JP2001288526A - Heat radiating material and its production method - Google Patents

Heat radiating material and its production method

Info

Publication number
JP2001288526A
JP2001288526A JP2000101801A JP2000101801A JP2001288526A JP 2001288526 A JP2001288526 A JP 2001288526A JP 2000101801 A JP2000101801 A JP 2000101801A JP 2000101801 A JP2000101801 A JP 2000101801A JP 2001288526 A JP2001288526 A JP 2001288526A
Authority
JP
Japan
Prior art keywords
thermal expansion
less
thermal conductivity
heat
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000101801A
Other languages
Japanese (ja)
Inventor
Nobuhiro Sadatomi
信裕 貞富
Osamu Yamashita
治 山下
Tsunekazu Saigo
恒和 西郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2000101801A priority Critical patent/JP2001288526A/en
Publication of JP2001288526A publication Critical patent/JP2001288526A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high thermal conductivity and low thermal expansion heat radiating material composed of a heat radiating material low in thermal expansion and having high thermal conductivity in particular a material composed of an easily and efficiently producible Al-Si series material, and also provide its production method. SOLUTION: An Al-Si alloy containing, by weight, 13 to 80% Si is rapidly cooled at a rate of 300 to 800 K/sec and is molded by a diecasting method, by which the high thermal conduction and low thermal expansion heat radiating material in which the crystal grain size of an Si phase is <=50 μm, the thermal expansion coefficient is <=16×10-6/K, and the thermal conductivity is >=100/m.K can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、通信用、自動車
用、半導体デバイスなどの各種用途に用いられる基板に
対する放熱材料、特にSiチップ等の半導体やセラミック
ス系の材料と接合する部分に使用し、低熱膨張で高熱伝
導、すなわち熱の整合性がよくかつ放熱性が良好である
放熱材料とその製造方法に関する。
The present invention relates to a heat radiation material for substrates used in various applications such as communication, automobile, and semiconductor devices, and particularly to a portion to be bonded to a semiconductor or ceramic material such as a Si chip. The present invention relates to a heat dissipating material having low thermal expansion and high thermal conductivity, that is, good heat matching and good heat dissipating properties, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年の情報通信産業の発展により、特に
半導体基板を用いたLSIなどのデバイスが開発され、今
日ではより高速化、高密度化されてきた。また、レーザ
ーや光を用いた通信機器も開発され、多くの分野で利用
されている。そしてこれらのデバイスや機器では、大容
量化や高速化に伴い使用する半導体や半導体基板からの
放熱対策が不可欠となってきた。
2. Description of the Related Art With the recent development of the information and communication industry, devices such as LSIs using semiconductor substrates have been developed, and today, the speed and density have been increased. Communication devices using lasers and light have also been developed and used in many fields. In these devices and devices, measures to dissipate heat from semiconductors and semiconductor substrates to be used have become indispensable as capacity and speed have been increased.

【0003】半導体基板用の放熱材料には、熱伝導率が高い
(100W/m・K以上)ことはもちろん、用いる半導体やセラ
ミックスとの整合性がよい、つまり半導体やセラミック
スの熱膨張係数は3〜8×10-6/K程度であるため、それに
近い小さな熱膨張係数を有することが必要となる。
[0003] Heat dissipation materials for semiconductor substrates have high thermal conductivity
(100 W / mK or more), as well as good compatibility with the semiconductor or ceramic used, that is, the coefficient of thermal expansion of the semiconductor or ceramic is about 3 to 8 × 10 -6 / K. It is necessary to have an expansion coefficient.

【0004】[0004]

【発明が解決しようとする課題】低熱膨張、高熱伝導材
料には、金属(複合)材料としてはCu-W、Mo、Cu-Mo等が
ある。しかし、いずれも成形・加工性が困難であり、ま
た密度が大きいために重いこと、難加工性であること、
さらにコストが高いという問題がある。
The low thermal expansion and high thermal conductive materials include metal (composite) materials such as Cu-W, Mo, and Cu-Mo. However, all of them are difficult to form and process, and because of their high density, they are heavy and difficult to process.
There is another problem that the cost is high.

【0005】また、低熱膨張金属材料として、コバール(29N
i-8Co-Fe)や42合金(42Ni-Fe)等がある。しかし、これら
合金は熱伝導率が30〜50W/m・Kと小さい。また、これら
の合金とCuを複合した材料も開発されているが、製造方
法が煩雑で高コストなため、汎用に至っていないのが実
状である。
[0005] As a low thermal expansion metal material, Kovar (29N
i-8Co-Fe) and 42 alloys (42Ni-Fe). However, these alloys have a small thermal conductivity of 30 to 50 W / m · K. In addition, composite materials of these alloys and Cu have also been developed, but in reality, they are not yet widely used because of their complicated and expensive manufacturing methods.

【0006】また、BeO、AlN、SiCといったセラミックス系
の材料も高熱伝導で低熱膨張と知られている。BeOはBe
の環境汚染の観点から使用が制限されており、またこれ
らセラミックス系の材料は、いずれも粉末冶金法で製造
され、高温での焼結が必要なため、高コストであるこ
と、複雑な形状が成形困難であることなどの理由で、特
殊用途以外は使用されていないのが実状である。
[0006] Ceramic materials such as BeO, AlN and SiC are also known to have high thermal conductivity and low thermal expansion. BeO Be
The use of these ceramic materials is limited by the powder metallurgy method and requires sintering at high temperatures, which results in high cost and complicated shapes. Actually, it is not used for any purpose other than special use because of difficulty in molding.

【0007】一方、純Alは、高い熱伝導率を有する(237W/m
・K)金属であり、なおかつ軽くて(2.7g/cm3)非常に加工
性のよい材料として、半導体基盤の放熱フィン、建造
物、自動車用部品などの様々な箇所に使用されている材
料である。
On the other hand, pure Al has a high thermal conductivity (237 W / m
・ K) It is a metal that is used in various places such as radiation fins of semiconductor bases, buildings, automobile parts, etc. as a light and light (2.7g / cm 3 ) material with excellent workability. is there.

【0008】しかし、Alの熱膨張係数は23×10-6/Kと非常に
大きく、半導体Siやセラミックス系の材料(熱膨張係数3
〜8×10-6/K)と接合する際、あるいは発熱におけるヒー
トサイクルにおいて、両者の熱膨張差がクラックの原因
となっていた。
However, the coefficient of thermal expansion of Al is as large as 23 × 10 −6 / K, and is high for semiconductor Si and ceramics materials (coefficient of thermal expansion of 3).
88 × 10 −6 / K) or in the heat cycle of heat generation, the difference in thermal expansion between the two causes cracking.

【0009】また、Al合金として、Fe、Cu、Ni、Mg、Mn、S
n、Si、Znといった元素が添加した材料があり、その材
料強度が大きくなるだけでなく、熱膨張係数も若干小さ
く(〜16×10-6/K)なることも知られている。Si以外の元
素の添加では少量の添加でもその熱伝導率が急激に低下
する。
[0009] In addition, Fe, Cu, Ni, Mg, Mn, S
There are materials to which elements such as n, Si, and Zn are added, and it is known that not only the material strength is increased but also the thermal expansion coefficient is slightly reduced ((16 × 10 −6 / K). With the addition of elements other than Si, even a small amount of addition, the thermal conductivity sharply decreases.

【0010】AlにSiを添加したAl-Si合金は、Si含有量の増
加とともに熱膨張係数は低下して熱伝導率も低下する
が、例えばAl-12Siの共晶組成で180W/mK、熱膨張係数17
×10-6/Kと大幅な低下はないことが知られている。
[0010] In an Al-Si alloy in which Si is added to Al, the coefficient of thermal expansion decreases and the thermal conductivity decreases with an increase in the Si content. For example, the eutectic composition of Al-12Si is 180 W / mK, Expansion coefficient 17
It is known that there is no significant decrease of × 10 −6 / K.

【0011】しかし、半導体Siチップやセラミックスとの接
合を有する箇所に使用する材料では、その熱膨張係数を
さらに小さく(10×10-6/K程度まで)する必要があり、且
つその熱伝導率も大きい(150W/m・K以上)ことが要求さ
れている。
[0011] However, the material used for a portion having a junction with a semiconductor Si chip or ceramics needs to have a smaller thermal expansion coefficient (up to about 10 × 10 -6 / K) and a thermal conductivity Is also required (150 W / m · K or more).

【0012】これらの物性を満たすためには、Al-12Siの共
晶組成よりもさらに多いSi量のAl-Si合金を作製する必
要がある。そこで、特開昭63-16458号、特開平2-119249
号では、Al-SiのSi含有量が多い組成のAl-Siのガスアト
マイズ粉末を焼結することにより、低熱膨張な材料を得
ることを提案している。
In order to satisfy these physical properties, it is necessary to produce an Al-Si alloy having a Si content larger than the eutectic composition of Al-12Si. Therefore, JP-A-63-16458, JP-A-2-119249
No. proposes to obtain a material with low thermal expansion by sintering Al-Si gas atomized powder with a high Si content in Al-Si.

【0013】上記のSi含有量の多いAl-Si合金は、図1に示す
ごとくSiの結晶相が析出するために脆いこと、そしてそ
のSiが応力や熱で割れるために熱伝導率が低下すること
が知られている。
[0013] The Al-Si alloy having a high Si content is brittle because the crystal phase of Si is precipitated as shown in FIG. 1, and the thermal conductivity is reduced because the Si is cracked by stress or heat. It is known.

【0014】また、特開平1-205055号、特開平9-55460号で
は、Si含有量が50〜80重量%のAl-Si合金を粉末治金法で
処理、特にAl-Si合金を溶解してガスアトマイズ法でAl-
Si粉末を作製し、これを焼結させてAl-Siを作製する方
法を提案している。
In JP-A-1-05055 and JP-A-9-55460, an Al-Si alloy having a Si content of 50 to 80% by weight is treated by a powder metallurgy method, and in particular, an Al-Si alloy is melted. Al- by gas atomizing method
We have proposed a method of producing Si powder and sintering it to produce Al-Si.

【0015】しかし、工程が煩雑であり、コストアップにも
つながる上、これらの粉末焼結材は粉末やバインダーか
ら酸素および炭素などの不純物が入るために、熱伝導率
が低下することが知られている。
[0015] However, it is known that the process is complicated, which leads to an increase in cost, and that the thermal conductivity of these powder sintered materials is lowered due to impurities such as oxygen and carbon entering from the powder or the binder. ing.

【0016】この発明は、Siチップ等の半導体やセラミック
ス系の材料と接合する部分に使用し、低熱膨張でありか
つ高熱伝導率を有する放熱材料の提供を目的とし、特に
容易にかつ効率よく製造できるAl-Si系材料からなる放
熱材料とその製造方法の提供を目的としている。
[0016] The present invention is intended to provide a heat dissipating material having a low thermal expansion and a high thermal conductivity, which is used for a portion to be bonded to a semiconductor or ceramic material such as a Si chip, and particularly easily and efficiently manufactured. It is an object of the present invention to provide a heat dissipating material made of an Al-Si-based material and a manufacturing method thereof.

【0017】[0017]

【課題を解決するための手段】発明者らは、Al-Si系材
料の製造方法として鋳造法を検討した。その結果、図2
に示すごとくSi含有量の増加とともに熱膨張係数は単調
に低下することが分かった。これは先述した特開平9-55
460号に開示される材料とほぼ同等の結果であった。
Means for Solving the Problems The inventors studied a casting method as a method for producing an Al-Si-based material. As a result, FIG.
As shown in the figure, it was found that the coefficient of thermal expansion monotonously decreased with an increase in the Si content. This is the same as described in
The result was almost equivalent to the material disclosed in No. 460.

【0018】一方、熱伝導率は、図3に示すごとくAl-12Siの
共晶まではSiの増加に対して急激に低下する(Al-12Si組
成で180W/m・K)が、Si含有量が12wt%以上ではSiの含有
量に対しては低下が緩やかになること、例えばAl-50Si
組成で150W/m・Kであることを知見した。この値は特開
平9-55460号の粉末治金法で作製したAl-Si系材料よりも
ずっと高い熱伝導率であった。
On the other hand, as shown in FIG. 3, the thermal conductivity rapidly decreases with increasing Si up to the eutectic of Al-12Si (180 W / m · K in the Al-12Si composition). Is 12 wt% or more, the decrease is gradual with respect to the content of Si, for example, Al-50Si
It was found that the composition was 150 W / m · K. This value was much higher than that of the Al-Si-based material prepared by the powder metallurgy method of JP-A-9-55460.

【0019】しかしながら、前述のごとく12wt%以上のSiを
含有するAl-Si合金は、Al-12Siの共晶合金とSiの2相の
混在した組織となり、Si含有量の増加に伴い固くて脆い
Si相が増加するため、塑性加工が困難であるばかりか、
成型性も悪くなる。また、通常の鋳造では冷却時にSi相
にクラックが入り、これが脆さと割れの原因となり、さ
らに熱伝導率の低下を招くことが分かった。
However, as described above, an Al-Si alloy containing 12% by weight or more of Si has a mixed structure of an Al-12Si eutectic alloy and two phases of Si, and is hard and brittle as the Si content increases.
Since the Si phase increases, not only is plastic working difficult,
Moldability also deteriorates. In addition, it was found that in normal casting, cracks occurred in the Si phase during cooling, which caused brittleness and cracks, and further reduced the thermal conductivity.

【0020】発明者らは、Siを多く含む組成の成形・加工性
を良くするために、Al-Siを急冷する方法で検討した。
すなわち、通常の鋳造法における冷却速度が50〜200K/s
ecであるのに対して、ダイキャスト法で300〜800K/sec
の速度で急冷することにより、Siの平均結晶粒径を5〜3
0μmと小さくでき、その結果、成形性も良好で、硬いが
靭性の向上した材料が容易にかつ安定的に得られること
を知見した。
The present inventors studied a method of rapidly cooling Al-Si in order to improve the formability and workability of a composition containing a large amount of Si.
That is, the cooling rate in the normal casting method is 50-200K / s
ec, 300-800K / sec by die casting method
Quenching at a speed of 5 to increase the average crystal grain size of Si to 5 to 3
It has been found that a material having good moldability and a hard but improved toughness can be easily and stably obtained as a result.

【0021】また、低熱膨張な材料を得るためにSiを多量に
含有する組成が必要であるが、融点が上昇するため、鋳
造困難とされていた。しかし、発明者らは、金型の構成
を検討し、高融点のAl-Si材料をダイキャスト法で急冷
して成形することにより、Siを多量に含有する組成でも
充分成形できかつクラックのない成形体が得られること
を知見した。
Further, in order to obtain a material having a low thermal expansion, a composition containing a large amount of Si is necessary, but it has been considered that casting is difficult due to an increase in melting point. However, the inventors studied the configuration of the mold, and by rapidly cooling and molding a high melting point Al-Si material by a die casting method, a composition containing a large amount of Si can be sufficiently molded and has no crack. It was found that a molded article was obtained.

【0022】また、発明者らは、急冷のダイキャスト法にて
得られるAl-Si材料は結晶粒径が小さいために高Si含有
量にかかわらず、硬くても脆くない材料が得られるこ
と、さらにダイキャストの金型を異形状にすることによ
り、凹凸やピンのある形状の放熱材料も成形可能である
ことを確認し、この発明を完成した。
Further, the present inventors have found that, despite the high crystallinity, the Al-Si material obtained by the quenching die-casting method can obtain a material that is hard and not brittle regardless of the high Si content. Further, it was confirmed that a heat-dissipating material having irregularities and pins could be formed by using a die-casting die having a different shape, and the present invention was completed.

【0023】すなわち、この発明は、Siを13wt%以上80wt%以
下、さらに好ましくは30wt%以上60wt%以下含有のAl-Si
合金をダイキャスト法にて300〜800K/secの速度で急
冷、成形し、Si相の平均結晶粒径が50μm以下、熱膨張
係数が16×10-6/K以下、熱伝導率が100/m・K以上の特性
を有する放熱材料を得ることを特徴とする放熱材料とそ
の製造方法である。
That is, the present invention relates to an Al-Si containing 13 wt% or more and 80 wt% or less, more preferably 30 wt% or more and 60 wt% or less.
The alloy is quenched and molded at a speed of 300 to 800 K / sec by die casting, the average crystal grain size of the Si phase is 50 μm or less, the thermal expansion coefficient is 16 × 10 −6 / K or less, and the thermal conductivity is 100 /. A heat dissipation material characterized by obtaining a heat dissipation material having a characteristic of m · K or more and a method for producing the same.

【0024】[0024]

【発明の実施の形態】この発明において、Al-Si合金組
成は、Siを13wt%以上、80wt%以下含有する。Siが13wt%
未満では熱膨張係数が大きく、ダイキャスト法による急
冷の効果が得られ難い。また80wt%を超えると、Si相が
体積の70%以上を占め、成形が困難となる。さらに好ま
しくは、Siが30wt%以上、60wt%以下の範囲である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an Al-Si alloy composition contains 13 wt% or more and 80 wt% or less of Si. 13wt% Si
If it is less than 1, the coefficient of thermal expansion is large, and it is difficult to obtain the effect of rapid cooling by the die casting method. If it exceeds 80% by weight, the Si phase occupies 70% or more of the volume, making molding difficult. More preferably, Si is in a range of 30 wt% or more and 60 wt% or less.

【0025】また、不純物としては、Fe,Cu,Cr,Mnなどの遷
移金属元素が0.3wt%以下、Na,Ca,Mgなどのアルカリ金属
元素、アルカリ土類金属元素が0.5wt%以下、C,P,Bなど
の軽元素が0.3wt%以下を許容できる。いずれの元素も上
記の値を越えると、熱伝導率が低下するため好ましくな
い。
As impurities, 0.3 wt% or less of transition metal elements such as Fe, Cu, Cr and Mn; 0.5 wt% or less of alkali metal elements such as Na, Ca and Mg, and alkaline earth metal elements; Light elements such as P, B, etc. can tolerate 0.3 wt% or less. If any of the elements exceeds the above values, the thermal conductivity is undesirably reduced.

【0026】この発明において、上記組成のAl-Si合金にお
ける、Si相の平均結晶粒径が50μm以下であることが好
ましい。放熱材料を得ることとを特徴とする。Si相の平
均結晶粒径が50μmを越えると、外部からの応力や熱応
力でSi相にクラックが入り、熱電動率が低下するととも
に材料が脆くなる。
In the present invention, the average crystal grain size of the Si phase in the Al—Si alloy having the above composition is preferably 50 μm or less. It is characterized by obtaining a heat dissipation material. When the average crystal grain size of the Si phase exceeds 50 μm, cracks occur in the Si phase due to external stress or thermal stress, and the thermoelectric power decreases and the material becomes brittle.

【0027】特に、実施例で明らかにするごとく、同じ鋳造
法による同組成材料でも冷却速度の違いにより、図4A、
図4Bに示すごとく、Si相の平均結晶粒径が全く異なる組
織である。すなわち、この発明による放熱材料は、上述
した所要の組成とSi相の平均結晶粒径を最適化すること
により、熱膨張係数が16×10-6/K以下、熱伝導率が100/
m・K以上の特性を有する高熱伝導・低熱膨張でかつ硬い
が靭性の向上した材料となる。
[0027] In particular, as is apparent from the examples, even with the same composition material by the same casting method, due to the difference in cooling rate, FIG.
As shown in FIG. 4B, the structure has a completely different average crystal grain size of the Si phase. That is, the heat dissipation material according to the present invention has a thermal expansion coefficient of 16 × 10 −6 / K or less and a thermal conductivity of 100 / by optimizing the above-described required composition and the average crystal grain size of the Si phase.
It is a material with high thermal conductivity and low thermal expansion having characteristics of mK or more and hard but improved in toughness.

【0028】この発明による放熱材料は、ビッカース硬さ平
均が150〜400、耐摩耗性が摩擦速度5m/sec、接触圧力0.
5MPで2mg/1000m以下という特性を有し、耐摩耗性がすぐ
れるとともに、硬くても脆くない、すなわち靭性にすぐ
れるという特徴を有する。但し、抗張力、引張り強度、
伸びなどは、Si量の増加とともに低下する。
The heat radiation material according to the present invention has a Vickers hardness average of 150 to 400, abrasion resistance of a friction speed of 5 m / sec, and a contact pressure of 0.2.
It has a characteristic of 2 mg / 1000 m or less at 5MP, and has excellent abrasion resistance, and is hard but not brittle, that is, excellent in toughness. However, tensile strength, tensile strength,
Elongation and the like decrease with an increase in the amount of Si.

【0029】この発明による放熱材料は、所要組成のAl-Si
合金をダイキャスト法にて、300〜800K/secの冷却速度
で急冷、成形することにより得られる。冷却速度が300K
/sec未満では、Si相の平均結晶粒径が50μmを越え、靭
性が低下するため好ましくない。また、800K/secを超え
ると、Si相の平均結晶粒径が微細になりすぎて合金溶湯
が微小に凝集して成形が困難になるため好ましくない。
The heat radiation material according to the present invention has a required composition of Al-Si
It is obtained by rapidly cooling and forming the alloy at a cooling rate of 300 to 800 K / sec by die casting. 300K cooling rate
If it is less than / sec, the average crystal grain size of the Si phase exceeds 50 μm, and the toughness decreases, which is not preferable. On the other hand, if it exceeds 800 K / sec, the average crystal grain size of the Si phase becomes too fine, so that the alloy melt is minutely aggregated and molding becomes difficult, which is not preferable.

【0030】この発明におけるダイキャスト法は、上記の所
定の急冷が可能であれば、公知のいずれの方法や装置で
あっても採用できる。例えば、この発明のAl-Si合金は
高融点材料であり、当該高融点温度より300〜800K/sec
で急冷できるよう、金型へ供給される冷却液量を適宜選
定すればよい。
The die casting method of the present invention can employ any known method or apparatus as long as the above-mentioned predetermined rapid cooling is possible. For example, the Al-Si alloy of the present invention is a high melting point material, and 300 to 800 K / sec from the high melting point temperature.
The amount of the cooling liquid supplied to the mold may be appropriately selected so that the cooling can be performed rapidly.

【0031】好ましいダイキャスト条件としては、成形温度
が材料の溶融温度+50℃、成形時間が3〜5sec、成形圧力
が10〜20MPa、冷却速度が500K/sec程度である。
Preferred conditions for die casting are a molding temperature of + 50 ° C., a molding time of 3 to 5 seconds, a molding pressure of 10 to 20 MPa, and a cooling rate of about 500 K / sec.

【0032】[0032]

【実施例】実施例1Al(JIS P 1050相当)とSi(純度3N)を
重量比63:37に配合し、高周波溶解にてAr雰囲気中で溶
融した。溶解温度は980℃であった。その溶解した溶湯
をダイキャスト金型中に注入し、920℃×3sec、15MPaで
圧縮成形し、500K/secで急冷した。
EXAMPLES Example 1 Al (equivalent to JIS P 1050) and Si (purity 3N) were blended in a weight ratio of 63:37, and were melted by high frequency melting in an Ar atmosphere. The dissolution temperature was 980 ° C. The melt was poured into a die casting mold, compression molded at 920 ° C. × 3 sec, 15 MPa, and quenched at 500 K / sec.

【0033】得られた成形体は厚み5mm×150mm×150mmであ
った。図4Aにダイキャスト成形した材料の断面組織写真
(倍率×100)を示すようにSiの平均結晶粒径は約20μmで
あった。当該材料の熱膨張係数は30〜100℃平均で12.8
×10-6/K、熱伝導率は30℃で150W/m・Kであった。ま
た、ビッカース硬さは平均290、抗張力は150MPa、伸び
は2.3%、摩擦速度5m/sec、接触圧力0.5MPにおける摩耗
量は1mg/1000mであった。
The obtained molded body had a thickness of 5 mm × 150 mm × 150 mm. Fig. 4A is a photograph of the cross-sectional structure of the die-cast material.
As shown in (magnification × 100), the average crystal grain size of Si was about 20 μm. The material has a coefficient of thermal expansion of 30.
× 10 −6 / K, thermal conductivity at 150 ° C. was 150 W / m · K. The average Vickers hardness was 290, the tensile strength was 150 MPa, the elongation was 2.3%, the friction speed was 5 m / sec, and the amount of wear at a contact pressure of 0.5 MP was 1 mg / 1000 m.

【0034】比較としてAl-37Siの溶解後鋳造時に砂型鋳型
で急冷(冷却速度50K/sec)した材料は、図4Bに当該材料
の断面組織写真を示すようにそのSiの平均結晶粒径は約
150μmであった。比較鋳造材料の熱膨張係数は30〜100
℃平均で13×10-6/K、熱伝導率は30℃で150W/m・Kであ
った。また、ビッカース硬さは平均320、抗張力は75MP
a、伸びは1.2%、実施例1と同条件における摩耗量は1.5m
g/1000mであった。
As a comparison, the material which was rapidly cooled (cooling rate 50 K / sec) in a sand mold at the time of casting after melting of Al-37Si had an average crystal grain size of Si as shown in FIG.
It was 150 μm. The coefficient of thermal expansion of the comparative casting material is 30-100
The average was 13 × 10 −6 / K at 150 ° C., and the thermal conductivity was 150 W / m · K at 30 ° C. The average Vickers hardness is 320 and the tensile strength is 75MP
a, elongation is 1.2%, wear amount under the same conditions as in Example 1 is 1.5 m
g / 1000m.

【0035】実施例2Al(JIS P 1050相当)とSi(純度3N)を重
量比51:49に配合し、高周波溶解にてAr雰囲気中で溶融
した。溶解温度は1100℃であった。その溶解した溶湯を
ダイキャスト金型中に注入し、1000℃×3sec、20MPaで
圧縮成形し、600K/secで急冷した。
Example 2 Al (corresponding to JIS P 1050) and Si (purity: 3N) were blended at a weight ratio of 51:49, and were melted by high frequency melting in an Ar atmosphere. The dissolution temperature was 1100 ° C. The melt was poured into a die casting mold, compression-molded at 1000 ° C. × 3 sec, 20 MPa, and quenched at 600 K / sec.

【0036】得られた成形体は20mm×40mm×60mmの厚み2mm
の弁当箱型であった。また、ダイキャスト成形した材料
のSiの平均結晶粒径は約25μmであった。当該材料の熱
膨張係数は30〜100℃平均で10.2×10-6/K、熱伝導率は3
0℃で147W/m・Kであった。また、ビッカース硬さは平均
390、抗張力は70MPa、伸びは0.9%、実施例1と同条件に
おける摩耗量は0.3mg/1000mであった。
[0036] The obtained molded body has a thickness of 20 mm x 40 mm x 60 mm and a thickness of 2 mm.
Lunch box type. The average crystal grain size of Si of the die-cast material was about 25 μm. The thermal expansion coefficient of the material is 10.2 × 10 −6 / K on average at 30 to 100 ° C., and the thermal conductivity is 3
It was 147 W / mK at 0 ° C. Vickers hardness is average
390, tensile strength 70 MPa, elongation 0.9%, wear amount under the same conditions as in Example 1 was 0.3 mg / 1000 m.

【0037】[0037]

【発明の効果】この発明による放熱材料は、通信用、自
動車用、半導体デバイスなどの各種用途に用いられる基
板に対する放熱用の材料として、特にSiチップ等の半導
体やセラミックス系の材料との熱の整合性がよく、かつ
熱伝導が良好であることが必要な箇所に有効な材料であ
る。
The heat dissipating material according to the present invention can be used as a heat dissipating material for substrates used in various applications such as communications, automobiles and semiconductor devices. It is a material that is effective in places where good compatibility and good heat conduction are required.

【0038】この発明による高Si含有のAl-Si放熱材料は、
低熱膨張で高熱伝導であるだけでなく、Al、Si共に資源
が豊富にあり、環境に優しい元素であるとともに、軽い
という特長がある。
[0038] The high Si content Al-Si heat radiation material according to the present invention is:
In addition to low thermal expansion and high thermal conductivity, Al and Si have abundant resources, are environmentally friendly elements, and are light in weight.

【0039】また、ダイキャスト法における金型の設計によ
り、例えばφ3mm程度の孔を含む複雑な形状の成形が可
能であり、また、成形速度も20〜60秒/ショットと速
く、硬いが靭性のある均質な放熱材料を安定的に量産で
きる。
Further, by designing the die in the die casting method, it is possible to form a complicated shape including a hole having a diameter of, for example, about 3 mm, and the molding speed is as fast as 20 to 60 seconds / shot. It is possible to stably mass-produce certain homogeneous heat radiation materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Al-Si状態図である。FIG. 1 is an Al-Si phase diagram.

【図2】Al-Si合金のSi含有量と平均熱膨張係数との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the Si content of an Al—Si alloy and the average coefficient of thermal expansion.

【図3】Al-Si合金のSi含有量と熱伝導率との関係を示す
グラフであり、実線がこの発明のダイキャスト法による
材料、破線が粉末冶金法による材料の場合を示す。
FIG. 3 is a graph showing the relationship between the Si content and the thermal conductivity of an Al—Si alloy, where a solid line represents a material obtained by the die casting method of the present invention, and a broken line represents a material obtained by the powder metallurgy method.

【図4】材料の断面組織写真(倍率×100)であり、Aはこ
の発明のダイキャスト法による材料、Bは砂型鋳造によ
る材料の場合を示す。
FIG. 4 is a photograph of a cross-sectional structure of the material (magnification × 100), wherein A is a material obtained by the die casting method of the present invention, and B is a material obtained by sand casting.

【手続補正書】[Procedure amendment]

【提出日】平成12年12月27日(2000.12.
27)
[Submission date] December 27, 2000 (200.12.
27)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【請求項】 Al−Si合金におけるSi相の平均結
晶粒径が50μm以下である請求項1に記載の放熱材
料。
4. The heat dissipation material according to claim 1, wherein the average crystal grain size of the Si phase in the Al—Si alloy is 50 μm or less.

【請求項】 熱膨張係数が16×10-6/K以下、熱
伝導率が100/m・K以上である請求項1に記載の放
熱材料。
5. The heat dissipating material according to claim 1, which has a thermal expansion coefficient of 16 × 10 −6 / K or less and a thermal conductivity of 100 / m · K or more.

【請求項】 Siを13wt%以上80wt%以下含
有のAl−Si合金をダイキャスト法にて300〜80
0K/secの速度で急冷、成形する放熱材料の製造方
法。
6. An Al-Si alloy containing 13% by weight or more and 80% by weight or less of Si is 300 to 80% by die casting.
A method for producing a heat dissipating material that is rapidly cooled and formed at a speed of 0 K / sec.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】すなわち、この発明は、Siを13wt%
以上80wt%以下、さらに好ましくは30wt%以上
60wt%以下含有のAl−Si合金をダイキャスト法
にて300〜800K/secの速度で急冷、成形し、
好ましくは不純物の遷移金属元素量が0.3wt%以下
であり、Si相の平均結晶粒径が50μm以下、熱膨張
係数が16×10-6/K以下、熱伝導率が100/m・
K以上の特性を有する放熱材料を得ることを特徴とする
放熱材料とその製造方法である。
That is, according to the present invention, 13% by weight of Si is used.
The Al-Si alloy containing not less than 80 wt%, more preferably not less than 30 wt% and not more than 60 wt% is quenched and formed at a speed of 300 to 800 K / sec by die casting method,
Preferably, the amount of the transition metal element of the impurity is 0.3 wt% or less.
The average crystal grain size of the Si phase is 50 μm or less, the thermal expansion coefficient is 16 × 10 −6 / K or less, and the thermal conductivity is 100 / m ·
A heat dissipation material characterized by obtaining a heat dissipation material having characteristics of K or more, and a method for manufacturing the same.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西郷 恒和 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内 Fターム(参考) 5F036 AA01 BB01 BD03  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tsunekazu Saigo 2- 15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Sumitomo Special Metals Co., Ltd. Yamazaki Works F-term (reference) 5F036 AA01 BB01 BD03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Siを13wt%以上80wt%以下含有のAl-Si合金
であり、ダイキャスト法で急冷成形された放熱材料。
1. A heat-dissipating material which is an Al-Si alloy containing 13 wt% or more and 80 wt% or less of Si, and is formed by quenching by a die casting method.
【請求項2】 Al-Si合金がSiを30wt%以上60wt%以下含有
する請求項1に記載の放熱材料。
2. The heat radiation material according to claim 1, wherein the Al-Si alloy contains Si in an amount of 30 wt% or more and 60 wt% or less.
【請求項3】 Al-Si合金におけるSi相の平均結晶粒径が
50μm以下である請求項1に記載の放熱材料。
3. The average crystal grain size of the Si phase in the Al-Si alloy is
2. The heat dissipation material according to claim 1, which has a thickness of 50 μm or less.
【請求項4】 熱膨張係数が16×10-6/K以下、熱伝導率
が100/m・K以上である請求項1に記載の放熱材料。
4. The heat dissipating material according to claim 1, which has a thermal expansion coefficient of 16 × 10 −6 / K or less and a thermal conductivity of 100 / m · K or more.
【請求項5】 Siを13wt%以上80wt%以下含有のAl-Si合金
をダイキャスト法にて300〜800K/secの速度で急冷、成
形する放熱材料の製造方法。
5. A method for producing a heat-dissipating material, wherein an Al-Si alloy containing 13 wt% or more and 80 wt% or less of Si is rapidly cooled and formed at a rate of 300 to 800 K / sec by a die casting method.
JP2000101801A 2000-04-04 2000-04-04 Heat radiating material and its production method Withdrawn JP2001288526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000101801A JP2001288526A (en) 2000-04-04 2000-04-04 Heat radiating material and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000101801A JP2001288526A (en) 2000-04-04 2000-04-04 Heat radiating material and its production method

Publications (1)

Publication Number Publication Date
JP2001288526A true JP2001288526A (en) 2001-10-19

Family

ID=18615781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000101801A Withdrawn JP2001288526A (en) 2000-04-04 2000-04-04 Heat radiating material and its production method

Country Status (1)

Country Link
JP (1) JP2001288526A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045926A (en) * 2012-12-10 2013-04-17 北京科技大学 TiB2/Si-Al electronic packaging composite material and preparation method of TiB2/Si-Al electronic packaging composite material
WO2014050815A1 (en) 2012-09-25 2014-04-03 学校法人常翔学園 Hypereutectic aluminum/silicon alloy die-cast member and process for producing same
WO2018193543A1 (en) * 2017-04-19 2018-10-25 日本軽金属株式会社 Al-Si-Fe ALUMINUM ALLOY CASTING MATERIAL AND PRODUCTION METHOD THEREFOR
JP2019073758A (en) * 2017-10-13 2019-05-16 日本軽金属株式会社 METHOD FOR REDUCING P IN MOLTEN ALUMINUM, AND Al-Si ALLOY CASTING USING THE METHOD
WO2021199428A1 (en) 2020-04-03 2021-10-07 日軽エムシーアルミ株式会社 Die-casting aluminum alloy, aluminum alloy die-cast material, and method for manufacturing same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050815A1 (en) 2012-09-25 2014-04-03 学校法人常翔学園 Hypereutectic aluminum/silicon alloy die-cast member and process for producing same
US20150275335A1 (en) * 2012-09-25 2015-10-01 Josho Gakuen Educational Foundation Hypereutectic aluminum-silicon alloy die-cast member and process for producing same
US9903007B2 (en) 2012-09-25 2018-02-27 Josho Gakuen Educational Foundation Hypereutectic aluminum-silicon alloy die-cast member and process for producing same
CN103045926A (en) * 2012-12-10 2013-04-17 北京科技大学 TiB2/Si-Al electronic packaging composite material and preparation method of TiB2/Si-Al electronic packaging composite material
CN103045926B (en) * 2012-12-10 2014-08-13 北京科技大学 TiB2/Si-Al electronic packaging composite material and preparation method of TiB2/Si-Al electronic packaging composite material
WO2018193543A1 (en) * 2017-04-19 2018-10-25 日本軽金属株式会社 Al-Si-Fe ALUMINUM ALLOY CASTING MATERIAL AND PRODUCTION METHOD THEREFOR
JPWO2018193543A1 (en) * 2017-04-19 2019-11-07 日本軽金属株式会社 Al-Si-Fe-based aluminum alloy casting material and method for producing the same
US11603582B2 (en) 2017-04-19 2023-03-14 Nippon Light Metal Company, Ltd. Al—Si—Fe-based aluminum alloy casting material and method for producing the same
JP2019073758A (en) * 2017-10-13 2019-05-16 日本軽金属株式会社 METHOD FOR REDUCING P IN MOLTEN ALUMINUM, AND Al-Si ALLOY CASTING USING THE METHOD
WO2021199428A1 (en) 2020-04-03 2021-10-07 日軽エムシーアルミ株式会社 Die-casting aluminum alloy, aluminum alloy die-cast material, and method for manufacturing same
KR20220156589A (en) 2020-04-03 2022-11-25 닛케이 엠씨 알루미늄 가부시키가이샤 Die-cast aluminum alloy, aluminum alloy die-cast material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN101168807B (en) High heat conductivity copper-base composite material and preparation method thereof
KR100958560B1 (en) Alloy material for dissipating heat from semiconductor device and method for production thereof
JP2007535151A (en) Heat sink made of boron-containing diamond and copper composite
JPH09157773A (en) Aluminum composite material having low thermal expandability and high thermal conductivity and its production
JP5464301B2 (en) Method for manufacturing composite material for heat dissipation substrate
JP5531329B2 (en) Package based on semiconductor heat dissipation parts
JP2001288526A (en) Heat radiating material and its production method
JPH08186204A (en) Heat sink and its manufacture
KR100519063B1 (en) Method for fabrication of high silicon Al-Si alloy for electronic packaging material by vacuum arc melting method
JP4360832B2 (en) Copper alloy
JPH11163209A (en) Ceramic circuit board and manufacture thereof
JP3909037B2 (en) Manufacturing method of low thermal expansion and high thermal conductive member
JP4407858B2 (en) Module structure
JP2010126791A (en) Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material
JP2021086937A (en) Heat sink material and method for manufacturing the same
JP2003105470A (en) Al-Si BASED POWDER ALLOY MATERIAL, AND PRODUCTION METHOD THEREFOR
JP2001189325A (en) Power module
JP2001217364A (en) Al-SiC COMPOSITE
JPH1017959A (en) Composite material and its production
JP2003306730A (en) Al-SiC-BASED COMPOSITE AND HEAT-DISSIPATING COMPONENT
JP4636329B2 (en) Manufacturing method of heat dissipation buffer plate
JP2001284509A (en) Al-SiC COMPOSITE BODY
JP2002192301A (en) Method for producing aluminum-silicon alloy
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
JP2004099996A (en) Process for manufacturing component part of internal-combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20041116

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD02 Notification of acceptance of power of attorney

Effective date: 20041207

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080624