JPH1123269A - Wave height meter - Google Patents

Wave height meter

Info

Publication number
JPH1123269A
JPH1123269A JP17209597A JP17209597A JPH1123269A JP H1123269 A JPH1123269 A JP H1123269A JP 17209597 A JP17209597 A JP 17209597A JP 17209597 A JP17209597 A JP 17209597A JP H1123269 A JPH1123269 A JP H1123269A
Authority
JP
Japan
Prior art keywords
wave
wave height
measured
wavefront
wave front
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17209597A
Other languages
Japanese (ja)
Inventor
Yuka Kitakouji
結花 北小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP17209597A priority Critical patent/JPH1123269A/en
Publication of JPH1123269A publication Critical patent/JPH1123269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a wave height meter by which a wave height can be measured without using an artificial medium such as ultrasonic waves, a laser or the like by a method wherein the luminance of a wave front in a position whose wave height is to be measured is measured, the reflectance of the wave front is found, the normal- line vector of the wave front is found on the basis of the reflectance of the wave front, the equation of the wave front is derived and the wave front is computed. SOLUTION: A luminance meter 2 or the like is installed at a wharf 5 or the like toward a position in which the wave height of a wave front 1 such as the surface of the sea or the like is to be measured. By using the luminance meter 2 or the like, the luminance 3 of the wave front 1 in the position is measured. Then, a wave-height computing device 4 finds the reflectance of the wave front 1 on the basis of the luminance 3 or the like of the wave front 1 measured by the luminance meter 2 or the like. The normal-line vector of the wave front 1 is found on the basis of the reflectance of the wave front 1. In addition, the equation of the wave front 1 is derived from the normal-line vector of the wave front 1. The wave height is computed by using the equation of the wave front 1. Thereby, without using an artificial medium such as ultrasonic waves, a laser or the like, the wave height can be measured by natural light only such as sunlight, moonlight or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、波高計に関するも
のであり、より詳しくは、超音波やレーザーなどの人工
的な媒体を使用せずに波高を計測し得るようにした波高
計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crest meter, and more particularly to a crest meter capable of measuring a crest height without using an artificial medium such as an ultrasonic wave or a laser. is there.

【0002】[0002]

【従来の技術】海面に発生する波の高さを知ることは、
船舶の安全航行を行う上で、又、船舶の設計を行う上で
重要であり、そのために波高計が用いられている。従来
の波高計としては、超音波波高計やレーザー波高計など
がある。
2. Description of the Related Art To know the height of a wave generated on the sea surface,
It is important for safe navigation of a ship and for designing a ship, and a wave height meter is used for that purpose. Conventional wave height meters include an ultrasonic wave height meter and a laser wave height meter.

【0003】超音波波高計やレーザー波高計などは、波
面に超音波やレーザーなどの人工的な媒体を当て、その
反射波から波高を計測するようにしたものである。
[0003] Ultrasonic wave height meters, laser wave height meters, and the like are designed so that an artificial medium such as an ultrasonic wave or a laser is applied to a wave front and the wave height is measured from the reflected wave.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の波高計には、以下のような問題があった。
However, the conventional wave height meter has the following problems.

【0005】即ち、超音波波高計やレーザー波高計など
は超音波やレーザーなどの発生装置が必要となり、その
分、装置が大掛かりになるという問題があり、且つ、超
音波やレーザーなどの発生装置を設置できないような場
所では、波高を計測することができないという問題があ
った。
That is, an ultrasonic wave height meter, a laser wave height meter, and the like require a generator such as an ultrasonic wave or a laser. There was a problem that the wave height could not be measured in a place where it could not be installed.

【0006】本発明は、上述の実情に鑑み、超音波やレ
ーザーなどの人工的な媒体を使用せずに波高を計測し得
るようにした波高計を提供することを目的とするもので
ある。
The present invention has been made in view of the above circumstances, and has as its object to provide a wave height meter capable of measuring a wave height without using an artificial medium such as an ultrasonic wave or a laser.

【0007】[0007]

【課題を解決するための手段】本発明は、波高を計測し
たい位置の波面の輝度等を計測する輝度計等と、輝度計
等で計測した波面の輝度等に基づいて、波面の反射率を
求め、波面の反射率から波面の法線ベクトルを求め、波
面の法線ベクトルから波面の方程式を導き出し、波面の
方程式から波高を演算する波高演算装置とを備えたこと
を特徴とする波高計にかかるものである。
According to the present invention, there is provided a luminance meter for measuring the luminance of a wavefront at a position where a wave height is to be measured, and a reflectance of a wavefront based on the luminance of the wavefront measured by the luminance meter. A wave height normal vector obtained from the wavefront reflectance, a wavefront normal vector from the wavefront reflectance, a wavefront equation derived from the wavefront normal vector, and a wave height calculating device for calculating the wave height from the wavefront equation. Such is the case.

【0008】上記手段によれば、以下のような作用が得
られる。
According to the above means, the following effects can be obtained.

【0009】波面の波高を計測したい位置へ向けて輝度
計等を設置し、輝度計等を用いてその位置の波面の輝度
等を計測する。次いで、輝度計等で計測した波面の輝度
等に基づいて、波高演算装置が、波面の反射率を求め、
波面の反射率から波面の法線ベクトルを求め、波面の法
線ベクトルから波面の方程式を導き出し、波面の方程式
から波高を演算する。
A luminance meter or the like is installed at a position where the wave height of the wavefront is to be measured, and the luminance or the like of the wavefront at that position is measured using the luminance meter or the like. Next, based on the wavefront luminance and the like measured by a luminance meter or the like, the wave height calculation device obtains the wavefront reflectance,
The normal vector of the wavefront is obtained from the reflectivity of the wavefront, the equation of the wavefront is derived from the normal vector of the wavefront, and the wave height is calculated from the equation of the wavefront.

【0010】これにより、超音波やレーザーなどの人工
的な媒体を用いずに、太陽光や月光などの自然光のみ
で、波高を計測することが可能となる(本実施の形態で
は、太陽光を使用する場合について説明する)。
This makes it possible to measure the wave height using only natural light such as sunlight or moonlight without using an artificial medium such as an ultrasonic wave or a laser. Use case will be described).

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を、図
示例と共に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1〜図3は、本発明の実施の形態の一例
である。
1 to 3 show an embodiment of the present invention.

【0013】海面などの波面1(図2・図3では図面の
都合上、平坦なものとして描かれている)の輝度や照度
を計測する輝度計又は照度計(以下、輝度計等2とい
う)を設け、輝度計等2で計測した輝度や照度(以下、
輝度等3という)に基づいて波面1の波高を演算する波
高演算装置4を設ける。
A luminometer or illuminometer (hereinafter referred to as a luminometer 2) for measuring the luminance and illuminance of a wave surface 1 such as a sea surface (shown as flat in FIGS. 2 and 3 for convenience of the drawings). And luminance and illuminance measured by a luminance meter 2 (hereinafter, referred to as
A wave height calculating device 4 for calculating the wave height of the wavefront 1 based on the luminance 3 or the like is provided.

【0014】尚、輝度計等2は、岸壁5などに、海面な
どの波面1へ向けて設置するようにする。
The luminance meter 2 and the like are installed on the quay 5 or the like so as to face the wave surface 1 such as the sea surface.

【0015】又、図中、6は太陽、7は輝度計等2と同
じ高さの位置に設定された架空のスクリーンである。
In the figure, reference numeral 6 denotes a sun, and 7 denotes an imaginary screen set at the same height as the luminance meter 2 and the like.

【0016】次に、作動について説明する。Next, the operation will be described.

【0017】岸壁5などに海面などの波面1の波高を計
測したい位置へ向けて輝度計等2を設置し、輝度計等2
を用いてその位置の波面1の輝度等3を計測する。次い
で、輝度計等2で計測した波面1の輝度等3に基づい
て、波高演算装置4が、波面1の反射率を求め、波面1
の反射率から波面1の法線ベクトルを求め、波面1の法
線ベクトルから波面1の方程式を導き出し、波面1の方
程式から波高を演算する。
On a quay 5 or the like, a luminance meter or the like 2 is installed at a position where the wave height of the wave surface 1 such as the sea surface is to be measured.
Is used to measure the luminance 3 and the like of the wavefront 1 at that position. Next, based on the luminance 3 and the like of the wavefront 1 measured by the luminance meter 2 and the like, the wave height calculating device 4 calculates the reflectance of the wavefront 1 and obtains the wavefront 1
, The normal vector of wavefront 1 is obtained from the reflectance, the equation of wavefront 1 is derived from the normal vector of wavefront 1, and the wave height is calculated from the equation of wavefront 1.

【0018】これにより、超音波やレーザーなどの人工
的な媒体を用いずに、太陽光や月光などの自然光のみ
で、波高を計測することが可能となる(本実施の形態で
は、太陽光を使用する場合について説明する)。
As a result, the wave height can be measured only by natural light such as sunlight or moonlight without using an artificial medium such as an ultrasonic wave or a laser. Use case will be described).

【0019】そして、波高演算装置4における波高の求
め方は、以下の通りである。
The method of obtaining the wave height in the wave height calculating device 4 is as follows.

【0020】即ち、波高演算装置4は、先ず、波面1の
反射率ρ(%)を求める。波面1の反射率ρは、輝度計
等2で計測した波面1の輝度等3(最大輝度Lsg)と、
直射日光強度Lnとから、
That is, the wave height calculating device 4 first obtains the reflectance ρ (%) of the wavefront 1. The reflectance ρ of the wavefront 1 is obtained by measuring the luminance 3 of the wavefront 1 measured by the luminance meter 2 or the like 3 (maximum luminance Lsg);
From the direct sunlight intensity Ln,

【数1】 ρ=Lsg/Ln*100(%) (1) の式によって得られる。Ρ = Lsg / Ln * 100 (%) (1)

【0021】こうして、波面1の反射率ρが得られた
ら、次に、波高演算装置4は、波面1の反射率ρから波
面1の法線ベクトルmを求める。
After the reflectance ρ of the wavefront 1 is obtained in this way, the wave height calculating device 4 next obtains the normal vector m of the wavefront 1 from the reflectance ρ of the wavefront 1.

【0022】そのための前提として、輝度計等2の真下
にあって、波高が0の時の海面の位置を原点(0,0,
0)とするx−y−z座標系を考える。そして、輝度計
等2の高さをHで表わすと、輝度計等2の位置の座標は
(0,0,H)となる。但し、輝度計等2の高さHは、
予め計測可能な値であり既知の値となる。又、波高を計
測したい位置、即ち、波高計測位置の座標を(x0
0,0)で表わす。尚、x 0とy0の値は、予め計測し
ておく。
As a prerequisite for this, there is just below the luminance meter 2 or the like.
And the position of the sea surface when the wave height is 0 is the origin (0, 0,
Let us consider an xyz coordinate system for 0). And a luminance meter
Denoting the height of 2 etc. by H, the coordinates of the position of 2 such as a luminance meter are
(0, 0, H). However, the height H of the luminance meter 2 is
It is a value that can be measured in advance and is a known value. Also, measure the wave height
The coordinates of the position to be measured, that is, the wave height measurement position is (x0,
y0, 0). Note that x 0And y0Is measured in advance.
Keep it.

【0023】そして、輝度計等2と同じ高さに架空のス
クリーン7を設定して架空のスクリーン7上に光源があ
るものと仮定する。この場合、波高を計測したい位置
(x0,y0,0)と太陽6とを結ぶ直線と架空のスクリ
ーン7との交点を光源の位置とし、架空のスクリーン7
上の光源の位置の座標を(ξ,η,H)とする。
Then, it is assumed that an imaginary screen 7 is set at the same height as the luminance meter 2 and the light source is on the imaginary screen 7. In this case, the intersection of the straight line connecting the position (x 0 , y 0 , 0) where the wave height is to be measured and the sun 6 and the imaginary screen 7 is set as the position of the light source, and the imaginary screen 7
Let the coordinates of the position of the upper light source be (ξ, η, H).

【0024】そして、波面1の法線ベクトルmを求める
ために、先ず、架空のスクリーン7上の光源の位置
(ξ,η,H)を決定する。
Then, in order to obtain the normal vector m of the wavefront 1, first, the position (ξ, η, H) of the light source on the imaginary screen 7 is determined.

【0025】ここで、波高を計測したい位置(x0
0,0)における太陽光の入射角度をi(deg)、太陽
光の屈折角度をj(deg)、海水の相対的な屈折率をn
(n=3/4)とすると、一般に、
Here, the position (x 0 ,
At y 0 , 0), the incident angle of sunlight is i (deg), the refraction angle of sunlight is j (deg), and the relative refractive index of seawater is n.
(N = 3/4), generally,

【数2】 j=sin-1(sin i/n) (2) 及び、J = sin −1 (sin i / n) (2) and

【数3】 の式が成り立つので、(2)(3)式から収束計算によ
って太陽光の入射角度iが得られる。
(Equation 3) Therefore, the incident angle i of sunlight can be obtained from the equations (2) and (3) by convergence calculation.

【0026】すると、図2に示すように、波高を計測し
たい位置(x0,y0,0)と、架空のスクリーン7上の
光源の位置(ξ,η,H)と、架空のスクリーン7上の
光源の位置(ξ,η,H)から下ろした垂線と波高が0
の時の海面との交点の位置(ξ,η,0)の3点を結ぶ
三角形の底辺の長さがH/tan iとなるので、図3
に示すように、前記位置(ξ,η,0)からx軸へ下ろ
した垂線の交点(x 0,η,0)と、波高を計測したい
位置(x0,y0,0)と結ぶ線分の長さもH/tan
iで近似させることとする。
Then, as shown in FIG. 2, the wave height is measured.
Position (x0, Y0, 0) on the fictitious screen 7
The position of the light source (ξ, η, H) and the fictitious screen 7
The vertical line and the wave height from the light source position (ξ, η, H) are 0
Connects the three points of intersection (ξ, η, 0) with the sea surface at the time of
Since the length of the base of the triangle is H / tan i, FIG.
As shown in the figure, lowering from the position (ξ, η, 0) to the x-axis
Intersection of the perpendiculars (x 0, Η, 0) and want to measure wave height
Position (x0, Y0, 0) is also H / tan
It will be approximated by i.

【0027】すると、Then,

【数4】 ξ≒x0=0 (4) η≒y0+H/tan i (5) が得られる。Ξ ≒ x 0 = 0 (4) η ≒ y 0 + H / tan i (5) is obtained.

【0028】そして、波面1の方程式は、一般に、Then, the equation of wavefront 1 is generally given by

【数5】 f(x,y,z)=z−ζ(x,y)=0 (6) で表わされる。ここで、zは求めようとしている波高で
あり、波高z=ζ(x,y)である。
F (x, y, z) = z−ζ (x, y) = 0 (6) Here, z is the wave height to be obtained, and the wave height z = ζ (x, y).

【0029】従って、波高を計測したい位置(x0
0,0)における波面1の法線ベクトルmは、
Therefore, the position (x 0 ,
y 0, 0) the normal vector m wavefront 1 in the

【数6】 となる。(Equation 6) Becomes

【0030】この波高を計測したい位置(x0,y0
0)における波面1の法線ベクトルmを求めるために、
波高を計測したい位置(x0,y0,0)から輝度計等2
の位置(0,0,H)へ向かうベクトルをaとし、波高
を計測したい位置(x0,y0,0)から架空のスクリー
ン7上の光源の位置(ξ,η,H)へ向かうベクトルを
bとすると、ベクトルaとbは、それぞれ
The position (x 0 , y 0 ,
0) to determine the normal vector m of wavefront 1
From a position (x 0 , y 0 , 0) where the wave height is to be measured, a luminance meter or the like 2
Is a vector heading to the position (0, 0, H) of the light source, and a vector heading from the position (x 0 , y 0 , 0) where the wave height is to be measured to the light source position (η, η, H) on the imaginary screen 7 Let b be vectors a and b respectively

【数7】 a=(−x,−y,H−ζ(x,y))≡(−x,−y,H) (8)A = (− x, −y, H − {(x, y))} (− x, −y, H) (8)

【数8】 で表わされる。従って、(Equation 8) Is represented by Therefore,

【数9】 となる。ここで、輝度計等2の高さHは、H=k・b3
+ζ(x,y)であるので、
(Equation 9) Becomes Here, the height H of the luminance meter 2 is H = k · b 3
+ Ζ (x, y), so

【数10】 よって(Equation 10) Therefore

【数11】 という関係が成り立つ。波高を計測したい位置(x0
0,0)における波面1の法線ベクトルmは、(1
2)(13)式を展開した次式より得られるp,qによ
るm=(−p,−q,1)となる。
[Equation 11] The relationship holds. The position (x 0 ,
y 0, the normal vector m wavefront 1 in 0), (1
2) m = (− p, −q, 1) based on p and q obtained from the following expression obtained by expanding expression (13).

【0031】[0031]

【数12】 H(2x−ξ)p2+2yHpq+(−ξH)q2+2(H2−x2+ξx)p +2y(ξ−x)q+H(ξ−2x)=0 (14) (−ηH)p2+2xHpq+H(2y−η)q2+2x(η−y)p 2(H2−y2+ηy)q+H(η−2y)=0 (15) ただし、x,yは波面1の方程式のx,yであり、計算
上はx0,y0となる。
H (2x−ξ) p 2 + 2yHpq + (− ξH) q 2 +2 (H 2 −x 2 + ξx) p + 2y (ξ−x) q + H (ξ−2x) = 0 (14) (−ηH) p 2 + 2xHpq + H (2y -η) q 2 + 2x (ηy) p 2 (H 2 -y 2 + ηy) q + H (η-2y) = 0 (15) However, x, y is the equation of wave 1 x, y, which are calculated as x 0 and y 0 .

【0032】更に、(6)式より、z=ζ(x,y)を
用いて、海面上の1点(x,y)における波高zを得る
方法を考える。
Further, a method of obtaining the wave height z at one point (x, y) on the sea surface using z = ζ (x, y) from equation (6) will be considered.

【0033】[0033]

【数13】 より、関数ζ(x,y)に対する一階偏微分方程式は(Equation 13) Thus, the first-order PDE for the function ζ (x, y) is

【数14】 とおくことができる。この方程式を解くために、次式で
表される直線Lを考える。
[Equation 14] Can be saved. To solve this equation, consider a straight line L represented by the following equation.

【0034】[0034]

【数15】 (Equation 15)

【0035】この直線L上では、y=−(p/q)x+
cなので、yはxの関数であり、従って関数ζ(x,y
(x))もxの関数である。
On this straight line L, y =-(p / q) x +
c, y is a function of x and therefore the function ζ (x, y
(X)) is also a function of x.

【0036】直線L上でのζの微分をとると、When the derivative of ζ on the straight line L is obtained,

【数16】 である。従って、直線L上では(Equation 16) It is. Therefore, on the straight line L

【数17】 となる。(16)式より、ζは直線L上で一定であるこ
とのみ決まるため、関数形は任意となる。従って(1
6)の一般解は
[Equation 17] Becomes From equation (16), since ζ is determined only to be constant on the straight line L, the function form is arbitrary. Therefore (1
The general solution of 6) is

【数18】 となる。ここで、gは任意の関数である。(Equation 18) Becomes Here, g is an arbitrary function.

【0037】そして、初期条件がx=0でThen, when the initial condition is x = 0,

【数19】 ζ(y,0)=U(y) (21) となる特定の関数Uが与えられたとすると、解(21)
より
19 (y, 0) = U (y) (21) Given a specific function U, the solution (21)
Than

【数20】 g(y)≡U(y) (22) である。従って、この初期条件を満たす解はG (y) ≡U (y) (22) Therefore, a solution that satisfies this initial condition is

【数21】 となり、任意の位置(x,y)における波形を表す関数
が得られる。
(Equation 21) And a function representing a waveform at an arbitrary position (x, y) is obtained.

【0038】このようにして得られた、波面1の方程式
から、波高zが求められる。
From the equation of the wavefront 1 thus obtained, the wave height z is obtained.

【0039】本発明によれば、計測によって波面1の反
射率ρが得られれば、計算によって間接的に波高zを求
めることが可能となり、超音波やレーザーなどの人工的
な媒体を使用する必要をなくすことができるようにな
る。
According to the present invention, if the reflectance ρ of the wavefront 1 is obtained by measurement, the wave height z can be obtained indirectly by calculation, and it is necessary to use an artificial medium such as an ultrasonic wave or a laser. Can be eliminated.

【0040】尚、本発明は、上述の実施の形態にのみ限
定されるものではなく、本発明の要旨を逸脱しない範囲
内において種々変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.

【0041】[0041]

【発明の効果】以上説明したように、本発明の波高計に
よれば、超音波やレーザーなどの人工的な媒体を使用せ
ずに波高を計測することができるという優れた効果を奏
し得る。
As described above, according to the wave height meter of the present invention, there is an excellent effect that the wave height can be measured without using an artificial medium such as an ultrasonic wave or a laser.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例の概略側面図であ
る。
FIG. 1 is a schematic side view of an example of an embodiment of the present invention.

【図2】図1の概略斜視図である。FIG. 2 is a schematic perspective view of FIG.

【図3】図2の平面図である。FIG. 3 is a plan view of FIG. 2;

【符号の説明】[Explanation of symbols]

1 波面 2 輝度計等 3 輝度等 4 波高演算装置 5 岸壁 6 太陽 7 スクリーン ρ 反射率 m 法線ベクトル z 波高 DESCRIPTION OF SYMBOLS 1 Wavefront 2 Luminance meter etc. 3 Luminance etc. 4 Wave height calculation device 5 Quay wall 6 Sun 7 Screen ρ Reflectance m Normal vector z Wave height

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 波高を計測したい位置の波面の輝度等を
計測する輝度計等と、輝度計等で計測した波面の輝度等
に基づいて、波面の反射率を求め、波面の反射率から波
面の法線ベクトルを求め、波面の法線ベクトルから波面
の方程式を導き出し、波面の方程式から波高を演算する
波高演算装置とを備えたことを特徴とする波高計。
1. A luminance meter or the like for measuring the luminance or the like of a wavefront at a position where a wave height is to be measured, and a reflectance of the wavefront is determined based on the luminance or the like of the wavefront measured by the luminance meter or the like. And a wave height calculating device for calculating a wave height from the wave front equation by deriving a wave front equation from the wave front normal vector.
JP17209597A 1997-06-27 1997-06-27 Wave height meter Pending JPH1123269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17209597A JPH1123269A (en) 1997-06-27 1997-06-27 Wave height meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17209597A JPH1123269A (en) 1997-06-27 1997-06-27 Wave height meter

Publications (1)

Publication Number Publication Date
JPH1123269A true JPH1123269A (en) 1999-01-29

Family

ID=15935456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17209597A Pending JPH1123269A (en) 1997-06-27 1997-06-27 Wave height meter

Country Status (1)

Country Link
JP (1) JPH1123269A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063398A (en) * 2007-09-06 2009-03-26 Iwasaki Electric Co Ltd Apparatus and method for detecting oil film
CN103808311A (en) * 2014-01-17 2014-05-21 中国人民解放军理工大学气象海洋学院 Portable near-shore ocean wave observation system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063398A (en) * 2007-09-06 2009-03-26 Iwasaki Electric Co Ltd Apparatus and method for detecting oil film
CN103808311A (en) * 2014-01-17 2014-05-21 中国人民解放军理工大学气象海洋学院 Portable near-shore ocean wave observation system and method

Similar Documents

Publication Publication Date Title
Durden et al. A physical radar cross-section model for a wind-driven sea with swell
Frouin et al. A technique for global monitoring of net solar irradiance at the ocean surface. Part I: Model
DE50001460D1 (en) METHOD AND ARRANGEMENT FOR DETERMINING SPATIAL POSITIONS AND ORIENTATIONS
CN108894228A (en) Piling location method and system
Mitnik Mesoscale coherent structures in the surface wind field during cold
Cho et al. Crest‐length effects in nearshore tsunami run‐up around islands
Shannon Correlation of beam and diffuse attenuation coefficients measured in selected ocean waters
JPH1123269A (en) Wave height meter
CN105718666B (en) A kind of normalized radar backscatter cross section method for numerical simulation on wave-stream coupling sea
Heaps et al. Three-dimensional model for tides and surges with vertical eddy viscosity prescribed in two layers—II. Irish Sea with bed friction layer
Bucker A simple 3‐D Gaussian beam sound propagation model for shallow water
Broutman et al. Maslov's method for stationary hydrostatic mountain waves
Geernaert Drag coefficient modeling for the near coastal zone
Helliwell et al. Ship shadowing: model and data comparisons
WO2023250514A3 (en) Devices, systems and method for analysis and characterization of surface topography
Instruments Principles of operation a practical primer
Hsueh et al. A diagnostic model of continental shelf circulation
JP3589186B2 (en) Onboard marine forecasting device
Yang et al. Vdatum for the coastal waters from the Florida shelf to the South Atlantic Bight tidal datums, marine grids, and sea surface topography
Smith et al. Modeling Waves at Willapa Bay, Washington
Hennings et al. Suspended sediment signatures induced by shallow water undulating bottom topography
Zeng et al. Impact assessment of thermal discharge from the Kemen power plant based on field observation and numerical simulation
Wilson et al. Atmospheric and optical turbulence measurements in maritime environment for improvements to LEEDR marine boundary layer characterization
Zuev et al. Measuring the geometric parameters of ice by phase triangulation method in a limited volume with refraction of optical signals
US20210310806A1 (en) System and method of tilt sensor tide and inland water level gauge