in step S1, the image processing unit 5B performs edge extraction in step S2, performs binarization in step S3, and performs step S4. Performs a defect extraction process. The image from which the defect has been extracted is displayed on the display unit 5C.

【0062】次に、被検査体Pの搬送方向後半部Prの
検査が終了すると、移動し続ける被検査体Pが下流側位
置検出手段7により検出され、その検出信号が検査処理
手段5の画像入力切換え手段5Aおよび照明/撮像制御
手段10に入力される。これにより、広角度照明手段2
からの照明光の照射方向が下流側に速やかに切換えら
れ、ライン状の照明光を被検査体Pの搬送方向前半部P
fに照射すると共に、下流側撮像手段4による撮像を開
始する。この照明光の前方照射および撮像は、搬送方向
前半部Pfのパネル前端側から開始される。
Next, when the inspection of the second half Pr of the inspection object P in the transport direction is completed, the inspection object P that continues to move is detected by the downstream position detection means 7, and the detection signal is output from the inspection processing means 5. It is input to the input switching means 5A and the illumination / imaging control means 10. Thereby, the wide angle illumination means 2
The irradiation direction of the illumination light from is quickly switched to the downstream side, and the linear illumination light is transferred to the first half P of the inspection object P in the transport direction.
At the same time, the imaging by the downstream imaging means 4 is started. The forward irradiation of the illumination light and the imaging are started from the front end side of the panel in the first half part Pf in the transport direction.

【0063】そして、先の搬送方向後半部Prの検査時
と同様に、被検査体Pの移動に伴って、被検査面に対す
る照明光の照射角度αおよび撮像角度βが常に所定の値
に維持されるように、広角度照明手段2による照明光の
照射方向(角度)および高さと、下流側撮像手段4の撮
像方向(角度)および高さを変化させる。また、検査処
理手段5では、画像入力切換え手段5Aにおいて、上流
側撮像手段3からの入力画像を下流側撮像手段4からの
入力画像に切換え、その画像処理を行う。
Then, similarly to the previous inspection of the rear half Pr in the transport direction, the irradiation angle α and the imaging angle β of the illumination light with respect to the inspection surface are always maintained at predetermined values as the inspection object P moves. As a result, the irradiation direction (angle) and height of the illumination light by the wide-angle illumination unit 2 and the imaging direction (angle) and height of the downstream-side imaging unit 4 are changed. In the inspection processing means 5, the image input switching means 5A switches the input image from the upstream imaging means 3 to the input image from the downstream imaging means 4, and performs the image processing.

【0064】なお、被検査体Pの移動に伴う広角度照明
手段2の照射方向(角度)および高さの制御、ならびに
各撮像手段3,4による撮像方向(角度)および高さの
制御としては、図9に下流側撮像手段4による撮像を行
う場合を示すように、撮像角度βおよび撮像高さ△Z
2、ならびに照射角度αおよび照射高さ△Z1をいずれ
も階段状にパルス的に切り替えて制御する。このような
制御手法とするのは、広角度照明手段2によるライン状
の照明光の照射角度および撮像手段3,4の撮像角度
は、ともに検査可能な角度に幅(マージン)をもってい
るため、検査不可能となる角度に外れることのないよう
に制御すればよいからであり、また、高さについては、
ライン状の照明光がある程度の許容幅(指向性)をもっ
ているため、被検査体Pの曲面によって変化する高さに
合わせて、照明光が被検査面を照射できるように制御す
ればよいからである。ただし、これらの角度α,βおよ
び高さ△Z2,△Z1を被検査体Pの表面に沿ってリニ
アに制御すればより最適な検査を行うことができ、ま
た、当該表面欠陥検査装置ではリニアに制御することも
当然可能である。
The control of the irradiation direction (angle) and height of the wide-angle illumination means 2 accompanying the movement of the object P, and the control of the imaging direction (angle) and height by each of the image pickup means 3 and 4 are as follows. 9, the imaging angle β and the imaging height ΔZ as shown in FIG.
2, and the irradiation angle α and the irradiation height ΔZ1 are controlled by switching stepwise in a pulsed manner. Such a control method is performed because the irradiation angle of the linear illumination light by the wide-angle illumination unit 2 and the imaging angle of the imaging units 3 and 4 both have a width (margin) at which the inspection can be performed. It is only necessary to control so as not to deviate to an impossible angle, and for the height,
Since the line-shaped illumination light has a certain allowable width (directivity), it is sufficient to control the illumination light to irradiate the surface to be inspected in accordance with the height that changes depending on the curved surface of the object P. is there. However, if the angles α and β and the heights △ Z2 and △ Z1 are linearly controlled along the surface of the inspection object P, a more optimal inspection can be performed. Of course.

【0065】このようにして、当該表面欠陥検査装置
は、被検査体Pが車体パネルであり、被検査面が曲面状
であり、搬送方向の前後で被検査面の傾斜方向が逆向き
となる場合であっても、被検査面を前後の検査範囲に分
割し、広角度照明手段2と上流側の撮像手段3とで被検
査面の後半部Prを検査したのち、向きを変えた広角度
照明手段2と下流側の撮像手段4とで被検査面の前半部
Pfを検査するようにしている。これにより、広角度照
明手段2および両撮像手段3,4の高さを大きく変えず
に、曲面状の被検査面に対して照明光の所定の照射角度
αおよび撮像角度βを維持し得ることとなり、インライ
ンにおいて、被検査体Pを搬送しながら、曲面形状の被
検査面全域における表面欠陥を高精度で且つ確実に検出
し得るものとなっている。
As described above, in the surface defect inspection apparatus, the inspection object P is a vehicle body panel, the inspection surface is curved, and the inclination direction of the inspection surface is opposite before and after the transport direction. Even in this case, the inspection surface is divided into front and rear inspection ranges, and the wide-angle illumination unit 2 and the imaging unit 3 on the upstream side inspect the rear half Pr of the inspection surface, and then change the direction of the wide angle. The first half Pf of the surface to be inspected is inspected by the illumination means 2 and the imaging means 4 on the downstream side. Thereby, the predetermined irradiation angle α and the imaging angle β of the illumination light with respect to the curved inspection surface can be maintained without largely changing the heights of the wide-angle illumination unit 2 and the imaging units 3 and 4. Thus, in-line, while the test object P is being conveyed, a surface defect in the entire surface of the curved test surface can be detected with high accuracy and reliability.

【0066】ところで、プレス成形された被検査体Pの
被検査面には、先述したように油が付着しており、図1
1(a)に示すような油付着面の受光画像を画像処理し
た場合、図11(b)に示すように、油付着部分の境界
部がエッジとして誤検出される。つまり、図10に示す
ように、被検査面における照明光の拡散反射光は、正反
射光の部分で強度が明らかに大きくなるのであるが、図
10(a)に示す油の無い面に対して、図10(b)に
示す油付着面では、全体の強度が減少するとともに正反
射光の部分の強度が増大する。このため、被検査面に油
が過剰に付着していると、撮像手段3,4で捕らえる光
の強度が減少し、表面欠陥の検出精度が低下することに
なる。
By the way, as described above, the oil adheres to the inspection surface of the press-formed inspection object P, as shown in FIG.
When the light receiving image of the oil adhering surface as shown in FIG. 1A is image-processed, the boundary of the oil adhering portion is erroneously detected as an edge as shown in FIG. 11B. That is, as shown in FIG. 10, the intensity of the diffuse reflection light of the illumination light on the surface to be inspected clearly increases at the portion of the specular reflection light. Thus, on the oil-adhered surface shown in FIG. 10B, the overall intensity decreases and the intensity of the specularly reflected light portion increases. For this reason, if the oil is excessively attached to the surface to be inspected, the intensity of the light captured by the imaging units 3 and 4 decreases, and the detection accuracy of surface defects decreases.

【0067】このような検出精度の低下に対しては、図
10において、照明光の照射角度をαとし、撮像角度を
βとし、油の無い面の拡散反射光の強度をΦ1とし、油
付着面の拡散反射光の強度をΦ2とした場合、撮像手段
3,4の受光強度が減少する油付着面を精度良く検査す
るには、油の無い面の拡散反射光の強度Φ1と油付着面
の拡散反射光の強度Φ2との差ΔΦを小さくすれば良
く、その差ΔΦを小さくするには、撮像角度βを照明光
の正反射角度(α)に近付ければ良い。
In order to reduce such detection accuracy, in FIG. 10, the irradiation angle of the illumination light is α, the imaging angle is β, the intensity of the diffuse reflection light on the oil-free surface is Φ1, Assuming that the intensity of the diffuse reflection light on the surface is Φ2, in order to accurately inspect the oil-adhered surface where the received light intensity of the imaging means 3 and 4 decreases, the intensity of the diffuse reflection light Φ1 on the oil-free surface and the oil-adhered surface The difference ΔΦ from the intensity Φ2 of the diffuse reflection light may be reduced, and the difference ΔΦ may be reduced by making the imaging angle β closer to the regular reflection angle (α) of the illumination light.

【0068】そこで、当該表面欠陥検査装置では、表面
検査手段51において、検査前の被検査面の表面状態を
検査し、油状態判定手段52において、表面検査手段5
1からの被検査面の表面状態に基づいて油の付着量や分
布等の付着状態を判定し、油対策指示手段53におい
て、油状態判定手段52からの油付着状態に基づいて、
撮像角度βの変更を対策指示として選択して出力する。
Therefore, in the surface defect inspection apparatus, the surface inspection means 51 inspects the surface state of the surface to be inspected before the inspection, and the oil state determination means 52 inspects the surface inspection means 5.
1 is determined based on the surface state of the surface to be inspected from No. 1 and the oil adhesion state and distribution is determined by the oil countermeasure instructing means 53 based on the oil adhesion state from the oil state determination means 52.
The change of the imaging angle β is selected and output as a countermeasure instruction.

【0069】油対策指示手段53からの対策指示は、検
査部EDにおける照明/撮像制御手段10の撮像制御手
段10Bに取り込まれ、撮像制御手段10Bにおいて、
図13に示すような輝度に対する撮像角度の制御特性に
基づいて、撮像角度βが小さくなるように撮像手段3,
4を制御する。これにより、撮像角度βが照明光の正反
射角度(α)に近付くこととなり、撮像手段3,4の受
光強度が増大して油付着面における欠陥検出が精度良く
行われる。また、撮像角度βを小さくすると、図11
(a)に示す受光画像に対して図12(a)に示すよう
な受光画像が得られ、この受光画像を画像処理すれば、
図12(b)に示すように、油付着部分の境界部が無く
なり、表面欠陥を高輝度で捕らえることができる。
The countermeasure instruction from the oil countermeasure instruction unit 53 is taken into the imaging control unit 10B of the illumination / imaging control unit 10 in the inspection unit ED.
Based on the control characteristics of the imaging angle with respect to the luminance as shown in FIG.
4 is controlled. As a result, the imaging angle β approaches the regular reflection angle (α) of the illumination light, the light receiving intensity of the imaging units 3 and 4 increases, and the defect detection on the oil-adhered surface is performed with high accuracy. Further, when the imaging angle β is reduced, FIG.
A light receiving image as shown in FIG. 12A is obtained from the light receiving image shown in FIG.
As shown in FIG. 12B, the boundary between the oil-adhered portions is eliminated, and surface defects can be captured with high luminance.

【0070】このようにして、当該表面欠陥検査装置で
は、被検査面に油が過剰に付着している場合であって
も、検査前に油の付着状態を判定し、その付着状態に応
じて撮像手段3,4の撮像角度βを変更することで、誤
検出の原因となる過剰な油の影響を極力少なくして検査
を行うことができ、インラインにおいて表面欠陥を高精
度で且つ確実に検出し得るものとなっている。
As described above, in the surface defect inspection apparatus, even if the oil is excessively adhered to the surface to be inspected, the oil adhesion state is determined before the inspection, and the oil adhesion state is determined according to the adhesion state. By changing the imaging angle β of the imaging means 3 and 4, the inspection can be performed while minimizing the influence of excessive oil which causes erroneous detection, and surface defects can be detected with high accuracy and reliability in-line. It can be done.

【0071】なお、上記実施例では、油対策指示手段5
3からの対策指示によって撮像角度βを小さくするよう
に制御する場合を説明したが、照明光の照射角度αを大
きくする制御によって撮像角度βを照明光の正反射角度
(α)に近付けることも可能であり、また、撮像角度β
および照射角度αの両方を変化させることも当然可能で
ある。
In the above embodiment, the oil measure instructing means 5
Although the case where the imaging angle β is controlled to be small according to the countermeasure instruction from 3 has been described, the imaging angle β may be made closer to the regular reflection angle (α) of the illumination light by controlling the irradiation angle α of the illumination light to be large. And the imaging angle β
Of course, it is also possible to change both the irradiation angle α and the irradiation angle α.

【0072】さらに、上記実施例では、全体が平坦な被
検査体搬送手段1を用いた例を説明したが、被検査面が
曲面状である場合には、被検査体搬送手段1に、上流側
撮像手段3の下側に対応する位置で上流側に下り傾斜し
た傾斜部、および/または下流側撮像手段4の下側に対
応する位置で下流側に下り傾斜した傾斜部を設けた構成
とし、この構成により撮像手段3,4の下降限を拡大し
て、曲面状の被検査面に対して所定の撮像角度βを確保
しやすくすることも可能である。
Further, in the above-described embodiment, an example in which the inspection object transporting means 1 is entirely flat has been described. However, when the inspection target surface is a curved surface, the inspection object transporting means 1 A configuration is provided in which an inclined portion inclined downward toward the upstream at a position corresponding to the lower side of the side imaging means 3 and / or an inclined portion inclined downward toward the downstream at a position corresponding to the lower side of the downstream imaging means 4. With this configuration, it is also possible to enlarge the lowering limit of the imaging means 3 and 4 to easily secure a predetermined imaging angle β with respect to the curved surface to be inspected.

【0073】図14〜図16は、本発明に係わる表面欠
陥検査装置の他の実施例を説明する図である。なお、表
面欠陥検査装置の検査部EDは、基本的に先の実施例と
同じ構成であるため説明を省略する。
FIGS. 14 to 16 are diagrams for explaining another embodiment of the surface defect inspection apparatus according to the present invention. Note that the inspection unit ED of the surface defect inspection apparatus has basically the same configuration as that of the previous embodiment, and a description thereof will be omitted.

【0074】図14は、当該表面欠陥検査装置を含むプ
レスラインを示す図であって、図中右側となる被検査体
搬送手段1の上流側に、トランスファ装置61が設けて
あると共に、検査部EDよりも下流側に、ロボット等で
構成される被検査体分別装置62が設けてある。被検査
体分別装置62は、検査部EDの検査処理手段5による
検査結果が入力され、被検査体Pを表面欠陥の無い良品
と表面欠陥のある不良品に分別するものである。
FIG. 14 is a view showing a press line including the surface defect inspection apparatus. A transfer apparatus 61 is provided on the right side of the drawing, on the upstream side of the test object transporting means 1, and an inspection unit. On the downstream side of the ED, an inspection object sorting device 62 including a robot or the like is provided. The inspection object classification device 62 receives the inspection results from the inspection processing means 5 of the inspection unit ED, and separates the inspection object P into non-defective products having no surface defects and defective products having surface defects.

【0075】トランスファ装置61は、図外の洗浄工程
で洗浄された鋼板である被検査体Pを搬入し、同被検査
体Pを所定形状にプレス成形して搬出するものであっ
て、図15に示すように、鋼板である被検査体Pを上下
から挟んで回転することで同被検査体Pを送る複数台の
油絞り用ロール63と、被検査面に対する油絞り用ロー
ル63の圧接力を制御する圧接力制御手段64と、搬送
コンベア65と、プレス装置66を備えた構成になって
いる。
The transfer device 61 carries in the test object P, which is a steel plate washed in a cleaning step (not shown), press-forms the test object P into a predetermined shape, and carries it out. As shown in the figure, a plurality of oil drawing rolls 63 for feeding the object P by rotating the object P, which is a steel plate, from above and below, and the pressing force of the oil drawing roll 63 against the surface to be inspected. , A conveyor 65, and a press device 66.

【0076】そして、この実施例の表面欠陥検査装置で
は、油絞り用ロール63および圧接力制御手段64が、
油対策指示手段53からの対策指示に基づいて被検査面
の油付着量を制御する油付着量制御手段67を構成して
いる。また、表面検査手段51は、トランスファ装置6
1から搬出された被検査体Pの被検査面を検査するよう
に配置してある。さらに、油状態判定手段52および油
対策指示手段53は、ホストコンピュータ68に組み込
まれている。この油対策指示手段53は、油付着量制御
手段67に対して過剰な油を除去する付着量制御を対策
指示として出力すると共に、先の実施例で説明した検査
部EDの照明/撮像制御手段10に対しても、照明光の
照射角度αや撮像角度βの変更を対策指示として出力す
ることができる。
In the surface defect inspection apparatus of this embodiment, the oil squeezing roll 63 and the pressing force control means 64
An oil adhering amount control means 67 for controlling the oil adhering amount on the surface to be inspected based on a countermeasure instruction from the oil countermeasure instruction means 53 is provided. In addition, the surface inspection means 51 includes the transfer device 6
1 is arranged so as to inspect the surface to be inspected of the object P to be inspected carried out from 1. Further, the oil state determining means 52 and the oil measure instructing means 53 are incorporated in the host computer 68. The oil countermeasure instructing unit 53 outputs the adhesion amount control for removing excess oil to the oil adhesion amount control unit 67 as a countermeasure instruction, and the illumination / imaging control unit of the inspection unit ED described in the previous embodiment. The change of the illumination angle α and the imaging angle β of the illumination light can be output to the counterpart 10 as a countermeasure instruction.

【0077】上記構成を備えた表面欠陥検査装置は、プ
レス成形後の被検査体Pに対して、表面検査手段51に
より被検査面の表面状態を光学的に検査し、油状態判定
手段52により油の付着量や分布等の付着状態を判定
し、油対策指示手段53により油付着量制御手段67に
対して過剰な油を除去する対策指示を出力する。
The surface defect inspection apparatus having the above-described configuration optically inspects the surface state of the surface to be inspected by the surface inspection means 51 on the inspection object P after the press molding, and the oil state determination means 52 The adhesion state such as the amount and distribution of oil adhesion is determined, and the oil countermeasure instruction means 53 outputs a countermeasure instruction for removing excess oil to the oil adhesion amount control means 67.

【0078】油付着量制御手段67では、圧接力制御手
段64において、図16に示すような輝度およびロール
圧接力の特性に基づいて決定した指令を油絞り用ロール
63の駆動部に出力して、被検査面に対する油絞り用ロ
ール63の圧接力を変化させる。つまり、油の付着量が
所定値より多い場合には圧接力を増大させ、油の付着量
が所定値より少ない場合には圧接力を減少させる。これ
により、次の検査対象となる鋼板の被検査体Pに対して
油絞り用ロール63による過剰な油の絞り除去が行わ
れ、油の付着量が少なく且つ均一なものとなる。したが
って、その後に行われる検査部EDでの被検査面の欠陥
検出において、誤検出の原因となる過剰な油の影響が大
幅に低減されることとなる。
In the oil adhering amount controlling means 67, the pressing force controlling means 64 outputs a command determined based on the characteristics of the luminance and the roll pressing force as shown in FIG. Then, the pressing force of the oil squeezing roll 63 against the surface to be inspected is changed. That is, when the amount of oil adhesion is larger than a predetermined value, the pressing force is increased, and when the amount of oil adhesion is smaller than the predetermined value, the pressing force is decreased. As a result, excess oil is squeezed and removed by the oil squeezing roll 63 from the inspection object P of the steel plate to be inspected next, and the amount of adhered oil is small and uniform. Therefore, in the subsequent detection of a defect on the surface to be inspected by the inspection unit ED, the influence of excess oil causing erroneous detection is greatly reduced.

【0079】なお、トランスファ装置61に搬入される
鋼板の被検査体Pに対して、表面検査手段51により油
付着状態を検査し、その結果に基づいて油付着量制御手
段67を制御することも可能であるが、プレス成形によ
って油の付着量が変化すること、プレス成形された被検
査体Pに対して表面欠陥の検査を行うことから、上記実
施例のように、プレス成形後の被検査体Pの被検査面を
検査して油付着量制御手段67を制御し、次の検査対象
となる鋼板の被検査体Pに対して過剰な油の除去を行う
ことで、検査部EDでの欠陥検出の際の過剰な油の影響
を充分に低減し得る。
It is also possible to inspect the state of oil adhesion of the steel plate inspection object P carried into the transfer device 61 by the surface inspection means 51 and to control the oil adhesion amount control means 67 based on the inspection result. Although it is possible, since the amount of adhering oil changes due to the press molding and the surface defect is inspected on the press-formed inspection object P, the inspection after the press molding is performed as in the above embodiment. By inspecting the surface to be inspected of the body P and controlling the oil adhering amount control means 67 to remove excess oil from the inspected body P of the steel plate to be inspected next, The effect of excess oil at the time of defect detection can be sufficiently reduced.

【0080】図17〜図19は、本発明に係わる表面欠
陥検査装置のさらに他の実施例を説明する図である。
FIGS. 17 to 19 illustrate still another embodiment of the surface defect inspection apparatus according to the present invention.

【0081】図17は、当該表面欠陥検査装置を含むプ
レスラインを示す図であって、基本的な構成は図14に
示す実施例と同じであるが、トランスファ装置61と検
査部EDとの間に、油対策指示手段53からの対策指示
ならびに油の蒸発特性に基づいて被検査面の過剰な油を
蒸発させる油蒸発制御手段69を備えている。
FIG. 17 is a view showing a press line including the surface defect inspection apparatus. The basic configuration is the same as that of the embodiment shown in FIG. Further, there is provided an oil evaporation control means 69 for evaporating excess oil on the surface to be inspected based on a countermeasure instruction from the oil countermeasure instruction means 53 and an oil evaporation characteristic.

【0082】この油蒸発制御手段69は、図18に示す
ように、被検査面に対して空気を吹き付ける送風手段7
0と、送風手段70からの空気量を変化させる風量切換
え手段71と、送風手段70からの空気の温度を変化さ
せる熱量切換え手段72を備えている。送風手段70
は、例えばモータやファンなどにより構成されており、
この場合、風量切換え手段71は、送風手段70におけ
るモータを制御するものであり、熱量切換え手段72
は、送風手段70におけるファンに隣接して設けたヒー
タを制御するものである。
As shown in FIG. 18, the oil evaporating control means 69 blows air to the surface to be inspected.
0, an air volume switching unit 71 for changing the air volume from the blowing unit 70, and a heat amount switching unit 72 for changing the temperature of the air from the blowing unit 70. Blowing means 70
Is composed of, for example, a motor and a fan,
In this case, the air volume switching means 71 controls the motor in the air blowing means 70, and the heat volume switching means 72
Is for controlling a heater provided adjacent to the fan in the blowing means 70.

【0083】上記構成を備えた表面欠陥検査装置は、プ
レス成形後の被検査体Pに対して、表面検査手段51に
より被検査面の表面状態を光学的に検査し、油状態判定
手段52により油の付着量や分布等の付着状態を判定
し、油対策指示手段53により油蒸発制御手段69に対
して過剰な油を除去する対策指示を出力する。
In the surface defect inspection apparatus having the above structure, the surface state of the surface to be inspected is optically inspected by the surface inspecting means 51 on the inspected object P after the press molding, and the oil state determining means 52 The state of adhesion, such as the amount and distribution of oil adhesion, is determined, and the oil countermeasure instruction unit 53 outputs a countermeasure instruction to the oil evaporation control unit 69 to remove excess oil.

【0084】油蒸発制御手段69では、送風手段70に
より被検査面に空気を吹き付けると共に、油の蒸発特性
として図19に示すような輝度および送風量の関係に基
づいて、風量切換え手段71により空気量を制御し、熱
量切換え手段72により空気の温度を制御する。すなわ
ち、油の付着量が多いほど空気量を増大させ、さらには
空気の温度を上昇させる。これにより、被検査面に対し
て過剰な油の蒸発による除去が行われ、油の付着量が少
なく且つ均一なものとなる。したがって、その後に行わ
れる検査部EDでの被検査面の欠陥検出において、誤検
出の原因となる過剰な油の影響が大幅に低減されること
となる。
In the oil evaporation control means 69, air is blown to the surface to be inspected by the air blowing means 70, and the air volume switching means 71 performs the air evaporation based on the relationship between the brightness and the air flow as shown in FIG. The amount is controlled, and the temperature of the air is controlled by the calorie switching means 72. That is, the larger the amount of oil adhered, the greater the amount of air and the temperature of the air. As a result, excessive oil is removed from the surface to be inspected by evaporation, and the amount of oil adhered is small and uniform. Therefore, in the subsequent detection of a defect on the surface to be inspected by the inspection unit ED, the influence of excess oil causing erroneous detection is greatly reduced.

【0085】図20および図21は、本発明に係わる表
面欠陥検査装置のさらに他の実施例を説明する図であ
る。
FIGS. 20 and 21 are views for explaining still another embodiment of the surface defect inspection apparatus according to the present invention.

【0086】図20は、当該表面欠陥検査装置を含むプ
レスラインを示す図であって、基本的な構成は図14に
示す実施例と同じであるが、トランスファ装置61と検
査部EDとの間に、油対策指示手段53からの対策指示
に基づいて被検査面の過剰な油を拭き取る油拭き取り手
段73を備えている。この油拭き取り手段73は、図2
1に示すように、被検査面に対して昇降可能に保持され
た複数の油拭き取り用ロール74を備えている。
FIG. 20 is a view showing a press line including the surface defect inspection apparatus. The basic configuration is the same as that of the embodiment shown in FIG. Further, an oil wiping unit 73 for wiping excess oil on the surface to be inspected based on a countermeasure instruction from the oil countermeasure instruction unit 53 is provided. This oil wiping means 73 is provided in FIG.
As shown in FIG. 1, a plurality of oil wiping rolls 74 held so as to be able to move up and down with respect to the surface to be inspected are provided.

【0087】上記構成を備えた表面欠陥検査装置は、プ
レス成形後の被検査体Pに対して、表面検査手段51に
より被検査面の表面状態を光学的に検査し、油状態判定
手段52により油の付着量や分布等の付着状態を判定
し、油対策指示手段53により油拭き取り手段73に対
して過剰な油を除去する対策指示を出力する。
The surface defect inspection apparatus having the above-described structure optically inspects the surface state of the surface to be inspected by the surface inspection means 51 on the inspection object P after the press molding, and the oil state determination means 52 The adhesion state, such as the amount and distribution of oil adhesion, is determined, and the oil measure instruction means 53 outputs a measure instruction to the oil wiping means 73 to remove excess oil.

【0088】油拭き取り手段73では、油の付着量が所
定値より多い場合に、油拭き取り用ロール74を下降さ
せ、油拭き取り用ロール74を被検査面に対して回転し
ながら接触させることで同被検査面の過剰な油を拭き取
り除去する。これにより、被検査面における油の付着量
が少なく且つ均一なものとなる。したがって、その後に
行われる検査部EDでの被検査面の欠陥検出において、
誤検出の原因となる過剰な油の影響が大幅に低減される
こととなる。
The oil wiping means 73 lowers the oil wiping roll 74 when the oil adhesion amount is larger than a predetermined value, and makes the oil wiping roll 74 come into contact with the surface to be inspected while rotating. Wipe off excess oil on the surface to be inspected. As a result, the amount of oil adhered to the surface to be inspected is small and uniform. Therefore, in the subsequent detection of defects on the surface to be inspected by the inspection unit ED,
The effect of excess oil, which causes erroneous detection, is greatly reduced.

【0089】ここで、図1〜図13に示す実施例では、
油対策指示手段53から出力される対策指示が撮像制御
手段10Bに対する撮像角度βの変更である場合を説明
し、図14〜図16に示す実施例では、油対策指示手段
53から出力される対策指示が油付着量制御手段67に
対する過剰な油の絞り除去である場合を説明し、図17
〜図19に示す実施例では、油対策指示手段53から出
力される対策指示が油蒸発制御手段69に対する過剰な
油の蒸発除去である場合を説明し、図20および図21
に示す実施例では、油対策指示手段53から出力される
対策指示が油拭き取り手段73に対する過剰な油の拭き
取り除去である場合を説明したが、本発明に係わる表面
欠陥検査装置は、さらに他の実施例として、図22に示
すように、照明制御手段10A、撮像制御手段10A、
油付着量制御手段67、油蒸発制御手段69および油拭
き取り手段73を全てを備え、これらの手段に対して油
対策指示手段53から選択的に対策指示を出力するよう
にすることができる。
Here, in the embodiment shown in FIGS.
A case in which the countermeasure instruction output from the oil countermeasure instruction unit 53 is a change in the imaging angle β with respect to the imaging control unit 10B will be described. In the embodiment illustrated in FIGS. The case where the instruction is to squeeze out excess oil to the oil adhesion amount control means 67 will be described with reference to FIG.
In the embodiment shown in FIG. 19 to FIG. 19, the case where the countermeasure instruction output from the oil countermeasure instructing means 53 is the removal of excess oil by evaporation to the oil evaporation control means 69 will be described.
In the embodiment shown in FIG. 7, the case where the countermeasure instruction output from the oil countermeasure instruction unit 53 is wiping and removal of excessive oil with respect to the oil wiping unit 73 has been described. As an example, as shown in FIG. 22, an illumination control unit 10A, an imaging control unit 10A,
The oil control unit 67, the oil evaporation control unit 69, and the oil wiping unit 73 are all provided, and the countermeasure instruction unit 53 can selectively output a countermeasure instruction to these units.

【0090】つまり、表面検査手段51で被検査面を撮
像した場合、図23に示すように油の付着量(油膜の厚
さ)によって輝度が異なり、油の付着量が多くなるのに
伴って輝度が高くなる傾向にある。そこで、図23に示
すように、通常油膜域、油膜多域、油膜過多域というよ
うに油付着状態の度合いを決めておき、油付着状態判定
手段52において、表面検査手段51で検査した油付着
状態がどの域に相当するかを判定し、その判定結果を油
対策指示手段53に送る。そして、油対策指示手段53
により、油による誤検出を回避するのに最も適した対策
指示を行う。すなわち、照明制御手段10A、撮像制御
手段10A、油付着量制御手段67、油蒸発制御手段6
9および油拭き取り手段73のうちから選択された1つ
あるいは複数の手段に対策指示を出力する。これによ
り、その後に行われる検査部EDでの被検査面の欠陥検
出において、過剰に付着した油の影響を大幅に低減する
ことができる。
That is, when the surface to be inspected is imaged by the surface inspection means 51, as shown in FIG. 23, the luminance varies depending on the amount of oil adhesion (the thickness of the oil film), and as the amount of oil adhesion increases, Brightness tends to increase. Therefore, as shown in FIG. 23, the degree of the oil adhesion state is determined in advance, such as a normal oil film area, a multi-oil film area, and an excessive oil film area. It is determined to which region the state corresponds, and the result of the determination is sent to the oil measure instructing means 53. Then, the oil measure instruction means 53
Accordingly, a countermeasure instruction most suitable for avoiding erroneous detection due to oil is performed. That is, the illumination control unit 10A, the imaging control unit 10A, the oil adhesion amount control unit 67, the oil evaporation control unit 6
The countermeasure instruction is output to one or a plurality of units selected from the group 9 and the oil wiping unit 73. This makes it possible to significantly reduce the influence of excessively attached oil in the subsequent detection of defects on the surface to be inspected by the inspection unit ED.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる表面欠陥検査装置の一実施例を
示す概略説明図である。
FIG. 1 is a schematic explanatory view showing one embodiment of a surface defect inspection apparatus according to the present invention.

【図2】被検査体搬送手段、広角度照明手段、上流側お
よび下流側の撮像手段を説明する斜視図である。
FIG. 2 is a perspective view illustrating an inspection object transporting unit, a wide-angle illumination unit, and upstream and downstream imaging units;

【図3】広角度照明手段の構造を説明する斜視図であ
る。
FIG. 3 is a perspective view illustrating a structure of a wide-angle lighting unit.

【図4】撮像手段の構造を説明する斜視図である。FIG. 4 is a perspective view illustrating the structure of an imaging unit.

【図5】表面欠陥検査の原理を説明する図である。FIG. 5 is a diagram illustrating the principle of surface defect inspection.

【図6】広角度照明手段による照明光の照射角度と受光
画像の輝度との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between an irradiation angle of illumination light by a wide-angle illumination unit and luminance of a received image.

【図7】撮像手段による撮像角度と受光画像の検出レベ
ル(輝度比)との関係を示すグラフである。
FIG. 7 is a graph showing a relationship between an imaging angle by an imaging unit and a detection level (luminance ratio) of a received light image.

【図8】検査処理手段において行われる画像処理を説明
するフローチャートである。
FIG. 8 is a flowchart illustrating image processing performed in an inspection processing unit.

【図9】広角度照明手段および撮像手段の角度および高
さ位置の制御例を説明する図である。
FIG. 9 is a diagram illustrating an example of control of an angle and a height position of a wide-angle illumination unit and an imaging unit.

【図10】油が付着していない被検査面における照明光
の散乱反射光の強度特性を説明する図(a)、および油
が付着している被検査面における照明光の散乱反射光の
強度特性を説明する図(b)である。
FIG. 10A illustrates the intensity characteristics of scattered and reflected light of illumination light on a surface to be inspected to which no oil is attached, and the intensity of scattered and reflected light of illumination light on the surface to be inspected to which oil is attached. FIG. 7B is a diagram illustrating characteristics.

【図11】油が付着した被検査面の受光画像を示す図
(a)、および2値化処理後の画像を示す図(b)であ
る。
FIGS. 11A and 11B are a view showing a light receiving image of a surface to be inspected to which oil has adhered, and a view showing an image after binarization processing; FIGS.

【図12】図11に対して、撮像角度を小さくした状態
での受光画像を示す図(a)、および2値化処理後の画
像を示す図(b)である。
12A is a diagram illustrating a received light image in a state where an imaging angle is reduced with respect to FIG. 11, and FIG. 12B is a diagram illustrating an image after binarization processing;

【図13】輝度に対する撮像角度の制御特性を説明する
グラフである。
FIG. 13 is a graph illustrating control characteristics of an imaging angle with respect to luminance.

【図14】本発明に係わる表面欠陥検査装置の他の実施
例を示す概略説明図である。
FIG. 14 is a schematic explanatory view showing another embodiment of the surface defect inspection apparatus according to the present invention.

【図15】図14に示すトランスファ装置の内部を示す
説明図である。
FIG. 15 is an explanatory diagram showing the inside of the transfer device shown in FIG. 14;

【図16】表面検査手段による被検査面の輝度と油絞り
用ロールの圧接力との関係を示すグラフである。
FIG. 16 is a graph showing the relationship between the luminance of the surface to be inspected by the surface inspection means and the pressing force of the oil drawing roll.

【図17】本発明に係わる表面欠陥検査装置のさらに他
の実施例を説明する概略説明図である。
FIG. 17 is a schematic explanatory view for explaining still another embodiment of the surface defect inspection apparatus according to the present invention.

【図18】図17に示す油蒸発制御手段の内部を示す説
明図である。
18 is an explanatory diagram showing the inside of the oil evaporation control means shown in FIG.

【図19】表面検査手段による被検査面の輝度と送風手
段による送風量との関係を示すグラフである。
FIG. 19 is a graph showing the relationship between the brightness of the surface to be inspected by the surface inspection means and the amount of air blown by the air blowing means.

【図20】本発明に係わる表面欠陥検査装置のさらに他
の実施例を説明する概略説明図である。
FIG. 20 is a schematic explanatory view for explaining still another embodiment of the surface defect inspection apparatus according to the present invention.

【図21】図20に示す油拭き取り手段の内部を示す説
明図である。
FIG. 21 is an explanatory diagram showing the inside of the oil wiping unit shown in FIG. 20;

【図22】本発明に係わる表面欠陥検査装置のさらに他
の実施例を説明するブロック図である。
FIG. 22 is a block diagram illustrating still another embodiment of the surface defect inspection apparatus according to the present invention.

【図23】表面検査手段により被検査面を撮像した際の
油膜の厚さと輝度との関係を示すグラフである。
FIG. 23 is a graph showing the relationship between the thickness of the oil film and the brightness when the surface to be inspected is imaged by the surface inspection means.

【図24】従来の表面欠陥検査装置における照明光の照
射および撮像の原理を説明する図であって、面状光源を
用いた場合の説明図(a)および線状光源を用いた場合
の説明図(b)である。
24A and 24B are diagrams illustrating the principle of illumination light irradiation and imaging in a conventional surface defect inspection apparatus, and are an explanatory diagram when a planar light source is used, and a description when a linear light source is used. FIG.

【符号の説明】[Explanation of symbols]

P 被検査体 1 被検査体搬送手段 2 広角度照明手段(照明手段) 3 上流側撮像手段(撮像手段) 4 下流側撮像手段(撮像手段) 5 検査処理手段 10 照明/撮像制御手段 10A 照明制御手段 10B 撮像制御手段 51 表面検査手段 52 油状態判定手段 53 油対策指示手段 67 油付着量制御手段 63 油絞り用ロール 64 圧接力制御手段 69 油蒸発制御手段 70 送風手段 71 風量切換え手段 72 熱量切換え手段 73 油拭き取り手段 P Inspection object 1 Inspection object conveying means 2 Wide-angle illumination means (illumination means) 3 Upstream imaging means (imaging means) 4 Downstream imaging means (imaging means) 5 Inspection processing means 10 Illumination / imaging control means 10A Illumination control Means 10B Imaging control means 51 Surface inspection means 52 Oil state determination means 53 Oil countermeasure instruction means 67 Oil adhesion amount control means 63 Oil squeezing roll 64 Pressure contact force control means 69 Oil evaporation control means 70 Blowing means 71 Air volume switching means 72 Heat quantity switching Means 73 Oil wiping means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊 丹 和 秀 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 山 田 和 男 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 2F065 AA49 BB15 CC11 DD12 FF04 FF44 GG02 HH12 HH13 HH14 JJ03 JJ05 JJ08 JJ09 JJ26 LL01 LL03 LL13 LL30 MM03 QQ04 QQ25 QQ32 SS13 TT08 2G051 AA37 AA89 AB01 AB02 AB07 AC01 BA20 BB17 BC05 CA03 CA04 CA07 CB01 CD03 DA01 DA06 EA11 EB01 EB02 FA10 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuhide Itami 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Inside Nissan Motor Co., Ltd. (72) Inventor Kazuo Yamada 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor In-house F-term (reference) 2F065 AA49 BB15 CC11 DD12 FF04 FF44 GG02 HH12 HH13 HH14 JJ03 JJ05 JJ08 JJ09 JJ26 LL01 LL03 LL13 LL30 MM03 QQ04 QQ25 QQ32 SS13 TT08 2G051 AA37 AB01 CA01 AB01 CA01 AB01 DA06 EA11 EB01 EB02 FA10

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 被検査体を一方向に搬送する被検査体搬
送手段と、 移動する被検査体の被検査面に対して照明光を所定の照
射角度で照射する照明手段と、 照明光の照射角度よりも大きい撮像角度で照明光の反射
光を撮像する撮像手段と、 撮像手段からの受光画像に基づいて被検査面の表面欠陥
を検出する検査処理手段と、 照明手段および撮像手段に対して被検査体搬送方向の上
流側に配置され且つ被検査面の表面状態を検査する表面
検査手段と、 表面検査手段からの被検査面の表面状態に基づいて油の
付着状態を判定する油状態判定手段と、 油状態判定手段からの油付着状態に基づいて、照明光の
照射角度の変更、撮像角度の変更、被検査面の油付着量
の制御のうちの少なくとも1つを対策指示として出力す
る油対策指示手段を備えたことを特徴とする表面欠陥検
査装置。
1. An inspection object transporting means for transporting an inspection object in one direction, an illumination means for irradiating illumination light on a surface to be inspected of a moving inspection object at a predetermined illumination angle, Imaging means for imaging reflected light of the illumination light at an imaging angle larger than the irradiation angle; inspection processing means for detecting a surface defect on the surface to be inspected based on a light reception image from the imaging means; Surface inspection means for inspecting the surface condition of the surface to be inspected, which is arranged on the upstream side in the transport direction of the object to be inspected, and an oil state for judging the adhesion state of the oil based on the surface condition of the surface to be inspected from the surface inspection means Determining means for outputting at least one of a change in the illumination angle of the illumination light, a change in the imaging angle, and a control of the amount of oil adhering to the surface to be inspected, based on the oil adhering state from the oil state judging means. Equipped with oil measures instruction means A surface defect inspection device characterized by the above-mentioned.
【請求項2】 照明手段が、被検査体搬送方向の上流側
および下流側に照明光の照射が可能であり且つ移動する
被検査体の被検査面に対して照明光を所定の照射角度で
照射する広角度照明手段であると共に、撮像手段が、広
角度照明手段を間にして被検査体搬送方向の上流側およ
び下流側に配置され且つ広角度照明手段に対向して照明
光の照射角度よりも大きい撮像角度で照明光の反射光を
撮像する上流側および下流側の撮像手段であることを特
徴とする請求項1に記載の表面欠陥検査装置。
2. The illumination device according to claim 1, wherein the illumination unit is capable of irradiating the illumination light on the upstream side and the downstream side in the transport direction of the inspection object, and illuminates the inspection surface of the moving inspection object at a predetermined irradiation angle. The wide-angle illumination means for irradiating, and the imaging means are arranged on the upstream side and the downstream side in the transporting direction of the inspection object with the wide-angle illumination means therebetween, and the irradiation angle of the illumination light is opposed to the wide-angle illumination means. 2. The surface defect inspection apparatus according to claim 1, wherein the upstream and downstream imaging units capture the reflected light of the illumination light at a larger imaging angle.
【請求項3】 移動する被検査面に対する照明光の照射
角度および撮像角度が所定の値になるように照明手段お
よび撮像手段の各々の角度および各々の高さを制御し、
且つ油対策指示手段からの対策指示に基づいて照明手段
および撮像手段のうちの少なくとも一方の角度および高
さを制御する照明/撮像制御手段を備えたことを特徴と
する請求項1または2に記載の表面欠陥検査装置。
3. An angle and a height of each of the illuminating means and the imaging means are controlled so that the irradiation angle and the imaging angle of the illuminating light with respect to the moving inspected surface have predetermined values.
3. The apparatus according to claim 1, further comprising an illumination / imaging control unit that controls an angle and a height of at least one of the illumination unit and the imaging unit based on a countermeasure instruction from the oil countermeasure instruction unit. Surface defect inspection equipment.
【請求項4】 表面検査手段が、被検査面を光学的に検
査して表面状態を輝度のレベルで出力する手段であると
共に、油付着状態判定手段が、表面検査手段から得た輝
度および予め求めた輝度と油付着量との関係に基づいて
被検査面の油付着状態を判定する手段であることを特徴
とする請求項1〜3のいずれかに記載の表面欠陥検査装
置。
4. A surface inspection means for optically inspecting a surface to be inspected and outputting a surface state at a luminance level, and an oil adhering state determination means for determining a luminance obtained from the surface inspection means and a predetermined value. The surface defect inspection apparatus according to any one of claims 1 to 3, further comprising means for determining an oil adhesion state of the surface to be inspected based on a relationship between the obtained luminance and an oil adhesion amount.
【請求項5】 照明手段および撮像手段に対して被検査
体搬送方向の上流側に配置され且つ油対策指示手段から
の対策指示に基づいて被検査面の油付着量を制御する油
付着量制御手段を備えたことを特徴とする請求項1〜4
のいずれかに記載の表面欠陥検査装置。
5. An oil adhering amount control which is disposed upstream of the illumination means and the image pickup means in the transport direction of the inspected object and controls the oil adhering amount on the inspected surface based on a countermeasure instruction from the oil countermeasure instructing means. 5. The method according to claim 1, further comprising:
A surface defect inspection device according to any one of the above.
【請求項6】 油付着量制御手段が、被検査面に回転接
触する油絞り用ロールと、被検査面に対する油絞り用ロ
ールの圧接力を制御する圧接力制御手段を備えているこ
とを特徴とする請求項5に記載の表面欠陥検査装置。
6. The oil adhering amount control means includes an oil squeezing roll that is in rotational contact with the surface to be inspected, and a pressing force control unit that controls a pressing force of the oil squeezing roll against the surface to be inspected. The surface defect inspection apparatus according to claim 5, wherein
【請求項7】 照明手段および撮像手段に対して被検査
体搬送方向の上流側に配置され且つ油対策指示手段から
の対策指示ならびに油の蒸発特性に基づいて被検査面の
油を蒸発させる油蒸発制御手段を備えたことを特徴とす
る請求項1〜6のいずれかに記載の表面欠陥検査装置。
7. An oil disposed upstream of the illumination means and the imaging means in the transport direction of the inspection object and evaporating oil on the inspection surface based on a countermeasure instruction from the oil countermeasure instruction means and an oil evaporation characteristic. The surface defect inspection apparatus according to any one of claims 1 to 6, further comprising an evaporation control unit.
【請求項8】 油蒸発制御手段が、被検査面に対して空
気を吹き付ける送風手段と、送風手段からの空気量を変
化させる風量切換え手段と、送風手段からの空気の温度
を変化させる熱量切換え手段を備えていることを特徴と
する請求項7に記載の表面欠陥検査装置。
8. An air evaporation control unit, wherein the oil evaporation control unit blows air to the surface to be inspected, an air volume switching unit for changing the amount of air from the air blowing unit, and a heat amount switching unit for changing the temperature of the air from the air blowing unit. The surface defect inspection apparatus according to claim 7, further comprising a unit.
【請求項9】 照明手段および撮像手段に対して被検査
体搬送方向の上流側に配置され且つ油対策指示手段から
の対策指示に基づいて被検査面の油を拭き取る油拭き取
り手段を備えたことを特徴とする請求項1〜8のいずれ
かに記載の表面欠陥検査装置。
9. An oil wiping unit disposed upstream of the illumination unit and the imaging unit in the transport direction of the inspection object and wiping oil on the inspection surface based on a countermeasure instruction from the oil countermeasure instruction unit. The surface defect inspection apparatus according to any one of claims 1 to 8, wherein
JP2000108096A 2000-04-10 2000-04-10 Surface defect inspection equipment Expired - Fee Related JP3642255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000108096A JP3642255B2 (en) 2000-04-10 2000-04-10 Surface defect inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000108096A JP3642255B2 (en) 2000-04-10 2000-04-10 Surface defect inspection equipment

Publications (2)

Publication Number Publication Date
JP2001289788A true JP2001289788A (en) 2001-10-19
JP3642255B2 JP3642255B2 (en) 2005-04-27

Family

ID=18621000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000108096A Expired - Fee Related JP3642255B2 (en) 2000-04-10 2000-04-10 Surface defect inspection equipment

Country Status (1)

Country Link
JP (1) JP3642255B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365223A (en) * 2001-06-08 2002-12-18 Nissan Motor Co Ltd Surface detect-inspecting apparatus
JP2006208281A (en) * 2005-01-31 2006-08-10 Toppan Printing Co Ltd Periodic pattern irregularity inspection device, and periodic pattern imaging method
JP2009063398A (en) * 2007-09-06 2009-03-26 Iwasaki Electric Co Ltd Apparatus and method for detecting oil film
WO2014157313A1 (en) * 2013-03-29 2014-10-02 ブラザー工業株式会社 Laser processing machine, and program
CN114581433A (en) * 2022-03-22 2022-06-03 中国工程物理研究院流体物理研究所 Method and system for obtaining metal ball cavity inner surface appearance detection image
CN116216280A (en) * 2023-03-31 2023-06-06 江苏新合益机械有限公司 Conveying equipment for piston rod surface defect visual inspection equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365223A (en) * 2001-06-08 2002-12-18 Nissan Motor Co Ltd Surface detect-inspecting apparatus
JP2006208281A (en) * 2005-01-31 2006-08-10 Toppan Printing Co Ltd Periodic pattern irregularity inspection device, and periodic pattern imaging method
JP4609089B2 (en) * 2005-01-31 2011-01-12 凸版印刷株式会社 Periodic pattern unevenness inspection apparatus and periodic pattern imaging method
JP2009063398A (en) * 2007-09-06 2009-03-26 Iwasaki Electric Co Ltd Apparatus and method for detecting oil film
WO2014157313A1 (en) * 2013-03-29 2014-10-02 ブラザー工業株式会社 Laser processing machine, and program
JP2014195826A (en) * 2013-03-29 2014-10-16 ブラザー工業株式会社 Laser processing machine
CN114581433A (en) * 2022-03-22 2022-06-03 中国工程物理研究院流体物理研究所 Method and system for obtaining metal ball cavity inner surface appearance detection image
CN114581433B (en) * 2022-03-22 2023-09-19 中国工程物理研究院流体物理研究所 Method and system for acquiring surface morphology detection image in metal ball cavity
CN116216280A (en) * 2023-03-31 2023-06-06 江苏新合益机械有限公司 Conveying equipment for piston rod surface defect visual inspection equipment
CN116216280B (en) * 2023-03-31 2023-09-01 江苏新合益机械有限公司 Conveying equipment for piston rod surface defect visual inspection equipment

Also Published As

Publication number Publication date
JP3642255B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
US5963328A (en) Surface inspecting apparatus
JP3709426B2 (en) Surface defect detection method and surface defect detection apparatus
US5132791A (en) Optical sheet inspection system
JP4147682B2 (en) Defect inspection method and inspection apparatus for test object
JP2985160B2 (en) O-ring inspection device
US6501546B1 (en) Inspection system for edges of glass
JP4190636B2 (en) Surface inspection device
JP4158227B2 (en) Inspection method and inspection apparatus for minute unevenness
JPH10148619A (en) Method and device for inspecting face defect of substrate under inspection
JP2001289788A (en) Surface-flaw inspecting device
JP2003065966A (en) Foreign matter inspecting method to film and apparatus therefor
KR20180136421A (en) System and method for defect detection
JP4479073B2 (en) Surface defect inspection equipment
JPH1062354A (en) Device and method of inspecting transparent plate for defect
JP3349069B2 (en) Surface inspection equipment
KR20200089416A (en) Inspection system for cover glass of display panel
JP2006017685A (en) Surface defect inspection device
JP4055284B2 (en) Surface defect inspection equipment
JP3510459B2 (en) Surface defect inspection equipment
JP7448808B2 (en) Surface inspection device and surface inspection method
KR0183713B1 (en) Apparatus for detecting the fault of crt panel
JP2000214101A (en) Surface defect-inspecting device
JP4756299B2 (en) Surface defect inspection equipment
JP3293257B2 (en) Surface defect inspection equipment
JP3510468B2 (en) Surface defect inspection equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees