JP2001288530A - High strength and high toughness martensitic steel and its production method - Google Patents

High strength and high toughness martensitic steel and its production method

Info

Publication number
JP2001288530A
JP2001288530A JP2000098867A JP2000098867A JP2001288530A JP 2001288530 A JP2001288530 A JP 2001288530A JP 2000098867 A JP2000098867 A JP 2000098867A JP 2000098867 A JP2000098867 A JP 2000098867A JP 2001288530 A JP2001288530 A JP 2001288530A
Authority
JP
Japan
Prior art keywords
strength
martensitic steel
mass
grain size
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000098867A
Other languages
Japanese (ja)
Other versions
JP3934303B2 (en
Inventor
琢哉 ▲高▼知
Takuya Kochi
Mamoru Nagao
護 長尾
Hiroshi Kako
浩 家口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000098867A priority Critical patent/JP3934303B2/en
Publication of JP2001288530A publication Critical patent/JP2001288530A/en
Application granted granted Critical
Publication of JP3934303B2 publication Critical patent/JP3934303B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide martensitic steel having sufficient strength and also excellent toughness even when used as automotive springs and bolts, and to provide its production method. SOLUTION: This high strength and high toughness martensitic steel contains >=0.1 mass % C, and >=80% or its metallic structure is composed of martensite. The average value of the old austenite crystal grain size numbers is >=7, and also, the area ratio occupied by the old austenite grains with the grain size numbers different by >=3.0 from the grain size number having the maximum frequency is <=10%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度・高靭性マ
ルテンサイト鋼及びその製造方法と、上記高強度・高靭
性マルテンサイト鋼を用いてなる高強度ばね及び高強度
ボルトに関するものである。
The present invention relates to a high-strength and high-toughness martensitic steel and a method for producing the same, and to a high-strength spring and a high-strength bolt using the high-strength and high-toughness martensitic steel.

【0002】[0002]

【従来の技術】近年自動車の燃費改善に向けた使用鋼材
の軽量化ニーズが高まっており、ばね用鋼やボルト用鋼
などの高強度鋼に対しても、より一層の高強度化が要求
されている。
2. Description of the Related Art In recent years, there has been an increasing need to reduce the weight of steel materials used for improving fuel efficiency of automobiles, and higher strength steels such as spring steel and bolt steel are required to have higher strength. ing.

【0003】上記高強度鋼としてはマルテンサイト鋼が
用いられているが、高強度化の弊害として靭性の劣化が
あり、高強度化の一方で、遅れ破壊感受性や腐食疲労特
性の改善が重要な課題として取り上げられ、種々の技術
が提案されている。
[0003] Martensitic steel is used as the above high-strength steel. However, toughness is degraded as a detrimental effect of high strength, and it is important to improve delayed fracture susceptibility and corrosion fatigue characteristics while increasing strength. It has been taken up as an issue and various technologies have been proposed.

【0004】例えば、特公昭60−30736号公報で
は、冷間成形コイルばねの靭性の向上を目的として、高
周波加熱焼入れによって微細マルテンサイトを生成させ
る方法が開示されている。但し、これは通常の高周波加
熱処理でオーステナイト粒を微細化し間接的にマルテン
サイトを微細化する技術であることから、靭性向上の程
度も十分に満足できるものではなく、更なる高靭性化技
術の開発が望まれている。
For example, Japanese Patent Publication No. 60-30736 discloses a method of generating fine martensite by induction hardening for the purpose of improving the toughness of a cold-formed coil spring. However, since this is a technique for refining austenite grains and indirectly refining martensite by ordinary high-frequency heat treatment, the degree of improvement in toughness is not sufficiently satisfactory. Development is desired.

【0005】また特開平6−116637号公報には、
成分組成としてはNiを多量に(8〜11%)含有させ
ると共に、昇温中にせん断型逆変態オーステナイト相を
生成させ、転位密度の高い未変態オーステナイトから焼
入れることでマルテンサイト鋼の靭性を向上させる方法
が開示されている。しかし、Niは積極的に利用するに
は高価な元素であるという問題点がある。
Japanese Patent Application Laid-Open No. Hei 6-116637 discloses that
As a component composition, while containing a large amount of Ni (8 to 11%), a shear-type reverse transformed austenite phase is generated during temperature rise, and the toughness of the martensitic steel is increased by quenching from untransformed austenite having a high dislocation density. A method for improving is disclosed. However, there is a problem that Ni is an expensive element for actively utilizing.

【0006】更に、特開平11−229075号公報で
は、成分組成を限定し、昇温速度及び冷却速度を制限す
ることで高強度鋼の耐遅れ破壊性を高める方法が開示さ
れている。但し、この技術は利用範囲が厚板に限定され
ていると共に、到達強度が引張強さで最大1551MP
aであり、靭性を示す破断応力も945MPaと低く、
自動車に使用される高強度鋼としては強度及び靭性が不
足している。
Further, Japanese Patent Application Laid-Open No. 11-229075 discloses a method of increasing the delayed fracture resistance of a high-strength steel by limiting the component composition and limiting the rate of temperature rise and cooling. However, this technology has a limited use range for thick plates, and the ultimate strength is up to 1551MP in tensile strength.
a, and the breaking stress indicating toughness is as low as 945 MPa,
High strength steel used for automobiles lacks strength and toughness.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、自動車用のばねやボルト
等として用いても十分な強度を有すると共に、靭性にも
優れたマルテンサイト鋼及びその製造方法を提供しよう
とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has sufficient strength and excellent toughness even when used as a spring or bolt for automobiles. An object of the present invention is to provide steel and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記課題を解決した本発
明の高強度・高靭性マルテンサイト鋼とは、0.1質量
%以上のCを含み、金属組織の80%以上がマルテンサ
イトであるマルテンサイト鋼であって、旧オーステナイ
ト結晶粒度番号の平均値が7以上で、且つ最大頻度を有
する粒度番号から3.0以上異なった粒度番号の旧オー
ステナイト粒が占める面積率が10%以下であることを
要旨とするものである。上記マルテンサイト鋼は、V≦
0.2質量%,Nb≦0.2質量%,Ti≦0.2質量
%及びHf≦0.2質量%よりなる群から選択される1
種以上を含有することが望ましく、またCrを1.0質
量%以下及び/又はMoを1.0質量%以下の範囲で含
有することが好ましい。更に、水素拡散係数DHは1.
0×10-5cm2/s以下であることが推奨される。
The high-strength and high-toughness martensitic steel of the present invention which has solved the above-mentioned problems contains 0.1% by mass or more of C and 80% or more of the metal structure is martensite. A martensitic steel having an average value of prior austenite crystal grain size numbers of 7 or more and an area ratio occupied by 10% or less of old austenite grains having a grain size number different from the most frequently used grain size number by 3.0 or more. The gist is that. The above martensitic steel has V ≦
1 selected from the group consisting of 0.2% by mass, Nb ≦ 0.2% by mass, Ti ≦ 0.2% by mass and Hf ≦ 0.2% by mass
It is desirable to contain at least one species, and it is preferable to contain 1.0% by mass or less of Cr and / or 1.0% by mass or less of Mo. Further, the hydrogen diffusion coefficient D H is 1.
It is recommended that it be 0 × 10 −5 cm 2 / s or less.

【0009】この様な高強度・高靭性マルテンサイト鋼
を製造するにあたっては、500℃以下の温度で少なく
とも真ひずみ0.20以上の冷間加工を施す工程、加熱
速度50℃/秒以上で、Ac3点+150℃以上120
0℃未満に加熱する工程、加熱開始から冷却開始までの
総加熱時間(例えば、高周波加熱などにより積極的に加
熱を行っている時間)を20秒間以上40秒間未満に
し、所定の加熱温度で保持した後、少なくとも臨界冷却
速度の1.5倍以上の冷却速度で冷却する焼入れ工程を
有する方法を採用することが望ましく、前記焼入れ工程
における冷却速度は臨界冷却速度の2.0倍以上とする
ことが好ましい。
In producing such a high-strength and high-toughness martensitic steel, a step of performing cold working at a temperature of 500 ° C. or less and at least a true strain of 0.20 or more, at a heating rate of 50 ° C./sec or more, Ac 3 points + 150 ° C or higher 120
The step of heating to less than 0 ° C., the total heating time from the start of heating to the start of cooling (for example, the time during which heating is actively performed by high-frequency heating or the like) is set to 20 seconds or more and less than 40 seconds, and is maintained at a predetermined heating temperature. After that, it is desirable to adopt a method having a quenching step of cooling at least 1.5 times the critical cooling rate or more, and the cooling rate in the quenching step is 2.0 times or more the critical cooling rate. Is preferred.

【0010】本発明に係る高強度・高靭性マルテンサイ
ト鋼は、高強度ばねや高強度ボルトとして好適である。
The high-strength and high-toughness martensitic steel according to the present invention is suitable as a high-strength spring or a high-strength bolt.

【0011】[0011]

【発明の実施の形態】旧オーステナイト結晶の平均粒度
は強度−靭性バランスに大きく影響を及ぼすものであ
り、平均結晶粒度が大きいほど、すなわち平均結晶粒径
が微細であるほど強度一靭性バランスが向上することが
知られている。但し、これまで旧オーステナイト結晶粒
度が靭性に及ぼす影響は、平均結晶粒度により議論され
ることが多く、この平均結晶粒度とは、混粒組織や整粒
組織に関わらない全体の平均値であった。尚、JIS
G 0551には、混粒組織の定義として、「1視野内
において、最大ひん度を有する粒度番号の粒からおおむ
ね3以上異なった粒度番号の粒が偏在し、これらの粒が
約20%以上の面積を占める状態にあるもの、又は視野
間において3以上異なった粒度番号の視野が存在するも
の」と規定されている。この混粒組織に関して言えば、
隣り合う結晶粒の粒度番号の差が大きい場合には、その
界面に極度な応力集中が生じ易く、靭性を劣化させる。
特に腐食疲労や遅れ破壊等の粒界割れが問題となる場合
には、混粒組織が顕著になるに従って特性が著しく劣化
する。即ち、強度−靭性バランスを更に向上させるに
は、平均結晶粒径を微細化するだけではなく、混粒組織
を制御することが非常に重要であるとの知見を得た。具
体的には、旧オーステナイト結晶粒度番号の平均値が7
以上で、且つ最大頻度を有する粒度番号から3.0以上
異なった粒度番号の旧オーステナイト粒が占める面積が
10%以下とすることにより、応力集中部の分散および
緩和が達成され、これまでにない強度−靭性バランスが
得られるのである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The average grain size of prior austenite crystals greatly affects the strength-toughness balance. The larger the average grain size, that is, the finer the average grain size, the better the strength-toughness balance. It is known to However, the effect of the prior austenite grain size on the toughness has been often discussed so far based on the average grain size, and the average grain size was the average value of the whole regardless of the mixed grain structure or the sized grain structure. . JIS
In G 0551, as a definition of a mixed grain structure, "a grain having a grain size number different from that of a grain number having the maximum frequency of about 3 or more is unevenly distributed in one visual field, and these grains have about 20% or more. That occupies an area, or that there are visual fields having three or more different granularity numbers between visual fields. " Speaking of this mixed grain structure,
When the difference between the grain numbers of adjacent crystal grains is large, extreme stress concentration is likely to occur at the interface, and the toughness is deteriorated.
In particular, when grain boundary cracking such as corrosion fatigue or delayed fracture becomes a problem, the characteristics are significantly deteriorated as the mixed grain structure becomes more pronounced. That is, to further improve the strength-toughness balance, it has been found that it is very important not only to reduce the average crystal grain size but also to control the mixed grain structure. Specifically, the average value of the prior austenite grain size number was 7
As described above, by setting the area occupied by the prior austenite grains having a grain size number different from the grain size number having the maximum frequency by 3.0 or more to 10% or less, dispersion and relaxation of the stress-concentrated portion are achieved, which has never been seen before. The strength-toughness balance can be obtained.

【0012】尚、平均の旧オーステナイト結晶粒度が強
度−靭性バランスに大きく影響を及ぼすことは前述の通
りであり、平均結晶粒度が大きいほど、すなわち平均結
晶粒径が微細であるほど強度−靭性バランスが向上する
ので、平均の旧オーステナイト結晶粒度の下限を7とし
た。また現在の工業技術では、平均の旧オーステナイト
平均結晶粒度が12を超える鋼材の製造は設備能力上、
困難である。
As described above, the average prior austenite grain size greatly affects the strength-toughness balance. As the average grain size is larger, that is, as the average grain size is finer, the strength-toughness balance is larger. Therefore, the lower limit of the average prior austenite grain size was set to 7. In addition, according to the current industrial technology, the production of steel having an average prior austenite average grain size of more than 12 is limited in terms of equipment capacity.
Have difficulty.

【0013】以下に、本発明の他の限定理由について述
べる。
Hereinafter, other reasons for limitation of the present invention will be described.

【0014】C≧0.1% マルテンサイト鋼の強度を確保するためには0.1%以
上のCが必要である。鋼材はC含有率の増加に伴い高強
度が得られるが、C含有量が多くなるに従い焼割れが生
じ易くなるので、工業的には1.2%以下が望ましい。
C ≧ 0.1% In order to secure the strength of the martensitic steel, 0.1% or more of C is required. High strength is obtained with an increase in the C content of the steel material. However, as the C content increases, quenching cracks are likely to occur.

【0015】金属組織の80%以上:マルテンサイト 焼入れた場合、焼入れままの組織はマルテンサイト,ベ
イナイトまたは残留オーステナイト等を含むが、マルテ
ンサイト以外の組織の比率が大きくなれば強度は低下す
る。高強度ばねや高強度ボルト用鋼として適用する場
合、金属組織の少なくとも80%以上がマルテンサイト
であれば、要求される強度(例えば、ボルト用鋼では1
200N/mm2級の強度)が確保できる。
80% or more of the metal structure: When martensite is quenched, the structure as-quenched contains martensite, bainite, retained austenite, etc., but if the ratio of structures other than martensite increases, the strength decreases. When applied as a high-strength spring or high-strength bolt steel, if at least 80% or more of the metal structure is martensite, the required strength (for example, 1 for bolt steel)
200 N / mm 2 class strength).

【0016】V≦0.2質量%,Nb≦0.2質量%,
Ti≦0.2質量%及びHf≦0.2質量%よりなる群
から選択される1種以上 V,Nb,Ti及びHfは任意の添加元素であり、微量
の添加で析出物を形成して析出強化をもたらす。析出物
は水素トラップサイトとしても作用し、さらにDHを低
下させ、耐遅れ破壊特性を向上させる効果がある。但
し、過度に添加すると析出物数が増加し、靭性を損なう
ため、夫々の元素の上限を0.2質量%とした。
V ≦ 0.2% by mass, Nb ≦ 0.2% by mass,
Group consisting of Ti ≦ 0.2% by mass and Hf ≦ 0.2% by mass
One or more of V, Nb, Ti and Hf selected from the following are arbitrary additive elements, and form a precipitate by adding a trace amount thereof to bring about precipitation strengthening. The precipitate also acts as a hydrogen trap site, has the effect of further lowering D H and improving delayed fracture resistance. However, if added excessively, the number of precipitates increases and the toughness is impaired. Therefore, the upper limit of each element is set to 0.2% by mass.

【0017】Cr:1.0質量%以下及び/又はMo:
1.0質量%以下 Cr及び/又はMoも任意の添加元素であり、添加によ
り焼入れ性を向上させ、また炭化物や窒化物を形成し析
出強化をもたらす。但し、過度の添加は靭性を低下させ
るため、夫々上限を1.0質量%とした。
Cr: 1.0% by mass or less and / or Mo:
1.0 mass% or less Cr and / or Mo are also optional elements, and when added, improve hardenability and form carbides or nitrides to bring about precipitation strengthening. However, since the excessive addition lowers the toughness, the upper limit is set to 1.0% by mass.

【0018】なお、その他の元素として、Si,Mn,
Ni,Cu,P,S,Al,N,Bなどの元素を要求特
性に合わせて適量添加しても何ら差し支えない。例え
ば、ばね用鋼では耐へたり性の向上を目的としてSiを
1質量%以上添加することが一般的である。
As other elements, Si, Mn,
Elements such as Ni, Cu, P, S, Al, N, and B may be added in an appropriate amount according to the required characteristics. For example, in spring steel, it is common to add 1% by mass or more of Si for the purpose of improving sag resistance.

【0019】水素拡散係数DH:1.0×10-5cm2
s以下 引張強度1400N/mm2を超える高強度鋼を実用化
する上では、粒度の均整化に加えて、水素拡散係数を制
御することが重要である。鋼中での水素の拡散が遅いほ
ど、耐応力腐食割れ及び耐遅れ破壊特性に優れる。水素
の拡散は、水素トラップサイトの導入により遅延化さ
れ、有効なトラップサイトとして炭化物,転位,粒界な
どが挙げられる。V,Nbなどの添加元素を用いずに水
素をトラップするには、転位密度を高めることが非常に
有効である。後記臨界冷却速度を調整することにより従
来以上に転位密度を高めた組織を得ることができ、その
結果DHが1.0×10-5cm2/s以下となって著しい
靭性向上効果を得ることができる。
Hydrogen diffusion coefficient D H : 1.0 × 10 −5 cm 2 /
In order to put into practical use a high-strength steel having a tensile strength of 1400 N / mm 2 or less, it is important to control the hydrogen diffusion coefficient in addition to the uniformity of the grain size. The slower the diffusion of hydrogen in the steel, the better the resistance to stress corrosion cracking and delayed fracture. The diffusion of hydrogen is delayed by the introduction of hydrogen trap sites, and effective trap sites include carbides, dislocations, and grain boundaries. In order to trap hydrogen without using additional elements such as V and Nb, it is very effective to increase the dislocation density. By adjusting the critical cooling rate to be described later, a structure with a dislocation density higher than before can be obtained, and as a result, DH becomes 1.0 × 10 −5 cm 2 / s or less, and a remarkable effect of improving toughness is obtained. be able to.

【0020】次に、製造方法の限定理由について詳細に
説明する。
Next, the reasons for limiting the manufacturing method will be described in detail.

【0021】500℃以下で少なくとも真ひずみ0.2
0以上 オーステナイト化処理前、500℃以下で少なくとも真
ひずみを0.20以上、望ましくは0.35以上の加工
を施す。従来は、線材であれば線径を整える(整寸)目
的の低加工度伸線が普通で(わずかに特開平3−698
1号公報に「引き抜きしたのち、10secを超えない
時間内に所定の焼入れ温度900〜1050℃に急速加
熱の上、…」との開示があるのみであり)、積極的に加
工を施すものではない。本発明では、オーステナイト化
処理前に積極的に強加工を施し、オーステナイト化処理
時のオーステナイトの核生成サイトとなる欠陥を組織中
に大量に導入しておくことで、オーステナイトの核生成
が均一で微細に分散化されるようにするものである。即
ち、結晶核が均一微細分散して生成することで、最終的
な結晶粒度のばらつき低減を促進する効果がある。加工
温度が500℃を超えると回復により組織中の欠陥密度
が低下し、オーステナイト化時の核生成サイトが減少し
て、均一な核生成が得られなくなるため、加工温度の上
限は500℃とした。なお、加工方法は圧延,伸線,そ
の他の方法でも構わない。
At least 500 ° C. and true strain of 0.2
Prior to the austenitizing treatment of 0 or more , at least 500 ° C. and true strain of 0.20 or more, preferably 0.35 or more are applied. Conventionally, if a wire is used, wire drawing with a low degree of processing for the purpose of adjusting the wire diameter (sizing) is common (slightly as disclosed in JP-A-3-698).
No. 1 only discloses that "after being drawn, rapid heating to a predetermined quenching temperature of 900 to 1050 ° C. within a time not exceeding 10 sec....") Absent. In the present invention, the austenite nucleation is made uniform by actively performing strong working before the austenitizing treatment and introducing a large amount of defects serving as austenite nucleation sites during the austenitizing treatment into the structure. It is intended to be finely dispersed. That is, since the crystal nuclei are uniformly finely dispersed and generated, there is an effect of promoting the reduction of the variation in the final crystal grain size. When the processing temperature exceeds 500 ° C., the defect density in the structure decreases due to recovery, the number of nucleation sites during austenitization decreases, and uniform nucleation cannot be obtained. Therefore, the upper limit of the processing temperature was set to 500 ° C. . The processing method may be rolling, drawing, or any other method.

【0022】少なくともAc3点+150℃以上、12
00℃未満に昇温速度50℃/sec以上で加熱 オーステナイト化時、オーステナイトの核生成を均一微
細分散させることを目的として加工により導入した高密
度の欠陥を加熱温度まで維持するために、昇温速度は5
0℃/sec以上であることが必要である。昇温速度が
50℃/sec未満では、昇温中に回復が進行し、加熱
温度に達する前に欠陥密度が低下して、オーステナイト
化時に均一な核生成が得られない。この様に、加熱温度
まで高欠陥密度を維持するという意味で、昇温速度は大
きい方がよく、100℃/sec以上であれば望まし
い。
At least Ac 3 points + 150 ° C. or higher, 12
When heating austenite at a heating rate of 50 ° C./sec or more to a temperature lower than 00 ° C., the temperature is raised to maintain high-density defects introduced by processing for the purpose of uniformly and finely dispersing nucleation of austenite to the heating temperature. Speed is 5
It is necessary to be 0 ° C./sec or more. If the heating rate is less than 50 ° C./sec, the recovery proceeds during the heating, the defect density decreases before the heating temperature is reached, and uniform nucleation during austenitization cannot be obtained. Thus, in order to maintain a high defect density up to the heating temperature, the rate of temperature rise is preferably higher, and is preferably 100 ° C./sec or more.

【0023】鋼材全体にわたり完全にオーステナイト化
させる上で、加熱温度は少なくともAc3点+150℃
以上(望ましくはAc3点+200℃以上)であること
が必要である。またオーステナイト化時の核生成では、
高い加熱温度まで急速に昇温するほど核生成速度が大き
くなる。オーステナイト粒径の均整化には、核生成速度
をより大きくし、かつ核生成を分散化させることが望ま
しく、加熱温度を高め急速昇温する方がよい。しかし、
過熱すると生成したオーステナイト粒の粗大化が進み、
最終的にオーステナイト粒度番号が7未満となるような
粗大化が生じ、その結果靭性が低下する。従って、加熱
温度の上限は1200℃未満とすることが望ましい。な
お、本発明の加熱温度の規定は、オーステナイト単相温
度にすることが骨子であり、0.8%以上の過共析組成
では、Ac3に変わってAcm温度をもって規定するこ
とが望ましく、加熱温度をAcm点+150℃以上、望
ましくはAcm点+200℃以上とすればよい。
In order to completely austenite the entire steel material, the heating temperature is at least Ac 3 points + 150 ° C.
It is necessary to be above (desirably, more than Ac 3 points + 200 ° C.). In addition, during nucleation during austenitization,
The nucleation rate increases as the temperature rises rapidly to higher heating temperatures. In order to equalize the austenite grain size, it is desirable to increase the nucleation rate and disperse the nucleation, and it is better to increase the heating temperature and raise the temperature rapidly. But,
Overheating causes the austenite grains formed to become coarser,
Eventually, coarsening occurs such that the austenite particle size number becomes less than 7, and as a result, toughness is reduced. Therefore, the upper limit of the heating temperature is desirably less than 1200 ° C. Incidentally, provision of the heating temperature of the present invention is a skeleton to be a single-phase austenite temperature, the over-eutectoid formation of more than 0.8%, it is desirable to define with the Acm temperature changes in Ac 3, heating The temperature may be set to Acm point + 150 ° C. or higher, preferably Acm point + 200 ° C. or higher.

【0024】総加熱時間:20秒間以上,40秒間未満 オーステナイト平均粒径が微細なほど靭性は向上するた
め、オーステナイト平均粒径を粗大化させないように、
総加熱時間は、鋼材全体にわたりオーステナイト化が完
了する必要最小限にすることが一般的である。但し、鋼
材全体にわたりオーステナイト化が完了する程度の総加
熱時間では、組織内部の加熱時間にばらつきがあり、整
粒化されたオーステナイト結晶粒が得られない。オース
テナイト結晶粒度の最頻値から3.0以上異なる結晶粒
度を有するオーステナイト結晶粒の面積率を10%以下
にするには、総加熱時間を20秒間以上とすることが必
要であり、それによりオーステナイト結晶粒度が均整化
される。また、40秒間以上になると結晶粒が成長し、
平均のオーステナイト結晶粒度番号が7未満となり、靭
性が低下するため、保持時間の上限は40sec未満に
設定した。
Total heating time: 20 seconds or more and less than 40 seconds The finer the austenite average particle size is, the more the toughness is improved, so that the austenite average particle size is not coarsened.
Generally, the total heating time is set to the minimum necessary for completing the austenitization of the entire steel material. However, if the total heating time is such that the austenitization is completed over the entire steel material, the heating time inside the structure varies, and austenite crystal grains that have been sized cannot be obtained. In order to reduce the area ratio of austenite grains having grain sizes that differ from the mode of the austenite grain size by 3.0 or more to 10% or less, the total heating time must be 20 seconds or more. The grain size is leveled. In addition, the crystal grains grow after 40 seconds or more,
Since the average austenite grain size number is less than 7, and the toughness is reduced, the upper limit of the holding time is set to less than 40 sec.

【0025】臨界冷却速度CRcriの1.5倍以上の冷
却速度で冷却 冷却は通常の焼入れと同様に、臨界冷却速度CRcri以
上で急冷し、マルテンサイト変態を起こさせればよい
が、引張強度1200N/mm2級の強度レベルにおい
て期待される靭性を確保するためには、臨界冷却速度C
Rcriの1.5倍以上の冷却速度で冷却することが必要
である。更に、引張強度1400N/mm 2級の強度レ
ベルまで高強度化された鋼材において、期待される靭性
を確保するためには、水素拡散係数DHを1.0×10
-5cm2/s以下にする必要がある。DHを1.0×10
-5cm2/s以下にするためには、マルテンサイトの転
位密度を確保することが必要であるが、冷却速度がCR
criの2.0倍未満の場合、冷却中に自己焼戻しが生
じ、転位密度が減少して、焼戻しで析出する炭化物が微
細分散化されず、DHが1.0×10-5cm2/sより大
きくなる。冷却速度をCRcriの2.0倍以上にすれ
ば、高転位密度が確保され、DHを1.0×10-5cm 2
/s以下に制御でき、引張強度1400N/mm2級の
高強度鋼においても期待される靭性が得られる。より優
れた効果を発揮させるにはCRcriの3.0倍以上が望
ましい。ただし、焼割れ防止を考慮すると、CRcriの
4.0倍未満が望ましい。
[0025]Cooling more than 1.5 times the critical cooling rate CRcri
Cool at reject speed Cooling is performed at the critical cooling rate CRcri
Quench on the top to cause martensitic transformation
Has a tensile strength of 1200 N / mmTwoOdor level
In order to secure the expected toughness, the critical cooling rate C
It is necessary to cool at a cooling rate of 1.5 times or more of Rcri
It is. Furthermore, a tensile strength of 1400 N / mm TwoGrade strength
Expected toughness in steel materials with high strength up to the bell
In order to secure the hydrogen diffusion coefficient DHTo 1.0 × 10
-FivecmTwo/ S or less. DHTo 1.0 × 10
-FivecmTwo/ S or less, the conversion of martensite
It is necessary to secure the phase density, but the cooling rate is CR
If less than 2.0 times cri, self-tempering occurs during cooling.
And the dislocation density decreases, and carbides precipitated by tempering
Not finely dispersed, DHIs 1.0 × 10-FivecmTwoGreater than / s
It will be good. Cooling rate should be more than 2.0 times of CRcri
If high dislocation density is secured, DHTo 1.0 × 10-Fivecm Two
/ S or less, and a tensile strength of 1400 N / mmTwoGrade
Expected toughness can be obtained even in high strength steel. More excellent
3.0 times higher than CRcri
Good. However, considering the prevention of burning cracking,
Less than 4.0 times is desirable.

【0026】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の主旨に基づいて設計変更すること
はいずれも本発明の技術的範囲内に含まれるものであ
る。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples do not limit the present invention. Are included within the technical scope of

【0027】[0027]

【実施例】表1に鋼材aとして示す組成を有する鋼材を
実験的に溶製し、形状加工により、直径18mmの棒材
を得た。
EXAMPLE A steel material having the composition shown as steel material a in Table 1 was experimentally melted and shaped to obtain a bar having a diameter of 18 mm.

【0028】[0028]

【表1】 [Table 1]

【0029】次に、この棒材を室温で伸線して、高周波
加熱炉を用いて表2に示す種々の条件で焼入れ処理を行
った。
Next, the bar was drawn at room temperature and quenched under various conditions shown in Table 2 using a high-frequency heating furnace.

【0030】[0030]

【表2】 [Table 2]

【0031】焼入れ処理時、試料表面に熱電対を溶接し
て表面温度を測定し、測定温度が設定の加熱温度まで昇
温されたら、昇温開始からの総加熱時間が15〜45s
ecとなるように加熱温度で保持した後、焼入れを施し
た。昇温速度および冷却速度は、試料に設置した熱電対
による試料表面温度測定結果から算出した。まず、冷却
速度を変化させることで臨界冷却速度を求めた後、所望
の冷却速度に制御して焼入れを行った。焼入れ後、試料
を調整し、エッチング溶液として、ピクラールを用い
て、マルテンサイト率および旧オーステナイト粒度の測
定を行った。マルテンサイト率は、焼入れまま試料の横
断面、D/4位置(厚み方向に表面から1/4の深さの
位置)を光学顕微鏡を用いて倍率400倍で4視野観察
し、画像解析にて平均値を評価した。旧オーステナイト
粒度測定は、焼入れまま試料の横断面のD/4位置を光
学顕微鏡により倍率200倍もしくは400倍で観察
し、光学顕微鏡写真を用い、100個以上の旧オーステ
ナイト結晶粒面積測定を行った。この時、1視野内で測
定する旧オーステナイト結晶粒数は40個以上とし、1
視野内の旧オーステナイト結晶粒数が40個に満たない
視野を持つ鋼材のみ、倍率を200倍にして観察し測定
した。また、測定する結晶粒に隣接する結晶粒のうち必
ず一つが測定結晶粒であるようにした。その後、旧オー
ステナイト結晶粒面積の測定結果を下記の数式(1)を
用いて、粒度番号に換算した。平均結晶粒度は測定した
全旧オーステナイト結晶粒度の平均値である。また、粒
度番号の小数点第二位を四捨五入することで粒度番号を
整理し、最大頻度を示す結晶粒度番号を求めた。さら
に、最大頻度を示す結晶粒度番号から3.0以上異なる
粒度番号を持つ結晶粒について、その面積を合計し、全
面積に対する比率を計算した。
At the time of quenching, a thermocouple is welded to the surface of the sample to measure the surface temperature. When the measured temperature is raised to the set heating temperature, the total heating time from the start of the temperature rise is 15 to 45 seconds.
After holding at the heating temperature so as to be ec, quenching was performed. The rate of temperature rise and the rate of cooling were calculated from the results of measurement of the sample surface temperature using a thermocouple installed on the sample. First, the critical cooling rate was determined by changing the cooling rate, and then quenching was performed at a desired cooling rate. After quenching, the sample was prepared, and the martensite ratio and the prior austenite grain size were measured using picral as an etching solution. The martensite ratio is determined by observing the cross section of the as-quenched sample at a D / 4 position (a position at a depth of 1/4 from the surface in the thickness direction) at a magnification of 400 using an optical microscope in four visual fields, and analyzing the image. The average value was evaluated. In the measurement of the prior austenite grain size, the D / 4 position of the cross section of the as-quenched sample was observed with an optical microscope at a magnification of 200 times or 400 times, and the area of 100 or more old austenite crystal grains was measured using an optical microscope photograph. . At this time, the number of prior austenite crystal grains measured in one visual field was set to 40 or more.
Only steel materials having a visual field of less than 40 prior austenite crystal grains in the visual field were observed and measured at a magnification of 200 times. In addition, one of the crystal grains adjacent to the crystal grain to be measured is always a measurement crystal grain. Thereafter, the measurement result of the prior austenite crystal grain area was converted into a particle size number using the following equation (1). The average grain size is the average value of all measured prior austenite grain sizes. In addition, the grain size number was arranged by rounding off the second decimal place of the grain size number, and the crystal grain size number indicating the maximum frequency was obtained. Further, for crystal grains having a grain size number different from the grain size number showing the maximum frequency by 3.0 or more, their areas were totaled, and the ratio to the total area was calculated.

【0032】[0032]

【数1】 (Equation 1)

【0033】焼入れ試料に鉛浴を用いて焼戻し処理を施
し、引張強度1100〜1800N/mm2程度に強度
調整した後、強度評価特性値として、JIS Z 22
41に従い、試験片としてJIS Z 2201におけ
る2号試験片を用いて室温引張試験を行い、引張強度を
測定した。
The quenched sample is subjected to a tempering treatment using a lead bath to adjust the strength to a tensile strength of about 1100 to 1800 N / mm 2 , and then, as a strength evaluation characteristic value, JIS Z 22
According to No. 41, a room temperature tensile test was performed using a No. 2 test piece in JIS Z 2201 as a test piece, and a tensile strength was measured.

【0034】また、靭性評価特性値として、4点曲げ−
陰極チャージ試験における破断寿命を採用した。4点曲
げ−陰極チャージ試験の詳細について以下に述べる。先
ず、焼戻し後の試料から、放電加工により長さ60m
m,幅15mm,厚さ1.5mmの板状試験片を切出
し、図1に示す治具にて曲げ応力1400MPaで4点
にて拘束した。この試験片を装着した治具を0.5mo
1/リットルの硫酸と、0.01mo1/リットルのK
SCNの混合液に浸し、陽極に白金電極を用い、陰極電
位−700mVを付加することで、試験片に電気化学的
に水素を供給した。電位付与後、曲げ応力を与えた試験
片が破断するまでの時間を測定した。寿命1000se
cを超えるものが、実用に適する靭性を有することか
ら、本実験にて寿命1000secを合否判定基準とし
た。
The characteristic value of the toughness evaluation is four-point bending.
The rupture life in the cathode charge test was adopted. The details of the four-point bending-cathode charge test are described below. First, from the tempered sample, the length was 60 m by electric discharge machining.
A plate-shaped test piece having a size of m, a width of 15 mm and a thickness of 1.5 mm was cut out and restrained at four points with a bending stress of 1400 MPa using a jig shown in FIG. The jig to which this test piece is attached is 0.5 mo
1 / liter sulfuric acid and 0.01mo1 / liter K
The test piece was electrochemically supplied with hydrogen by immersing in a mixed solution of SCN, using a platinum electrode as an anode, and applying a cathode potential of -700 mV. After the potential was applied, the time until the test piece subjected to the bending stress was broken was measured. Life 1000sec
Since those exceeding c have toughness suitable for practical use, a life of 1000 sec was used as a pass / fail criterion in this experiment.

【0035】また、焼戻し後試料を用いて水素拡散係数
を測定した。水素拡散係数は、「遅れ破壊解明の新展
開」[(社)日本鉄鋼協会ほか]に記載されている測定
方法を用いて求めた。具体的な測定方法を以下に述べ
る。まず、試料を0.5mo1/リットルの硫酸と、
0.01mo1/リットルのKSCNの混合液中で、電
流密度20mA/cm2として陰極チャージして試料に
水素を吸収させた。その後、赤外線イメージ炉を組み付
けた大気圧イオン化質量分析計(APIMS)を用いて
熱分析を行った。赤外線炉を12℃/secで連続昇温
し、温度上昇とともに放出される水素ガス量を測定し
た。低温域で測定される水素ガス放出曲線から、測定結
果をフィックの第二法則に対してフィッティングするこ
とによって、鋼中における水素拡散係数を求めた。以上
の結果を表3及び図2に示す。
The hydrogen diffusion coefficient was measured using the sample after tempering. The hydrogen diffusion coefficient was determined using a measurement method described in "New Development of Delayed Fracture Elucidation" (The Iron and Steel Institute of Japan and others). A specific measuring method will be described below. First, a sample was treated with 0.5 mol / liter sulfuric acid,
In a 0.01 mol / liter KSCN mixture, the sample was cathode-charged at a current density of 20 mA / cm 2 to absorb hydrogen into the sample. Thereafter, thermal analysis was performed using an atmospheric pressure ionization mass spectrometer (APIMS) equipped with an infrared image furnace. The temperature of the infrared furnace was continuously raised at 12 ° C./sec, and the amount of hydrogen gas released with the temperature rise was measured. From the hydrogen gas release curve measured in the low temperature range, the measurement result was fitted to Fick's second law to determine the hydrogen diffusion coefficient in steel. The above results are shown in Table 3 and FIG.

【0036】[0036]

【表3】 [Table 3]

【0037】また、表1に示した種々の組成の鋼材を真
ひずみ(ε):0.21,昇温速度:200℃/se
c,加熱温度:1070℃,総加熱時間:22sec,
冷却速度比(CR/CRcri):2.5の条件で焼入れ
処理した。その結果が表4及び図3である。
Further, steel materials having various compositions shown in Table 1 were subjected to a true strain (ε) of 0.21, a heating rate of 200 ° C./sec.
c, heating temperature: 1070 ° C., total heating time: 22 sec,
Quenching was performed under the condition of a cooling rate ratio (CR / CRcri): 2.5. The results are shown in Table 4 and FIG.

【0038】[0038]

【表4】 [Table 4]

【0039】表4の鋼材a〜g及び図3で示す本発明例
は、組成及び製造方法が本発明の条件を満足するもので
ある。組成が本発明規定範囲外の比較例(鋼材h〜n)
と比較して、焼入れ焼戻し後の強度−靭性バランスが非
常に向上していることが明らかである。
The steel materials a to g in Table 4 and the examples of the present invention shown in FIG. 3 satisfy the conditions of the present invention in the composition and the production method. Comparative examples in which the composition is out of the specified range of the present invention (steel materials h to n)
It is apparent that the balance between strength and toughness after quenching and tempering is significantly improved as compared with the case of FIG.

【0040】本発明に係る方法により製造されたNo.
1〜10では、鉛浴による焼戻し後、広い強度レベルに
おいて優れた靭性を有している。製造方法が本発明の規
定範囲外であるNo.11〜20では、平均結晶粒度N
1が7.0未満であったり、最大頻度を示す結晶粒度N2
から3.0番以上異なる結晶粒度を有する旧オーステナ
イト粒の面積率が10%を超えており、靭性の劣化が認
められる。
No. 1 produced by the method according to the present invention.
Nos. 1 to 10 have excellent toughness in a wide range of strength levels after tempering in a lead bath. No. whose manufacturing method is outside the range specified in the present invention. In 11 to 20, the average grain size N
1 is less than 7.0 or the crystal grain size N 2 showing the maximum frequency
, The area ratio of prior austenite grains having a grain size different from No. 3.0 or more exceeds 10%, and deterioration in toughness is observed.

【0041】[0041]

【発明の効果】本発明は以上のように構成されているの
で、自動車用のばね用鋼及びボルト用鋼として十分な強
度を有すると共に、靭性にも優れたマルテンサイト鋼及
びその製造方法が提供できることとなった。
Since the present invention is constructed as described above, the present invention provides a martensitic steel having sufficient strength as a spring steel and a bolt steel for automobiles and excellent in toughness, and a method for producing the same. It can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】陰極チャージ寿命の測定方法を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing a method of measuring a cathode charge life.

【図2】表3の各種マルテンサイト鋼の引張強度と陰極
チャージ寿命の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the tensile strength of various martensitic steels in Table 3 and the cathode charge life.

【図3】表4の各種マルテンサイト鋼の引張強度と陰極
チャージ寿命の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the tensile strength of various martensitic steels in Table 4 and the cathode charge life.

【符号の説明】[Explanation of symbols]

1 治具 2 試験片 1 jig 2 test piece

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/22 C22C 38/22 (72)発明者 家口 浩 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 4K032 AA11 AA19 BA02 CG00 CH01 CH06 4K042 AA02 BA01 BA02 CA06 CA08 CA09 CA12 CA13 DA01 DB01 DC01 DC02 DC03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/22 C22C 38/22 (72) Inventor Hiroshi Ieguchi 1-5-5 Takatsukadai, Nishi-ku, Kobe Stock Company Kobe Steel, Kobe Research Institute F-term (reference) 4K032 AA11 AA19 BA02 CG00 CH01 CH06 4K042 AA02 BA01 BA02 CA06 CA08 CA09 CA12 CA13 DA01 DB01 DC01 DC02 DC03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 0.1質量%以上のCを含み、金属組織
の80%以上がマルテンサイトであるマルテンサイト鋼
であって、 旧オーステナイト結晶粒度番号の平均値が7以上で、且
つ最大頻度を有する粒度番号から3.0以上異なった粒
度番号の旧オーステナイト粒が占める面積率が10%以
下であることを特徴とする高強度・高靭性マルテンサイ
ト鋼。
1. A martensitic steel containing 0.1% by mass or more of C and 80% or more of the metal structure being martensite, wherein the average value of prior austenite grain size numbers is 7 or more, and the maximum frequency A high-strength, high-toughness martensitic steel characterized in that the area ratio occupied by prior austenite grains having a grain size number different from the grain size number by at least 3.0 is 10% or less.
【請求項2】 V≦0.2質量%,Nb≦0.2質量
%,Ti≦0.2質量%及びHf≦0.2質量%よりな
る群から選択される1種以上を含有する請求項1に記載
の高強度・高靭性マルテンサイト鋼。
2. The composition according to claim 1, wherein the composition contains at least one member selected from the group consisting of V ≦ 0.2% by mass, Nb ≦ 0.2% by mass, Ti ≦ 0.2% by mass and Hf ≦ 0.2% by mass. Item 4. A high-strength, high-toughness martensitic steel according to item 1.
【請求項3】 Crを1.0質量%以下及び/又はMo
を1.0質量%以下の範囲で含有する請求項1または2
に記載の高強度・高靭性マルテンサイト鋼。
3. Cr content of not more than 1.0% by mass and / or Mo
1 or 2 in a range of 1.0% by mass or less.
2. A high-strength and high-toughness martensitic steel according to item 1.
【請求項4】 水素拡散係数DHが1.0×10-5cm2
/s以下である請求項1〜3のいずれかに記載の高強度
・高靭性マルテンサイト鋼。
4. A hydrogen diffusion coefficient D H of 1.0 × 10 −5 cm 2
The high-strength and high-toughness martensitic steel according to any one of claims 1 to 3, which is not higher than / s.
【請求項5】 請求項1〜4のいずれかに記載の高強度
・高靭性マルテンサイト鋼を製造する方法であって、 500℃以下の温度で少なくとも真ひずみ0.20以上
の冷間加工を施す工程、 昇温速度50℃/秒以上で、Ac3点+150℃以上1
200℃未満に加熱する工程、 加熱開始から冷却開始までの総加熱時間を20秒間以上
40秒間未満にし、加熱温度で保持した後、少なくとも
臨界冷却速度の1.5倍以上の冷却速度で冷却する焼入
れ工程を有することを特徴とする高強度・高靭性マルテ
ンサイト鋼の製造方法。
5. The method for producing a high-strength and high-toughness martensitic steel according to claim 1, wherein cold working at a temperature of 500 ° C. or less and at least a true strain of 0.20 or more is performed. Application process, at a heating rate of 50 ° C / sec or more, Ac 3 points + 150 ° C or more 1
A step of heating to less than 200 ° C., the total heating time from the start of heating to the start of cooling is reduced to 20 seconds or more and less than 40 seconds, and after maintaining at the heating temperature, cooling is performed at a cooling rate of at least 1.5 times the critical cooling rate A method for producing a high-strength and high-toughness martensitic steel, comprising a quenching step.
【請求項6】 前記焼入れ工程における冷却速度が臨界
冷却速度の2.0倍以上である請求項5に記載の製造方
法。
6. The method according to claim 5, wherein a cooling rate in the quenching step is 2.0 times or more a critical cooling rate.
【請求項7】 請求項1〜4のいずれかに記載の高強度
・高靭性マルテンサイト鋼からなることを特徴とする高
強度ばね。
7. A high-strength spring made of the high-strength and high-toughness martensitic steel according to claim 1.
【請求項8】 請求項1〜4のいずれかに記載の高強度
・高靭性マルテンサイト鋼からなることを特徴とする高
強度ボルト。
8. A high-strength bolt comprising the high-strength and high-toughness martensitic steel according to any one of claims 1 to 4.
JP2000098867A 2000-03-31 2000-03-31 Method for producing high-strength martensitic steel Expired - Lifetime JP3934303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000098867A JP3934303B2 (en) 2000-03-31 2000-03-31 Method for producing high-strength martensitic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000098867A JP3934303B2 (en) 2000-03-31 2000-03-31 Method for producing high-strength martensitic steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007029586A Division JP4664929B2 (en) 2007-02-08 2007-02-08 High strength martensitic steel

Publications (2)

Publication Number Publication Date
JP2001288530A true JP2001288530A (en) 2001-10-19
JP3934303B2 JP3934303B2 (en) 2007-06-20

Family

ID=18613299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000098867A Expired - Lifetime JP3934303B2 (en) 2000-03-31 2000-03-31 Method for producing high-strength martensitic steel

Country Status (1)

Country Link
JP (1) JP3934303B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200724A (en) * 2005-01-24 2006-08-03 Ntn Corp Thrust bearing for automatic transmission
JP2006200719A (en) * 2005-01-24 2006-08-03 Ntn Corp Thrust bearing for compressor of car air conditioner
JP2006200665A (en) * 2005-01-21 2006-08-03 Ntn Corp Raceway disk of thrust bearing and thrust bearing
JP2006200720A (en) * 2005-01-24 2006-08-03 Ntn Corp Thrust bearing for continuously variable transmission
US7677810B2 (en) 2005-01-21 2010-03-16 Ntn Corporation Bearing washer for thrust bearing and thrust bearing
WO2010110041A1 (en) 2009-03-25 2010-09-30 日本発條株式会社 High-strength and high-ductility steel for spring, method for producing same, and spring
WO2011121887A1 (en) * 2010-03-29 2011-10-06 Jfeスチール株式会社 Spring steel and method of manufacture for same
US9970072B2 (en) 2012-12-21 2018-05-15 Kobe Steel, Ltd. High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring
CN112725698A (en) * 2020-12-28 2021-04-30 郑州航空工业管理学院 Multi-scale structure block material and preparation method and application thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200665A (en) * 2005-01-21 2006-08-03 Ntn Corp Raceway disk of thrust bearing and thrust bearing
US7677810B2 (en) 2005-01-21 2010-03-16 Ntn Corporation Bearing washer for thrust bearing and thrust bearing
JP2006200724A (en) * 2005-01-24 2006-08-03 Ntn Corp Thrust bearing for automatic transmission
JP2006200719A (en) * 2005-01-24 2006-08-03 Ntn Corp Thrust bearing for compressor of car air conditioner
JP2006200720A (en) * 2005-01-24 2006-08-03 Ntn Corp Thrust bearing for continuously variable transmission
US8926768B2 (en) 2009-03-25 2015-01-06 Nhk Spring Co., Ltd. High-strength and high-ductility steel for spring, method for producing same, and spring
WO2010110041A1 (en) 2009-03-25 2010-09-30 日本発條株式会社 High-strength and high-ductility steel for spring, method for producing same, and spring
WO2011121887A1 (en) * 2010-03-29 2011-10-06 Jfeスチール株式会社 Spring steel and method of manufacture for same
JP2011246811A (en) * 2010-03-29 2011-12-08 Jfe Steel Corp Spring steel and method of manufacturing the same
US8608874B2 (en) 2010-03-29 2013-12-17 Jfe Steel Corporation Spring steel and method for manufacturing the same
US9618070B2 (en) 2010-03-29 2017-04-11 Jfe Steel Corporation Spring steel and method for manufacturing the same
US9970072B2 (en) 2012-12-21 2018-05-15 Kobe Steel, Ltd. High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring
CN112725698A (en) * 2020-12-28 2021-04-30 郑州航空工业管理学院 Multi-scale structure block material and preparation method and application thereof

Also Published As

Publication number Publication date
JP3934303B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP4712882B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
EP1956100B1 (en) Method of warm working of a steel material and steel material obtained by the same
EP1273670B1 (en) Method for manufacturing high strength bolt excellent in resistance to delayed fracture and to relaxation
JP3764715B2 (en) Steel wire for high-strength cold forming spring and its manufacturing method
EP1712653A1 (en) Steel wire for cold-formed spring excellent in corrosion resistance and method for producing the same
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP6950835B2 (en) Manufacturing method of high-strength member, high-strength member and steel plate for high-strength member
EP2818568A1 (en) Cold-rolled steel sheet and manufacturing method for same
JP2002146479A (en) Wire rod for wire drawing having excellent twisting characteristic and its production method
JP4109619B2 (en) High strength steel plate with excellent elongation and stretch flangeability
JP3527641B2 (en) Steel wire with excellent cold workability
CN111727269B (en) Martensitic stainless steel sheet, method for producing same, and spring member
EP3115478B1 (en) High-carbon steel wire having superior wire drawing properties and method for producing same
JP6773251B1 (en) Manufacturing method of high-strength member and high-strength member
JP2002180198A (en) High strength steel wire for spring
JP2001220650A (en) Steel wire, spring and producing method therefor
JP3934303B2 (en) Method for producing high-strength martensitic steel
JP3468172B2 (en) High carbon steel strip excellent in cold workability and hardenability and method for producing the same
JP2003113444A (en) Rod for high strength non-heat-treated upset head bolt, manufacturing method therefor, and method for manufacturing upset head bolt using the same
JP2002212665A (en) High strength and high toughness steel
JP3749656B2 (en) Steel material with excellent toughness
JP3251648B2 (en) Precipitation hardening type martensitic stainless steel and method for producing the same
JP4043754B2 (en) High strength PC steel bar with excellent delayed fracture characteristics
JP4451951B2 (en) Steel material for high strength springs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3934303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

EXPY Cancellation because of completion of term