JP2001250723A - High-q high-frequency coil and its manufacturing method - Google Patents

High-q high-frequency coil and its manufacturing method

Info

Publication number
JP2001250723A
JP2001250723A JP2000062047A JP2000062047A JP2001250723A JP 2001250723 A JP2001250723 A JP 2001250723A JP 2000062047 A JP2000062047 A JP 2000062047A JP 2000062047 A JP2000062047 A JP 2000062047A JP 2001250723 A JP2001250723 A JP 2001250723A
Authority
JP
Japan
Prior art keywords
conductor
coil
frequency coil
less
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000062047A
Other languages
Japanese (ja)
Inventor
Takashi Kajino
隆 楫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2000062047A priority Critical patent/JP2001250723A/en
Publication of JP2001250723A publication Critical patent/JP2001250723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-Q high-frequency coil which has a high-Q over a wide frequency range of 100 MHz to a few GHz and can be easily manufactured. SOLUTION: A first conductor layer 11, an interlayer insulating resin layer 12, and a second conductor layer 13 are formed on the one surface of an insulating board, a coil conductor is composed of the conductor layers 11 and 13, 15 μm or above in height, and has an aspect ratio from 0.5 to 3, and the aspect ratio of a space between the adjacent winding parts of the coil conductor is set at 1.5 or below. The interlayer insulating resin layer 12 interposed between the conductor layers is 20 μm to 100 μm in thickness and formed of organic material whose permittivity is 5 or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、信号用の高周波コ
イルに係り、とくに、100MHz〜数GHzの広い高
周波の周波数帯域で高いQ値を示す高Q高周波コイル及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency coil for a signal, and more particularly to a high-Q high-frequency coil having a high Q value in a wide high-frequency band of 100 MHz to several GHz and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、高周波コイルのQ値を上げる手法
の例は下記の通りある。
2. Description of the Related Art Conventionally, examples of techniques for increasing the Q value of a high-frequency coil are as follows.

【0003】断面形状が偏平な薄膜コイル導体を絶縁
層を介して多層化して設け、これを並列に接続すること
で表面積を増やして、Qを上げる(特開平5−8234
9号公報)。
[0003] Thin-film coil conductors having a flat cross section are provided in multiple layers via an insulating layer, and are connected in parallel to increase the surface area and increase the Q (Japanese Patent Laid-Open No. 5-8234).
No. 9).

【0004】導体の膜厚を10μm程度に上げて、直
流抵抗を低下させ、Qを上げる(特開平6−84646
号公報)。
[0004] By increasing the thickness of the conductor to about 10 µm, the DC resistance is reduced, and Q is increased (Japanese Patent Laid-Open No. 6-84646).
No.).

【0005】[0005]

【発明が解決しようとする課題】ところで、上記の構
造は、層数が増えて工程が複雑になる。また、薄膜技術
を用いているので通常、導体の断面形状は偏平になり、
高周波では電流がコーナー部に集中し、Qは思ったほど
上がらない。また導体層間の表面電流は内側が外側に比
べて小さく、例えば、単層の場合と2層構造の場合のQ
を比較しても後者は前者の2倍には至らない。
In the above structure, the number of layers increases and the process becomes complicated. Also, since thin film technology is used, the cross-sectional shape of the conductor is usually flat,
At high frequencies, current concentrates at the corners, and Q does not rise as expected. The surface current between the conductor layers is smaller on the inner side than on the outer side.
The comparison does not show that the latter is twice as large as the former.

【0006】また上記の構造では、高周波では表皮効
果のために電流が表面に限定されるので、たとえば偏平
な断面形状の導体で厚さのみを2倍にしても表面積はほ
とんど変わらないので、Qの上昇は少ない。また10μ
mでは高周波の広範囲な周波数帯域をカバーできない。
In the above structure, the current is limited to the surface at high frequencies due to the skin effect. For example, even if the thickness is doubled with a conductor having a flat cross-section, the surface area hardly changes, so that Q Rise is small. Also 10μ
m cannot cover a wide frequency band of high frequencies.

【0007】本発明は、上記の点に鑑み、100MHz
〜数GHzの広い高周波の周波数帯域にわたり高いQ値
を示し、しかも製造容易な高Q高周波コイル及びその製
造方法を提供することを目的とする。
[0007] In view of the above, the present invention provides a 100 MHz
An object of the present invention is to provide a high-Q high-frequency coil which exhibits a high Q value over a wide high-frequency band of up to several GHz and is easy to manufacture, and a method of manufacturing the same.

【0008】本発明のその他の目的や新規な特徴は後述
の実施の形態において明らかにする。
[0008] Other objects and novel features of the present invention will be clarified in embodiments described later.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本願請求項1の発明は、絶縁基板の少なくとも一面
にコイル部導体を設けてなる高Q高周波コイルであっ
て、前記コイル部導体の高さが15μm以上であり、該
コイル部導体のアスペクト比が0.5以上、3以下であ
り、該コイル部導体における隣合う導体巻回部分の間の
アスペクト比が1.5以下であることを特徴としてい
る。
In order to achieve the above object, an invention according to claim 1 of the present application is a high-Q high-frequency coil having a coil conductor provided on at least one surface of an insulating substrate, wherein the coil conductor is provided. Is not less than 15 μm, the aspect ratio of the coil portion conductor is 0.5 or more and 3 or less, and the aspect ratio between adjacent conductor winding portions of the coil portion conductor is 1.5 or less. It is characterized by:

【0010】本願請求項2の発明は、請求項1におい
て、前記コイル部導体が少なくとも2層以上の導体層で
あり、該導体層間に介在する層間絶縁層は比誘電率が5
以下の有機材料でその厚さが20μm以上、100μm
以下であることを特徴としている。
According to a second aspect of the present invention, in the first aspect, the coil portion conductor is at least two or more conductor layers, and an interlayer insulating layer interposed between the conductor layers has a relative dielectric constant of 5 or more.
The following organic materials whose thickness is 20 μm or more and 100 μm
It is characterized as follows.

【0011】本願請求項3の発明は、請求項2におい
て、前記層間絶縁層がエポキシ樹脂もしくはアクリル変
性エポキシ樹脂からなることを特徴としている。
A third aspect of the present invention is characterized in that, in the second aspect, the interlayer insulating layer is made of an epoxy resin or an acryl-modified epoxy resin.

【0012】本願請求項4の発明は、請求項2におい
て、前記層間絶縁層がビニルベンジルからなることを特
徴としている。
A fourth aspect of the present invention is characterized in that, in the second aspect, the interlayer insulating layer is made of vinylbenzyl.

【0013】本願請求項5の発明は、請求項1,2,3
又は4において、前記絶縁基板が比誘電率5以下の有機
材料基材もしくはこれに芯材を加えたものであることを
特徴としている。
The invention of claim 5 of the present application is directed to claims 1, 2, 3
Or 4 is characterized in that the insulating substrate is an organic material base material having a relative permittivity of 5 or less or a material obtained by adding a core material thereto.

【0014】本願請求項6の発明は、請求項5におい
て、前記基材がビニルベンジルからなることを特徴とし
ている。
According to a sixth aspect of the present invention, in the fifth aspect, the base material is made of vinylbenzyl.

【0015】本願請求項7の発明は、請求項1,2,
3,4,5又は6において、前記コイル部導体が複数の
導体層で構成され、少なくとも1層以上の導体層に1タ
ーン以上のスパイラル又はヘリカル状導体部が形成され
ており、かつ前記絶縁基板の基板面において中央部の導
体のない部分の面積が前記コイル部導体全体の配置面積
の20%以上であることを特徴としている。
The invention of claim 7 of the present application is directed to claims 1, 2,
In 3, 4, 5, or 6, the coil portion conductor is constituted by a plurality of conductor layers, and at least one or more conductor layers are formed with one or more turns of a spiral or helical conductor portion, and the insulating substrate The area of the central portion of the substrate surface where there is no conductor is 20% or more of the entire layout area of the coil portion conductor.

【0016】本願請求項8の発明は、請求項2,3,
4,5,6又は7において、前記導体層間の接続をブラ
インドビアで形成し、かつ該ブラインドビアの接合部の
面積が0.03mm以下であることを特徴としている。
[0016] The invention of claim 8 of the present application provides claims 2 and 3
4, 5, 6, or 7, wherein the connection between the conductor layers is formed by a blind via, and a junction area of the blind via is 0.03 mm 2 or less.

【0017】本願請求項9の発明は、請求項1,2,
3,4,5,6,7又は8において、前記コイル部導体
は、導体断面の2個以上のコーナーに丸めが付けられて
いることを特徴としている。
The invention of claim 9 of the present application is directed to claims 1, 2,
In 3, 4, 5, 6, 7 or 8, the coil conductor is characterized in that two or more corners of the conductor cross section are rounded.

【0018】本願請求項10の発明に係る高Q高周波コ
イルの製造方法は、絶縁基板上に2μm以下の下地金属
層を形成する下地金属膜形成工程と、前記下地金属膜上
にレジスト膜を設けかつコイル部導体となるべき部分の
前記下地金属膜を露出させるレジスト膜形成工程と、前
記電気めっきにより前記下地金属膜の露出部分に金属め
っき膜を形成する電気めっき工程と、前記レジスト膜を
全面剥離するレジスト剥離工程と、前記絶縁基板の全面
を前記金属めっき膜間の下地金属膜が除去されるまでエ
ッチングするエッチング工程とを備えたことを特徴とし
ている。
According to a tenth aspect of the present invention, there is provided a method of manufacturing a high-Q high-frequency coil, comprising: forming a base metal film having a thickness of 2 μm or less on an insulating substrate; and providing a resist film on the base metal film. And a resist film forming step of exposing the base metal film in a portion to be a coil portion conductor; an electroplating step of forming a metal plating film on the exposed portion of the base metal film by the electroplating; A resist stripping step of stripping, and an etching step of etching the entire surface of the insulating substrate until the underlying metal film between the metal plating films is removed.

【0019】[0019]

【発明の実施の形態】以下、本発明に係る高Q高周波コ
イル及びその製造方法の実施の形態を図面に従って説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a high-Q high-frequency coil and a method of manufacturing the same according to the present invention will be described below with reference to the drawings.

【0020】図1乃至図3で本発明に係る高Q高周波コ
イル及びその製造方法の第1の実施の形態を説明する。
図1は高Q高周波コイルの正断面図、図2は導体層及び
層間絶縁樹脂層を示し、図3はコイル部導体の製法の例
を示す。
A first embodiment of a high-Q high-frequency coil and a method of manufacturing the same according to the present invention will be described with reference to FIGS.
FIG. 1 is a front sectional view of a high-Q high-frequency coil, FIG. 2 shows a conductor layer and an interlayer insulating resin layer, and FIG. 3 shows an example of a method of manufacturing a coil conductor.

【0021】これらの図において、1は有機絶縁基板、
11は第1導体層、12は層間絶縁樹脂層、13は第2
導体層、14は端子電極である。第1導体層11、層間
絶縁樹脂層12、第2導体層13は基板1の主面(上
面)に形成され、端子電極14は基板1の側面及び上下
面の一部を覆うように形成されている。
In these figures, 1 is an organic insulating substrate,
11 is a first conductor layer, 12 is an interlayer insulating resin layer, and 13 is a second conductor layer.
The conductor layer 14 is a terminal electrode. The first conductor layer 11, the interlayer insulating resin layer 12, and the second conductor layer 13 are formed on the main surface (upper surface) of the substrate 1, and the terminal electrodes 14 are formed so as to cover side surfaces of the substrate 1 and part of upper and lower surfaces. ing.

【0022】従来基板にアルミナ、ガラス等の無機セラ
ミックが使用されてきたが、アルミナは機械的強度は大
きいものの比誘電率が約9と高く高周波コイル部品の基
板としては好ましくない。またガラスは誘電率は低いが
脆く、本例の様に厚い導体層を形成する場合はスパッタ
リング等の乾式法による場合もめっき等で形成する場合
もストレスが増大するので基板の割れ、欠けが生じやす
く好ましくない。有機絶縁基板1は誘電率も小さく、あ
る程度の可撓性も有するので本例の場合には好ましい。
Conventionally, inorganic ceramics such as alumina and glass have been used for the substrate. However, alumina has high mechanical strength but a high relative dielectric constant of about 9, which is not preferable as a substrate for high-frequency coil parts. In addition, glass has a low dielectric constant but is brittle, and when forming a thick conductor layer as in this example, the stress increases both when forming by a dry method such as sputtering and when forming by plating, so that the substrate is cracked or chipped. It is not preferable because it is easy. The organic insulating substrate 1 is preferable in the case of this example because it has a small dielectric constant and a certain degree of flexibility.

【0023】ここでは、有機絶縁基板1として、ガラス
クロス、ケブラークロス等の芯材(補強材)にビニルベ
ンジル等の基材となる絶縁樹脂を含浸して形成したもの
を用い、基板全体の比誘電率を5以下にしている。比誘
電率が5を超えた場合、基板1と電極14間や、第1及
び第2導体層11,13のコイル部導体間、さらには同
層のコイル部導体における浮遊容量が上昇し、高周波コ
イルの共振周波数を高くするのに不利であり、有機絶縁
基板とする意味も無くなる。
Here, the organic insulating substrate 1 is formed by impregnating a core material (reinforcing material) such as glass cloth or Kevlar cloth with a base resin such as vinyl benzyl and the like, and using a ratio of the whole substrate. The dielectric constant is set to 5 or less. When the relative dielectric constant exceeds 5, the stray capacitance between the substrate 1 and the electrode 14, between the coil conductors of the first and second conductor layers 11 and 13, and furthermore, in the coil conductor of the same layer increases, and the This is disadvantageous in increasing the resonance frequency of the coil, and the use of an organic insulating substrate is no longer necessary.

【0024】有機絶縁基板1の基材は、使用周波数、目
標のQ値、コストを考慮して例えば下記の表1より選択
すればよい。
The base material of the organic insulating substrate 1 may be selected from, for example, the following Table 1 in consideration of the frequency used, the target Q value, and the cost.

【0025】 表1 品種名 比誘電率 Q フッ素樹脂 2.1 10000 ポリエチレン 2.2 5000 PPO 2.5 1200 ビニルベンジル 2.5 260 シアネートエステル 2.7 1000 ポリエーテルイミド 3 670 ポリイミド 3.6 200 エポキシ 4.3 70 この表1に列挙された材質中でも、ビニルベンジルは比
誘電率、Q、コストのバランスが良く、好ましい材料で
ある。
Table 1 Product name Relative permittivity Q fluororesin 2.1 10,000 Polyethylene 2.2 5000 PPO 2.5 1200 Vinylbenzyl 2.5 260 Cyanate ester 2.7 1000 Polyetherimide 3670 Polyimide 3.6 200 Epoxy 4.370 Among the materials listed in Table 1, vinylbenzyl is a preferable material because it has a good balance of relative permittivity, Q, and cost.

【0026】有機絶縁基板1に芯材を用いる場合は、下
記の表2に示すように、Dガラスクロス、Eガラスクロ
ス、ケブラークロス等を用いることが出来る。一般的に
比誘電率の低く、低損失の材料ほど高価であるが、コス
トの許す限り、誘電率の低い材料を使用することが好ま
しい。
When a core material is used for the organic insulating substrate 1, D glass cloth, E glass cloth, Kevlar cloth, or the like can be used as shown in Table 2 below. Generally, a material having a lower dielectric constant and a lower loss is more expensive, but it is preferable to use a material having a lower dielectric constant as far as the cost permits.

【0027】 [0027]

【0028】基板1の芯材としてクロスの代わりに、ポ
リイミド、ポリエチレン等の可撓性で低誘電率の有機材
料のフィルムを使用することが出来る。この場合、基板
全体の誘電率を大幅に低下させることが可能であり、コ
イルの高周波特性も良好になる。この場合、ビニルベン
ジル等の基材と芯材としての有機材料フィルムの間の密
着性が不足することもあるが、この場合はフィルムに小
穴を多数あけたり、フィルムの表面を過マンガン酸カリ
で化学的に粗くしたり、研磨で物理的に粗化することに
より改善できる。またフィルムの両面に薄い有機の低誘
電率材料からなる接着層を設けることも好ましい。芯材
は必要とされる機械的強度、信頼性に応じて中央に一層
形成したり、基材の表裏に形成したり、またこれらを組
み合わせたりすることが出来る。
Instead of a cloth, a film of a flexible and low dielectric constant organic material such as polyimide or polyethylene can be used as the core material of the substrate 1. In this case, the dielectric constant of the entire substrate can be significantly reduced, and the high-frequency characteristics of the coil can be improved. In this case, the adhesion between the base material such as vinylbenzyl and the organic material film as the core material may be insufficient.In this case, many small holes are formed in the film, or the surface of the film is coated with potassium permanganate. It can be improved by chemically roughening or physically roughening by polishing. It is also preferable to provide an adhesive layer made of a thin organic low dielectric constant material on both sides of the film. The core material can be formed further in the center, formed on the front and back of the base material, or a combination thereof depending on the required mechanical strength and reliability.

【0029】前記第1導体層11は、図2(A)の如く
1ターン以上のスパイラル状導体部を有するコイル部導
体11aと有機絶縁基板1の両縁部に位置する引出電極
導体11bとからなり、パターンめっき及びクイックエ
ッチングを組み合わせた工程で作製する。まず、図3
(A)のように有機絶縁基板1の表面を粗化した後に、
銅等の無電解めっきにより2μm以下の下地金属膜20
を形成する(下地金属膜形成工程)。次に、図3(B)
のように下地金属膜20上にレジスト膜21を設けかつ
コイル部導体となるべき部分の下地金属膜を露出させる
(レジストで土手を作るレジスト膜形成工程)。そして
図3(C)のように電気めっきにより前記下地金属膜2
0の露出部分に銅等の金属めっき膜22を形成する(電
気めっき工程)。その後、図3(D)のようにレジスト
膜21を全面剥離する(レジスト剥離工程)。レジスト
剥離後、図3(E)のように有機絶縁基板1の全面を金
属めっき膜22間の下地金属膜20が除去されるまでエ
ッチングする(クイックエッチング工程)ことで所要の
アスペクト比(0.5〜3)のコイル部導体が得られ
る。
As shown in FIG. 2A, the first conductor layer 11 is composed of a coil conductor 11a having one or more turns of a spiral conductor and a lead electrode conductor 11b located at both edges of the organic insulating substrate 1. In other words, it is manufactured by a process combining pattern plating and quick etching. First, FIG.
After roughening the surface of the organic insulating substrate 1 as shown in FIG.
Underlying metal film 20 of 2 μm or less by electroless plating of copper or the like
Is formed (underlying metal film forming step). Next, FIG.
A resist film 21 is provided on the underlying metal film 20 as described above, and a portion of the underlying metal film that is to be a coil conductor is exposed (resist film forming step of forming a bank with a resist). Then, as shown in FIG. 3C, the base metal film 2 is formed by electroplating.
A metal plating film 22 of copper or the like is formed on the exposed portions of 0 (electroplating step). Thereafter, as shown in FIG. 3D, the resist film 21 is entirely stripped (resist stripping step). After the resist is stripped, the entire surface of the organic insulating substrate 1 is etched until the underlying metal film 20 between the metal plating films 22 is removed (quick etching step) as shown in FIG. 5-3) The coil conductor is obtained.

【0030】なお、下地金属膜は2μmを超えるとクイ
ックエッチング工程で除去するのに時間がかかり、金属
めっき膜22もエッチングで薄くなるため、好ましくな
い。
If the thickness of the underlying metal film exceeds 2 μm, it takes a long time to remove it in the quick etching step, and the metal plating film 22 is also thinned by etching, which is not preferable.

【0031】コイル部導体11aの厚さ(第1導体層1
1の厚さ)は使用周波数帯域の下限の周波数でのスキン
デプス値の2倍以上を目途にする。使用周波数の下限を
100MHz、導体の種類を銅とすると、上記厚さは1
5μm以上である。
The thickness of the coil conductor 11a (the first conductor layer 1
1) is intended to be at least twice the skin depth value at the lower limit frequency of the operating frequency band. If the lower limit of the operating frequency is 100 MHz and the type of conductor is copper, the above thickness is 1
5 μm or more.

【0032】使用周波数帯域の上限付近の周波数では表
皮効果のために、電流は導体の表面付近に限定される。
よってQはほぼ導体の断面の周囲長さに比例する。従っ
て導体高さは出来るだけ高いほうが好ましいため、コイ
ル部導体11aのアスペクト比が0.5以上とする。但
し、あまり高くなると、コイル部導体11aにおける隣
合う導体巻回部分の間の浮遊容量が増大し、また製造が
困難になるため、アスペクト比3以下とする。アスペク
ト比が0.5未満ではQが低下し、3を超えると浮遊容
量の増加に伴い共振周波数が低下する。コイル部導体1
1aにおける導体間隔は浮遊容量を減らすために出来る
だけ大きい方がよい。しかし、あまり離すとインダクタ
ンス値がとれないので、下限は導体間ギャップのアスペ
クト比が1.5とする。つまり、隣合う導体巻回部分の
間のアスペクト比が1.5以下となるようなパターンと
する。
At frequencies near the upper limit of the operating frequency band, the current is limited near the surface of the conductor due to the skin effect.
Therefore, Q is substantially proportional to the perimeter of the cross section of the conductor. Therefore, since the conductor height is preferably as high as possible, the aspect ratio of the coil conductor 11a is set to 0.5 or more. However, if the height is too high, the stray capacitance between adjacent conductor winding portions in the coil portion conductor 11a increases, and manufacturing becomes difficult. Therefore, the aspect ratio is set to 3 or less. If the aspect ratio is less than 0.5, Q decreases, and if it exceeds 3, the resonance frequency decreases with an increase in stray capacitance. Coil conductor 1
The conductor spacing in 1a is preferably as large as possible to reduce stray capacitance. However, since the inductance value cannot be obtained if the distance is too large, the lower limit is set to 1.5 for the aspect ratio of the gap between conductors. That is, the pattern is such that the aspect ratio between adjacent conductor winding portions is 1.5 or less.

【0033】なお、高周波での電流のコーナー部集中に
よりQが低下する問題があるが、上記のクイックエッチ
ングによると、図3(E)のように、コイル部導体11
a,13aの導体断面の2個以上のコーナーにある程度
の丸めが付けられるため、コーナーが鋭利な角になって
いる場合に比して高周波での電流のコーナー部への偏り
を防止でき、Q値の上昇に寄与できる。
Although there is a problem that Q is reduced due to concentration of a corner portion of a current at a high frequency, according to the above quick etching, as shown in FIG.
Since a certain degree of rounding is applied to two or more corners of the conductor cross-sections a and 13a, it is possible to prevent a current at a high frequency from being biased toward the corners as compared with a case where the corners are sharp. It can contribute to the rise of the value.

【0034】上記した第1導体層11上に図2(B)の
ようなコンタクトホール用の抜きパターン12a,12
bを形成したエポキシ樹脂、変性エポキシ樹脂、ビニル
ベンジル等による層間絶縁樹脂層12を形成する。この
層間絶縁樹脂層12は絶縁樹脂のスクリーン印刷後、フ
ォトリソグラフィー工程により所要パターンとすること
ができる。
On the first conductor layer 11 described above, the contact hole removal patterns 12a and 12a as shown in FIG.
An interlayer insulating resin layer 12 made of epoxy resin, modified epoxy resin, vinyl benzyl, or the like on which b is formed is formed. After the screen printing of the insulating resin, the interlayer insulating resin layer 12 can be formed into a required pattern by a photolithography process.

【0035】その後、コイル部導体13aと有機絶縁基
板1の両縁部に位置する引出電極導体13bとを有する
第2導体層13を第1導体層11と同様の工程で図2
(C)のように形成する。第1及び第2導体層11,1
3は層間絶縁樹脂層12の抜きパターン12a,12b
を通して相互に接続される。つまり、抜きパターン12
a,12bの部分に形成されたコンタクトホール15
a、ビアホール15bで接続される。
Thereafter, the second conductor layer 13 having the coil conductor 13a and the lead electrode conductors 13b located at both edges of the organic insulating substrate 1 is formed in the same process as the first conductor layer 11 as shown in FIG.
It is formed as shown in FIG. First and second conductor layers 11, 1
Reference numeral 3 denotes a cut pattern 12a, 12b of the interlayer insulating resin layer 12.
Interconnected through That is, the cut pattern 12
a, contact holes 15 formed in portions 12a and 12b
a, via hole 15b.

【0036】第1及び第2導体層11,13に使用する
金属材料は銅の他に、銀、金等の比抵抗の小さい材料を
使用することができる。但し、上記パターンめっき及び
クイックエッチングを組み合わせた工程で作製する場合
には、電気めっき可能な材質であることが必要であり、
さらに絶縁材との反応性、マイグレーション性を考慮す
る必要がある。
As the metal material used for the first and second conductor layers 11 and 13, besides copper, a material having a small specific resistance such as silver or gold can be used. However, in the case of manufacturing by a process combining the above pattern plating and quick etching, it is necessary that the material be capable of electroplating,
Further, it is necessary to consider the reactivity with the insulating material and the migration property.

【0037】前記層間絶縁樹脂層12は比誘電率が5以
下で、かつ厚さが20μm以上、100μm以下であ
り、これにより高周波コイルの共振周波数ができる限り
高くなるようにしている。層間絶縁樹脂層12の比誘電
率が5を超えると、基板1と電極14間や、第1及び第
2導体層のコイル導体間、さらには同層のコイル導体に
おける浮遊容量が上昇し、高周波コイルの共振周波数を
高くするのに不利である。また、層間絶縁樹脂層12の
厚さが20μm未満ではやはり浮遊容量の増加を招くの
で好ましくなく、100μmを超えると反りの発生が問
題となる。
The interlayer insulating resin layer 12 has a relative dielectric constant of 5 or less and a thickness of 20 μm or more and 100 μm or less, so that the resonance frequency of the high-frequency coil is made as high as possible. When the relative dielectric constant of the interlayer insulating resin layer 12 exceeds 5, the stray capacitance between the substrate 1 and the electrode 14, between the coil conductors of the first and second conductor layers, and furthermore, in the coil conductor of the same layer increases, and the This is disadvantageous for increasing the resonance frequency of the coil. Further, if the thickness of the interlayer insulating resin layer 12 is less than 20 μm, the stray capacitance also increases, which is not preferable. If the thickness exceeds 100 μm, warpage is a problem.

【0038】前記層間絶縁樹脂層12の厚みは浮遊容
量、とくにコイル部導体相互の浮遊容量を減らすために
出来るだけ大きい方が好ましく、また誘電率の低いもの
が好ましいが、導体層11,13との接着性、加工性、
反り、さらにはステップカバレージの問題を考慮する必
要がある。絶縁樹脂材料については、一般にポリイミド
を使用する場合が多かったが、ステップカバレージが悪
く、また、反りの問題があり、厚く形成することは難し
く、通常は10μmが限度である。エポキシ系の樹脂を
スクリーン印刷法等で形成するとステップカバレージが
良好であり、たとえば導体厚100μm、導体間隔30
μmの場合でも乾燥後にほぼフラットな面になる。比誘
電率も3.5程度のものが利用でき、好適である。また
ビニルベンジルを用いると比誘電率が2.5と小さく共
振周波数を極限まで高くしたい場合には好適である。
The thickness of the interlayer insulating resin layer 12 is preferably as large as possible in order to reduce the stray capacitance, particularly the stray capacitance between the coil conductors, and preferably has a low dielectric constant. Adhesiveness, workability,
It is necessary to consider the problem of warpage and even step coverage. As for the insulating resin material, polyimide is generally used in many cases. However, step coverage is poor, and there is a problem of warpage. Therefore, it is difficult to form the insulating resin material to be thick, and usually, the limit is 10 μm. When an epoxy resin is formed by a screen printing method or the like, good step coverage can be obtained.
Even in the case of μm, the surface becomes almost flat after drying. A material having a relative dielectric constant of about 3.5 can be used, which is preferable. The use of vinylbenzyl is suitable when the relative dielectric constant is as small as 2.5 and the resonance frequency needs to be increased to the maximum.

【0039】なお、第1及び第2導体層11,13のコ
イル部導体11a,13a部分のビアホール15bは接
合部の面積を0.03mm以下とする。これにより、高
周波コイルの磁束の集中する場所に大きな面積の導体が
存在して高周波損失を発生させ、Qを低下させることを
回避し、あわせてスパイラル状パターンの巻き数を十分
多くしている。前記ビアホールの形成に際し、ビルドア
ップ法等を利用して、床面積の小さいブラインドビアを
形成することがコイルの小型化、高性能化には欠かせな
い。
The area of the via hole 15b in the coil conductors 11a and 13a of the first and second conductor layers 11 and 13 is set to 0.03 mm 2 or less. Thus, it is possible to prevent a conductor having a large area from being present at a location where the magnetic flux of the high-frequency coil is concentrated, thereby causing a high-frequency loss and reducing Q, and at the same time, sufficiently increasing the number of turns of the spiral pattern. In forming the via hole, it is indispensable to form a blind via having a small floor area by using a build-up method or the like in order to reduce the size and performance of the coil.

【0040】さらに、有機絶縁基板1の基板面におい
て、多層にわたって中央部に導体のない部分を設け、該
導体のない部分の面積がコイル部導体全体(引出電極導
体は含まない)の配置面積の20%以上となるように設
定している。これは基板中央部に導体が存在することに
起因するQの低下を防止するためである。
Further, on the substrate surface of the organic insulating substrate 1, a portion without a conductor is provided at the center portion over a plurality of layers, and the area of the portion without the conductor is equal to the layout area of the entire coil portion conductor (not including the extraction electrode conductor). It is set to be 20% or more. This is to prevent a decrease in Q due to the presence of the conductor at the center of the substrate.

【0041】図1に示すように、端子電極14は基板1
の側面及び上下面を覆うように形成するが、使用可能な
金属材料としては銅、銀、金等があり、はんだ付け性を
考慮してめっき処理を行う場合がある。端子電極14
は、めっき法の他、蒸着、スパッタリング等の真空製膜
法、さらには金属箔を接着する方法等で形成可能であ
る。図1の例では、端子電極14は基板1への固着強度
を配慮して基板の側部にも形成したが、この場合は基板
1を介しての導体パターンとの浮遊容量が大きくなり、
誘電率の低い基板を採用することが特に重要である。基
板1の比誘電率は5以下、特に4以下の材料が好まし
い。また、この場合、コイルをプリント配線板にはんだ
付けするときの熱応力も大きくなるので、割れに強い有
機材料を使用することが有効である。
As shown in FIG. 1, the terminal electrode 14 is
Are formed so as to cover the side surfaces and the upper and lower surfaces. However, usable metal materials include copper, silver, and gold, and plating may be performed in consideration of solderability. Terminal electrode 14
Can be formed by a vacuum film forming method such as vapor deposition and sputtering, as well as a method of bonding a metal foil, in addition to a plating method. In the example of FIG. 1, the terminal electrode 14 is also formed on the side of the substrate in consideration of the fixing strength to the substrate 1. In this case, the stray capacitance with the conductor pattern via the substrate 1 increases,
It is particularly important to employ a substrate with a low dielectric constant. The relative dielectric constant of the substrate 1 is preferably 5 or less, and particularly preferably 4 or less. Also, in this case, thermal stress when soldering the coil to the printed wiring board increases, so that it is effective to use an organic material that is resistant to cracking.

【0042】この第1の実施の形態によれば、次の通り
の効果を得ることができる。
According to the first embodiment, the following effects can be obtained.

【0043】(1) 使用可能な周波数帯域を広げるため
に、コイル部導体11a,13aの厚みを、銅を使用し
た場合の100MHzでのスキンデプスの2倍以上(1
5μm以上)としており、100MHz〜数GHzの広
い高周波の周波数帯域で使用可能である。
(1) In order to widen the usable frequency band, the thickness of the coil-portion conductors 11a and 13a should be at least twice as large as the skin depth at 100 MHz when copper is used (1).
5 μm or more) and can be used in a wide high-frequency band of 100 MHz to several GHz.

【0044】(2) コイル部導体11a,13aの表面
積を増やすために導体の断面形状を出来るだけ縦長にし
ており、つまり導体断面のアスペクト比が0.5以上と
なっており、高周波でのQ値を高く維持できる。また、
上記に伴い、導体間の浮遊容量が増加するので、線間は
広げ、導体間隔は導体高さの約0.7倍以上、換言すれ
ば、隣合う導体巻回部分の間のアスペクト比を1.5以
下とする。これにより、共振周波数の低下を回避でき
る。
(2) In order to increase the surface area of the coil portion conductors 11a and 13a, the cross-sectional shape of the conductor is made as long as possible, that is, the aspect ratio of the conductor cross section is 0.5 or more, and Q The value can be kept high. Also,
In accordance with the above, the stray capacitance between conductors increases, so that the distance between lines is widened, and the conductor spacing is about 0.7 times or more the conductor height, in other words, the aspect ratio between adjacent conductor winding portions is 1 unit. .5 or less. Thereby, a decrease in the resonance frequency can be avoided.

【0045】(3) 比誘電率が5以下の有機絶縁基板1
を用いることで、端子電極−コイル導体間及び同層のコ
イル導体における浮遊容量を減じ、かつ比誘電率が5以
下で膜厚20乃至100μmの層間絶縁樹脂層12を使
用することで、コイル導体相互間及び同層のコイル導体
における浮遊容量を減じることができる。これらによ
り、共振周波数の向上を図れる。
(3) Organic insulating substrate 1 having a relative dielectric constant of 5 or less
Is used to reduce the stray capacitance between the terminal electrode and the coil conductor and in the coil conductor of the same layer, and to use the interlayer insulating resin layer 12 having a relative dielectric constant of 5 or less and a film thickness of 20 to 100 μm. The stray capacitance between the coil conductors in the same layer and in the same layer can be reduced. As a result, the resonance frequency can be improved.

【0046】(4) 基板面において、導体層の多層にわ
たって導体の無い中央部の面積をコイル部導体全体の配
置面積の20%以上にとることで、Q値を落とさずにイ
ンダクタンス値を上げることができる。
(4) To increase the inductance value without lowering the Q value by setting the area of the central portion where there is no conductor over the multilayer of the conductor layer on the substrate surface to be 20% or more of the arrangement area of the entire coil portion conductor. Can be.

【0047】(5) 複数層の導体層11,13を接合部
の面積が0.03mm以下のビアホールで接続すること
で、高周波での損失増加を回避し、Qの低下を避けるこ
とが可能である。これに反し、導体層間の接続にスルー
ホールを用いるとコイル中央部の磁束の集中する場所に
ショートリングが形成され、コイルの高周波でのQ値を
大幅に低下させる。また床面積が大きいと、特にスパイ
ラル状パターンを形成する際に巻数を増やせない。ビル
ドアップ法等を利用して、床面積の小さいブラインドビ
アを形成することでコイルの小型化高性能化を図り得
る。
(5) By connecting the plurality of conductor layers 11 and 13 with via holes having a joint area of 0.03 mm 2 or less, it is possible to avoid an increase in loss at high frequencies and a decrease in Q. It is. On the other hand, if a through hole is used for connection between the conductor layers, a short ring is formed at the center of the coil where the magnetic flux is concentrated, and the Q value of the coil at a high frequency is greatly reduced. If the floor area is large, the number of windings cannot be increased particularly when a spiral pattern is formed. By forming a blind via with a small floor area using a build-up method or the like, it is possible to reduce the size and improve the performance of the coil.

【0048】(6) 導体を厚くすると形成時のストレス
が問題になるが、ガラス等の誘電率は低いが割れやすい
材質は避け、ビニルベンジル等の低誘電率の有機材料で
構成された基板を用いることで、割れ、欠けを防止する
ことができ、信頼性の向上を図り得る。
(6) When the conductor is thickened, stress at the time of formation becomes a problem. However, avoid a material such as glass which has a low dielectric constant but is easily broken, and use a substrate made of a low dielectric constant organic material such as vinylbenzyl. By using it, cracking and chipping can be prevented, and reliability can be improved.

【0049】(7) 導体を厚くすると層間絶縁樹脂膜1
2の形成時のステップカバレッジが問題になるが、ステ
ップカバレッジの良好なエポキシ系の樹脂、又はビニル
ベンジルを使用することでこの問題を解消できる。
(7) When the conductor is thickened, the interlayer insulating resin film 1
The step coverage at the time of forming 2 becomes a problem, but this problem can be solved by using an epoxy resin or vinyl benzyl having good step coverage.

【0050】(8) クイックエッチング工程でコイル部
導体11a,13aを作製する場合、導体端面の2つの
コーナーは丸くなる(Rが付く)ため、高周波での電流
のコーナー部集中をさけることができ、この点でもQ向
上が可能となる。
(8) When the coil conductors 11a and 13a are manufactured by the quick etching step, the two corners of the conductor end face are rounded (R is added), so that it is possible to avoid the corner concentration of the current at a high frequency. In this respect, the Q can be improved.

【0051】(9) 導体の作製工法をパターンメッキと
クイックエッチングとを組み合わせた方法とすること
で、製造の効率化を図ることができる。従来この組み合
わせは導体部分もエッチングされるので導体層が薄い場
合には不適であった。また導体間隔が導体厚さに比べて
小さい場合はエッチング液の下地導体層への流動性が悪
くなり、下地導体層のエッチングレートが低下して、エ
ッチング時間が長くなることにより、導体層のエッチン
グ量が増大して好ましくなかった。本例の場合は導体層
が厚くまた導体間隔も大きいのでこの組み合わせが都合
が良く、大幅に工程を短縮出来る。
(9) Efficiency of production can be achieved by using a method combining conductor plating and quick etching as a method of producing a conductor. Conventionally, this combination is not suitable when the conductor layer is thin because the conductor portion is also etched. If the conductor spacing is smaller than the conductor thickness, the fluidity of the etchant to the underlying conductor layer deteriorates, the etching rate of the underlying conductor layer decreases, and the etching time is prolonged. The amount was undesirably increased. In the case of this example, since the conductor layer is thick and the conductor interval is large, this combination is convenient and the process can be greatly reduced.

【0052】図4は本発明の第2の実施の形態における
導体層及び層間絶縁樹脂層の構成を示す。この場合、有
機絶縁基板1、図4(A)の第1導体層11及び同図
(B)の層間絶縁樹脂層12までの構成は前述の第1の
実施の形態と同じであるが、同図(C)のように第2導
体層16もスパイラル状パターンを構成するようになっ
ている点が異なる。つまり、第2導体層16は1ターン
以上のスパイラル状導体部を有するコイル部導体16a
と有機絶縁基板1の両縁部に位置する引出電極導体16
bとを有している。なお、その他の構成は前述した第1
の実施の形態と同様であり、同一又は相当部分に同一符
号を付して説明を省略する。
FIG. 4 shows the configuration of the conductor layer and the interlayer insulating resin layer according to the second embodiment of the present invention. In this case, the configuration up to the organic insulating substrate 1, the first conductor layer 11 in FIG. 4A and the interlayer insulating resin layer 12 in FIG. 4B is the same as that of the above-described first embodiment. The difference is that the second conductor layer 16 also forms a spiral pattern as shown in FIG. That is, the second conductor layer 16 is a coil conductor 16a having one or more turns of a spiral conductor.
And the extraction electrode conductors 16 located at both edges of the organic insulating substrate 1
b. Other configurations are the same as those of the first embodiment.
This embodiment is the same as the above embodiment, and the same or corresponding parts are denoted by the same reference numerals and description thereof will be omitted.

【0053】この第2の実施の形態によれば、第1及び
第2導体層11,16共にスパイラル状パターンのコイ
ル部導体を持つため、インダクタンスを大きくすること
が可能である。その他の作用効果は前述の第1の実施の
形態と同じである。
According to the second embodiment, since the first and second conductor layers 11 and 16 each have a coil-shaped conductor having a spiral pattern, the inductance can be increased. Other functions and effects are the same as those of the first embodiment.

【0054】図5は本発明の第3の実施の形態における
導体層及び層間絶縁樹脂層の構成を示す。図5(A)の
第1導体層31、同図(C)の第2導体層33及び同図
(E)の第3導体層35は、それぞれコイル部導体31
a及び引出電極導体31b、コイル部導体33a及び引
出電極導体33b、コイル部導体35a及び引出電極導
体35bを有し、コイル部導体31a,33a,35a
が相互に接続されて全体としてヘリカル状パターンの巻
線導体を構成するものであり、第1層間絶縁樹脂層32
及び第2層間絶縁樹脂層34はコンタクトホール用の抜
きパターン32a,32b,34a,34bを形成した
ものである。第1及び第2導体層31,33は層間絶縁
樹脂層32の抜きパターン32a,32bを通して相互
に接続される。つまり、抜きパターン32a,32bの
部分に形成されたコンタクトホール36a、ビアホール
36bで接続される。同様に、第2及び第3導体層3
3,35は層間絶縁樹脂層34の抜きパターン34a,
34bを通して相互に接続される。つまり、抜きパター
ン34a,34bの部分に形成されたコンタクトホール
37a、ビアホール37bで接続される。
FIG. 5 shows the configuration of the conductor layer and the interlayer insulating resin layer according to the third embodiment of the present invention. The first conductor layer 31 of FIG. 5A, the second conductor layer 33 of FIG. 5C, and the third conductor layer 35 of FIG.
a and the extraction electrode conductor 31b, the coil portion conductor 33a and the extraction electrode conductor 33b, the coil portion conductor 35a and the extraction electrode conductor 35b, and the coil portion conductors 31a, 33a and 35a.
Are connected to each other to form a winding conductor having a helical pattern as a whole.
In addition, the second interlayer insulating resin layer 34 is formed with punched patterns 32a, 32b, 34a, 34b for contact holes. The first and second conductor layers 31 and 33 are connected to each other through the cutout patterns 32 a and 32 b of the interlayer insulating resin layer 32. That is, the connection is made by the contact holes 36a and the via holes 36b formed in the portions of the cutout patterns 32a and 32b. Similarly, the second and third conductor layers 3
Reference numerals 3 and 35 denote removal patterns 34a of the interlayer insulating resin layer 34,
They are interconnected through 34b. That is, the connection is made by the contact holes 37a and the via holes 37b formed in the portions of the cutout patterns 34a and 34b.

【0055】なお、その他の構成は前述の第1の実施の
形態と同様の構成とすることができる。
The other structure can be the same as that of the first embodiment.

【0056】この第3の実施の形態によれば、3層の導
体層31,33,35のコイル部導体31a,33a,
35aがヘリカル巻き(ヘリカル状パターン)の巻線導
体を形成でき、スパイラル巻き(スパイラル状パター
ン)に比較してQを大きくすることができる。ヘリカル
巻きの場合、有機絶縁基板1の基板面において中央部の
導体のない部分の面積がコイル部導体全体の配置面積の
20%以上という条件を必然的に満たすことができる。
According to the third embodiment, the coil conductors 31a, 33a,
35a can form a winding conductor of a helical winding (helical pattern), and Q can be made larger than that of a spiral winding (spiral pattern). In the case of the helical winding, the condition that the area of the central portion of the substrate surface of the organic insulating substrate 1 where there is no conductor is 20% or more of the arrangement area of the entire coil portion conductor can be necessarily satisfied.

【0057】[0057]

【実施例】以下、本発明を実施例で詳述する。The present invention will be described below in detail with reference to examples.

【0058】実施例1 比誘電率が7.2のEガラスクロスを芯材(補強材)と
して、比誘電率が2.5のビニルベンジルを基材として
含浸して図1に示す厚さ0.4mmの有機絶縁基板を作成
した。この時の基板全体の比誘電率は3.2であった。
Example 1 E glass cloth having a relative permittivity of 7.2 was used as a core material (reinforcing material), and vinylbenzyl having a relative permittivity of 2.5 was impregnated with a base material. A 0.4 mm organic insulating substrate was prepared. At this time, the relative dielectric constant of the entire substrate was 3.2.

【0059】この基板表面を粗化した後に無電解銅めっ
き液で厚さ0.5μmの銅層を図3(A)の下地金属膜
20として形成した。この上にスピンコート法でポジレ
ジスト膜を50μmの厚さで形成し、図2(A)のパタ
ーンを露光した。ここで使用したフォトマスクは図の斜
線部が透明になっているものである。このパターンにお
いて、スパイラル部の線幅は30μm、線間隔は40μ
mである。次に所定の現像液で現像を行い図3(B)の
コイル部導体を成膜する部分の下地金属膜20を露出さ
せたレジスト膜21を形成した。続いて光沢硫酸銅めっ
きを40μm行った。図3(D)の如くレジスト膜を剥
離液で剥離した後に、エッチング液で基板全面を1μm
エッチングして、図2(A)のようなスパイラル状パタ
ーンで図3(E)の導体断面のコイル部導体11aと引
出電極導体11bを持つ第1導体層11を形成した。コ
イル部導体11aのアスペクト比は約1.3程度、隣合
う導体巻回部分の間のアスペクト比は約1程度となる。
After the substrate surface was roughened, a copper layer having a thickness of 0.5 μm was formed as a base metal film 20 in FIG. 3A using an electroless copper plating solution. A positive resist film having a thickness of 50 μm was formed thereon by spin coating, and the pattern of FIG. 2A was exposed. The photomask used here has a transparent hatched portion in the figure. In this pattern, the spiral portion has a line width of 30 μm and a line interval of 40 μm.
m. Next, development was performed with a predetermined developing solution to form a resist film 21 exposing the underlying metal film 20 at the portion where the coil conductor of FIG. 3B was formed. Subsequently, 40 μm of bright copper sulfate plating was performed. After the resist film is stripped with a stripping solution as shown in FIG.
By etching, the first conductor layer 11 having the coil section conductor 11a and the lead electrode conductor 11b having the conductor cross section of FIG. 3E was formed in a spiral pattern as shown in FIG. 2A. The aspect ratio of the coil portion conductor 11a is about 1.3, and the aspect ratio between the adjacent conductor winding portions is about 1.

【0060】次に、有機絶縁材料を導体上の厚さが乾燥
後に30μmになるようにスクリーン印刷法で形成し、
その後フォトリソグラフィー工程を経て、図2(B)の
ようなパターンを形成した。ここで絶縁材の比誘電率は
4.3である。また、コイル部導体を接続するためのビ
アホール15bは一辺の長さが70μmのほぼ正方形で
ある。その後第1導体層11と同様の工程を経て、図2
(C)にあるような第2導体層13を形成した。この
後、図1に示すように基板側面部及び裏面部に端子電極
14を形成し、高周波コイルとした。このときのインダ
クタンス値はおよそ10nHであり、1GHzでのQ値
は80であった。
Next, an organic insulating material is formed by screen printing so that the thickness on the conductor is 30 μm after drying.
Thereafter, a pattern as shown in FIG. 2B was formed through a photolithography process. Here, the relative permittivity of the insulating material is 4.3. The via hole 15b for connecting the coil portion conductor is substantially a square having a side length of 70 μm. Thereafter, through the same steps as the first conductor layer 11, FIG.
The second conductor layer 13 as shown in (C) was formed. Thereafter, as shown in FIG. 1, terminal electrodes 14 were formed on the side surface and the back surface of the substrate to obtain a high-frequency coil. At this time, the inductance value was about 10 nH, and the Q value at 1 GHz was 80.

【0061】比較例1 実施例1と同様のコイルで導体の膜厚を10μmにした
ものを作成した。このコイルの1GHzでのQ値は50
であった。コイル部導体のアスペクト比が低いため、表
皮効果によるQの低下が生じていると考えられる。
Comparative Example 1 A coil similar to that of Example 1 except that the thickness of the conductor was 10 μm was prepared. The Q value of this coil at 1 GHz is 50
Met. Since the aspect ratio of the coil portion conductor is low, it is considered that the Q is reduced due to the skin effect.

【0062】実施例2 実施例1において第2導体層のパターンのみを図4
(C)のように変更し、コイルを作成した。第2導体層
16のコイル部導体16aのアスペクト比等の条件は第
1導体層11のコイル部導体11aと同じにした。この
ときのインダクタンス値はおよそ20nHであり、1G
HzでQ値は80であった。第1導体層11及び第2導
体層16共にスパイラル状パターンとすることでインダ
クタンス値を増大させ得ることがわかる。
Embodiment 2 In Embodiment 1, only the pattern of the second conductor layer is shown in FIG.
(C) was changed and the coil was created. Conditions such as the aspect ratio of the coil conductor 16a of the second conductor layer 16 were the same as those of the coil conductor 11a of the first conductor layer 11. The inductance value at this time is about 20 nH, and 1 G
The Q value was 80 at Hz. It is understood that the inductance value can be increased by forming the first conductor layer 11 and the second conductor layer 16 in a spiral pattern.

【0063】比較例2 実施例2と同様の工程で図6(A),(B)のスパイラ
ル状パターンのコイル部導体40,41を基板1の両面
に形成してコイルを作成した。両面のコイル部導体は直
径0.2mmのスルーホール42で接続してある。コイル
部導体の断面形状は実施例2と同じとした。この場合の
コイルのインダクタンス値は実施例2とほとんど同じで
あった。しかるに1GHでのQは60に低下した。これ
は、スルーホールによりコイル中央部に大きなショート
リングが形成され、渦電流損失が増加したことによると
思われる。
Comparative Example 2 In the same process as in Example 2, coil-shaped conductors 40 and 41 having a spiral pattern shown in FIGS. 6A and 6B were formed on both surfaces of the substrate 1 to form a coil. The coil conductors on both sides are connected by a through hole 42 having a diameter of 0.2 mm. The cross-sectional shape of the coil conductor was the same as that of the second embodiment. In this case, the inductance value of the coil was almost the same as in Example 2. However, the Q at 1 GH dropped to 60. This is presumably because a large short ring was formed at the center of the coil due to the through hole, and the eddy current loss increased.

【0064】この比較例2のように、導体層間の接続に
スルーホール(中空部分が形成されるもの)を用いると
コイル中央部の磁束の集中する場所にショートリングが
形成され、コイルの高周波でのQ値を大幅に低下させ
る。また床面積が大きくなり、特にスパイラル状パター
ンを形成する際に巻数を増やせない。またランド部での
導体損失も高周波領域では問題になる。従って、ビルド
アップ法等を利用して、床面積の小さいブラインドビア
を形成することがコイルの小型化、高性能化には欠かせ
ないことがわかる。
When a through hole (having a hollow portion) is used for connection between the conductor layers as in Comparative Example 2, a short ring is formed at the center of the coil where the magnetic flux concentrates, and the high frequency of the coil is reduced. Significantly lowers the Q value. In addition, the floor area increases, and the number of turns cannot be increased particularly when a spiral pattern is formed. Also, conductor loss at the land becomes a problem in the high frequency region. Therefore, it is understood that forming a blind via having a small floor area by using a build-up method or the like is indispensable for miniaturization and high performance of the coil.

【0065】実施例3 図5に示すようなヘリカル巻きコイルを作成した。作成
方法は実施例1の工法を繰り返し使用した。導体の断面
形状、層間絶縁樹脂の種類、膜厚は実施例1と同じであ
る。このコイルのインダクタンス値は10nHであり、
1GHzでのQ値は100であった。1GHzでのQの
増加はコイル部導体の各線条間の渦電流損失が減少した
ことによると考えられる。
Example 3 A helically wound coil as shown in FIG. 5 was prepared. The production method used was the method of Example 1 repeatedly. The cross-sectional shape of the conductor, the type of interlayer insulating resin, and the film thickness are the same as those in the first embodiment. The inductance value of this coil is 10 nH,
The Q value at 1 GHz was 100. It is considered that the increase in Q at 1 GHz is due to a decrease in eddy current loss between the wires of the coil part conductor.

【0066】なお、コイル部導体を形成した各導体層に
おいて、基板中央部に設けられる導体の無い部分の面積
は出来るだけ広くとることがQを大きくするのには好ま
しい。この点では、上記ヘリカル巻きコイルが最も望ま
しい。スパイラル巻きにおいても、大きなインダクタン
ス値を形成する場合は、複数の導体層に分けてスパイラ
ル状のコイル部導体を形成することが、中央部の面積が
広くとれて好ましい。
In each of the conductor layers on which the coil conductors are formed, it is preferable to increase the area of the conductor-free portion provided at the center of the substrate as much as possible in order to increase Q. In this regard, the helical winding coil is most desirable. In the case of forming a large inductance value also in the spiral winding, it is preferable to form the spiral coil conductor by dividing the conductor into a plurality of conductor layers because the area of the central portion can be widened.

【0067】また接合部の面積も、Qを大きくするのに
は出来るだけ小さいほうが良い。有機の基板を使用する
場合の層間の接合は従来スルーホールが多用されるが、
強い磁場の位置にショートリングを形成するので損失が
増大し、これに伴いQ値が減少するので好ましくない
し、また接合部の面積も大きくなりがちである。いわゆ
るビルドアップ工法によりブラインドビアを形成するの
が良い。
Also, the area of the joint should be as small as possible to increase Q. Conventionally, through holes are often used for bonding between layers when using an organic substrate,
Since a short ring is formed at a position of a strong magnetic field, the loss increases, and accordingly, the Q value decreases. This is not preferable, and the area of the junction tends to increase. It is preferable to form blind vias by a so-called build-up method.

【0068】以上本発明の実施の形態及び実施例につい
て説明してきたが、本発明はこれに限定されることなく
請求項の記載の範囲内において各種の変形、変更が可能
なことは当業者には自明であろう。
Although the embodiments and examples of the present invention have been described above, it is to be understood by those skilled in the art that the present invention is not limited to these and various modifications and changes can be made within the scope of the claims. Would be self-evident.

【0069】[0069]

【発明の効果】以上説明したように、本発明によれば、
100MHz〜数GHzの広い高周波の周波数帯域にわ
たり高いQ値を示し、しかも製造容易な高Q高周波コイ
ルを実現できる。
As described above, according to the present invention,
A high-Q high-frequency coil exhibiting a high Q value over a wide high-frequency band of 100 MHz to several GHz and which is easy to manufacture can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る高Q高周波コイルの第1の実施の
形態を示す正断面図である。
FIG. 1 is a front sectional view showing a high-Q high-frequency coil according to a first embodiment of the present invention.

【図2】第1の実施の形態における導体層及び層間絶縁
樹脂層を示す平面図である。
FIG. 2 is a plan view showing a conductor layer and an interlayer insulating resin layer according to the first embodiment.

【図3】第1の実施の形態における各導体層の製造工程
を示す説明図である。
FIG. 3 is an explanatory diagram showing a manufacturing process of each conductor layer in the first embodiment.

【図4】本発明の第2の実施の形態における導体層及び
層間絶縁樹脂層を示す平面図である。
FIG. 4 is a plan view showing a conductor layer and an interlayer insulating resin layer according to a second embodiment of the present invention.

【図5】本発明の第3の実施の形態における導体層及び
層間絶縁樹脂層を示す平面図である
FIG. 5 is a plan view showing a conductor layer and an interlayer insulating resin layer according to a third embodiment of the present invention.

【図6】比較例2を説明する基板両面の平面図である。FIG. 6 is a plan view of both surfaces of a substrate for explaining a comparative example 2;

【符号の説明】[Explanation of symbols]

1 有機絶縁基板 11,13,16,31,33,35 導体層 11a,13a,16a,31a,33a,35a コ
イル部導体 11b,13b,16b,31b,33b,35b 導
体層 12,32,34 層間絶縁樹脂層 14 端子電極 15a,36a,37a コンタクトホール 15b,36b,37b ビアホール
Reference Signs List 1 organic insulating substrate 11, 13, 16, 31, 33, 35 conductor layer 11a, 13a, 16a, 31a, 33a, 35a coil portion conductor 11b, 13b, 16b, 31b, 33b, 35b conductor layer 12, 32, 34 interlayer Insulating resin layer 14 Terminal electrode 15a, 36a, 37a Contact hole 15b, 36b, 37b Via hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 41/04 H01F 41/04 C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 41/04 H01F 41/04 C

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板の少なくとも一面にコイル部導
体を設けてなる高Q高周波コイルであって、前記コイル
部導体の高さが15μm以上であり、該コイル部導体の
アスペクト比が0.5以上、3以下であり、該コイル部
導体における隣合う導体巻回部分の間のアスペクト比が
1.5以下であることを特徴とする高Q高周波コイル。
1. A high-Q high-frequency coil in which a coil conductor is provided on at least one surface of an insulating substrate, wherein the height of the coil conductor is 15 μm or more, and the aspect ratio of the coil conductor is 0.5. The high-Q high-frequency coil according to claim 3, wherein the aspect ratio between adjacent conductor winding portions in the coil portion conductor is 1.5 or less.
【請求項2】 前記コイル部導体が少なくとも2層以上
の導体層であり、該導体層間に介在する層間絶縁層は比
誘電率が5以下の有機材料でその厚さが20μm以上、
100μm以下である請求項1記載の高Q高周波コイ
ル。
2. The coil part conductor is at least two or more conductor layers, and an interlayer insulating layer interposed between the conductor layers is an organic material having a relative dielectric constant of 5 or less and a thickness of 20 μm or more,
2. The high-Q high-frequency coil according to claim 1, which has a thickness of 100 μm or less.
【請求項3】 前記層間絶縁層がエポキシ樹脂もしくは
アクリル変性エポキシ樹脂からなる請求項2記載の高Q
高周波コイル。
3. The high Q according to claim 2, wherein said interlayer insulating layer is made of an epoxy resin or an acrylic-modified epoxy resin.
High frequency coil.
【請求項4】 前記層間絶縁層がビニルベンジルからな
る請求項2記載の高Q高周波コイル。
4. The high-Q high-frequency coil according to claim 2, wherein said interlayer insulating layer is made of vinylbenzyl.
【請求項5】 前記絶縁基板が比誘電率5以下の有機材
料基材もしくはこれに芯材を加えたものからなる請求項
1,2,3又は4記載の高Q高周波コイル。
5. The high-Q high-frequency coil according to claim 1, wherein said insulating substrate is made of an organic material base material having a relative permittivity of 5 or less or a core material added thereto.
【請求項6】 前記基材がビニルベンジルからなる請求
項5記載の高Q高周波コイル。
6. The high-Q high-frequency coil according to claim 5, wherein said base material is made of vinylbenzyl.
【請求項7】 前記コイル部導体が複数の導体層で構成
され、少なくとも1層以上の導体層に1ターン以上のス
パイラル又はヘリカル状導体部が形成されており、かつ
前記絶縁基板の基板面において中央部の導体のない部分
の面積が前記コイル部導体全体の配置面積の20%以上
である請求項1,2,3,4,5又は6記載の高Q高周
波コイル。
7. The coil part conductor is composed of a plurality of conductor layers, at least one or more conductor layers are formed with one or more turns of a spiral or helical conductor part, and on a substrate surface of the insulating substrate. The high-Q high frequency coil according to claim 1, 2, 3, 4, 5, or 6, wherein the area of the central portion where there is no conductor is 20% or more of the arrangement area of the entire coil portion conductor.
【請求項8】 前記導体層間の接続をブラインドビアで
形成し、かつ該ブラインドビアの接合部の面積が0.0
3mm以下である請求項2,3,4,5,6又は7記載
の高Q高周波コイル。
8. The connection between the conductor layers is formed by a blind via, and the area of the junction of the blind via is 0.0.
8. The high-Q high-frequency coil according to claim 2, which is 3 mm2 or less.
【請求項9】 前記コイル部導体は、導体断面の2個以
上のコーナーに丸めが付けられている請求項1,2,
3,4,5,6,7又は8記載の高Q高周波コイル。
9. The coil conductor according to claim 1, wherein two or more corners of the conductor cross section are rounded.
The high-Q high-frequency coil according to 3, 4, 5, 6, 7, or 8.
【請求項10】 絶縁基板上に2μm以下の下地金属層
を形成する下地金属膜形成工程と、前記下地金属膜上に
レジスト膜を設けかつコイル部導体となるべき部分の前
記下地金属膜を露出させるレジスト膜形成工程と、前記
電気めっきにより前記下地金属膜の露出部分に金属めっ
き膜を形成する電気めっき工程と、前記レジスト膜を全
面剥離するレジスト剥離工程と、前記絶縁基板の全面を
前記金属めっき膜間の下地金属膜が除去されるまでエッ
チングするエッチング工程とを備えたことを特徴とする
高Q高周波コイルの製造方法。
10. A base metal film forming step of forming a base metal layer having a thickness of 2 μm or less on an insulating substrate, providing a resist film on the base metal film, and exposing the base metal film in a portion to be a coil conductor. Forming a metal plating film on an exposed portion of the base metal film by electroplating, a resist stripping step of stripping the resist film entirely, and removing the entire surface of the insulating substrate with the metal. An etching step of etching until the underlying metal film between the plating films is removed.
JP2000062047A 2000-03-07 2000-03-07 High-q high-frequency coil and its manufacturing method Pending JP2001250723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062047A JP2001250723A (en) 2000-03-07 2000-03-07 High-q high-frequency coil and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062047A JP2001250723A (en) 2000-03-07 2000-03-07 High-q high-frequency coil and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001250723A true JP2001250723A (en) 2001-09-14

Family

ID=18582108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062047A Pending JP2001250723A (en) 2000-03-07 2000-03-07 High-q high-frequency coil and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001250723A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066595A (en) * 2004-08-26 2006-03-09 Dowa Mining Co Ltd Metal-ceramic bonding substrate and manufacturing method thereof
US7126452B2 (en) 2003-11-14 2006-10-24 Canon Kabushiki Kaisha Wiring structure, and fabrication method of the same
JP2009049035A (en) * 2007-08-13 2009-03-05 Fuji Electric Device Technology Co Ltd Isolation transformer and power converting device
JPWO2014171140A1 (en) * 2013-04-18 2017-02-16 パナソニックIpマネジメント株式会社 Common mode noise filter and manufacturing method thereof
CN110391064A (en) * 2018-04-18 2019-10-29 株式会社村田制作所 Common mode choke
WO2024098596A1 (en) * 2022-11-10 2024-05-16 昆山玛冀电子有限公司 Miniature inductance coil and manufacturing method therefor
US12112873B2 (en) 2020-09-28 2024-10-08 Tdk Corporation Coil component

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126452B2 (en) 2003-11-14 2006-10-24 Canon Kabushiki Kaisha Wiring structure, and fabrication method of the same
JP2006066595A (en) * 2004-08-26 2006-03-09 Dowa Mining Co Ltd Metal-ceramic bonding substrate and manufacturing method thereof
JP4565249B2 (en) * 2004-08-26 2010-10-20 Dowaメタルテック株式会社 Metal-ceramic bonding substrate and manufacturing method thereof
JP2009049035A (en) * 2007-08-13 2009-03-05 Fuji Electric Device Technology Co Ltd Isolation transformer and power converting device
JPWO2014171140A1 (en) * 2013-04-18 2017-02-16 パナソニックIpマネジメント株式会社 Common mode noise filter and manufacturing method thereof
CN110391064A (en) * 2018-04-18 2019-10-29 株式会社村田制作所 Common mode choke
JP2019192676A (en) * 2018-04-18 2019-10-31 株式会社村田製作所 Common mode choke coil
CN110391064B (en) * 2018-04-18 2021-06-15 株式会社村田制作所 Common mode choke coil
JP7021599B2 (en) 2018-04-18 2022-02-17 株式会社村田製作所 Common mode choke coil
US11282630B2 (en) 2018-04-18 2022-03-22 Murata Manufacturing Co., Ltd. Common mode choke coil
US12112873B2 (en) 2020-09-28 2024-10-08 Tdk Corporation Coil component
WO2024098596A1 (en) * 2022-11-10 2024-05-16 昆山玛冀电子有限公司 Miniature inductance coil and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US20220028602A1 (en) Inductor component
US10840009B2 (en) Inductor component
US7453343B2 (en) Thin-film type common-mode choke coil
CN108615598B (en) Inductor
JP2007503716A (en) Ultra-thin flexible inductor
CN110544574B (en) Coil electronic component
JP2018050015A (en) Inductor component and manufacturing method thereof
JP2005159223A (en) Thin film common mode filter and array thereof
JP2006313946A (en) Thin film type common mode choke coil and common mode choke coil array
JP2021027228A (en) Inductor component and electronic component
JP2982193B2 (en) Manufacturing method of high frequency coil
JP2001250723A (en) High-q high-frequency coil and its manufacturing method
JP2004260008A (en) Common mode choke coil, its manufacturing method and common mode choke coil array
JP2002110425A (en) High-frequency coil
JP2003332141A (en) Chip common mode choke coil
JP4052434B2 (en) Multilayer substrate and manufacturing method thereof
JP2002353031A (en) High frequency coil
JP2002280219A (en) Inductor and/or circuit wiring near in vicinity and its manufacturing method
JP7367713B2 (en) inductor parts
JP2002184638A (en) Method for manufacturing high-frequency coil
JP2002324962A (en) Inductor built-in printed wiring board and its manufacturing method
JP2009182188A (en) Chip coil and method for manufacturing same
JP2001250722A (en) High-frequency coil
JP2002124415A (en) Printed circuit board for high frequency and its manufacturing method
JP2002134322A (en) High-q high-frequency coil and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050615

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

A131 Notification of reasons for refusal

Effective date: 20060628

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20061025

Free format text: JAPANESE INTERMEDIATE CODE: A02