JP2009063398A - Apparatus and method for detecting oil film - Google Patents

Apparatus and method for detecting oil film Download PDF

Info

Publication number
JP2009063398A
JP2009063398A JP2007231078A JP2007231078A JP2009063398A JP 2009063398 A JP2009063398 A JP 2009063398A JP 2007231078 A JP2007231078 A JP 2007231078A JP 2007231078 A JP2007231078 A JP 2007231078A JP 2009063398 A JP2009063398 A JP 2009063398A
Authority
JP
Japan
Prior art keywords
oil film
image signal
image
fourier transform
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007231078A
Other languages
Japanese (ja)
Other versions
JP4816600B2 (en
Inventor
Tetsuji Yamada
田 哲 司 山
Yoshihiko Otani
谷 義 彦 大
Akira Uchida
田 暁 内
Hide Nakatani
谷 英 仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2007231078A priority Critical patent/JP4816600B2/en
Publication of JP2009063398A publication Critical patent/JP2009063398A/en
Application granted granted Critical
Publication of JP4816600B2 publication Critical patent/JP4816600B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To detect the presence of the formation of an oil film by removing the brightness variation caused by waves and extracting only the brightness variation caused by the oil film regardless of whether or not a rainbow interference pattern is formed by an oil film on the water surface. <P>SOLUTION: The apparatus comprises: an imaging device (4) for taking an image of the water surface; and an image processing unit (5) for processing the image signal. The image processing unit (5) includes: a Fourier transform means (M<SB>1</SB>) for outputting a Fourier signal (FS<SB>1</SB>) based on a frequency component included in the image signal (IMG<SB>1</SB>) inputted from the imaging device (4); a high-pass filter (M<SB>2</SB>) for passing a frequency component that is included in the Fourier signal and higher than the brightness variation caused by waves on the water surface; an inverse Fourier transform means (M<SB>3</SB>) for performing an inverse Fourier transform on a Fourier signal (FS<SB>2</SB>) passing through the high-pass filter (M<SB>2</SB>) to return it to an image signal (IMG<SB>3</SB>); and an oil film extraction means (M<SB>4</SB>) for extracting an oil film portion by binarizing the image signal (IMG<SB>3</SB>) subjected to the inverse-Fourier transform. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水面上に形成される油膜の有無を検知する油膜検知装置に関する。   The present invention relates to an oil film detection device that detects the presence or absence of an oil film formed on a water surface.

近年、油や有害物質などが河川に流出する水質事故が多発している。特に、油の流出事故は、水道原水である河川の水質事故の80%近くを占め、浄水場の取水停止や下流の生態系に重大な被害を引き起こす。
油は拡散し易く、拡散した油は油膜となり河川の下流数キロメートルにわたって広がることから水環境に大きな影響を及ぼす。
したがって、高感度で24時間連続監視が可能な河川の油膜検知システムが望まれている。
In recent years, there have been frequent water quality accidents in which oil and harmful substances flow into rivers. In particular, oil spill accidents account for nearly 80% of water quality accidents in rivers, which are raw water supply, and cause serious damage to water treatment plants and downstream ecosystems.
Oil diffuses easily, and the diffused oil becomes an oil film and spreads several kilometers downstream of the river, so it has a great impact on the water environment.
Therefore, an oil film detection system for rivers that can be continuously monitored for 24 hours with high sensitivity is desired.

このため従来より様々な油膜検知装置が提案されている。
例えば、水面に波長200〜300nmの励起光を照射し、油膜による波長300〜400nmの蛍光を選択的に受光し、その受光強度により油膜の有無を判定する蛍光分析法(特許文献1)、水に比較して油膜の反射率が高くなることを利用した反射率測定法、水面を画像で撮像しその輝度変化を油膜として検知する輝度変化検知法(特許文献2)、レーザ光源からの光ビームを二次元走査したり面状に拡散させて水面に照射し、その反射光の偏光解析を行うことにより油膜の有無を判別を行う偏光解析法(特許文献3)等が知られている。
特開2002−214140号公報 特開平08−292185号公報 特開平11−326188号公報
For this reason, various oil film detection devices have been proposed.
For example, a fluorescence analysis method (Patent Document 1) that irradiates the water surface with excitation light having a wavelength of 200 to 300 nm, selectively receives fluorescence having a wavelength of 300 to 400 nm by the oil film, and determines the presence or absence of the oil film based on the received light intensity (Patent Document 1), water The reflectance measurement method using the fact that the reflectance of the oil film becomes higher than that of the above, the brightness change detection method (Patent Document 2) for picking up the water surface as an image and detecting the brightness change as an oil film, the light beam from the laser light source There is known a polarization analysis method (Patent Document 3) or the like that discriminates the presence or absence of an oil film by performing two-dimensional scanning or diffusing in a planar shape to irradiate the surface of water and performing polarization analysis of the reflected light.
JP 2002-214140 A Japanese Patent Laid-Open No. 08-292185 JP-A-11-326188

しかしながら、蛍光分析法は、励起光の他に太陽光や照明光などの外乱光が存在する明るい環境では検知が困難になるだけでなく、蛍光波長を選択的に受光する受光手段が必要になるため光学系が複雑になるという問題がある。
反射率測定法は、水より反射率が高ければ油以外のものも検知してしまうため誤作動のおそれがあり、油の流出面積・流出量を測定することが困難であるという問題があった。
輝度変化検知法は、輝度変化があればその原因が油以外でも検知してしまうため、やはり誤作動のおそれがある。
さらに、偏光解析法は、投光系及び受光系の光学系が複雑になるだけでなく、検知範囲がせいぜい10cm×10cmと狭いという問題がある。
However, the fluorescence analysis method is not only difficult to detect in a bright environment where disturbance light such as sunlight and illumination light is present in addition to the excitation light, but also requires a light receiving means for selectively receiving the fluorescence wavelength. Therefore, there is a problem that the optical system becomes complicated.
The reflectance measurement method has a problem that it is difficult to measure the oil spill area and the amount of spill because there is a risk of malfunction because it detects other than oil if the reflectance is higher than water. .
In the luminance change detection method, if there is a luminance change, the cause is detected even if it is not oil, so there is a risk of malfunction.
Further, the ellipsometry has a problem that not only the light projecting system and the light receiving system are complicated, but also the detection range is as narrow as 10 cm × 10 cm.

このため、本出願人は、水面に油膜が形成されたときに生ずる虹色の干渉パターンをカラー撮像し、その画像に含まれる色の分析を行うことにより、広範囲にわたり正確に油膜の形成の有無を検出することができ、さらに、河川に流れ込んだ油の流出面積も測定できる油膜検知装置を提案した。
特開2007−147448号公報
For this reason, the Applicant has taken a color image of the rainbow-colored interference pattern that occurs when an oil film is formed on the water surface, and analyzed the colors contained in the image, so that the presence or absence of the oil film is accurately formed over a wide range. We have proposed an oil film detector that can detect spillage and can also measure the area of oil spilled into the river.
JP 2007-147448 A

しかしながら、実際に油が流出している河川を撮像したり、屋外実験設備で廃油を流して実験した結果、水面に油膜ができていても、条件が整わなければ精度よく測定することができないことが判明した。
その原因としては、以下のことが考えられる。
(1)流出した油が時間経過に伴い油が気化または拡散し、虹色の干渉パターンを生じる膜厚よりも薄くなったり、水温によっては油膜の膜厚が厚くなって虹色にならない。
(2)油の種類、粘度によっては、虹色の干渉パターンを生じない。
(3)一般の監視カメラは画素数が30万画素程度と少なく、実験で使用した1000万画素のデジタルカメラに比べ、解像度が低いため、色情報の精度が低くなる。
(4)画像を取り込む際に、偏光フィルタで正反射光を除去しているが、実際に屋外で監視カメラなどを用いて油膜を検知しようとした場合、太陽光の入射角、撮影角度によっては、偏光フィルタを利用することで、干渉縞も消えてしまう場合が多い。偏光フィルタを使用しなかった場合、油膜に空や壁面の色が強く反映されて虹色の干渉縞の抽出が困難になる。
However, as a result of taking images of rivers where oil is actually spilled and experimenting with waste oil flowing in an outdoor experimental facility, even if an oil film is formed on the water surface, it cannot be measured accurately unless conditions are met. There was found.
The following can be considered as the cause.
(1) The oil that has flowed out vaporizes or diffuses over time and becomes thinner than the film thickness that produces an iridescent interference pattern, or depending on the water temperature, the oil film becomes thick and does not become iridescent.
(2) The iridescent interference pattern does not occur depending on the type and viscosity of the oil.
(3) A general surveillance camera has a small number of pixels of about 300,000 pixels, and the resolution is lower than that of a 10 million pixel digital camera used in the experiment, so the accuracy of color information is low.
(4) When capturing the image, the specular reflection light is removed by the polarizing filter. However, when an oil film is actually detected using a surveillance camera or the like outdoors, depending on the incident angle of the sunlight and the shooting angle. By using a polarizing filter, interference fringes often disappear. If a polarizing filter is not used, the sky and wall color are strongly reflected in the oil film, making it difficult to extract iridescent interference fringes.

一方、水面に油膜が形成された場合、虹色干渉パターンの形成の有無にかかわらず、その油膜部分の輝度は水面よりも高い。
したがって、ノイズさえなければ輝度変化により油膜を特定することが可能であるが、実際の水面には波が生じ、その波面で反射される光がノイズとなって偏光フィルタでは除去できない程度の輝度変化が生じるため、油膜が形成された部分を画像信号から特定することは困難である。
そして、本発明者が鋭意研究を進めた結果、油膜の形成により生ずる輝度変化の方が、波の形成により生ずる輝度変化よりも、周波数が高いことが判明した。
On the other hand, when an oil film is formed on the water surface, the brightness of the oil film portion is higher than that of the water surface regardless of whether or not an iridescent interference pattern is formed.
Therefore, if there is no noise, it is possible to identify the oil film by changing the brightness, but a wave is generated on the actual water surface, and the brightness change that the light reflected on the wavefront becomes noise and cannot be removed by the polarization filter Therefore, it is difficult to specify the portion where the oil film is formed from the image signal.
As a result of extensive research by the present inventors, it has been found that the luminance change caused by the formation of the oil film has a higher frequency than the luminance change caused by the formation of the wave.

そこで本発明は、このような発明者の知見に基づいてなされたもので、水面に油膜が形成された場合に、虹色の干渉パターンが形成されると否とにかかわらず、輝度変化の周波数の差に基づき、波による輝度変化を除去して、油膜による輝度変化のみを抽出して、油膜の形成の有無を検知することを技術的課題としている。   Therefore, the present invention has been made based on such inventor's knowledge, and when an oil film is formed on the water surface, the frequency of the luminance change regardless of whether or not an iridescent interference pattern is formed. Based on this difference, it is a technical problem to detect the presence or absence of the formation of an oil film by removing the brightness change due to waves and extracting only the brightness change due to the oil film.

この課題を解決するために、本発明は、水面上に形成される油膜を検知する油膜検知装置であって、水面を撮像する撮像装置と、その画像信号を処理する画像処理装置とを備え、前記画像処理装置は、撮像装置から入力された画像信号に含まれる周波数成分に基づきフーリエ信号を出力させるフーリエ変換手段と、フーリエ信号に含まれる水面上の波により生ずる輝度変化より高い周波数成分を通過させるハイパスフィルタと、ハイパスフィルタを通過したフーリエ信号に逆フーリエ変換を施して画像信号に戻す逆フーリエ変換手段と、逆フーリエ変換された画像信号を二値化処理して油膜部分を抽出する油膜抽出手段とを備えたことを特徴としている。   In order to solve this problem, the present invention is an oil film detection device that detects an oil film formed on the water surface, and includes an imaging device that images the water surface and an image processing device that processes the image signal. The image processing device passes a Fourier transform means for outputting a Fourier signal based on a frequency component included in an image signal input from the imaging device, and a frequency component higher than a luminance change caused by a wave on the water surface included in the Fourier signal. A high-pass filter that performs an inverse Fourier transform on the Fourier signal that has passed through the high-pass filter and returns the image signal to an image signal, and an oil film extraction that binarizes the image signal that has been subjected to the inverse Fourier transform and extracts an oil film portion And a means.

本発明によれば、水面を撮像装置で撮像すると、その画像信号が画像処理装置に入力される。
画像処理装置では、まず、画像信号がフーリエ変換され、画像信号に含まれる周波数成分が解析され、フーリエ信号として出力される。
そして、光源や日照など観察場所における条件に応じて、波により生ずる輝度変化を遮断し、油膜により生ずる輝度変化を透過し得るように遮断周波数が決定されたハイパスフィルタに通すことにより、フーリエ信号から波により生ずる輝度変化が除去される。
次いで、その信号を逆フーリエ変換して画像信号に戻すと、元の画像から波による輝度変化が除去された画像が得られる。
そして最後に、適当な閾値で二値化すれば、油膜が形成された部分は白く、油膜のない部分は黒く映し出されるので、白い部分があれば油膜が形成されたものと判断することができ、必要に応じて、白い部分の面積に基づき油の漏洩量を算出することもできる。
According to the present invention, when the water surface is imaged by the imaging device, the image signal is input to the image processing device.
In the image processing apparatus, first, an image signal is Fourier transformed, a frequency component included in the image signal is analyzed, and output as a Fourier signal.
Then, according to the conditions at the observation place such as the light source and the sunshine, the luminance change caused by the wave is cut off and passed through the high-pass filter in which the cutoff frequency is determined so that the luminance change caused by the oil film can be transmitted. Luminance changes caused by waves are eliminated.
Then, when the signal is subjected to inverse Fourier transform and returned to the image signal, an image in which the luminance change due to the wave is removed from the original image is obtained.
Finally, if binarization is performed with an appropriate threshold value, the part where the oil film is formed is white and the part where there is no oil film is projected black, so if there is a white part, it can be determined that the oil film is formed. If necessary, the amount of oil leakage can be calculated based on the area of the white portion.

本例では、虹色の干渉パターンが形成されると否とにかかわらず、輝度変化の周波数の差に基づき、波による輝度変化を除去して、油膜による輝度変化のみを抽出して、油膜の形成の有無を検知するという目的を達成するために、水面上に形成される油膜を検知する油膜検知装置であって、水面を撮像する撮像装置と、その画像信号を処理する画像処理装置とを備え、前記画像処理装置は、撮像装置から入力された画像信号に含まれる周波数成分に基づきフーリエ信号を出力させるフーリエ変換手段と、フーリエ信号に含まれる水面上の波により生ずる輝度変化より高い周波数成分を通過させるハイパスフィルタと、ハイパスフィルタを通過したフーリエ信号に逆フーリエ変換を施して画像信号に戻す逆フーリエ変換手段と、逆フーリエ変換された画像信号を二値化処理して油膜部分を抽出する油膜抽出手段とを備えたことを特徴とする。   In this example, regardless of whether a rainbow interference pattern is formed, based on the difference in frequency of the luminance change, the luminance change due to the wave is removed, and only the luminance change due to the oil film is extracted. In order to achieve the purpose of detecting the presence or absence of formation, an oil film detection device for detecting an oil film formed on the water surface, comprising: an imaging device for imaging the water surface; and an image processing device for processing the image signal The image processing apparatus includes: Fourier transform means for outputting a Fourier signal based on a frequency component included in the image signal input from the imaging apparatus; and a frequency component higher than a luminance change caused by a wave on the water surface included in the Fourier signal. A high-pass filter that passes through the high-pass filter, an inverse Fourier transform means that performs an inverse Fourier transform on the Fourier signal that has passed through the high-pass filter and returns the image signal, and an inverse Fourier transform Characterized in that a oil film extracting means for extracting the oil film portion by binarizing the image signal.

以下、本発明を図面に示す実施例に基づいて説明する。
図1は本発明に係る油膜検知装置の一例を示す説明図、図2は水面の画像とこれを画像処理した過程を示す説明図、図3は本発明の処理手順を示すフローチャート、図4はその処理画像を示す説明図である。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
FIG. 1 is an explanatory view showing an example of an oil film detection apparatus according to the present invention, FIG. 2 is an explanatory view showing an image of a water surface and a process of image processing this, FIG. 3 is a flowchart showing a processing procedure of the present invention, and FIG. It is explanatory drawing which shows the processed image.

図1に示す油膜検知装置1は、用水路2に設定された監視領域Eの水面を撮像して、水面上に油膜Rが形成されているか否か検知することにより油分が流入したか否かを判定するものである
監視領域Eは、直射日光の影響を受けないように屋根などで覆われており、その水面に照明光を照射する照明装置3と、監視領域Eの水面をカラー撮像する撮像装置4と、その画像信号を処理する画像処理装置5とを備えている。なお、撮像装置4には、液面からの反射光をカットする偏光フィルタ(図示せず)が装着されている。
照明装置3は、可視光領域の少なくとも一部に連続スペクトル分布を有する照明光を照射するもので、本例では、複数本の蛍光灯を並列に配してその正面に乳白色のアクリル製散乱板を配したものを用いている。
The oil film detection apparatus 1 shown in FIG. 1 images the water surface of the monitoring area E set in the irrigation channel 2 and detects whether an oil film has flowed in by detecting whether an oil film R is formed on the water surface. The monitoring area E, which is to be determined, is covered with a roof or the like so as not to be affected by direct sunlight, and the lighting device 3 that irradiates the water surface with illumination light, and imaging that performs color imaging of the water surface of the monitoring area E A device 4 and an image processing device 5 for processing the image signal are provided. The imaging device 4 is equipped with a polarizing filter (not shown) that cuts the reflected light from the liquid surface.
The illumination device 3 irradiates at least a part of the visible light region with illumination light having a continuous spectral distribution. In this example, a plurality of fluorescent lamps are arranged in parallel, and a milky white acrylic scattering plate is provided in front of the fluorescent light. Is used.

この照明光は、波長400nm〜700nmの可視光領域においていくつかのピークは存在するものの概して連続したスペクトルを有しており、可視光の多くの波長成分を含んでいることから、水面に油膜Rが形成されたときに、油膜Rで反射した光と油膜面を通過し油膜Rと水面との境界面で反射した光とが干渉し、油膜Rの厚みによって異なる波長の光が強めあうことにより虹色の干渉パターンが観測され、油の種類によっては虹色パターンが形成されることなく水面と輝度の異なる油膜パターンが観測される。   This illumination light has a generally continuous spectrum although some peaks exist in the visible light region having a wavelength of 400 nm to 700 nm, and contains many wavelength components of visible light. When light is reflected, the light reflected by the oil film R and the light passing through the oil film surface and reflected by the boundary surface between the oil film R and the water surface interfere with each other, and light of different wavelengths depends on the thickness of the oil film R. An iridescent interference pattern is observed, and depending on the type of oil, an iridescent pattern is not formed and an oil film pattern having a brightness different from that of the water surface is observed.

画像処理装置5は、ディスプレイ装置6が接続されたコンピュータからなり、撮像装置4から入力された画像信号IMGに含まれる周波数成分に基づきフーリエ信号FSを出力させるフーリエ変換手段Mと、フーリエ信号FSに含まれる水面上の波により生ずる輝度変化より高い周波数成分を通過させるハイパスフィルタMと、ハイパスフィルタMを通過したフーリエ信号FSに逆フーリエ変換を施して画像信号IMGに戻す逆フーリエ変換手段Mと、逆フーリエ変換された画像信号IMGを二値化処理して油膜部分を抽出した二値化画像信号IMGを出力させる油膜抽出手段Mと、二値化画像信号IMGに基づいて油膜Rの形成の有無を判定する判定手段Mとを備えている。
また、前記判定手段Mで油膜Rが形成されていると判定されたときに、油膜Rが形成された部分の形状に基づき油の流出面積を算出する流出面積算出手段Mを備えている。
The image processing device 5 includes a computer to which a display device 6 is connected, and includes Fourier transform means M 1 that outputs a Fourier signal FS 1 based on a frequency component included in the image signal IMG 1 input from the imaging device 4, and Fourier A high-pass filter M 2 that passes a higher frequency component than a luminance change caused by a wave on the water surface included in the signal FS 1 , and a Fourier signal FS 2 that has passed through the high-pass filter M 2 are subjected to inverse Fourier transform to generate an image signal IMG 3 . Inverse Fourier transform means M 3 for returning, oil film extraction means M 4 for outputting the binarized image signal IMG 5 obtained by binarizing the image signal IMG 3 subjected to inverse Fourier transform and extracting the oil film portion, and binarization Judgment means M 5 for judging whether or not the oil film R is formed based on the image signal IMG 5 is provided.
Further, when the determination means M 5 in oil film R is determined to be formed, and a runoff area calculating means M 6 for calculating the outflow area of the oil on the basis of the shape of the portion where the oil film R is formed .

フーリエ変換手段Mは、撮像装置4から出力される画像信号IMGがカラー信号である場合、その画像信号IMGを256階調のグレースケール画像信号IMGに減色する減色処理を行った後にフーリエ変換処理を行い、撮像装置4から出力される画像信号IMGがモノクロ信号(256階調のグレースケール画像信号)である場合、減色処理を行うことなくそのままフーリエ変換を行うように設定されている。 When the image signal IMG 1 output from the imaging device 4 is a color signal, the Fourier transform unit M 1 performs a color reduction process for reducing the color of the image signal IMG 1 to a grayscale image signal IMG 2 having 256 gradations. When the Fourier transform process is performed and the image signal IMG 1 output from the imaging device 4 is a monochrome signal (256 gray scale image signal), the Fourier transform is set as it is without performing the color reduction process. Yes.

図2は、(a)波も油膜もない場合、(b)波があり油膜がない場合、(c)波も油膜もある場合の画像処理過程を比較して示す。
図2(a−1)(b−1)(c−1)はグレースケールの画像信号IMGによる画像を示し、図2(a−2)(b−2)(c−2)はフーリエ信号FSにより生成される画像である。
フーリエ信号FSの画像は、横軸が水平周波数成分、縦軸が垂直周波数成分であり、濃度が振幅の大きさを示す。
これによれば、図2(a−2)の波も油膜もない場合は全体的に明るく、図2(b−2)の波があり油膜がない場合は低周波成分を現す原点付近に暗点が存在し、図2(c−2)の波も油膜もある場合は暗点が原点から離れた位置まで観察され、油膜に起因する高周波成分の輝度変化が現れていることがわかる。
FIG. 2 shows a comparison of image processing processes when (a) there is no wave and no oil film, (b) there is a wave and no oil film, and (c) there is a wave and oil film.
Figure 2 (a-1) (b -1) (c-1) represents the image by the image signal IMG 2 gray scale, FIG. 2 (a-2) (b -2) (c-2) is the Fourier signal It is an image generated by FS 1 .
Fourier signal FS 1 image, horizontal frequency components horizontal axis, vertical axis is vertical frequency component, the concentration indicates the magnitude of the amplitude.
According to this, when there is neither a wave nor an oil film in FIG. 2 (a-2), it is bright overall, and when there is a wave in FIG. 2 (b-2) and there is no oil film, it is dark near the origin where the low frequency component appears. When there is a point and both the wave and the oil film in FIG. 2 (c-2) are present, the dark spot is observed up to a position away from the origin, and it can be seen that the luminance change of the high frequency component due to the oil film appears.

ハイパスフィルタMは、波により生ずる輝度変化の周波数成分と、油膜Rにより生ずる輝度変化の周波数成分を分離する。
油膜Rにより生ずる輝度変化の周波数は、波により生ずる輝度変化の周波数よりも一般に高い。
したがって、ハイパスフィルタMの遮断周波数を波により生ずる輝度変化の周波数よりも高め(本例では遮断周波数=50Hz)に設定しておけば、フーリエ変換手段Mから出力されたフーリエ信号FSから波により生ずる輝度変化などの周波数の低い成分がカットされ、油膜Rにより生ずる輝度変化などの周波数の高い成分のみが透過されたフーリエ信号FSが出力される。
High pass filter M 2 separates the frequency component of the luminance change caused by the waves, the frequency components of the luminance change caused by oil film R.
The frequency of the luminance change caused by the oil film R is generally higher than the frequency of the luminance change caused by the wave.
Therefore, if you set higher than the frequency of the luminance change caused by the waves the cutoff frequency of the high-pass filter M 2 (cutoff frequency = 50 Hz in this example), from the Fourier signal FS 1 output from the Fourier transform unit M 1 A low-frequency component such as a luminance change caused by a wave is cut, and a Fourier signal FS 2 in which only a high-frequency component such as a luminance change caused by the oil film R is transmitted is output.

逆フーリエ変換手段Mは、周波数の低い成分がカットされたフーリエ信号FSを画像信号IMGに戻す処理を行う。
フーリエ信号FSは、波により生じた輝度変化の周波数成分が除去されているので、これを画像信号IMGに戻すと、その画像は、波の輝度変化が除去されて油膜Rによる輝度変化のみが輝度変化として残された画像となる。
Inverse Fourier transform means M 3 are, the process is performed to recover the Fourier signal FS 2 to lower component frequency is cut into the image signal IMG 3.
Since the frequency component of the brightness change caused by the wave is removed from the Fourier signal FS 2 , when this is returned to the image signal IMG 3 , the brightness change of the wave is removed and only the brightness change due to the oil film R is removed. Becomes an image left as a luminance change.

フーリエ信号FSによる画像は、いずれも低周波成分がカットされているため、その画像は図2(a−3)〜(c−3)に示すように原点付近が白く抜けており、図2(a−3)及び(b−3)に示すフーリエ画像は略等しく、図2(c−3)に示すフーリエ画像のみ高周波成分の暗点が残る。
したがって、逆フーリエ変換すると、図2(a-4)及び(b−4)の画像信号IMGによる画像は波により生ずる輝度変化がほとんど除かれ、図2(c−4)のよる画像信号IMGによる画像のみ油膜による輝度変化が再現されることとなる。
Since the low frequency component is cut in all the images based on the Fourier signal FS 2 , the vicinity of the origin of the images is white as shown in FIGS. 2 (a-3) to (c-3). The Fourier images shown in (a-3) and (b-3) are substantially equal, and only the Fourier image shown in FIG.
Therefore, when the inverse Fourier transform is performed, the image signal IMG 3 in FIGS. 2A-4 and 2B-4 almost eliminates the luminance change caused by the waves, and the image signal IMG in FIG. The luminance change due to the oil film is reproduced only in the image of 3 .

油膜抽出手段Mは、画像信号IMGを適当な閾値で二値化することにより、例えば油膜Rが形成されている部分を黒く、油膜Rの形成されていない部分を白く表示させる。
この場合において、フーリエ変換された画像信号IMGに対して、必要に応じて、例えば、Sobel(ゾーベル)フィルタやPrewitt(プレヴィット)フィルタなどの一次微分(差分)フィルタによりエッジ検出処理を施して、エッジ化画像信号IMGを出力させ、これを二値化処理すれば、油膜が形成されている部分とそうでない部分の境界がより明瞭になるので、二値化により生ずる誤差が少ない。
そして、二値化処理が終了した時点で、油膜部分を抽出した二値化画像信号IMGを出力する。
これにより、黒く表された部分は油膜Rが形成され、白く表された部分は油膜Rが形成されていないと判断できる。
The oil film extraction means M 4 binarizes the image signal IMG 3 with an appropriate threshold value so that, for example, a portion where the oil film R is formed is displayed black and a portion where the oil film R is not formed is displayed white.
In this case, the image signal IMG 3 subjected to Fourier transform is subjected to edge detection processing by a first-order differential (difference) filter such as a Sobel filter or a Prewitt filter as necessary. If the edge image signal IMG 4 is output and binarized, the boundary between the portion where the oil film is formed and the portion where the oil film is not formed becomes clearer, so that errors caused by binarization are small.
Then, when the binarization processing is completed, the binarized image signal IMG 5 from which the oil film portion has been extracted is output.
Thereby, it can be determined that the oil film R is formed in the black part, and the oil film R is not formed in the white part.

判定手段Mは、二値化画像信号IMGに基づいて油膜Rの形成の有無を判定するものである。
そして、黒い部分の画素数が予め設定された数以上検出されたときに、初めてこれを油膜と判断することにより、何らかの警告信号を出力し、あるいは、図示しない警報装置を作動させることにより油が流出していることを知らせる。
ハイパスフィルタMによっても波による輝度変化を完全に除去することは困難であるので、これによって、警報装置のご作動を回避させることができる。
Determination means M 5 is to determine the presence or absence of formation of the oil film R on the basis of the binary image signal IMG 5.
Then, when the number of pixels in the black portion is detected more than a preset number, it is determined for the first time that it is an oil film, so that some warning signal is output, or an alarm device (not shown) is activated to Inform the spill.
Since it is difficult to completely remove the luminance change due to the wave by high pass filter M 2, which makes it possible to avoid your operation of the alarm device.

そして、流出面積算出手段Mでは、判定手段Mで油膜が形成されていると判定されたときに、解像度に応じたピッチ(例えば2mm〜10mm)で水面上に形成された仮想グリッドに基づき、油膜Rが形成された黒いグリッド数をカウントすることにより油の流出面積を算出する。 Then, in the outflow area calculating means M 6, when the oil film determination unit M 5 is determined to have been formed, based on the virtual grid formed on the water surface at a pitch corresponding to the resolution (e.g., 2 mm to 10 mm) The oil outflow area is calculated by counting the number of black grids on which the oil film R is formed.

以上が本発明の一構成例であって、次にその作用について、図4及び図5を伴って説明する。
図4は画像処理装置5の処理手順を示すフローチャートである。
油膜検知を行う場合は、照明装置3を点灯した状態で撮像装置4をオンして、画像処理プログラムを実行させると、ステップSTP1で撮像装置4から所定時間間隔(例えば10秒)おきにカラー画像信号IMGが取り込まれ、ステップSTP2で256階調のグレースケール画像信号IMGに減色された後、ステップSTP3でフーリエ変換処理が行われ、フーリエ信号FSが出力される。
図5(a)はグレースケールの画像信号IMGによる画像であり、図5(b)はフーリエ変換された画像である。
The above is one configuration example of the present invention, and the operation thereof will be described with reference to FIGS. 4 and 5.
FIG. 4 is a flowchart showing a processing procedure of the image processing apparatus 5.
When oil film detection is performed, when the imaging device 4 is turned on with the illumination device 3 turned on and the image processing program is executed, a color image is obtained from the imaging device 4 at predetermined time intervals (for example, 10 seconds) in step STP1. signal IMG 1 is captured after being Genshoku grayscale image signal IMG 2 of 256 gradations in step STP2, the Fourier transform processing is performed at step STP3, Fourier signal FS 1 is output.
5 (a) is an image by the image signal IMG 2 gray scale, FIG. 5 (b) is a Fourier transformed image.

次いで、ステップSTP4で、ハイパスフィルタMを透過させ、波により生ずる輝度変化をカットしたフーリエ信号FSを出力する。 Then, at step STP4, it is transmitted through the high-pass filter M 2, and outputs the Fourier signal FS 2 obtained by cutting the luminance change caused by the waves.

そして、ステップSTP5で逆フーリエ変換処理を施し、フーリエ信号FSを画像信号IMGに戻すと、その画像信号IMGの画像から波による輝度変化がカットされることとなる。
図5(c)がその画像信号IMGによる画像である。
Then, the inverse Fourier transform processing on at step STP5, Returning Fourier signal FS 2 to the image signal IMG 3, the luminance change due to waves from an image of the image signal IMG 3 is to be cut.
Figure 5 (c) is the image by the image signal IMG 3.

次いで、ステップSTP6でエッジ検出処理が施され、出力されたエッジ化画像信号IMGをステップSTP7で二値化し、二値化画像信号IMGが出力される。
図5(d)がその二値化画像信号IMGによる画像である。
Next, edge detection processing is performed in step STP6, and the output edge image signal IMG 4 is binarized in step STP7, and a binarized image signal IMG 5 is output.
FIG. 5D shows an image based on the binarized image signal IMG 5 .

そして、ステップSTP8で得られた画像中に表示された暗点の画素数を計数し、この数が予め設定された数より少ないときは、油膜が形成されていないと判断して、警報信号を出力することなくステップSTP1に戻り、暗点の画素数が予め設定された数より多いときは、油膜Rが形成されたものと判断してステップSTP9に移行し、所定の警報信号を出力する。
次いで、ステップSTP10に移行して油の流出膜面積を算出し、ステップSTP1に戻る。
Then, the number of dark spot pixels displayed in the image obtained in step STP8 is counted, and when this number is smaller than a preset number, it is determined that no oil film is formed, and an alarm signal is generated. Returning to step STP1 without outputting, when the number of dark spot pixels is larger than a preset number, it is determined that an oil film R has been formed, and the routine proceeds to step STP9 where a predetermined alarm signal is output.
Next, the process proceeds to step STP10, the oil outflow film area is calculated, and the process returns to step STP1.

なお、上述の処理手順において、ステップSTP2及び3がフーリエ変換処理手段Mで実行される処理、ステップSTP4がハイパスフィルタMにより実行される処理、ステップSTP5が逆フーリエ変換手段Mで実行される処理、ステップSTP6及び7が油膜抽出手段Mで実行される処理、ステップSTP8及び9が判定手段Mで実行される処理、ステップSTP10が流出面積算定手段Mで実行される処理である。 Incidentally, in the above-described processing procedure, processing steps STP2 and 3 are performed by the Fourier transform processing means M 1, the processing step STP4 is performed by the high-pass filter M 2, step STP5 is performed by the inverse Fourier transform unit M 3 that process, process step STP6 and 7 is executed by the oil film extracting unit M 4, process step STP8 and 9 is executed by the determination means M 5, is in the process step STP10 runs outflow area calculating means M 6 .

なお、上述の説明では、油膜Rが形成された部分を黒く、油膜Rのない部分を白く表示したがその逆であっても良い。   In the above description, the portion where the oil film R is formed is displayed in black, and the portion where the oil film R is not present is displayed in white.

以上述べたように、本発明は、河川等の水面に油が流出したときに形成される油膜の有無を検知する用途に適用できる。   As described above, the present invention can be applied to the use of detecting the presence or absence of an oil film formed when oil flows out to the surface of a river or the like.

本発明に係る油膜検知装置の一例を示す説明図。Explanatory drawing which shows an example of the oil film detection apparatus which concerns on this invention. 水面の画像とこれを画像処理した過程を示す説明図。Explanatory drawing which shows the process which image-processed the image of the water surface, and this. 本発明の処理手順を示すフローチャート。The flowchart which shows the process sequence of this invention. その処理画像を示す説明図。Explanatory drawing which shows the processed image.

1 油膜検知装置
2 用水路
E 監視領域
R 油膜
3 照明装置
4 撮像装置
5 画像処理装置
6 ディスプレイ装置
フーリエ変換手段
ハイパスフィルタ
逆フーリエ変換手段
油膜抽出手段
判定手段
DESCRIPTION OF SYMBOLS 1 Oil film detector 2 Water channel E Monitoring area R Oil film 3 Illuminating device 4 Imaging device 5 Image processing device 6 Display device M 1 Fourier transform means M 2 High pass filter M 3 Inverse Fourier transform means M 4 Oil film extraction means M 5 Determination means

Claims (6)

水面上に形成される油膜を検知する油膜検知装置であって、
水面を撮像する撮像装置と、その画像信号を処理する画像処理装置とを備え、
前記画像処理装置は、撮像装置から入力された画像信号に含まれる周波数成分に基づきフーリエ信号を出力させるフーリエ変換手段と、フーリエ信号に含まれる水面上の波により生ずる輝度変化より高い周波数成分を通過させるハイパスフィルタと、ハイパスフィルタを通過したフーリエ信号に逆フーリエ変換を施して画像信号に戻す逆フーリエ変換手段と、逆フーリエ変換された画像信号を二値化処理して油膜部分を抽出する油膜抽出手段とを備えたことを特徴とする油膜検知装置。
An oil film detection device for detecting an oil film formed on a water surface,
An imaging device for imaging the water surface, and an image processing device for processing the image signal;
The image processing device passes a Fourier transform means for outputting a Fourier signal based on a frequency component included in an image signal input from the imaging device, and a frequency component higher than a luminance change caused by a wave on the water surface included in the Fourier signal. A high-pass filter that performs an inverse Fourier transform on the Fourier signal that has passed through the high-pass filter and returns the image signal to an image signal, and an oil film extraction that binarizes the image signal that has been subjected to the inverse Fourier transform and extracts an oil film portion And an oil film detecting device.
前記フーリエ変換手段は、画像信号がカラー画像である場合に、これをフーリエ変換する前にグレースケールの画像信号への減色処理を行う請求項1記載の油膜検知装置。   2. The oil film detection device according to claim 1, wherein when the image signal is a color image, the Fourier transform means performs a color reduction process on the gray scale image signal before Fourier transforming the image signal. 前記油膜抽出手段は、逆フーリエ変換された画像信号にエッジ検出処理を施した後、二値化処理を施す請求項1記載の油膜検知装置。   The oil film detection device according to claim 1, wherein the oil film extraction unit performs binarization processing after performing edge detection processing on the inverse Fourier transformed image signal. 水面上に形成される油膜を検知する油膜検知装置であって、
水面を撮像した画像信号をフーリエ変換し、得られたフーリエ信号をハイパスフィルタに通して水面上の波により生ずる輝度変化より高い周波数成分のみを出力させ、ハイパスフィルタを通過したフーリエ信号に逆フーリエ変換を施して画像信号に戻し、逆フーリエ変換された画像信号を二値化処理して油膜部分を抽出することを特徴とする油膜検知方法。
An oil film detection device for detecting an oil film formed on a water surface,
The image signal obtained by imaging the water surface is subjected to Fourier transform, and the obtained Fourier signal is passed through a high-pass filter to output only frequency components higher than the luminance change caused by the wave on the water surface, and inverse Fourier transform is performed to the Fourier signal that has passed through the high-pass filter. The oil film detection method is characterized in that an oil film portion is extracted by performing binarization processing on the image signal that has been subjected to inverse Fourier transform and returning to an image signal.
前記画像信号がカラー画像である場合に、これをフーリエ変換する前にグレースケールの画像信号への減色処理を行う請求項4記載の油膜検知方法。   The oil film detection method according to claim 4, wherein when the image signal is a color image, a color-reduction process is performed on the gray-scale image signal before Fourier transform. 逆フーリエ変換された画像信号にエッジ検出処理を施した後、二値化処理を施す請求項4記載の油膜検知方法。


The oil film detection method according to claim 4, wherein the binarization process is performed after the edge detection process is performed on the inverse Fourier transformed image signal.


JP2007231078A 2007-09-06 2007-09-06 Oil film detection apparatus and method Expired - Fee Related JP4816600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007231078A JP4816600B2 (en) 2007-09-06 2007-09-06 Oil film detection apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007231078A JP4816600B2 (en) 2007-09-06 2007-09-06 Oil film detection apparatus and method

Publications (2)

Publication Number Publication Date
JP2009063398A true JP2009063398A (en) 2009-03-26
JP4816600B2 JP4816600B2 (en) 2011-11-16

Family

ID=40558099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231078A Expired - Fee Related JP4816600B2 (en) 2007-09-06 2007-09-06 Oil film detection apparatus and method

Country Status (1)

Country Link
JP (1) JP4816600B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169341A (en) * 2017-03-30 2018-11-01 Jxtgエネルギー株式会社 Oil film detection system and oil film detection method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292185A (en) * 1995-04-21 1996-11-05 Anima Denshi Kk Detection apparatus of leakage of waste liquid
JPH10213541A (en) * 1997-01-28 1998-08-11 Asahi Eng Co Ltd Oil film detector
JPH10257373A (en) * 1997-01-10 1998-09-25 Olympus Optical Co Ltd Image input device
JPH1123269A (en) * 1997-06-27 1999-01-29 Ishikawajima Harima Heavy Ind Co Ltd Wave height meter
JPH11284982A (en) * 1998-03-31 1999-10-15 Chugoku Electric Power Co Inc:The Monitoring device and method
JP2000152254A (en) * 1998-11-05 2000-05-30 Nippon Hoso Kyokai <Nhk> Wavelength selection type liquid crystal camera
JP2001289788A (en) * 2000-04-10 2001-10-19 Nissan Motor Co Ltd Surface-flaw inspecting device
JP2002082054A (en) * 2000-06-20 2002-03-22 Fuji Electric Co Ltd Alarm determining method for oil detecting device
JP2002216133A (en) * 2001-01-22 2002-08-02 Fuji Xerox Co Ltd Image processing system and sense information processing system
JP2002286411A (en) * 2001-03-28 2002-10-03 Fuji Photo Optical Co Ltd Method and device for analyzing fringe
JP2003060913A (en) * 2001-08-13 2003-02-28 Toyota Central Res & Dev Lab Inc Image processing method and image processor
JP2007005935A (en) * 2005-06-21 2007-01-11 Ricoh Co Ltd Picture information embedding device, method and program, alteration detector, detection method and program, and computer readable recording medium
JP2007147448A (en) * 2005-11-28 2007-06-14 Iwasaki Electric Co Ltd Oil film detector and oil film detection method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292185A (en) * 1995-04-21 1996-11-05 Anima Denshi Kk Detection apparatus of leakage of waste liquid
JPH10257373A (en) * 1997-01-10 1998-09-25 Olympus Optical Co Ltd Image input device
JPH10213541A (en) * 1997-01-28 1998-08-11 Asahi Eng Co Ltd Oil film detector
JPH1123269A (en) * 1997-06-27 1999-01-29 Ishikawajima Harima Heavy Ind Co Ltd Wave height meter
JPH11284982A (en) * 1998-03-31 1999-10-15 Chugoku Electric Power Co Inc:The Monitoring device and method
JP2000152254A (en) * 1998-11-05 2000-05-30 Nippon Hoso Kyokai <Nhk> Wavelength selection type liquid crystal camera
JP2001289788A (en) * 2000-04-10 2001-10-19 Nissan Motor Co Ltd Surface-flaw inspecting device
JP2002082054A (en) * 2000-06-20 2002-03-22 Fuji Electric Co Ltd Alarm determining method for oil detecting device
JP2002216133A (en) * 2001-01-22 2002-08-02 Fuji Xerox Co Ltd Image processing system and sense information processing system
JP2002286411A (en) * 2001-03-28 2002-10-03 Fuji Photo Optical Co Ltd Method and device for analyzing fringe
JP2003060913A (en) * 2001-08-13 2003-02-28 Toyota Central Res & Dev Lab Inc Image processing method and image processor
JP2007005935A (en) * 2005-06-21 2007-01-11 Ricoh Co Ltd Picture information embedding device, method and program, alteration detector, detection method and program, and computer readable recording medium
JP2007147448A (en) * 2005-11-28 2007-06-14 Iwasaki Electric Co Ltd Oil film detector and oil film detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169341A (en) * 2017-03-30 2018-11-01 Jxtgエネルギー株式会社 Oil film detection system and oil film detection method

Also Published As

Publication number Publication date
JP4816600B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
Davies et al. The use of wide-band transmittance imaging to size and classify suspended particulate matter in seawater
US20100053319A1 (en) Method and apparatus for pattern inspection
JP5239128B2 (en) Observation device
KR101192053B1 (en) Apparatus and method for detecting semiconductor substrate anomalies
JP2007309679A (en) Image inspection method, and image inspection device using it
EP2396815A2 (en) Detecting defects on a wafer
EP2335056A1 (en) Device for analysing the surface of a substrate
JP6639896B2 (en) Airtightness inspection device
RU2764644C1 (en) Method for detecting surface defects, device for detecting surface defects, method for producing steel materials, method for steel material quality control, steel materials production plant, method for generating models for determining surface defects and a model for determining surface defects
JP2006242886A (en) Surface defect inspecting apparatus
JP4654894B2 (en) Oil film detection apparatus and method
JP2000275135A (en) Apparatus and method for inspection of leakage oil
JP5842373B2 (en) Surface defect detection method and surface defect detection apparatus
JP2015075483A (en) Defect detection method of optically transparent film
JP4816600B2 (en) Oil film detection apparatus and method
JP2008249413A (en) Defect detection method and device
WO2021118838A1 (en) Laser based inclusion detection system and methods
JP2007212238A (en) Water level detector and water level detection method using it
JP6035124B2 (en) Defect inspection apparatus and defect inspection method
JP2010223598A (en) Flaw inspection device for sheet-like article
JP2009222683A (en) Method and apparatus for surface inspection
JP2018021873A (en) Surface inspection device and surface inspection method
JP3390931B2 (en) Inspection method for colored pattern defects
JPH09113465A (en) Detection apparatus for surface fault for galvanized steel plate
JP4609089B2 (en) Periodic pattern unevenness inspection apparatus and periodic pattern imaging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4816600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees