JP2018204956A - Coating-film blistering width measuring apparatus for coated metal plate and method for measuring coating-film blistering width of coated metal plate - Google Patents
Coating-film blistering width measuring apparatus for coated metal plate and method for measuring coating-film blistering width of coated metal plate Download PDFInfo
- Publication number
- JP2018204956A JP2018204956A JP2017106463A JP2017106463A JP2018204956A JP 2018204956 A JP2018204956 A JP 2018204956A JP 2017106463 A JP2017106463 A JP 2017106463A JP 2017106463 A JP2017106463 A JP 2017106463A JP 2018204956 A JP2018204956 A JP 2018204956A
- Authority
- JP
- Japan
- Prior art keywords
- image
- metal plate
- coating
- painted metal
- coating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 title claims abstract description 121
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 121
- 238000000034 method Methods 0.000 title claims description 39
- 238000003384 imaging method Methods 0.000 claims abstract description 27
- 239000000284 extract Substances 0.000 claims abstract description 7
- 239000011248 coating agent Substances 0.000 claims description 103
- 238000000576 coating method Methods 0.000 claims description 103
- 230000008961 swelling Effects 0.000 claims description 95
- 238000005286 illumination Methods 0.000 claims description 61
- 238000005260 corrosion Methods 0.000 claims description 15
- 230000007797 corrosion Effects 0.000 claims description 15
- 239000003973 paint Substances 0.000 claims description 9
- 230000002194 synthesizing effect Effects 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 abstract description 13
- 229910000831 Steel Inorganic materials 0.000 description 80
- 239000010959 steel Substances 0.000 description 80
- 238000012545 processing Methods 0.000 description 18
- 238000001514 detection method Methods 0.000 description 15
- 238000005259 measurement Methods 0.000 description 12
- 238000000605 extraction Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 4
- 238000010998 test method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
本発明は、塗装金属板の塗膜膨れ幅測定装置および塗装金属板の塗膜膨れ幅の測定方法に関する。 The present invention relates to a coating film swelling width measuring device for a painted metal plate and a method for measuring a coating swelling width of a painted metal plate.
従来、鋼板等の金属板の表面に塗装を施した塗装金属板は、屋内外の様々な用途に用いられている。塗装鋼板等の塗装金属板には、優れた耐食性が求められる場合がある。 2. Description of the Related Art Conventionally, a coated metal plate obtained by coating the surface of a metal plate such as a steel plate is used for various uses indoors and outdoors. A coated metal plate such as a coated steel plate may be required to have excellent corrosion resistance.
塗装鋼板の耐食性評価方法の一つとして、塗装鋼板の表面にカッターナイフで塗膜下の鋼板まできずをつけたサンプルを作成し、前記サンプルを屋外の暴露試験環境下、あるいは実験室での塩水浸漬試験環境下、あるいは塩水噴霧(塩水浸漬)、乾燥、湿潤を繰り返すサイクリック試験環境下などに置き、きず部から発生した錆もしくは塗膜膨れの広がり具合を評価する方法が知られている。 As one of the methods for evaluating the corrosion resistance of coated steel sheets, a sample is prepared by attaching the surface of the coated steel sheet to the surface of the coated steel sheet with a cutter knife, and the sample is subjected to an outdoor exposure test environment or salt water in the laboratory. There is known a method for evaluating the spread of rust or paint film swelling generated from a flawed part under an immersion test environment or a cyclic test environment in which salt spray (salt water immersion), drying and wetting are repeated.
例えば、自動車規格の自動車用材料腐食試験方法や自動車部品外観腐食試験方法に記載されているように、塗装鋼板の表面にカッターナイフでX字状にきず(例えばクロスカット)を入れ、きずの片側の最大塗膜膨れ幅をノギスなどを用いて1/10mmまで測定し、これを最大塗膜膨れ幅とする規格がある(非特許文献1、2参照)。 For example, as described in the automotive material corrosion test method for automobiles and the automotive part appearance corrosion test method, an X-shaped scratch (for example, a cross cut) is put on the surface of the coated steel plate with a cutter knife, and one side of the scratch There is a standard in which the maximum coating swelling width is measured to 1/10 mm using a caliper or the like, and this is the maximum coating swelling width (see Non-Patent Documents 1 and 2).
また、特許文献1には、塗装鋼板の耐食性試験後の表面に、斜め方向から光を当て上方のテレビカメラで塗装鋼板表面を撮像し、画素毎に受けた輝度と基準面から受けた輝度との差を求め、この差の正負及びその大小の分布状態から塗膜膨れ発生域を算出する方法が記載されている。 Further, in Patent Document 1, the surface of the coated steel sheet after the corrosion resistance test is irradiated with light from an oblique direction, and the surface of the coated steel sheet is imaged with an upper TV camera, and the luminance received for each pixel and the luminance received from the reference surface are as follows. The method of calculating | requiring the difference of this, and calculating the coating film swelling generation area from the positive / negative of this difference and its large and small distribution state is described.
しかしながら、前述の従来技術には以下のような問題点がある。
塗膜膨れ幅の測定は、ルーペなどの拡大鏡を用いて検査員が目視検査で測定する方法が一般的である。そのため、塗膜膨れ幅が最大となった部位(最大塗膜膨れ幅部)の判定に個人差が生じやすく、また、広範囲に亘り微細な塗膜膨れ幅の変化を観察する必要があるため、疲労等による測定ミスを生じるという問題がある。
However, the above-described prior art has the following problems.
In general, the film swollen width is measured by a visual inspection by an inspector using a magnifier such as a loupe. Therefore, individual differences are likely to occur in the determination of the site where the coating film swelling width is maximized (maximum coating film swelling width part), and it is necessary to observe a fine coating film swelling width change over a wide range. There is a problem that a measurement error due to fatigue or the like occurs.
さらに、目視判定では最大塗膜膨れ幅の数値でのみ評価しており、最大塗膜膨れ幅の発生した部位の情報までは記録できていないために、腐食試験回数に伴う最大塗膜膨れ幅の変化の様子を必ずしも追跡できていない。 Furthermore, the visual evaluation is evaluated only with the numerical value of the maximum paint film swell width, and since the information on the site where the maximum paint film swell width has occurred has not been recorded, I can't always track changes.
また、特許文献1には画像から塗膜膨れ発生域を算出する方法が記載されているが、きずをつけた部位からの距離の算出方法は提示されていない。更に、1方向からの照明を用いて基準面での輝度レベル差で塗膜膨れ部を判断しており、照明の輝度ムラや塗膜表面の色や反射率ムラなどの影響を受けやすいという問題がある。 Further, Patent Document 1 describes a method for calculating a film swelling occurrence area from an image, but does not present a method for calculating a distance from a scratched part. Furthermore, the film bulge is judged from the brightness level difference on the reference surface using illumination from one direction, and it is easy to be affected by illumination brightness unevenness, coating surface color and reflectance unevenness, etc. There is.
本発明は、塗装金属板の塗膜膨れ幅を精度よく測定できる、塗装金属板の塗膜膨れ幅測定装置および塗装金属板の塗膜膨れ幅の測定方法を提供することを目的とする。 An object of this invention is to provide the coating-film swelling width measuring apparatus of a coating metal plate, and the measuring method of the coating-film swelling width of a coating metal plate which can measure the coating-swelling width of a coating metal plate accurately.
本発明は、以下の態様を有する。
[1]表面にきずをつけ、腐食環境で腐食を生じさせた塗装金属板の塗膜膨れ幅を測定する塗膜膨れ幅測定装置であって、前記塗装金属板を載置するサンプル台と、前記塗装金属板の表面を撮像する撮像手段と、前記塗装金属板の表面を少なくとも2方向から照明可能な照明手段と、前記塗装金属板の塗膜膨れ幅を算出する演算手段と、を備え、前記演算手段は、前記照明手段により、少なくとも2方向のうちの1方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した第1の画像と、前記1方向以外の方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した第2の画像とから、前記塗装金属板の表面のきずの位置を抽出し、かつ、前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するか、または、前記照明手段により、少なくとも2方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した第3の画像から、前記塗装金属板の表面の塗膜膨れ部位を抽出し、前記抽出した塗装金属板の表面のきずの位置と、前記抽出した塗装金属板の表面の塗膜膨れ部位とから、前記塗装金属板の塗膜膨れ幅を算出する、塗装金属板の塗膜膨れ幅測定装置。
[2]前記演算手段が画像合成手段を有し、前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面のきずの位置を抽出するに際し、前記画像合成手段が、前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち低い方の輝度レベルを算出した最小輝度画像を合成する、[1]に記載の塗装金属板の塗膜膨れ幅測定装置。
[3]前記演算手段が画像合成手段を有し、前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するに際し、前記画像合成手段が、前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち高い方の輝度レベルを算出した最大輝度画像を合成する、[1]または[2]に記載の塗装金属板の塗膜膨れ幅測定装置。
[4]表面にきずをつけ、腐食環境で腐食を生じさせた塗装金属板の塗膜膨れ幅を測定する塗膜膨れ幅の測定方法であって、前記塗装金属板の表面を1方向から照明した状態で当該塗装金属板の表面を撮像した第1の画像と、前記塗装金属板の表面を前記1方向以外の方向から照明した状態で当該塗装金属板の表面を撮像した第2の画像とから、前記塗装金属板の表面のきずの位置を抽出し、かつ、前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するか、または、前記塗装金属板の表面を少なくとも2方向から照明した状態で当該塗装金属板の表面を撮像した第3の画像から、前記塗装金属板の表面の塗膜膨れ部位を抽出し、前記抽出した塗装金属板の表面のきずの位置と、前記抽出した塗装金属板の表面の塗膜膨れ部位とから、前記塗装金属板の塗膜膨れ幅を算出する、塗装金属板の塗膜膨れ幅の測定方法。
[5]前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面のきずの位置を抽出するに際し、前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち低い方の輝度レベルを算出した最小輝度画像を合成する、[4]に記載の塗装金属板の塗膜膨れ幅の測定方法。
[6]前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するに際し、前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち高い方の輝度レベルを算出した最大輝度画像を合成する、[4]または[5]に記載の塗装金属板の塗膜膨れ幅の測定方法。
The present invention has the following aspects.
[1] A coating film swelling width measuring device for measuring a coating film swelling width of a coated metal plate which has scratched the surface and caused corrosion in a corrosive environment, and a sample table on which the coated metal plate is placed; Imaging means for imaging the surface of the painted metal plate, illuminating means capable of illuminating the surface of the painted metal plate from at least two directions, and calculating means for calculating the coating film swelling width of the painted metal plate, The calculation means includes a first image obtained by imaging the surface of the painted metal plate in a state where the illumination means illuminates the surface of the painted metal plate from at least one of two directions, and a direction other than the one direction. A position of a flaw on the surface of the painted metal plate is extracted from a second image obtained by imaging the surface of the painted metal plate in a state where the surface of the painted metal plate is illuminated from the direction, and the first image And the second image, the coating gold From the third image obtained by imaging the surface of the coated metal plate in a state in which the surface of the painted metal plate is illuminated from at least two directions by the illumination means, The surface of the coated metal plate is extracted from the surface of the coated metal plate, and the surface of the extracted coated metal plate is scratched and the surface of the extracted coated metal plate is swollen from the surface of the coated metal plate. A coating film swelling width measuring device for a coated metal plate for calculating a coating film swelling width.
[2] The arithmetic unit includes an image synthesizing unit, and when extracting the position of the flaw on the surface of the painted metal plate from the first image and the second image, the image synthesizing unit includes: From the first image and the second image, a minimum luminance image obtained by calculating a lower luminance level among luminance levels at the same pixel address of the first image and the second image is synthesized. The apparatus for measuring the swollen width of a coated metal plate according to [1].
[3] The calculation means includes image synthesis means, and the image synthesis means is configured to extract a film swelling portion on the surface of the painted metal plate from the first image and the second image. A maximum luminance image obtained by calculating a higher luminance level among luminance levels at the same pixel address of the first image and the second image is synthesized from the first image and the second image. The coating film swelling width measuring device for a coated metal sheet according to [1] or [2].
[4] A method for measuring the swollen film width of a coated metal plate having scratches on the surface and causing corrosion in a corrosive environment, wherein the surface of the painted metal plate is illuminated from one direction A first image in which the surface of the painted metal plate is imaged in a state of being applied, and a second image in which the surface of the painted metal plate is imaged in a state in which the surface of the painted metal plate is illuminated from a direction other than the one direction. And extracting a position of a flaw on the surface of the painted metal plate, and extracting a film swelling portion on the surface of the painted metal plate from the first image and the second image, or , Extracting a paint film bulge portion on the surface of the painted metal plate from a third image obtained by imaging the surface of the painted metal plate in a state where the surface of the painted metal plate is illuminated from at least two directions; The position of the flaw on the surface of the metal plate and the extracted painted metal plate And a coating film swelling portion of the surface, to calculate the coating blister width of the coated metal plate, the measuring method of the coating film blister width of the coated metal plate.
[5] When extracting the position of the flaw on the surface of the painted metal plate from the first image and the second image, from the first image and the second image, the first image and the second image are used. The minimum-brightness image obtained by calculating the lower luminance level of the luminance levels at the same pixel address of the first image and the second image is synthesized, and the coating swelling width measurement of the painted metal plate according to [4] Method.
[6] When extracting the coating film swollen site on the surface of the coated metal plate from the first image and the second image, from the first image and the second image, The coating of the coated metal plate according to [4] or [5], wherein a maximum luminance image obtained by calculating a higher luminance level among luminance levels at the same pixel address of the first image and the second image is synthesized. Method for measuring film swell width.
本発明によれば、塗装金属板の塗膜膨れ幅を精度よく測定できる。
本発明によれば、自動的に塗装金属板の塗膜膨れ幅測定を精度よく行うことができるようになり、かつ、測定時間の短縮、測定の信頼性の向上が図れる。また、本発明によれば、最大塗膜膨れ幅の発生した部位等の特定の部位の情報を記録でき、腐食試験を繰り返し行った際の当該部位の変化の様子(腐食状態の変化の様子等)を追跡できる。
According to the present invention, it is possible to accurately measure the swollen width of the coated metal plate.
According to the present invention, it is possible to automatically measure the swollen width of a coated metal plate with high accuracy, and to shorten the measurement time and improve the measurement reliability. In addition, according to the present invention, it is possible to record information on a specific part such as a part where the maximum coating film swelling width occurs, and a state of change of the part when the corrosion test is repeatedly performed (a state of change of the corrosion state, etc.) ) Can be tracked.
以下、本発明の一実施形態について図面を参照しながら説明する。ただし、本発明は、以下に示す実施形態に限定されない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments shown below.
図1は、本発明の塗装金属板の塗膜膨れ幅測定装置(以下、単に「塗膜膨れ幅測定装置」ともいう)の一実施形態を示す概略構成図である。
本実施形態では、測定対象の塗装金属板として、表面にきずをつけ、腐食環境で腐食を生じさせた塗装鋼板を想定している。以下、測定対象の前記塗装鋼板を、「塗装鋼板サンプル」ともいう。
FIG. 1 is a schematic configuration diagram showing an embodiment of a coating film swelling width measuring apparatus (hereinafter, also simply referred to as “coating swelling width measuring apparatus”) of a coated metal sheet according to the present invention.
In the present embodiment, it is assumed that the coated metal plate to be measured is a coated steel plate with scratches on the surface and causing corrosion in a corrosive environment. Hereinafter, the coated steel sheet to be measured is also referred to as a “coated steel sheet sample”.
(塗膜膨れ幅測定装置)
図1に示す塗膜膨れ幅測定装置は、塗装鋼板サンプルを載置するサンプル台と、前記塗装鋼板サンプルの表面を撮像する撮像手段としてのテレビカメラと、前記塗装鋼板サンプルの表面を少なくとも2方向から照明可能な照明手段としてのLED照明と、前記塗装鋼板サンプルの塗膜膨れ幅を算出する演算手段としての解析用パソコンと、を備える。
(Coating swell width measuring device)
The coating film swollen width measuring apparatus shown in FIG. 1 includes a sample table on which a coated steel plate sample is placed, a television camera as an imaging means for imaging the surface of the coated steel plate sample, and the surface of the coated steel plate sample in at least two directions. LED lighting as illuminating means capable of illuminating, and an analysis personal computer as calculating means for calculating the coating film swelling width of the coated steel sheet sample.
図1に示すように、塗装鋼板サンプルの上方には、塗装鋼板サンプルの表面を撮像するためのテレビカメラが鉛直下向きに設置されており、該テレビカメラの視野中心に塗装鋼板サンプル表面の中央部が映るように、サンプル台の位置及び塗装鋼板サンプルの取り付け位置が調整されている(図2)。サンプル台及び塗装鋼板サンプルは水平に配置されている。 As shown in FIG. 1, a television camera for imaging the surface of the coated steel sheet sample is installed vertically downward above the coated steel sheet sample, and the central portion of the coated steel sheet sample surface is centered on the visual field of the television camera. , The position of the sample stage and the mounting position of the coated steel plate sample are adjusted (FIG. 2). The sample table and the coated steel plate sample are arranged horizontally.
また、塗装鋼板サンプルはテレビカメラで撮像したときに、視野の横方向に塗装鋼板サンプルの長手方向が映り込むように配置されている。すなわち、テレビカメラの視野の横方向をX軸、縦方向をY軸、視野の奥行き方向をZ軸とすると、塗装鋼板サンプルの長手方向がX軸と平行に配置されている。 The coated steel plate sample is arranged so that the longitudinal direction of the coated steel plate sample is reflected in the lateral direction of the visual field when imaged by a television camera. That is, assuming that the horizontal direction of the visual field of the TV camera is the X axis, the vertical direction is the Y axis, and the depth direction of the visual field is the Z axis, the longitudinal direction of the coated steel sheet sample is arranged parallel to the X axis.
図3に、塗装鋼板サンプルの例を示す。塗装鋼板サンプルは平板であり、長方形の形状をしており、周辺部はテープでシールされている。 FIG. 3 shows an example of a coated steel plate sample. The coated steel plate sample is a flat plate, has a rectangular shape, and the periphery is sealed with tape.
本実施形態においては、表面にカッターナイフでX字形に直線状に塗膜下の鋼板まできず(クロスカット)をつけたあと、塩水浸漬、乾燥、湿潤を繰り返すサイクリック試験環境下に置いた塗装鋼板サンプルを測定対象とし、前記塗装鋼板サンプルのきず部から発生した錆もしくは塗膜膨れの広がり具合を評価する。 In this embodiment, the surface is coated with a cutter knife in a cyclic test environment where a steel plate under the coating is not formed (cross cut) in a straight line with a cutter knife and then repeatedly immersed in salt water, dried and moistened. A steel plate sample is used as a measurement target, and the spread of rust or coating swelling generated from a flaw portion of the coated steel plate sample is evaluated.
なお、本発明において、塗装金属板の表面につけるきずの形状や本数は、特に限定されない。例えば、塗装金属板の表面に直線状のきずを一本だけつけてもよいし(縦カット、横カット、斜カット)、直線状のきずを複数本つけてもよい。また、複数本のきずをつける場合には、きず同士をクロス(交差)させてもよいし、クロスさせなくてもよい。なお、本実施形態では、クロスカットの小さい方の対頂角の角度を略60°としているが、これに限定されず、きず同士をクロスさせる場合の角度は任意である。 In the present invention, the shape and number of flaws attached to the surface of the coated metal plate are not particularly limited. For example, only one straight flaw may be made on the surface of the coated metal plate (vertical cut, horizontal cut, oblique cut), or a plurality of straight flaws may be made. In addition, when a plurality of flaws are attached, the flaws may be crossed (crossed) or may not be crossed. In the present embodiment, the angle of the vertical angle with the smaller crosscut is approximately 60 °, but the angle is not limited to this, and the angle when flaws are crossed is arbitrary.
図1、図2に示すように、本実施形態の塗膜膨れ幅測定装置は、照明手段としてLED照明を備える。LED照明は、塗装鋼板サンプルを挟んだ左側の位置と右側の位置にそれぞれ配置されている。すなわち、LED照明は、塗装鋼板サンプルの表面を左右2方向から照明できるように配置されている。 As shown in FIGS. 1 and 2, the coating film swollen width measuring apparatus of the present embodiment includes LED illumination as illumination means. The LED lighting is arranged at a left position and a right position with the coated steel plate sample interposed therebetween. That is, the LED illumination is arranged so that the surface of the coated steel plate sample can be illuminated from two directions.
本実施形態におけるLED照明は、LED発光部が細長くライン状に並んでおり、細長い領域を照明する構造となっている。LED照明から出射された光は細く且つ広がり角が狭いため、塗装鋼板サンプルに対して低い角度で照明しても塗装鋼板サンプルの幅方向(Y軸方向)に表面を均一に照明することができる。
また、図2に示すように、LED照明の長さは塗装鋼板サンプルの長さより長くされており、塗装鋼板サンプルの長手方向(X軸方向)にも表面を均一に照明することができる。
また、LED照明は解析用パソコンから出力される点消灯信号によって、左右のLED照明の点消灯を、各々単独で制御できるようになっている。
The LED illumination in the present embodiment has a structure in which LED light emitting portions are elongated and arranged in a line, and illuminates an elongated region. Since the light emitted from the LED illumination is thin and has a narrow spread angle, the surface can be uniformly illuminated in the width direction (Y-axis direction) of the coated steel sheet sample even if the painted steel sheet sample is illuminated at a low angle. .
Moreover, as shown in FIG. 2, the length of LED illumination is made longer than the length of a coated steel plate sample, and the surface can be illuminated uniformly also in the longitudinal direction (X-axis direction) of the coated steel plate sample.
In addition, LED lighting can be individually controlled to turn on and off the left and right LED lights by a lighting signal that is output from a personal computer for analysis.
なお、本発明において、照明手段は、LED照明に限定されず、任意の照明装置を採用できる。また、本発明において、塗装鋼板サンプルの表面を照明する方法としては、塗装鋼板サンプルを挟んで対向する位置に照明装置を配置し、該照明装置により塗装鋼板サンプルの表面を照明する方法が好ましい。例えば、本実施形態のように塗装鋼板サンプルを挟んだ左右の位置にそれぞれ照明装置を配置し、左右2方向から塗装鋼板サンプルの表面を照明できるようにしてもよいし、塗装鋼板サンプルを挟んだ紙面手前側の位置と、紙面奥側の位置に照明装置をそれぞれ配置し、紙面手前方向(前方向)と紙面奥方向(後方向)の2方向から塗装鋼板サンプルの表面を照明できるようにしてもよい。さらに、塗装鋼板サンプルを挟んだ左右の位置と、手前側奥側の位置に照明装置をそれぞれ配置し、前後左右方向の4方向から塗装鋼板サンプルの表面を照明できるようにしてもよい。 In the present invention, the illumination means is not limited to LED illumination, and any illumination device can be employed. Moreover, in this invention, as a method of illuminating the surface of the coated steel plate sample, a method of illuminating the surface of the coated steel plate sample with the illuminating device is preferred by arranging an illuminating device at a position facing the coated steel plate sample. For example, as in this embodiment, lighting devices may be arranged at the left and right positions sandwiching the coated steel sheet sample so that the surface of the coated steel sheet sample can be illuminated from the two left and right directions. An illumination device is arranged at a position on the front side of the paper and a position on the back side of the paper so that the surface of the coated steel sheet sample can be illuminated from two directions, the front side (front direction) and the back direction (rear direction). Also good. Furthermore, lighting devices may be arranged at positions on the left and right sides of the coated steel sheet sample and at the position on the back side on the near side so that the surface of the coated steel sheet sample can be illuminated from four directions in the front-rear and left-right directions.
さらに、照明手段は、前記各方向からの照明光が略同一の入射角度(照明光が塗装鋼板サンプル表面となす角度)で塗装鋼板サンプルの表面を照明できることが好ましい。また、前記入射角度は小さい方が好ましい。これにより、塗装鋼板サンプルの表面を幅方向、長手方向に均一に照明しやすくなり、かつ、塗装鋼板サンプル表面の微小な凹凸を強調して観察できる。 Furthermore, it is preferable that the illumination means can illuminate the surface of the coated steel sheet sample at substantially the same incident angle (the angle formed by the illumination light with respect to the coated steel sheet sample surface). The incident angle is preferably small. Thereby, it becomes easy to illuminate the surface of the coated steel plate sample uniformly in the width direction and the longitudinal direction, and minute unevenness on the surface of the coated steel plate sample can be emphasized and observed.
本実施形態において、前記テレビカメラはUSBケーブルで解析用パソコンに接続されており、テレビカメラで撮像された画像は解析用パソコンに転送され処理される。解析用パソコンはテレビカメラで撮像した画像データから画像処理により、塗装鋼板サンプルの表面のきずの位置の抽出と、塗装鋼板サンプルの表面の塗膜膨れ部位の抽出を行い、その結果から塗膜膨れ幅を算出する。そして、算出結果を解析用パソコンに接続されたモニタ上に表示する。また、テレビカメラで撮像するときには、解析用パソコンからLED照明の点消灯制御信号を出力し、左側照明のみ点灯した状態で左側照明画像(第1の画像)を取り込み、右側照明のみ点灯した状態で右側照明画像(第2の画像)を取り込む。また、後述するように、塗装鋼板サンプルの表面の塗膜膨れ部位を抽出するために、左側照明と右側照明を同時点灯した状態で撮像した画像(第3の画像)を別途取り込んでもよい。 In this embodiment, the television camera is connected to an analysis personal computer with a USB cable, and an image captured by the television camera is transferred to the analysis personal computer and processed. The personal computer for analysis extracts the position of the flaw on the surface of the coated steel plate sample and the surface of the coated steel plate sample by image processing from the image data captured by the TV camera. Calculate the width. Then, the calculation result is displayed on a monitor connected to the analysis personal computer. Also, when imaging with a TV camera, an LED lighting on / off control signal is output from the analysis computer, the left side illumination image (first image) is captured with only the left side illumination turned on, and only the right side illumination is on. A right illumination image (second image) is captured. Further, as will be described later, in order to extract a film swelling portion on the surface of the coated steel sheet sample, an image (third image) captured in a state where the left side illumination and the right side illumination are simultaneously turned on may be separately captured.
(塗膜膨れ幅の測定方法)
次に、本発明の塗膜膨れ幅の測定方法について説明する。
図4は、本発明における塗膜膨れ幅の測定手順を示す図である。図4のフローに従って本発明における塗膜膨れ幅の測定及び解析の手順例を説明する。
(Measurement method of film swelling width)
Next, the measuring method of the coating film swelling width of this invention is demonstrated.
FIG. 4 is a diagram showing a procedure for measuring a film swelling width in the present invention. The procedure example of the measurement and analysis of the film swelling width in the present invention will be described according to the flow of FIG.
まず、Step01では、撮像手段で、前記照明手段により、少なくとも2方向のうちの1方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した画像(第1の画像)と、前記1方向以外の方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した画像(第2の画像)を撮像する。
さらに、このStep01では、前記第1の画像、前記第2の画像とは別に、撮像手段で、前記照明手段により少なくとも2方向から同時に前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した画像(第3の画像)を撮像しても良い。
First, in Step 01, an image (first image) obtained by capturing an image of the surface of the painted metal plate in a state where the surface of the painted metal plate is illuminated from one of at least two directions by the illumination unit. And the image (2nd image) which imaged the surface of the said coating metal plate in the state which illuminated the surface of the said coating metal plate from directions other than the said 1 direction is imaged.
Further, in this Step 01, in addition to the first image and the second image, the imaging unit is configured to illuminate the surface of the painted metal plate simultaneously from at least two directions by the illumination unit. You may image the image (3rd image) which imaged the surface.
次に、Step02では、演算手段が、Step01で得られた前記第1の画像と前記第2の画像とから、塗装金属板の表面のきずの位置を抽出する。 Next, in Step 02, the computing means extracts the position of a flaw on the surface of the painted metal plate from the first image and the second image obtained in Step 01.
また、Step03では、演算手段が、Step01で得られた前記第1の画像と前記第2の画像とから、塗装金属板の表面の塗膜膨れ部位を抽出する。このStep03では、前記第3の画像から塗装金属板の表面の塗膜膨れ部位を抽出してもよい。
なお、Step02とStep03が行われる順序は、任意である。
In Step 03, the computing means extracts a coating film swelling portion on the surface of the coated metal plate from the first image and the second image obtained in Step 01. In this Step 03, the paint film swelling portion on the surface of the painted metal plate may be extracted from the third image.
Note that the order in which Step 02 and Step 03 are performed is arbitrary.
Step04では、演算手段が、Step02で抽出した塗装金属板の表面のきずの位置と、Step03で抽出した塗装金属板の表面の塗膜膨れ部位とから、塗装金属板サンプルの塗膜膨れ幅を算出する。そして、Step05で、その結果を出力する。 In Step 04, the computing means calculates the coating blister width of the painted metal plate sample from the position of the flaw on the surface of the painted metal plate extracted in Step 02 and the coating blister site on the surface of the painted metal plate extracted in Step 03. To do. In Step 05, the result is output.
次に、上記各Stepの詳細について説明する。 Next, the details of each Step will be described.
<Step01>
Step01で撮像する画像について説明する。
図5、図6は、本実施形態の塗膜膨れ幅測定装置により塗装鋼板サンプルの表面を撮像した際の画像の見え方について、模式的に説明する説明図である。
図5は、塗装鋼板サンプルの表面を左方向から照明した状態で当該塗装鋼板サンプルの表面を撮像した第1の画像(左側照明画像)の見え方について、塗装鋼板サンプルの断面形状と画像輝度レベルの関係を用いて模式的に説明する説明図であり、図6は、塗装鋼板サンプルの表面を右方向から照明した状態で当該塗装鋼板サンプルの表面を撮像した第2の画像(右側照明画像)の見え方について、塗装鋼板サンプルの断面形状と画像輝度レベルの関係を用いて模式的に説明する説明図である。
<Step01>
An image captured in Step 01 will be described.
5 and 6 are explanatory diagrams schematically illustrating how the image is seen when the surface of the coated steel sheet sample is imaged by the coating film swelling width measuring apparatus of the present embodiment.
FIG. 5 shows the cross-sectional shape and image luminance level of a coated steel sheet sample with respect to the appearance of a first image (left-side illumination image) obtained by imaging the surface of the coated steel sheet sample with the surface of the coated steel sheet sample illuminated from the left direction. FIG. 6 is a diagram schematically illustrating the surface of the coated steel sheet sample in a state where the surface of the coated steel sheet sample is illuminated from the right direction (right illumination image). It is explanatory drawing typically demonstrated using the relationship between the cross-sectional shape of a coated steel plate sample, and an image luminance level.
はじめに、図5を用いて、塗装鋼板サンプルの表面を左方向から照明した状態で当該塗装鋼板サンプルの表面を撮像した画像(第1の画像)の見え方について説明する。
塗装鋼板の腐食を生じていない部分は平坦なままである(図中の基準面)が、鋼板に腐食を生じると、腐食により塗膜が凸状に膨らみ始める。そのため、比較的低い角度で塗装鋼板サンプルの表面を照明すると(すなわち、塗装鋼板サンプルの表面とLED照明から出射された光線のなす角度が比較的小さくなるように該表面を照明すると)、基準面上では照明光がほぼそのまま鏡面反射し、テレビカメラに入る光量は少ない。しかし、塗膜膨れを生じた部分(塗膜膨れ部)では、塗膜膨れ部の左側(照明側)端面は基準面より立ち上がっているために、基準面に比べるとより多くの光がテレビカメラに反射するために、塗膜膨れ部の左側端部はテレビカメラで明るく観察される。また、きず部では、きずの両側に基準面から大きく盛り上がった盛り上がり部が生じており、盛り上がり部の左側(照明側)では明るくなり、一方、盛り上がり部の照明と反対側では“影”が発生し影部となるために暗く観察される。
従って、第1の画像では塗膜膨れ部及びきず部の左側(照明側)端部は明るい領域として観察され、きず部ではクロスカット状に明暗の領域が観察される。
First, the appearance of an image (first image) obtained by imaging the surface of the coated steel sheet sample with the surface of the coated steel sheet sample illuminated from the left direction will be described with reference to FIG.
The portion of the coated steel plate that has not been corroded remains flat (reference surface in the figure), but when the steel plate is corroded, the coating begins to bulge out due to the corrosion. Therefore, when the surface of the coated steel sheet sample is illuminated at a relatively low angle (that is, when the surface of the coated steel sheet sample is illuminated so that the angle formed by the light beam emitted from the LED illumination is relatively small), the reference plane Above, the illumination light is almost mirror-reflected and the amount of light entering the TV camera is small. However, in the part where the film bulge occurs (the film bulge part), the left side (illumination side) end surface of the film bulge part rises from the reference plane, so more light is emitted from the TV camera than the reference plane. Therefore, the left end of the film bulge is brightly observed with a television camera. In the flawed part, there are raised parts that are greatly raised from the reference plane on both sides of the flaw, and the left side of the raised part (illumination side) is brighter, while the shadow is on the opposite side of the raised part. Since it becomes a shadow part, it is observed darkly.
Accordingly, in the first image, the left side (illumination side) end of the coating film swelling portion and the flaw portion is observed as a bright region, and a bright and dark region is observed in a crosscut shape at the flaw portion.
次に、図6を用いて、塗装鋼板サンプルの表面を右方向から照明した状態で当該塗装鋼板サンプルの表面を撮像した画像(第2の画像)の見え方について説明する。
第2の画像では、塗装鋼板サンプルの表面を右側から照明することにより、塗膜膨れ部の右側(照明側)端部がテレビカメラで明るく観察される。また、きず部では左右に大きな盛り上がり部が生じることから、図6に示すように、第2の画像では、塗装膨れ部及びきず部の右側(照明側)端部は明るい領域として観察され、きず部の左側は影(影部)となるために暗く観察される。
Next, how the image (second image) obtained by imaging the surface of the coated steel sheet sample with the surface of the coated steel sheet sample illuminated from the right direction will be described with reference to FIG.
In the second image, by illuminating the surface of the coated steel plate sample from the right side, the right side (illumination side) end of the coating film swelling portion is observed brightly by the television camera. In addition, as shown in FIG. 6, in the second image, the right side (illumination side) end portion of the paint bulge portion and the flaw portion is observed as a bright region because a large bulge portion is generated on the left and right in the flaw portion. Since the left side of the part becomes a shadow (shadow part), it is observed darkly.
前記第1の画像(左側照明画像)の撮像は、解析用パソコンから点消灯制御信号を出力して、左側照明を点灯し、右側照明を消灯した状態で、解析用パソコンにUSBケーブルで接続されたテレビカメラで塗装鋼板サンプル表面を撮像する。そして撮像した画像を第1の画像(左側照明画像)として解析用パソコンに保存する。同様に、左側照明を消灯し、右側照明を点灯した状態で塗装鋼板サンプル表面を撮像した画像を第2の画像(右側照明画像)として解析用パソコンに保存する。前記第1の画像(左側照明画像)、前記第2の画像(右側照明画像)の例を図7に示す。なお、撮像の順番は第1の画像(左側照明画像)と第2の画像(右側照明画像)のどちらを先に撮像してもよい。 The first image (left illumination image) is captured by outputting a lighting control signal from the analysis personal computer, turning on the left illumination, and turning off the right illumination and connecting to the analysis personal computer with a USB cable. The painted steel plate sample surface is imaged with a TV camera. The captured image is stored in the analysis personal computer as a first image (left illumination image). Similarly, an image obtained by imaging the surface of the coated steel sheet sample with the left illumination turned off and the right illumination turned on is stored in the analysis personal computer as a second image (right illumination image). Examples of the first image (left illumination image) and the second image (right illumination image) are shown in FIG. Note that either the first image (left illumination image) or the second image (right illumination image) may be imaged first.
なお、Step01において、前記第1の画像、前記第2の画像とは別に、左側照明と右側照明を同時に点灯した状態で塗装鋼板サンプル表面を撮像した画像を第3の画像として解析用パソコンに保存してもよい。図示は省略するが、この第3の画像では、塗装膨れ部の左側端部と右側端部の両端部が明るい領域として観察され、後述の最大輝度画像と類似した画像となる。 In Step 01, separately from the first image and the second image, an image obtained by imaging the surface of the coated steel sheet sample with the left side illumination and the right side illumination turned on at the same time is stored in the analysis personal computer as a third image. May be. Although illustration is omitted, in the third image, the left end portion and the both end portions of the right end portion of the paint bulge portion are observed as bright regions, and an image similar to a maximum luminance image described later is obtained.
<Step02>
次に、Step02でのきずの位置の抽出手順を説明する。
図8は、Step01で得られた第1の画像と第2の画像とから、塗装金属板の表面のきずの位置を抽出する抽出手順の一例を示す図である。
<Step02>
Next, the procedure for extracting the flaw position in Step 02 will be described.
FIG. 8 is a diagram showing an example of an extraction procedure for extracting the position of a flaw on the surface of the painted metal plate from the first image and the second image obtained in Step 01.
本実施形態では、塗装鋼板サンプルの表面のきずの位置を抽出するために、演算手段が、画像合成手段と、空間フィルタ手段と、2値化手段と、直線検出手段とを備える。 In this embodiment, in order to extract the position of the flaw on the surface of the coated steel sheet sample, the calculation means includes an image synthesis means, a spatial filter means, a binarization means, and a straight line detection means.
まず、Step21では、画像合成手段が、Step01で撮像し解析用パソコンに保存された第1の画像(左側照明画像)と第2の画像(右側照明画像)の対応する同一画素アドレス毎に輝度レベルを比較し、輝度レベルが低いほうの値をその画素アドレスの輝度レベルとして画像合成し、最小輝度画像を合成する。最小輝度画像において、きず部は、きず部の左右の影が最小輝度画像の演算で暗く強調され、また、きず部中央が膨れている場合にはきず部中央が明るい領域として表示されるため、塗装膨れ部とは区別して観察できる。図9に合成した最小輝度画像例を示す。 First, in Step 21, the image synthesizing means captures the luminance level for each corresponding same pixel address of the first image (left illumination image) and the second image (right illumination image) captured in Step 01 and stored in the analysis personal computer. Are compared, and the image having the lower luminance level is synthesized as the luminance level of the pixel address, and the minimum luminance image is synthesized. In the minimum luminance image, the flaw part is displayed as a bright area in the case where the left and right shadows of the flaw part are darkly emphasized by the calculation of the minimum luminance image, and when the flaw center is swollen, It can be observed separately from the paint bulge. FIG. 9 shows an example of the synthesized minimum luminance image.
次いで、Step22では、空間フィルタ手段が、前記最小輝度画像からきず部の輝度レベル変動を強調して、きず部を強調した画像を合成する。
本実施形態では、きず部はクロスカットパターンとしてX軸に近い方向に斜めに直線状に延びていることから、空間フィルタ手段として微分フィルタ手段を用い、該微分フィルタ手段により、Y軸方向に画像の微分処理を行い、きず部を強調した画像(微分処理画像)を得る。
Next, in Step 22, the spatial filter means emphasizes the luminance level fluctuation of the flaw part from the minimum luminance image and synthesizes an image in which the flaw part is emphasized.
In the present embodiment, since the flaw part extends obliquely in a straight line in a direction close to the X axis as a crosscut pattern, the differential filter means is used as the spatial filter means, and the differential filter means causes an image in the Y axis direction. Differential processing is performed to obtain an image (differential processing image) in which the flaw portion is emphasized.
微分フィルタ手段による微分処理の例を以下に示す。着目画素nの輝度レベルAnに対して、Y軸方向にα画素離れたn-α、n+α画素の輝度レベルをそれぞれAn-α、An+αとしたときに微分値Bnを次式で算出する。
Bn =2×An − (An-α + An+α) ・・・(1)
An example of differential processing by the differential filter means is shown below. When the luminance levels of n-α and n + α pixels separated by α pixels in the Y-axis direction are An-α and An + α, respectively, with respect to the luminance level An of the target pixel n, the differential value Bn is expressed by the following equation: calculate.
Bn = 2 × An− (An−α + An + α) (1)
前出の最小輝度画像に対して微分処理を行った例(微分処理画像例)を図10に示す。なお、図10はBnの値にバイアスを加算して表示している。
なお、塗装鋼板サンプルの基準面部では、輝度変動が少ないために微分値は撮像画像の輝度レベルに関係なく、ほぼ”0”レベルとなる。
FIG. 10 shows an example (differentiated image example) obtained by performing differential processing on the above-described minimum luminance image. In FIG. 10, a bias is added to the value of Bn for display.
In the reference surface portion of the coated steel sheet sample, since the luminance variation is small, the differential value is almost “0” level regardless of the luminance level of the captured image.
その後、Step23で、2値化手段により、前記微分処理画像を所定の閾値レベルで2値化することで、きず部を含む領域を抽出する。2値化処理を行った例(2値画像例)を図11に示す。2値画像でも、きず部は白い直線として観察できる。 Thereafter, in Step 23, the binarization means binarizes the differential processing image at a predetermined threshold level, thereby extracting a region including a flaw part. FIG. 11 shows an example of binarization processing (binary image example). Even in a binary image, the flaw portion can be observed as a white straight line.
Step24では、きず部が2本のクロスした直線で構成されていることに着目し、直線検出手段が、前記2値画像のHough変換を行いきず部の2本の直線を検出し、きずの位置を抽出する。 In Step24, paying attention to the fact that the flaw part is composed of two crossed straight lines, the straight line detection means performs the Hough transform of the binary image to detect the two straight lines of the flaw part, and the position of the flaw. To extract.
Hough変換による直線の検出方法を以下に示す。
Hough変換による直線の表現として、xy座標上の原点から対象とする直線に引いた法線の長さρと角度θで表す(図12参照)。
ρ = x×cosθ + y×sinθ ・・・(2)
A straight line detection method by Hough transform is shown below.
As a representation of a straight line by the Hough transform, it is represented by a length ρ and an angle θ of a normal drawn from the origin on the xy coordinates to the target straight line (see FIG. 12).
ρ = x × cos θ + y × sin θ (2)
ある点P(x、y)を通る直線は無数に描画可能であり、それらの直線は全てρθ座標上に表示される。同様に複数の点P1,P2,P3の各々を通る直線はρθ座標上に表示されるが(図12(a))、複数の点P1,P2,P3が同一直線l上の点の場合には、ρθ座標上の特定の点(ρ0、θ0)で全ての線が重なることになる(図12(b))。従って、前記きず部を抽出した2値画像の各点について取りうる直線をρθ座標上に描画し、ρθ座標上で重なりの最大となる点を2点抽出することにより、クロスカット部を2本の直線としてρθ座標上で検出できる、と同時に画像上のxy座標でのクロスカット部を直線として検出し、きずの位置を抽出したことになる。図13に直線検出結果(直線検出画像)例を示す。 An infinite number of straight lines passing through a point P (x, y) can be drawn, and these straight lines are all displayed on the ρθ coordinate. Similarly, a straight line passing through each of the plurality of points P1, P2, P3 is displayed on the ρθ coordinate (FIG. 12A), but when the plurality of points P1, P2, P3 are points on the same straight line l. Means that all the lines overlap at a specific point (ρ 0 , θ 0 ) on the ρθ coordinate (FIG. 12B). Accordingly, a straight line that can be taken for each point of the binary image from which the flaw portion is extracted is drawn on the ρθ coordinate, and two points having the maximum overlap on the ρθ coordinate are extracted, so that two crosscut portions are obtained. This can be detected on the ρθ coordinate as a straight line, and at the same time, the crosscut portion on the xy coordinate on the image is detected as a straight line, and the position of the flaw is extracted. FIG. 13 shows an example of a straight line detection result (straight line detection image).
<Step03>
次に、Step03での塗膜膨れ部位の抽出手順を説明する。
図14は、Step01で得られた第1の画像と第2の画像とから、塗装金属板の表面の塗膜膨れ部位を抽出する抽出手順の一例を示す図である。
<Step03>
Next, a procedure for extracting a film swelling portion in Step 03 will be described.
FIG. 14 is a diagram illustrating an example of an extraction procedure for extracting a film swelling portion on the surface of a painted metal plate from the first image and the second image obtained in Step 01.
本実施形態では、塗装鋼板サンプルの表面の塗膜膨れ部位を抽出するために、演算手段が、画像合成手段と、空間フィルタ手段と、2値化手段と、ノイズ除去手段とを備える。 In this embodiment, in order to extract the coating film swelling site | part of the surface of a coated steel plate sample, a calculating means is provided with an image synthesis means, a spatial filter means, a binarization means, and a noise removal means.
まず、Step31では、Step01で撮像し解析用パソコンに保存された第1の画像(左側照明画像)と第2の画像(右側照明画像)の対応する同一画素アドレス毎に輝度レベルを比較し、輝度レベルが高いほうの値をその画素アドレスの輝度レベルとして画像合成し、最大輝度画像合成を合成する。最大輝度画像では塗膜膨れ部位の左右エッジ部が高輝度部位として観察される。図15に最大輝度画像例を示す。 First, in Step 31, the luminance level is compared for each corresponding same pixel address of the first image (left illumination image) and the second image (right illumination image) captured in Step 01 and stored in the analysis personal computer. The image having the higher level is synthesized as the luminance level of the pixel address, and the maximum luminance image synthesis is synthesized. In the maximum brightness image, the left and right edge portions of the swollen film portion are observed as high brightness parts. FIG. 15 shows an example of the maximum luminance image.
次いで、Step32では、空間フィルタ手段が、前記最大輝度画像から塗膜膨れ部位での輝度レベル変動を強調した画像を合成する。
本実施形態では、塗膜膨れ部位を抽出するために、空間フィルタ手段としてエッジ強調フィルタを用い、最大輝度画像にエッジ強調フィルタをかける。エッジ強調フィルタとしては、例えばSobelフィルタを用いる。
Next, in Step 32, the spatial filter means synthesizes an image in which the luminance level fluctuation at the coating film swelling portion is emphasized from the maximum luminance image.
In the present embodiment, in order to extract a film swelling portion, an edge enhancement filter is used as the spatial filter means, and the edge enhancement filter is applied to the maximum luminance image. As the edge enhancement filter, for example, a Sobel filter is used.
Sobelフィルタの例を図16に示す。Sobelフィルタは、図16のように3×3画素のフィルタであり、横(水平)方向のエッジ抽出用、縦(垂直)方向のエッジ抽出用、右斜方向のエッジ抽出用、左斜方向のエッジ抽出用があり、3×3フィルタの中央が対象とする画像の着目画素に対応するように配置し、フィルタの各画素毎にフィルタの重み付け演算を行い、その積算値をフィルタの出力値とする。対象とする画像の全画素について前記フィルタをかけ、各フィルタの出力を例えば次式に従って合算した値をSobelフィルタの出力値とする。
g = sqrt(gh×gh+gv×gv+gr×gr+gl×gl) ・・・(3)
An example of the Sobel filter is shown in FIG. The Sobel filter is a 3 × 3 pixel filter as shown in FIG. 16, for edge extraction in the horizontal (horizontal) direction, edge extraction in the vertical (vertical) direction, edge extraction in the right oblique direction, and left oblique direction. For edge extraction, the center of the 3 × 3 filter is arranged so as to correspond to the target pixel of the target image, the filter is weighted for each pixel of the filter, and the integrated value is used as the filter output value. To do. The above filter is applied to all pixels of the target image, and a value obtained by adding the outputs of the filters according to, for example, the following equation is set as an output value of the Sobel filter.
g = sqrt (gh × gh + gv × gv + gr × gr + gl × gl) (3)
前出の最大輝度画像に対して前記Sobelフィルタ処理を行った例(Sobelフィルタ処理画像例)を図17に示す。塗装鋼板サンプルの基準面部は画像の明るさの変化がほとんどないために、基準面部のSobelフィルタ出力画像の輝度レベルは”0”に近い暗い画像となる。塗装鋼板サンプルの最大輝度画像は、使用した塗装により基準面の輝度レベルは変動してしまうが、このようにSobelフィルタ処理を行うことで、基準面部は塗装の違いによる変動を受けにくくなる。 FIG. 17 shows an example (Sobel filter processing image example) in which the above-described maximum brightness image is subjected to the Sobel filter processing. Since the reference surface portion of the coated steel plate sample has almost no change in image brightness, the brightness level of the Sobel filter output image of the reference surface portion is a dark image close to “0”. In the maximum luminance image of the coated steel plate sample, the luminance level of the reference surface varies depending on the coating used. However, by performing the Sobel filter processing in this way, the reference surface portion is less susceptible to variation due to the difference in painting.
一方、塗膜膨れ部は細かな凹凸形状をしているために、面の傾きによる照明の反射光画像は膨れの凹凸パターンを反映した細かな明暗変動のある画像となっている。そのため、Sobelフィルタ処理を行うと、塗膜膨れ部及びきず部が強調された画像となる。 On the other hand, since the bulge portion of the coating film has a fine concavo-convex shape, the reflected light image of the illumination due to the inclination of the surface is an image with fine light and dark fluctuations reflecting the bulge concavo-convex pattern. Therefore, when the Sobel filter processing is performed, an image in which the bulge portion and the flaw portion are emphasized is obtained.
その後、Step33で、2値化手段により、前記Sobelフィルタ処理した画像を所定の輝度レベルで2値化することにより、塗装鋼板サンプル表面の基準面から塗膜膨れ部での立ち上がりで発生した明るい領域を含む塗膜膨れ部を抽出する。2値化処理を行った例(2値画像例)を図18に示す。 After that, in Step 33, the binarized means binarizes the Sobel-filtered image at a predetermined luminance level, so that a bright area generated at the rising edge at the coating bulge portion from the reference surface of the coated steel plate sample surface The film swelling part containing is extracted. An example of binarization processing (binary image example) is shown in FIG.
Step34では、ノイズ除去手段が、前記2値画像を所定画素縮小し、更に、きず部を含む最も大きな2値画像領域のみを抽出する。
この処理により、きずから発生した塗膜膨れ部に接していない領域をノイズとして除去し、また、抽出した2値画像領域内部の穴を埋めた画像を、抽出した塗膜膨れ部位とする。ノイズ除去処理を行った例(ノイズ除去処理画像例)を図19に示す。
In Step 34, the noise removing means reduces the binary image by a predetermined pixel, and further extracts only the largest binary image area including a flaw.
By this processing, an area that is not in contact with the film bulge portion generated from the flaw is removed as noise, and an image in which the hole in the extracted binary image area is filled is defined as the extracted film bulge portion. FIG. 19 shows an example of performing noise removal processing (example of noise removal processing image).
なお、上述したとおり、塗装鋼板サンプルの表面を左右方向から同時に照明した状態で当該塗装鋼板サンプルの表面を撮像した第3の画像では、塗膜膨れ部の左側端部と右側端部の両端部が明るい領域として観察されることから、この第3の画像は、上記最大輝度画像と類似した画像となる。したがって、第3の画像から塗装金属板の表面の塗膜膨れ部位を抽出することも可能である。ただし、撮像回数が少なくて済むこと等から、Step03では、前記第1の画像と前記第2の画像とから、塗膜膨れ部位を抽出することが好ましい。 Note that, as described above, in the third image obtained by imaging the surface of the coated steel sheet sample in the state where the surface of the coated steel sheet sample is illuminated simultaneously from the left and right directions, both end portions of the left end portion and the right end portion of the coating film swelling portion Is observed as a bright region, the third image is an image similar to the maximum luminance image. Therefore, it is also possible to extract the swollen portion of the coating metal plate surface from the third image. However, since the number of times of imaging may be small, for example, in Step 03, it is preferable to extract a film swelling portion from the first image and the second image.
<Step04>
Step04では、Step02で抽出したきずの位置、Step03で抽出した塗装膨れ部位から、塗膜膨れ幅を算出する。このStep04では、抽出したきずの位置を基準にして、塗膜膨れ部位から塗膜膨れ幅を算出する。
<Step04>
In Step 04, the coating film swelling width is calculated from the position of the flaw extracted in Step 02 and the coating swelling part extracted in Step 03. In this Step 04, the coating film swelling width is calculated from the coating film swelling portion with reference to the position of the extracted flaw.
図20は、塗膜膨れ幅の算出手順の一例を示す図である。
本実施形態では、Step41で、Step02で得た上記直線検出画像(きずの位置の抽出画像)と、Step03で得た上記ノイズ除去処理画像(塗膜膨れ部位の抽出画像)を、塗装鋼板サンプルの表面の2本のクロスカットラインの内1本が垂直となるように画像を右回転させる。その際の回転角は、きず部の直線を検出したときの直線の傾きから算出される。図21は、上記ノイズ除去処理画像、上記直線検出画像を右回転して表示した例である。このように画像を回転させることで、塗膜膨れ幅の測定及び算出がより容易となる。
FIG. 20 is a diagram illustrating an example of a calculation procedure of the coating film swelling width.
In this embodiment, in Step 41, the straight line detection image obtained in Step 02 (extracted image of the position of the flaw) and the noise removal processing image obtained in Step 03 (extracted image of the coating film swelling part) The image is rotated to the right so that one of the two cross-cut lines on the surface is vertical. The rotation angle at that time is calculated from the slope of the straight line when the straight line of the flaw portion is detected. FIG. 21 shows an example in which the noise removal processing image and the straight line detection image are displayed by rotating to the right. By rotating the image in this way, it becomes easier to measure and calculate the film swelling width.
次に、Step42で、きずの位置からの水平方向の塗膜膨れ幅を測定する。
塗膜膨れ幅の測定は、きず部直線に沿って、2本のきず部検出結果がクロスしたクロスカット中心から鉛直方向に距離L1だけ離れたところから、長さL2の範囲について測定を行う。
Next, in Step 42, the coating film swelling width in the horizontal direction from the position of the flaw is measured.
The measurement of the swollen width of the coating film is performed in the range of the length L2 from the position separated by the distance L1 in the vertical direction from the crosscut center where two flaw detection results cross along the flaw straight line.
Step43では、図22に示すように、抽出したきずの位置から左右の塗膜膨れ部端部までの距離を、右側塗膜膨れ幅、左側塗膜膨れ幅として算出する。なお、長さL2の範囲内での右側塗膜膨れ幅の最大値とその検出位置、及び左側塗膜膨れ幅の最大値とその検出位置を合わせて算出する。 In Step 43, as shown in FIG. 22, the distance from the position of the extracted flaw to the left and right coating film swollen ends is calculated as the right coating film swelling width and the left coating film swelling width. In addition, the maximum value of the right-side coating film swelling width and its detection position within the range of the length L2 and the maximum value of the left-side coating film swelling width and its detection position are calculated.
次に、2本のクロスカットラインの内もう1本のクロスカットラインが垂直となるように画像を左回転させ、上記と同様にして、抽出したきずの位置から左右の塗膜膨れ部端部までの距離を測定し、右側塗膜膨れ幅、左側塗膜膨れ幅として算出する。また、右側塗膜膨れ幅の最大値とその検出位置、左側塗膜膨れ幅の最大値とその検出位置を合わせて算出する(Step44〜Step46)。 Next, rotate the image counterclockwise so that the other of the two crosscut lines is vertical, and in the same way as described above, from the position of the extracted flaw, the left and right coating film bulge end portions Is measured as a right-side coating film swelling width and a left-side coating film swelling width. Further, the maximum value of the right side film swelling width and its detection position are calculated together with the maximum value of the left side film swelling width and its detection position (Step 44 to Step 46).
<Step05>
Step05では、Step04で算出した塗膜膨れ幅の算出結果を出力する。出力の方法や形式は、特に限定されないが、本実施形態では、クロスカット中心から4方向に伸びたきず部の各L2の長さ領域における右側最大塗膜膨れ幅、左側最大塗膜膨れ幅とその位置情報を、右側照明画像と左側照明画像から合成した最大輝度画像(図15)上にマークして、解析用パソコンに接続したモニタ上に表示する。このように、本発明においては、最大塗膜膨れ幅とその位置情報を最大輝度画像等の画像上にマークして表示でき、腐食試験を繰り返し行った際の最大塗膜膨れ幅の変化の様子を容易に追跡できる。
<Step05>
In Step 05, the calculation result of the film swelling width calculated in Step 04 is output. Although the output method and format are not particularly limited, in this embodiment, the maximum right-side film swelling width on the right side and the maximum left-side film swelling width in the length region of each L2 of the flaw portion extending in the four directions from the crosscut center The position information is marked on the maximum luminance image (FIG. 15) synthesized from the right side illumination image and the left side illumination image and displayed on a monitor connected to the analysis personal computer. As described above, in the present invention, the maximum coating film swelling width and its position information can be marked and displayed on the image such as the maximum luminance image, and the state of the maximum coating film swelling width when the corrosion test is repeatedly performed. Can be tracked easily.
以上、説明したとおり、本発明によれば、少なくとも2方向から塗装金属板の表面を照明した画像から、きずの位置と塗膜膨れ部位を抽出することで、前記抽出精度がより高められ、塗膜膨れ幅をより精度よく測定できる。本発明によれば、照明の輝度ムラ、塗膜表面の色や反射率ムラなどの影響を受けにくく、また、自動で塗装金属板の塗膜膨れ幅を精度よく測定でき、測定時間の短縮、測定の信頼性の向上が図れる。さらに、本発明によれば、特定の塗膜膨れ部位の塗膜膨れ幅、位置情報も記録でき、当該部位の経時による状態の変化も容易に追跡できる。 As described above, according to the present invention, the extraction accuracy is further improved by extracting the position of the flaw and the film swelling area from the image obtained by illuminating the surface of the coated metal plate from at least two directions. The film swelling width can be measured with higher accuracy. According to the present invention, it is difficult to be affected by illumination brightness unevenness, coating surface color and reflectance unevenness, etc., and can automatically measure the coating swollen width of the coated metal plate with accuracy, shortening the measurement time, Measurement reliability can be improved. Furthermore, according to the present invention, the coating blister width and position information of a specific coating swollen site can be recorded, and the change in the state of the site over time can be easily traced.
なお、本発明においては、Step42、43、Step45、46での塗膜膨れ幅の測定、算出を、例えば1画素ごとに、瞬時に行える。そのため、例えば1画素ごとの塗膜膨れ幅の算出結果をすべて出力することも可能である。また、塗膜膨れ幅の平均値や、塗膜膨れ幅の面積を算出して出力することも可能である。 In the present invention, the measurement and calculation of the film swelling width in Steps 42, 43, Step 45, and 46 can be performed instantaneously, for example, for each pixel. Therefore, for example, it is also possible to output all the calculation results of the coating film swelling width for each pixel. It is also possible to calculate and output the average value of the film swelling width and the area of the film swelling width.
本発明の塗膜膨れ幅測定装置および塗膜膨れ幅の測定方法は、塗装金属板の塗膜膨れ幅だけでなく、塗膜膨れ部をテープ等により剥離した塗膜剥離幅の測定への応用も想定される。 The coating film swelling width measuring apparatus and coating film swelling width measuring method of the present invention are applied not only to the coating film swelling width of a coated metal plate, but also to the measurement of the coating film peeling width obtained by peeling the coating film swelling portion with a tape or the like. Is also envisaged.
Claims (6)
前記塗装金属板を載置するサンプル台と、前記塗装金属板の表面を撮像する撮像手段と、前記塗装金属板の表面を少なくとも2方向から照明可能な照明手段と、前記塗装金属板の塗膜膨れ幅を算出する演算手段と、を備え、
前記演算手段は、
前記照明手段により、少なくとも2方向のうちの1方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した第1の画像と、前記1方向以外の方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した第2の画像とから、前記塗装金属板の表面のきずの位置を抽出し、かつ、
前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するか、または、前記照明手段により、少なくとも2方向から前記塗装金属板の表面を照明した状態で当該塗装金属板の表面を撮像した第3の画像から、前記塗装金属板の表面の塗膜膨れ部位を抽出し、
前記抽出した塗装金属板の表面のきずの位置と、前記抽出した塗装金属板の表面の塗膜膨れ部位とから、前記塗装金属板の塗膜膨れ幅を算出する、塗装金属板の塗膜膨れ幅測定装置。 A coating film swelling width measuring device that measures the coating film swelling width of a coated metal plate that has scratched the surface and caused corrosion in a corrosive environment,
A sample table on which the painted metal plate is placed; imaging means for imaging the surface of the painted metal plate; illumination means capable of illuminating the surface of the painted metal plate from at least two directions; and a coating film on the painted metal plate Calculating means for calculating the swollen width,
The computing means is
A first image obtained by imaging the surface of the painted metal plate in a state where the surface of the painted metal plate is illuminated from at least one of the two directions by the illumination means, and the painted metal from a direction other than the one direction. Extracting a position of a flaw on the surface of the painted metal plate from a second image obtained by imaging the surface of the painted metal plate with the surface of the plate illuminated; and
From the first image and the second image, a film swelling portion on the surface of the painted metal plate is extracted, or the surface of the painted metal plate is illuminated from at least two directions by the illumination means. From the third image obtained by imaging the surface of the painted metal plate in the state of having been extracted, the coating film swelling portion of the surface of the painted metal plate is extracted,
The coating film swelling of the coated metal plate is calculated from the position of the flaw on the surface of the extracted coating metal plate and the coating film swelling portion of the surface of the extracted coating metal plate. Width measuring device.
前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面のきずの位置を抽出するに際し、
前記画像合成手段が、前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち低い方の輝度レベルを算出した最小輝度画像を合成する、請求項1に記載の塗装金属板の塗膜膨れ幅測定装置。 The arithmetic means has an image composition means;
In extracting the position of the flaw on the surface of the painted metal plate from the first image and the second image,
The image synthesizing unit calculates a lower luminance level among luminance levels at the same pixel address of the first image and the second image from the first image and the second image. The coating film swelling width measuring device for a coated metal plate according to claim 1, which synthesizes a minimum luminance image.
前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するに際し、
前記画像合成手段が、前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち高い方の輝度レベルを算出した最大輝度画像を合成する、請求項1または2に記載の塗装金属板の塗膜膨れ幅測定装置。 The arithmetic means has an image composition means;
When extracting the coating film swollen site on the surface of the painted metal plate from the first image and the second image,
The image synthesizing unit calculates a higher luminance level of luminance levels at the same pixel address of the first image and the second image from the first image and the second image. The coating film swelling width measuring device for a coated metal sheet according to claim 1 or 2, wherein a maximum brightness image is synthesized.
前記塗装金属板の表面を1方向から照明した状態で当該塗装金属板の表面を撮像した第1の画像と、前記塗装金属板の表面を前記1方向以外の方向から照明した状態で当該塗装金属板の表面を撮像した第2の画像とから、前記塗装金属板の表面のきずの位置を抽出し、かつ、
前記第1の画像と、前記第2の画像とから、前記塗装金属板の表面の塗膜膨れ部位を抽出するか、または、前記塗装金属板の表面を少なくとも2方向から照明した状態で当該塗装金属板の表面を撮像した第3の画像から、前記塗装金属板の表面の塗膜膨れ部位を抽出し、
前記抽出した塗装金属板の表面のきずの位置と、前記抽出した塗装金属板の表面の塗膜膨れ部位とから、前記塗装金属板の塗膜膨れ幅を算出する、塗装金属板の塗膜膨れ幅の測定方法。 A method for measuring the film swelling width of a coated metal plate that has scratched the surface and caused corrosion in a corrosive environment,
A first image obtained by imaging the surface of the painted metal plate in a state where the surface of the painted metal plate is illuminated from one direction, and the painted metal in a state where the surface of the painted metal plate is illuminated from a direction other than the one direction. Extracting a position of a flaw on the surface of the coated metal plate from a second image obtained by imaging the surface of the plate; and
From the first image and the second image, a paint film bulge portion on the surface of the painted metal plate is extracted, or the painted metal plate is illuminated in at least two directions. From the third image obtained by imaging the surface of the metal plate, extract the swollen film portion of the surface of the painted metal plate,
The coating film swelling of the coated metal plate is calculated from the position of the flaw on the surface of the extracted coating metal plate and the coating film swelling portion of the surface of the extracted coating metal plate. How to measure the width.
前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち低い方の輝度レベルを算出した最小輝度画像を合成する、請求項4に記載の塗装金属板の塗膜膨れ幅の測定方法。 In extracting the position of the flaw on the surface of the painted metal plate from the first image and the second image,
From the first image and the second image, a minimum luminance image obtained by calculating a lower luminance level among luminance levels at the same pixel address of the first image and the second image is synthesized. The measuring method of the coating-film swelling width | variety of the coating metal plate of Claim 4.
前記第1の画像と、前記第2の画像とから、前記第1の画像と前記第2の画像の同一画素アドレスでの輝度レベルのうち高い方の輝度レベルを算出した最大輝度画像を合成する、請求項4または5に記載の塗装金属板の塗膜膨れ幅の測定方法。 When extracting the coating film swollen site on the surface of the painted metal plate from the first image and the second image,
From the first image and the second image, a maximum luminance image obtained by calculating a higher luminance level among luminance levels at the same pixel address of the first image and the second image is synthesized. The measuring method of the coating-film swelling width | variety of the coating metal plate of Claim 4 or 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017106463A JP6624161B2 (en) | 2017-05-30 | 2017-05-30 | Apparatus for measuring coating film swelling width of coated metal sheet and method for measuring coating film swelling width of coated metal sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017106463A JP6624161B2 (en) | 2017-05-30 | 2017-05-30 | Apparatus for measuring coating film swelling width of coated metal sheet and method for measuring coating film swelling width of coated metal sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018204956A true JP2018204956A (en) | 2018-12-27 |
JP6624161B2 JP6624161B2 (en) | 2019-12-25 |
Family
ID=64955612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017106463A Active JP6624161B2 (en) | 2017-05-30 | 2017-05-30 | Apparatus for measuring coating film swelling width of coated metal sheet and method for measuring coating film swelling width of coated metal sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6624161B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022001858A (en) * | 2020-06-22 | 2022-01-06 | マツダ株式会社 | Measuring method and measuring device, and method and device for testing corrosion resistance of coated metal material |
CN113899679A (en) * | 2020-06-22 | 2022-01-07 | 马自达汽车株式会社 | Measuring method and measuring apparatus, and corrosion resistance testing method and apparatus |
JP7472924B2 (en) | 2022-01-31 | 2024-04-23 | Jfeスチール株式会社 | Apparatus and method for measuring the width of a blister in a coated metal sheet |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102307685B1 (en) * | 2020-05-18 | 2021-10-01 | 주식회사 포스코 | Evaluating method of steel and evaluating apparatus of steel |
-
2017
- 2017-05-30 JP JP2017106463A patent/JP6624161B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022001858A (en) * | 2020-06-22 | 2022-01-06 | マツダ株式会社 | Measuring method and measuring device, and method and device for testing corrosion resistance of coated metal material |
CN113899679A (en) * | 2020-06-22 | 2022-01-07 | 马自达汽车株式会社 | Measuring method and measuring apparatus, and corrosion resistance testing method and apparatus |
CN113899679B (en) * | 2020-06-22 | 2024-06-04 | 马自达汽车株式会社 | Measuring method and measuring device, and corrosion resistance test method and device |
JP7472924B2 (en) | 2022-01-31 | 2024-04-23 | Jfeスチール株式会社 | Apparatus and method for measuring the width of a blister in a coated metal sheet |
Also Published As
Publication number | Publication date |
---|---|
JP6624161B2 (en) | 2019-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6447637B2 (en) | Surface defect detection apparatus, surface defect detection method, and steel material manufacturing method | |
JP6624161B2 (en) | Apparatus for measuring coating film swelling width of coated metal sheet and method for measuring coating film swelling width of coated metal sheet | |
JP6394514B2 (en) | Surface defect detection method, surface defect detection apparatus, and steel material manufacturing method | |
TWI629665B (en) | Defect inspection method and defect inspection system | |
CN110186937A (en) | Reject mirror article surface two-dimensional defect detection method and system that dust influences | |
JP3189588B2 (en) | Surface defect inspection equipment | |
KR101146081B1 (en) | Detection of macro-defects using micro-inspection inputs | |
JP4633245B2 (en) | Surface inspection apparatus and surface inspection method | |
TWI495867B (en) | Application of repeated exposure to multiple exposure image blending detection method | |
JP2021056183A (en) | Apparatus and method for detecting surface defect of workpiece, surface inspection system for workpiece, and program | |
He et al. | An effective MID-based visual defect detection method for specular car body surface | |
US20230020684A1 (en) | Laser based inclusion detection system and methods | |
JP2019066222A (en) | Visual inspection device and visual inspection method | |
JP3871963B2 (en) | Surface inspection apparatus and surface inspection method | |
JP7472924B2 (en) | Apparatus and method for measuring the width of a blister in a coated metal sheet | |
JP4523310B2 (en) | Foreign matter identification method and foreign matter identification device | |
JP2023151945A (en) | Inspection system and inspection method | |
Kmec et al. | Optical noncontact method to detect amplitude defects of polymeric objects | |
JP2006208281A (en) | Periodic pattern irregularity inspection device, and periodic pattern imaging method | |
KR20200107404A (en) | Apparatus for inspecting display panel | |
US20230252616A1 (en) | Inspection system and inspection method | |
CN109175763B (en) | Detector for welding seam deviation parameter of submerged-arc welding steel pipe | |
JP5392903B2 (en) | Surface flaw inspection device | |
Huang | A novel direct structured-light inspection technique for contaminant and defect detection | |
KR20160050958A (en) | Inspection apparatus for edge and method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20180502 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20180509 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181219 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191111 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6624161 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |