JP2001259665A - Hydrosulfite production waste liquid treating method - Google Patents

Hydrosulfite production waste liquid treating method

Info

Publication number
JP2001259665A
JP2001259665A JP2000081894A JP2000081894A JP2001259665A JP 2001259665 A JP2001259665 A JP 2001259665A JP 2000081894 A JP2000081894 A JP 2000081894A JP 2000081894 A JP2000081894 A JP 2000081894A JP 2001259665 A JP2001259665 A JP 2001259665A
Authority
JP
Japan
Prior art keywords
waste liquid
hydrosulfite
sodium formate
sodium
production waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000081894A
Other languages
Japanese (ja)
Inventor
Hideki Fukuda
秀樹 福田
Susumu Kaneko
晋 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2000081894A priority Critical patent/JP2001259665A/en
Publication of JP2001259665A publication Critical patent/JP2001259665A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for effectively and economically treating the waste liquid generating from a hydrosulfite producing equipment without using any large-scale apparatus and much energy. SOLUTION: Sodium formate is recovered by separating a hydrosulfite product from a reaction solution and by subjecting the production waste liquid from which alcohol is distilled off and recovered to electrodialysis and residual waste liquid is subjected to activated sludge treatment after subjecting the residual waste liquid to oxidation-treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はギ酸ソーダ法による
ハイドロサルファイトの製造において、反応工程から発
生する廃液の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating waste liquid generated from a reaction step in the production of hydrosulfite by a sodium formate method.

【0002】[0002]

【従来の技術】ハイドロサルファイトを工業的に製造す
る場合、ギ酸ナトリウム、無水亜硫酸、アルカリ剤を含
水アルコール中で反応させるギ酸ソーダ法(日化協月
報、昭和44年12月号、713〜719ページ参照)
が広く用いられている。ギ酸ソーダ法では、反応液より
ハイドロサルファイト製品を分離した濾液中には未反応
ギ酸ナトリウム、副生ギ酸エステル、酸性亜硫酸ナトリ
ウム、チオ硫酸ナトリウム、及びアルコールなどが存在
している。従来は、濾液中のアルコールは反応溶媒とし
て蒸留回収し、アルコールを留去した後の水溶液は廃液
として処理されている。
2. Description of the Related Art When industrially producing hydrosulfite, a sodium formate method in which sodium formate, sulfurous anhydride and an alkali agent are reacted in a hydrous alcohol (JCIA, December, 1969, 713-719). See page)
Is widely used. In the sodium formate method, unreacted sodium formate, by-product formate, sodium acid sulfite, sodium thiosulfate, alcohol, and the like are present in the filtrate obtained by separating the hydrosulfite product from the reaction solution. Conventionally, the alcohol in the filtrate is recovered by distillation as a reaction solvent, and the aqueous solution after the alcohol is distilled off is treated as a waste liquid.

【0003】化学工場等の排水は、水質汚濁防止法によ
り、有機物等を所定濃度以下にすることが定められてい
る。有機物等の管理基準は、BOD(生物化学酸素要求
量)等で示されているが、簡便に評価する方法としてT
OD(全酸素消費量)で管理することができる。ハイド
ロサルファイト製造廃液にはギ酸ナトリウム、酸性亜硫
酸ナトリウム、チオ硫酸ナトリウムが多量に存在するの
で、排水中の高いTOD源となり、そのままで工場外へ
排出することはできない。そのため、活性汚泥処理等に
よりTODを低減させた後、排出されている。
[0003] Wastewater from a chemical factory or the like is regulated by the Water Pollution Prevention Law to contain organic substances or the like at a predetermined concentration or less. The management criteria for organic substances are indicated by BOD (biochemical oxygen demand), etc.
It can be managed by OD (total oxygen consumption). Since a large amount of sodium formate, sodium acid sulfite, and sodium thiosulfate is present in the hydrosulfite production waste liquid, it becomes a high TOD source in the wastewater and cannot be discharged out of the factory as it is. Therefore, it is discharged after the TOD is reduced by activated sludge treatment or the like.

【0004】[0004]

【発明が解決しようとする課題】活性汚泥処理により高
濃度TODを有する大量の排水を基準値以下とするには
広大な敷地や設備が必要とる。また、温和な湿式酸化に
より廃液中の硫酸ナトリウム塩類は分解できるがギ酸ナ
トリウムは分解することができず、充分なTODの低減
が望めない。更に廃液中のギ酸ナトリウムを完全に分解
し、TODを低減する方法としてはRu触媒を用いた高
温湿式酸化法もあるが、この方法は多量のエネルギーを
必要とするため経済的ではない。本発明の目的は、ハイ
ドロサルファイト製造設備から発生する廃液を大規模な
設備あるいは多量のエネルギーを用いずに、効果的、且
つ経済的に処理する方法を提供することである。
In order to reduce a large amount of wastewater having a high concentration TOD to a reference value or less by activated sludge treatment, a vast site and equipment are required. Further, sodium sulfates in the waste liquid can be decomposed by mild wet oxidation, but sodium formate cannot be decomposed, and a sufficient reduction in TOD cannot be expected. Further, as a method for completely decomposing sodium formate in the waste liquid to reduce TOD, there is a high-temperature wet oxidation method using a Ru catalyst, but this method is not economical because it requires a large amount of energy. An object of the present invention is to provide a method for effectively and economically treating a waste liquid generated from a hydrosulfite production facility without using a large-scale facility or a large amount of energy.

【0005】[0005]

【課題を解決するための手段】発明者らは、上記課題を
解決するために鋭意検討を重ねた結果、ハイドロサルフ
ァイト製造廃液から電気透析法によりギ酸ナトリウム等
の1価陰イオンからなるナトリウム塩(1ナトリウム
塩)を回収し廃液中のTODを低減した上で、残りのチ
オ硫酸ナトリウム等の2価陰イオンからなるナトリウム
塩(2ナトリウム塩)を含む廃液の酸化処理を行い、そ
の後、活性汚泥処理することにより、効果的な廃液処理
ができることを見出し、本発明に到達した。即ち本発明
は、ギ酸ソーダ法によるハイドロサルファイトの製造法
において、反応液よりハイドロサルファイト製品を分離
した濾液からアルコールを留去回収した後の製造廃液に
対し、電気透析によりギ酸ナトリウムを回収し、残りの
廃液を酸化処理した後、活性汚泥処理することを特徴と
するハイドロサルファイト製造廃液の処理方法である。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, sodium salt comprising monovalent anions such as sodium formate was subjected to electrodialysis from a hydrosulfite production waste liquid. After recovering (1 sodium salt) and reducing the TOD in the waste liquid, the remaining waste liquid containing a sodium salt (disodium salt) composed of a divalent anion such as sodium thiosulfate is subjected to oxidation treatment, and then the activity is reduced. The present inventors have found that effective treatment of waste liquid can be achieved by sludge treatment, and arrived at the present invention. That is, the present invention provides a method for producing hydrosulfite by a sodium formate method, wherein sodium formate is recovered by electrodialysis with respect to a production waste liquid obtained by distilling and recovering alcohol from a filtrate obtained by separating a hydrosulfite product from a reaction solution. A method for treating a hydrosulfite production waste liquid, comprising oxidizing the remaining waste liquid and then subjecting it to activated sludge treatment.

【0006】[0006]

【発明の実施の形態】本発明で使用する電気透析装置の
構造は、公知の構造を特に制限なく使用できる。電気透
析装置は、電極間に陽イオン交換膜と1価陰イオン選択
透過性膜とを交互に配列して脱塩室と濃縮室、更に両電
極に接する電極室を形成することによって構成される。
最も好適な構造は、各室を形成するため切欠部を有する
枠室を介して陽イオン交換膜と陰イオン交換膜とを交互
に配列し、両端より締め付ける、いわゆるフィルタープ
レス型の構造である。各室枠には液供給口および液排出
口が設けられ、各液供給口、排出口は必要に応じて枝管
を経由して主管に接続される。また、室枠内には、室枠
の厚みを均一にするための配流作用を有するスペーサー
を設けるのが一般的である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the electrodialysis apparatus used in the present invention can be a known structure without any particular limitation. An electrodialysis apparatus is constituted by alternately arranging a cation exchange membrane and a monovalent anion selective permeable membrane between electrodes to form a desalting chamber, a concentration chamber, and an electrode chamber in contact with both electrodes. .
The most preferable structure is a so-called filter press type structure in which cation exchange membranes and anion exchange membranes are alternately arranged via a frame chamber having a cutout to form each chamber, and tightened from both ends. Each chamber frame is provided with a liquid supply port and a liquid discharge port, and each liquid supply port and discharge port is connected to a main pipe via a branch pipe as necessary. In addition, it is general to provide a spacer having a flow distribution function for making the thickness of the chamber frame uniform within the chamber frame.

【0007】本発明における電気透析用の電極は、公知
のものが何ら制限なく使用できる。即ち、陽極として
は、白金、チタン/白金、カーボン、ニッケル、ルテニ
ウム/チタン、イリジウム/チタンなどがよく使用され
ている。また、陰極としては、鉄、ニッケル、白金、チ
タン/白金、カーボン、ステンレス鋼などがよく使用さ
れる。一般的な構造としては、ノベ板状、メッシュ状、
格子状等が挙げられる。
As the electrode for electrodialysis in the present invention, known electrodes can be used without any limitation. That is, platinum, titanium / platinum, carbon, nickel, ruthenium / titanium, iridium / titanium and the like are often used as the anode. As the cathode, iron, nickel, platinum, titanium / platinum, carbon, stainless steel and the like are often used. As a general structure, nove board shape, mesh shape,
Lattice shape and the like.

【0008】本発明において、使用する陽イオン交換膜
は特に限定されず、例えば強酸性スチレン−ジビニルベ
ンゼン系均一陽イオン交換膜を使用できる。陰イオン交
換膜としては、通常の強塩基性スチレン−ジビニルベン
ゼン系均一陰イオン交換膜では1価−2価陰イオンが効
果的に分離できないため、1価陰イオン選択透過性を高
めた膜を用いる。
In the present invention, the cation exchange membrane used is not particularly limited, and for example, a strongly acidic styrene-divinylbenzene-based uniform cation exchange membrane can be used. As the anion-exchange membrane, a monobasic anion-exchange membrane of a general strong basic styrene-divinylbenzene type cannot effectively separate monovalent and divalent anions. Used.

【0009】図1は本発明で用いられる電気透析装置の
一例を示す概略構造図である。陽イオン交換膜(K)と
1価陰イオン選択透過性膜(A)の2種類の膜が交互に
配列され、脱塩液が脱塩室(D)、回収液が濃縮室
(C)へ導入される。電極と接する両端は電極室(P)
として極液が導入される。陽イオン交換膜(K)と1価
陰イオン選択透過性膜(A)の配列の繰り返し回数は目
的に応じて選択でき、好ましくは繰り返し回数nが1〜
1000である。
FIG. 1 is a schematic structural view showing one example of an electrodialysis apparatus used in the present invention. Two types of membranes, a cation exchange membrane (K) and a monovalent anion selective permeable membrane (A), are alternately arranged, and the desalted solution is in the desalting chamber (D) and the recovered solution is in the concentration chamber (C). be introduced. Both ends in contact with the electrodes are electrode chambers (P)
The polar solution is introduced as The number of repetitions of the arrangement of the cation exchange membrane (K) and the monovalent anion selective permeable membrane (A) can be selected according to the purpose.
1000.

【0010】本発明において、上記電気透析装置の各室
への液供給は連続的に行っても、断続的に行ってもよ
い。また、供給液の外部タンクを設けて、各室と外部タ
ンクとの間で液を循環させてもよい。
In the present invention, the liquid supply to each chamber of the electrodialyzer may be performed continuously or intermittently. Further, an external tank for the supply liquid may be provided to circulate the liquid between each chamber and the external tank.

【0011】脱塩室にはハイドロサルファイトの反応液
より製品を分離した反応濾液よりアルコールを留去回収
した水溶液(製造廃液)を供給する。電気透析を続ける
と脱塩室はギ酸ナトリウム等の1ナトリウム塩の濃度が
低下する。1ナトリウム塩が充分に低下した液は処理液
として適宜抜き出し製造廃液を補充することが可能であ
る。若しくは、処理液として連続的に抜き出し、更に製
造廃液を補給するといった連続運転としてもよい。
The desalting chamber is supplied with an aqueous solution (manufacturing waste liquid) obtained by distilling and recovering alcohol from the reaction filtrate obtained by separating the product from the hydrosulfite reaction solution. As electrodialysis continues, the concentration of monosodium salt such as sodium formate decreases in the desalting chamber. The liquid in which the monosodium salt has been sufficiently reduced can be appropriately withdrawn as a processing liquid and replenished with the manufacturing waste liquid. Alternatively, a continuous operation may be performed in which the processing liquid is continuously withdrawn and the manufacturing waste liquid is replenished.

【0012】濃縮室には電気透析開始時に0.1〜5%
ギ酸ナトリウム水溶液を供給する。電気透析を続けると
回収されたギ酸ナトリウム等により濃縮室内の水溶液中
の1ナトリウム塩濃度が上昇するため、必要に応じて該
水溶液を回収し、低濃度のギ酸ナトリウム水溶液または
水を補給する。回収された水溶液には、ギ酸ナトリウム
および酸性亜硫酸ナトリウムが含まれる。この水溶液を
精製することでハイドロサルファイトの原料として有効
なギ酸ナトリウムを回収、再利用することができる。
[0012] 0.1-5% at the start of electrodialysis
Supply the aqueous sodium formate solution. If the electrodialysis is continued, the concentration of monosodium salt in the aqueous solution in the concentration chamber increases due to the collected sodium formate and the like. Therefore, the aqueous solution is collected as needed, and a low-concentration aqueous solution of sodium formate or water is supplied. The recovered aqueous solution contains sodium formate and sodium acid sulfite. By purifying this aqueous solution, sodium formate effective as a raw material of hydrosulfite can be recovered and reused.

【0013】極液室には0.1〜5%程度の水溶性電解
質水溶液を供給する。水溶性電解質には特に制限はない
が、後工程での廃液処理を考慮した場合、硫酸ナトリウ
ムが特に好ましく適用される。
An aqueous electrolyte solution of about 0.1 to 5% is supplied to the anolyte chamber. Although there is no particular limitation on the water-soluble electrolyte, sodium sulfate is particularly preferably applied in consideration of waste liquid treatment in a subsequent step.

【0014】本発明において、電気透析時の運転電流密
度は限界電流密度を予め測定した上で、限界電流密度以
下で運転を行なう。また電気透析時の各種液の温度は、
通常は5〜70℃、好ましくは、20〜50℃の範囲で
ある。
In the present invention, the operation is performed at a current density equal to or lower than the critical current density after measuring the critical current density in advance during electrodialysis. The temperature of various liquids during electrodialysis is
Usually, it is in the range of 5 to 70C, preferably 20 to 50C.

【0015】本発明で電気透析処理後の製造廃液を酸化
処理する際には、塩化第二鉄を触媒に用いての空気との
接触、または過酸化水素水による酸化が好適である。ま
た、電気透析により濃縮室に回収された水溶液を精製し
てギ酸ナトリウムを分離回収する工程から発生する酸性
亜硫酸ナトリウムを含む廃液を併せて酸化処理してもよ
い。
In the present invention, when oxidizing the production waste liquid after the electrodialysis treatment, contact with air using ferric chloride as a catalyst or oxidation with aqueous hydrogen peroxide is preferred. Further, the aqueous solution recovered in the concentration chamber by electrodialysis may be purified, and the waste liquid containing sodium acid sulfite generated from the step of separating and recovering sodium formate may be oxidized together.

【0016】[0016]

【実施例】次に実施例により本発明を更に具体的に説明
する。但し、本発明は以下の実施例により限定されるも
のではない。尚、本実施例において、TODの測定は東
レエンジニアリング株式会社製TOD計WQA−800
を用いた。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples. In this example, TOD was measured by a TOD meter WQA-800 manufactured by Toray Engineering Co., Ltd.
Was used.

【0017】実施例1 ギ酸ソーダ法によるハイドロサルファイトの製造におい
て反応液よりハイドロサルファイト製品を分離した濾液
よりアルコールを留去した後の製造廃液を、図1に示し
た構造の電気透析装置を用いて電気透析を行なった。製
造廃液の組成はチオ硫酸ナトリウム5.0%、酸性亜硫
酸ナトリウム14.0%、硫酸ナトリウム0.9%、ギ
酸ナトリウム12.2%の水溶液であった。また、製造
廃液のTODは49,000ppmであった。陽イオン
交換膜として強酸性スチレン−ジビニルベンゼン系均一
陽イオン交換膜(旭硝子社製セレミオンCMV)、陰イ
オン交換膜として1価陰イオン選択透過性膜(旭硝子社
製セレミオンASV)を透析装置にセットした。上記製
造廃液を脱塩室に供給し、濃縮室には1%ギ酸ナトリウ
ム水溶液を供給した。電極室には3%硫酸ナトリウム水
溶液を供給し、印加電圧10Vで2時間電気透析処理
(1回目)を行なった。脱塩室には、ギ酸ナトリウム
1.3%、酸性亜硫酸ナトリウム2.8%、硫酸ナトリ
ウム0.8%、チオ硫酸ナトリウム3.9%の水溶液が
回収された。透析後、脱塩室の回収液のTODを測定し
たところ24,000ppmであった。更にこの脱塩室
回収液を40℃にて、塩化第二鉄六水和物500ppm
を添加し、空気を吹込みながら8時間酸化処理を行なっ
た。酸化処理後の液のTODを測定したところ300p
pmであった。この液を25℃〜35℃で温度管理し、
56時間滞留する条件で活性汚泥処理したところ、処理
液のTODは1ppm以下であった。
Example 1 In the production of hydrosulfite by the sodium formate method, a production waste liquid obtained by distilling off alcohol from a filtrate obtained by separating a hydrosulfite product from a reaction solution was subjected to an electrodialysis apparatus having a structure shown in FIG. Was used for electrodialysis. The composition of the manufacturing waste liquid was an aqueous solution of sodium thiosulfate 5.0%, sodium acid sulfite 14.0%, sodium sulfate 0.9%, and sodium formate 12.2%. Further, the TOD of the production waste liquid was 49,000 ppm. Set a strongly acidic styrene-divinylbenzene-based uniform cation exchange membrane (Serumion CMV manufactured by Asahi Glass Co., Ltd.) as a cation exchange membrane, and a monovalent anion selective permeable membrane (Seremion ASV manufactured by Asahi Glass Co., Ltd.) as an anion exchange membrane in a dialysis machine. did. The production waste liquid was supplied to a desalting chamber, and a 1% aqueous solution of sodium formate was supplied to a concentration chamber. A 3% aqueous sodium sulfate solution was supplied to the electrode chamber, and electrodialysis treatment (first time) was performed at an applied voltage of 10 V for 2 hours. An aqueous solution of 1.3% sodium formate, 2.8% sodium acid sulfite, 0.8% sodium sulfate, and 3.9% sodium thiosulfate was collected in the desalting chamber. After dialysis, the TOD of the recovered solution in the desalting chamber was measured, and was 24,000 ppm. Further, the recovered solution in the desalting chamber was subjected to ferric chloride hexahydrate 500 ppm at 40 ° C.
Was added and oxidation treatment was performed for 8 hours while blowing air. When the TOD of the liquid after the oxidation treatment was measured, it was 300 p.
pm. The temperature of the liquid is controlled at 25 ° C to 35 ° C,
When activated sludge treatment was performed under the condition of staying for 56 hours, the TOD of the treatment liquid was 1 ppm or less.

【0018】実施例2 実施例1において脱塩室回収液を酸化処理する際に、4
0℃にて、31%過酸化水素水を1.1%相当滴下し酸
化を行なった。酸化処理後の液のTODを測定したとこ
ろ100ppmであった。この液を実施例1と同一の条
件で活性汚泥処理したところ処理液のTODは1ppm
以下であった。
Example 2 In Example 1, when the recovered liquid in the desalting chamber was oxidized,
At 0 ° C., oxidation was performed by dropping 31% aqueous hydrogen peroxide equivalent to 1.1%. The TOD of the liquid after the oxidation treatment was measured and found to be 100 ppm. When this solution was subjected to activated sludge treatment under the same conditions as in Example 1, the TOD of the treated solution was 1 ppm.
It was below.

【0019】比較例1 実施例1の製造廃液を40℃にて、塩化第二鉄六水和物
500ppmを添加し、空気を吹込みながら8時間酸化
処理した。酸化処理後の液組成はチオ硫酸ナトリウム
0.4%、酸性亜硫酸ナトリウム0.5%、硫酸ナトリ
ウム14.6%、ギ酸ナトリウム12.1%であり、T
ODは21,000ppmであった。この酸化処理液を
実施例1と同一の条件で活性汚泥処理したところ処理液
のTODは37ppmであった。
Comparative Example 1 The waste liquid produced in Example 1 was added with 500 ppm of ferric chloride hexahydrate at 40 ° C., and oxidized for 8 hours while blowing air. The liquid composition after the oxidation treatment is 0.4% of sodium thiosulfate, 0.5% of sodium acid sulfite, 14.6% of sodium sulfate, and 12.1% of sodium formate.
OD was 21,000 ppm. When the oxidized solution was treated with activated sludge under the same conditions as in Example 1, the TOD of the treated solution was 37 ppm.

【0020】[0020]

【発明の効果】本発明によれば、ハイドロサルファイト
製造廃液から電気透析法によりギ酸ナトリウムを回収
し、残りの廃液を酸化処理後、活性汚泥処理することに
よって、大規模な処理設備や多量のエネルギーを必要と
しない、効果的、且つ経済的な廃液処理が可能となる。
According to the present invention, sodium formate is recovered from hydrosulfite production wastewater by electrodialysis, and the remaining wastewater is oxidized and then treated with activated sludge, so that large-scale processing equipment and a large amount of Effective and economical waste liquid treatment that does not require energy can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明で用いられる電気透析装置の一例
を示す概略構造図である。
FIG. 1 is a schematic structural view showing an example of an electrodialysis apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

K 陽イオン交換膜 A 1価陰イオン選択透過性膜 D 脱塩室 C 濃縮室 P 電極室 K cation exchange membrane A monovalent anion selective permeable membrane D desalination room C concentration room P electrode room

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 9/00 501 C02F 9/00 502R 502 502L 1/46 103 Fターム(参考) 4D006 GA17 HA47 JA42C KA03 KD30 KE16Q KE16R KE17Q KE17R MA03 MA13 MA14 PA04 PB08 PB12 PB20 PB70 4D028 AB00 BA00 4D050 AA13 AB18 BB01 BB09 BC04 4D061 DA08 DB18 DC19 EA09 EB04 EB13 EB28 EB29 EB30 EB31 EB35 ED12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 9/00 501 C02F 9/00 502R 502 502L 1/46 103 F-term (Reference) 4D006 GA17 HA47 JA42C KA03 KD30 KE16Q KE16R KE17Q KE17R MA03 MA13 MA14 PA04 PB08 PB12 PB20 PB70 4D028 AB00 BA00 4D050 AA13 AB18 BB01 BB09 BC04 4D061 DA08 DB18 DC19 EA09 EB04 EB13 EB28 EB29 EB30 EB31 EB35 ED12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ギ酸ソーダ法によるハイドロサルファイト
の製造法において、反応液よりハイドロサルファイト製
品を分離した濾液からアルコールを留去回収した後の製
造廃液に対し、電気透析によりギ酸ナトリウムを回収
し、残りの廃液を酸化処理した後、活性汚泥処理するこ
とを特徴とするハイドロサルファイト製造廃液の処理方
法。
In a method for producing hydrosulfite by a sodium formate method, sodium formate is recovered by electrodialysis from a production waste liquid obtained by distilling and recovering alcohol from a filtrate obtained by separating a hydrosulfite product from a reaction solution. A method for treating a hydrosulfite production waste liquid, comprising oxidizing the remaining waste liquid and then treating it with activated sludge.
【請求項2】酸化処理する際に、塩化第二鉄を触媒に用
いて空気と接触させる請求項1に記載のハイドロサルフ
ァイト製造廃液の処理方法。
2. The method for treating a hydrosulfite production waste liquid according to claim 1, wherein, during the oxidation treatment, ferric chloride is used as a catalyst and brought into contact with air.
【請求項3】酸化処理する際に、過酸化水素水を用いる
請求項1に記載のハイドロサルファイト製造廃液の処理
方法。
3. The method for treating wastewater for producing hydrosulfite according to claim 1, wherein a hydrogen peroxide solution is used in the oxidation treatment.
JP2000081894A 2000-03-23 2000-03-23 Hydrosulfite production waste liquid treating method Pending JP2001259665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000081894A JP2001259665A (en) 2000-03-23 2000-03-23 Hydrosulfite production waste liquid treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000081894A JP2001259665A (en) 2000-03-23 2000-03-23 Hydrosulfite production waste liquid treating method

Publications (1)

Publication Number Publication Date
JP2001259665A true JP2001259665A (en) 2001-09-25

Family

ID=18598764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000081894A Pending JP2001259665A (en) 2000-03-23 2000-03-23 Hydrosulfite production waste liquid treating method

Country Status (1)

Country Link
JP (1) JP2001259665A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313360C (en) * 2005-07-08 2007-05-02 叶永茂 Material charging method for preparing sodium hydrosulfite
JP2010184211A (en) * 2009-02-13 2010-08-26 Sumitomo Chemical Co Ltd Wastewater treatment method
CN104177248A (en) * 2014-08-25 2014-12-03 湖南中成化工有限公司 Novel treatment technique of sodium hydrosulfite mother solution rectification raffinate
CN104478159A (en) * 2014-11-20 2015-04-01 湘潭大学 Method for treating wastewater containing sodium hydrosulfite by using sodium formate
CN106186519A (en) * 2016-07-22 2016-12-07 浙江嘉成化工有限公司 A kind of processing method of sodium hydrosulfite wastewater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313360C (en) * 2005-07-08 2007-05-02 叶永茂 Material charging method for preparing sodium hydrosulfite
JP2010184211A (en) * 2009-02-13 2010-08-26 Sumitomo Chemical Co Ltd Wastewater treatment method
CN104177248A (en) * 2014-08-25 2014-12-03 湖南中成化工有限公司 Novel treatment technique of sodium hydrosulfite mother solution rectification raffinate
CN104478159A (en) * 2014-11-20 2015-04-01 湘潭大学 Method for treating wastewater containing sodium hydrosulfite by using sodium formate
CN106186519A (en) * 2016-07-22 2016-12-07 浙江嘉成化工有限公司 A kind of processing method of sodium hydrosulfite wastewater

Similar Documents

Publication Publication Date Title
JP3383334B2 (en) How to recycle sulfuric acid
JP2000254650A (en) Water treatment and water treatment device
US5091070A (en) Method of continuously removing and obtaining ethylene diamine tetracetic acid (edta) from the process water of electroless copper plating
EP0447448B1 (en) Method for purification of acids from materials comprising acid and salt
JP2008508093A (en) Method for cleaning membranes and chemicals therefor
EP2867388A1 (en) Process and apparatus for generating or recovering hydrochloric acid from metal salt solutions
JP2013075259A (en) Water recovery apparatus for closed system space
US6827832B2 (en) Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
JP3164970B2 (en) Treatment of wastewater containing neutral salts of monovalent ions
US4692228A (en) Removal of arsenic from acids
US6045684A (en) Process and apparatus for the production of an aqueous solution of hydrogen peroxide
JP4497512B2 (en) Method for selective separation of hydroiodic acid, method for producing hydroiodic acid, and method for producing alkali iodine salts
JP3656458B2 (en) Pure water production method
JP2001259665A (en) Hydrosulfite production waste liquid treating method
JPH10130876A (en) Electrolytic ozonized water producing unit and its regenerating method
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP2001270844A (en) Method for recovering sodium formate from production waste liquor of hydrosulfite
WO2003091166A1 (en) Method of disposing of waste water containing organic compound and apparatus
JP2775992B2 (en) Method for producing hydroxylamine
JP2824537B2 (en) Method for producing hydroxylamine
JP2001113290A (en) Apparatus for treating organic matter-containing water
JP3259557B2 (en) How to remove organic matter
JP2001104955A (en) Pure water making method
JPH1110160A (en) Method for treating water by electrolytic oxidation
JPH09503551A (en) Method for producing acidified process stream