JP2001247399A - METHOD FOR PRODUCING HIGH-RESISTANCE GaN CRYSTAL LAYER - Google Patents

METHOD FOR PRODUCING HIGH-RESISTANCE GaN CRYSTAL LAYER

Info

Publication number
JP2001247399A
JP2001247399A JP2000058829A JP2000058829A JP2001247399A JP 2001247399 A JP2001247399 A JP 2001247399A JP 2000058829 A JP2000058829 A JP 2000058829A JP 2000058829 A JP2000058829 A JP 2000058829A JP 2001247399 A JP2001247399 A JP 2001247399A
Authority
JP
Japan
Prior art keywords
gan crystal
crystal layer
doped
resistance
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000058829A
Other languages
Japanese (ja)
Other versions
JP4429459B2 (en
Inventor
Kiyoteru Yoshida
清輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2000058829A priority Critical patent/JP4429459B2/en
Priority to US09/770,526 priority patent/US20010015437A1/en
Publication of JP2001247399A publication Critical patent/JP2001247399A/en
Application granted granted Critical
Publication of JP4429459B2 publication Critical patent/JP4429459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing high-resistance GaN crystal layers effective by application during the production of a GaN-based field-effect transistor(FET). SOLUTION: This method for producing high-resistance GaN crystal layers 2A and 2B comprises doping at least one kind of a p-type impurity selected from the group of C, Mg and Zn when the GaN crystal is epitaxially grown. Specifically, Mg or Zn is doped in a hydrogen atmosphere at >=600 deg.C temperature when the GaN crystal is epitaxially grown or the Mg or Zn is doped at >=1×1017 cm-3 concentration and C is then doped at >=1×1018 cm-3 concentration when the GaN crystal is epitaxially grown.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高抵抗GaN結晶層
の製造方法に関し、更に詳しくは、GaN系材料を用い
たMES(金属−半導体)型の電界効果トランジスタ
(FET)の製造時に適用して好適な高抵抗GaN結晶
層の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a high-resistance GaN crystal layer, and more particularly to a method of manufacturing a metal-semiconductor (MES) type field effect transistor (FET) using a GaN-based material. The present invention relates to a suitable method for manufacturing a high-resistance GaN crystal layer.

【0002】[0002]

【従来の技術】最近、化合物半導体材料を用いたMES
型FETの開発研究が盛んに進められている。その場
合、用いる化合物半導体としては、通常、GaAs系の
材料が主流になっていて、一般に、次のようにして製造
される。まず、半絶縁性のGaN単結晶基板の上に、例
えばMOCVD法により、半絶縁性のアンドープのGa
Asから成るバッファ層を成膜し、更にその上に、例え
ばTMG(トリメチルガリウム)またはTMA(トリメ
チルアルミニウム)とアルシン(AsH3)を用い、ま
たn型ドーパントとしてシランガスを用いてn型のAl
GaAs結晶層を活性層として成膜しFET層構造を形
成する。
2. Description of the Related Art Recently, a MES using a compound semiconductor material has been developed.
Research on the development of type FETs has been actively pursued. In this case, as a compound semiconductor to be used, a GaAs-based material is usually mainly used, and is generally manufactured as follows. First, a semi-insulating undoped Ga is deposited on a semi-insulating GaN single crystal substrate by, for example, MOCVD.
Forming a buffer layer made of As, further thereon, for example, TMG (trimethyl gallium) or TMA using (trimethyl aluminum) and arsine (AsH 3), also of the n-type by using a silane gas as an n-type dopant Al
An FET layer structure is formed by forming a GaAs crystal layer as an active layer.

【0003】ついで、このn型AlGaAs層の上に、
例えばプラズマCVD法でSiO2などを堆積させたの
ち、そこにフォトリソグラフィーと化学エッチング処理
などを組み合わせて、ソース電極、ドレイン電極、およ
びゲート電極を形成するためのパターニングを行い、ソ
ース電極とドレイン電極の形成箇所には例えばAuGe
/Niを蒸着し、またゲート電極の形成箇所にはAlを
蒸着して目的とするFETが製造される。
Then, on this n-type AlGaAs layer,
For example, after depositing SiO 2 or the like by a plasma CVD method, patterning for forming a source electrode, a drain electrode, and a gate electrode is performed by combining photolithography and chemical etching, and the like. Is formed, for example, by AuGe
/ Ni is vapor-deposited, and Al is vapor-deposited on the portion where the gate electrode is to be formed, whereby the target FET is manufactured.

【0004】ところで、GaN系材料を用いたFET
は、高温特性が良好であって、400℃近い温度環境下
においても熱暴走することなく動作するということが知
られている。このGaN系FETを製造する場合、Ga
N系材料では、GaAs結晶の場合のように大口径の単
結晶基板を製造することが困難であるため、単結晶基板
の上に所定のGaN系結晶をエピタキシャル成長させて
所望するFET層構造を形成することができない。
By the way, FETs using GaN-based materials
Is known to have good high-temperature characteristics and operate without thermal runaway even in a temperature environment close to 400 ° C. When manufacturing this GaN-based FET, Ga
Since it is difficult to manufacture a large-diameter single-crystal substrate as in the case of a GaAs crystal with an N-based material, a desired GaN-based crystal is epitaxially grown on the single-crystal substrate to form a desired FET layer structure. Can not do it.

【0005】そのため、GaN系のFETを製造する際
には、基板としてサファイア,SiC,GaAsなどの
異種類の材料から成る基板を用い、その上に例えばMO
CVD法で、一旦、アンドープのGaN結晶層を成膜
し、ついでその上にn型のGaN結晶層を活性層として
成膜し、全体のFET層構造を形成している。上記した
FET層構造を有するGaN系FETが動作するために
は、n型活性層の下に位置するアンドープのGaN結晶
層は高抵抗になっていることが必要である。
Therefore, when manufacturing a GaN-based FET, a substrate made of a different kind of material such as sapphire, SiC, or GaAs is used as a substrate, and for example, an MO
An undoped GaN crystal layer is formed once by the CVD method, and then an n-type GaN crystal layer is formed thereon as an active layer to form an entire FET layer structure. In order for the GaN-based FET having the above-described FET layer structure to operate, the undoped GaN crystal layer located below the n-type active layer needs to have high resistance.

【0006】しかしながら、上記したFET層構造を形
成するとき、アンドープのGaN結晶中には窒素空孔に
基づく欠陥が多数存在し、この欠陥がn型のキャリアと
して働くため、一般に、n型で低抵抗化してしまうとい
う問題が生ずる。このように、従来は、MOCVD法で
GaN系FETを製造する場合、活性層の下に位置する
アンドープGaN結晶層を高抵抗化する技術は確立され
ていないのが現状である。
However, when the above-described FET layer structure is formed, a large number of defects based on nitrogen vacancies exist in the undoped GaN crystal, and these defects serve as n-type carriers. There is a problem that the resistance is increased. As described above, conventionally, when manufacturing a GaN-based FET by the MOCVD method, a technique for increasing the resistance of the undoped GaN crystal layer located below the active layer has not been established at present.

【0007】[0007]

【発明が解決しようとする課題】本発明はGaN系材料
でFET層構造を形成するときの上記した問題を解決
し、GaN系FETの製造に適用して有効な高抵抗Ga
N結晶層の製造方法の提供を目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problem when forming an FET layer structure with a GaN-based material, and provides a high-resistance Ga that is effective when applied to the manufacture of GaN-based FETs.
An object is to provide a method for manufacturing an N crystal layer.

【0008】[0008]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、GaN結晶をエピタキシャ
ル成長させる際に、C,Mg,Znの群から選ばれる少
なくとも1種のp型不純物をドーピングすることを特徴
とする高抵抗GaN結晶層の製造方法が提供される。
In order to achieve the above object, according to the present invention, at the time of epitaxially growing a GaN crystal, at least one p-type impurity selected from the group consisting of C, Mg and Zn is doped. A method for manufacturing a high-resistance GaN crystal layer is provided.

【0009】具体的には、GaN結晶をエピタキシャル
成長させる際に、温度600℃以上の水素雰囲気中でM
gまたはZnをドーピングする高抵抗GaN結晶層の製
造方法や、GaN結晶をエピタキシャル成長させる際
に、MgまたはZnを1×10 17cm-3以上の濃度でドー
ピングしたのち、更にCを1×1018cm-3以上の濃度で
ドーピングする高抵抗GaN結晶層の製造方法が提供さ
れる。
Specifically, a GaN crystal is epitaxially
At the time of growth, M
Production of high-resistance GaN crystal layer doped with g or Zn
Manufacturing method and epitaxial growth of GaN crystal
And 1 × 10 Mg or Zn 17cm-3Dough at above concentration
After pinging, further add C to 1 × 1018cm-3With the above concentration
Provided is a method of manufacturing a high-resistance GaN crystal layer to be doped
It is.

【0010】[0010]

【発明の実施の形態】GaN結晶には窒素空孔などが多
数存在していて、それがn型不純物と同様の働きをする
ために、無添加のGaN結晶は通常のn型導電性を示
す。この導電性を打ち消すために、本発明方法では、エ
ピタキシャル成長法でGaN結晶層を成膜する際に、そ
こに、C,Mg,Znの1種または2種以上から成るp
型不純物を予めドーピングしておき、そのp型不純物に
より、上記欠陥に基づくn型の残留キャリアを打ち消
す。もって当該GaN結晶層のn型化を抑制してその高
抵抗化が図られる。すなわち、形成されたFET層構造
において、n型の活性層の下に位置するGaN結晶層は
高抵抗になっている。
BEST MODE FOR CARRYING OUT THE INVENTION A GaN crystal has a large number of nitrogen vacancies and the like, and acts like an n-type impurity. Therefore, an undoped GaN crystal exhibits normal n-type conductivity. . In order to cancel this conductivity, according to the method of the present invention, when a GaN crystal layer is formed by an epitaxial growth method, a p-type layer composed of one or more of C, Mg and Zn is formed thereon.
A type impurity is previously doped, and the n-type residual carrier based on the defect is canceled by the p-type impurity. As a result, the GaN crystal layer is prevented from becoming n-type, and its resistance is increased. That is, in the formed FET layer structure, the GaN crystal layer located under the n-type active layer has a high resistance.

【0011】具体的には、次のような態様が実施され
る。第1の態様はMgまたはZnを用いた場合であっ
て、この場合には、GaN結晶層の成膜を高温のH2
囲気中で行い、そのときに、MgまたはZnをドーピン
グする。この過程で、MgまたはZnはHと結合し、そ
の結果、成膜されたGaN結晶層は電気的に不活性とな
る。すなわち、高抵抗化する。このときの温度は600
℃以上に設定される。600℃より低い温度の場合は、
上記した結合反応が充分に進行しないからである。この
ような状態にあるGaN結晶層の上にn型の活性層を成
膜しても、当該GaN結晶層がn型化して低抵抗化する
ことは起こりづらくなる。
Specifically, the following embodiment is implemented. The first embodiment is a case where Mg or Zn is used. In this case, the GaN crystal layer is formed in a high-temperature H 2 atmosphere, and at that time, Mg or Zn is doped. In this process, Mg or Zn bonds with H, and as a result, the formed GaN crystal layer becomes electrically inactive. That is, the resistance is increased. The temperature at this time is 600
Set to ℃ or higher. For temperatures below 600 ° C,
This is because the above-described binding reaction does not proceed sufficiently. Even if an n-type active layer is formed on the GaN crystal layer in such a state, it is unlikely that the GaN crystal layer becomes n-type and has low resistance.

【0012】第2の態様はCを用いた場合であって、こ
の場合には、GaN結晶層の成膜時にMgまたはZnを
ドーピングして成膜されるGaN結晶層におけるキャリ
ア濃度を低減し、その状態で更に高濃度のCをドーピン
グする。ドーピングされたCはGaN結晶層中に深い準
位を形成するのでGaN結晶層は高抵抗化する。この場
合、GaN結晶層のキャリア濃度を補償するためにドー
ピングする上記MgまたはZnの濃度は1×1017cm―
3以上に設定される。濃度がこれより高くなると、Ga
N結晶層はp型傾向を示しはじめるからである。また、
Cのドーピング濃度は1×1018cm―3以上に設定され
る。濃度がこれより低くなると、GaN結晶層中の準位
は浅くなって、高抵抗化の実現が困難になるからであ
る。
The second mode is a case where C is used. In this case, the carrier concentration in the GaN crystal layer formed by doping Mg or Zn during the formation of the GaN crystal layer is reduced, In this state, a higher concentration of C is doped. Since the doped C forms a deep level in the GaN crystal layer, the resistance of the GaN crystal layer is increased. In this case, the concentration of Mg or Zn doped to compensate for the carrier concentration of the GaN crystal layer is 1 × 10 17 cm −
Set to 3 or more. At higher concentrations, Ga
This is because the N crystal layer starts to show a p-type tendency. Also,
The doping concentration of C is set to 1 × 10 18 cm −3 or more. If the concentration is lower than this, the level in the GaN crystal layer becomes shallow, and it is difficult to realize high resistance.

【0013】[0013]

【実施例】本発明の実施例を、GaN系FETの製造に
適用した事例として以下に説明する。まず、図1で示し
たように、例えばサファイアから成る半絶縁性基板1の
上に、MBE法で、ジメチルヒドラジン(3×10-6To
rr),金属Ga(5×10-7Torr),金属Mg(1×1
-8Torr)、およびH2(5×10-8Torr)を用い、成
長温度640℃で厚み2nmのGaN結晶層をバッファ層
2Aとして成膜し、更にその上に、厚み1μmのMgド
ープGaN結晶層(Mgのドーピング濃度:1×1017
cm-3)2Bを成膜した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below as an example applied to the manufacture of a GaN-based FET. First, as shown in FIG. 1, a dimethylhydrazine (3 × 10 −6 To
rr), metal Ga (5 × 10 −7 Torr), metal Mg (1 × 1
0 -8 Torr) and H 2 (5 × 10 -8 Torr), a GaN crystal layer having a thickness of 2 nm is formed as a buffer layer 2A at a growth temperature of 640 ° C., and a 1 μm thick Mg-doped layer is further formed thereon. GaN crystal layer (Mg doping concentration: 1 × 10 17
cm -3 ) 2B was deposited.

【0014】ついで、MgドープGaN結晶層2Bにジ
メチルヒドラジン(3×10-6Torr)を照射しながら温
度640℃で10分間保持した。更に、金属Ga(8×
10-7Torr)とアンモニア(5×10-5Torr)を用い、
またn型ドーパントとしてSi(1×10-9Torr)を用
い、成長温度850℃でMgドープGaN結晶層2Bの
上に厚み30nmのn型のSiドープGaN結晶層3を成
膜した。このときにn型キャリア濃度が2×1017cm-3
になることは、事前にホール測定で確認してある。
Then, the Mg-doped GaN crystal layer 2B was maintained at a temperature of 640 ° C. for 10 minutes while being irradiated with dimethylhydrazine (3 × 10 −6 Torr). Furthermore, metal Ga (8 ×
10 -7 Torr) and ammonia (5 × 10 -5 Torr)
Using Si (1 × 10 −9 Torr) as an n-type dopant, a 30-nm thick n-type Si-doped GaN crystal layer 3 was formed on the Mg-doped GaN crystal layer 2B at a growth temperature of 850 ° C. At this time, the n-type carrier concentration is 2 × 10 17 cm −3.
Has been confirmed in advance by Hall measurement.

【0015】ついで、SiドープGaN結晶層3の全面
にSiO2膜を成膜し、更にその上にフォトレジストを
塗布したのちパターニングし、ついでフッ酸を用いてS
iO 2膜に部分的に窓あけを行った。そして、エレクト
ロサイクロトロンレゾナンス(ECR)プラズマ装置を
用い、メタン,アルゴン,水素の混合ガスをプラズマ化
したエッチングガスを前記した窓あけ部分に照射して当
該部分にMgドープGaN結晶層2Bの表面が表出する
までのエッチング処理を行ったのち、残りのSiO2
の全体をエッチング除去した。
Next, the entire surface of the Si-doped GaN crystal layer 3
SiOTwoA film is formed, and a photoresist is further formed on it.
After applying, patterning is performed, and then S
iO TwoThe membrane was partially windowed. And the elect
Cyclotron Resonance (ECR) plasma equipment
Use to convert a mixed gas of methane, argon, and hydrogen into plasma
Irradiated the etched gas into the window opening
The surface of the Mg-doped GaN crystal layer 2B appears at this portion.
After the etching process up toTwofilm
Was removed by etching.

【0016】ついで、SiドープGaN結晶層3の上
に、フォトレジストを用いてソース電極とドレイン電極
の形成箇所をパターニングしたのち、その形成箇所にT
i/Alを真空蒸着してソース電極とドレイン電極を形
成し、それ以外の部分のTi/Alはリフトオフした。
更に、フォトレジストを用いてゲート電極の形成箇所を
パターニングし、その形成箇所にTi/Ptを真空蒸着
してゲート電極を形成し、それ以外のTi/Ptをリフ
トオフすることにより、図3で示したFETを製造し
た。
Next, after forming a source electrode and a drain electrode on the Si-doped GaN crystal layer 3 by using a photoresist, patterning is performed.
i / Al was vacuum-deposited to form a source electrode and a drain electrode, and other portions of Ti / Al were lifted off.
Further, a portion where the gate electrode is to be formed is patterned by using a photoresist, Ti / Pt is vacuum-deposited on the portion where the gate electrode is formed, and a gate electrode is formed, and other Ti / Pt is lifted off, as shown in FIG. Manufactured FETs.

【0017】このFETの電気的特性の評価を行った。
ソース電極とドレイン電極間のコンタクト抵抗は1×1
-6Ω・cm2であり、両電極はオーミック接触している
ことが確認された。また、ゲート電極は整流特性を示
し、そのときの立ち上がり電圧は1.1Vであった。更
に、FETの飽和特性も良好であった。
The electrical characteristics of this FET were evaluated.
Contact resistance between source electrode and drain electrode is 1 × 1
0 −6 Ω · cm 2 , and it was confirmed that both electrodes were in ohmic contact. The gate electrode exhibited rectification characteristics, and the rising voltage at that time was 1.1 V. Further, the saturation characteristics of the FET were also good.

【0018】このようなことから、本発明方法を適用し
て成膜したバッファ層2AとMgドープGaN結晶層は
いずれも高抵抗であることを確認することができる。な
お、上記実施例では、GaN結晶層の成膜時における窒
素源としてはジメチルヒドラジンとアンモニア、Ga源
としては金属Gaを用いたが、プラズマ窒素,ラジカル
窒素を用いることもでき、またGa源としてはTEGや
TMGを用いることもできる。
From the above, it can be confirmed that both the buffer layer 2A and the Mg-doped GaN crystal layer formed by applying the method of the present invention have high resistance. In the above embodiment, dimethylhydrazine and ammonia were used as the nitrogen source when the GaN crystal layer was formed, and metal Ga was used as the Ga source. However, plasma nitrogen and radical nitrogen can also be used. May use TEG or TMG.

【0019】更に、上記実施例では、エピタキシャル成
長法としてMBE法を採用したが、MOCVD法でも同
様の結果を得ることができた。なお、上記実施例のMg
ドープGaN結晶層2Bのキャリア濃度は1×1015cm
-3以下であった。そして、Mgをドーピングしないとき
に成膜されるアンドープGaN結晶層のキャリア濃度は
1×1017cm-3であった。
Further, in the above embodiment, the MBE method was employed as the epitaxial growth method, but the same result could be obtained by the MOCVD method. Note that the Mg in the above embodiment
The carrier concentration of the doped GaN crystal layer 2B is 1 × 10 15 cm
-3 or less. The carrier concentration of the undoped GaN crystal layer formed when not doped with Mg was 1 × 10 17 cm −3 .

【0020】すなわち、Mgを1×1017cm-3の濃度で
ドーピングすることにより、上記アンドープGaN結晶
層のキャリアは打ち消されている。そこで、このMgド
ープGaN結晶層2B(キャリア濃度:1×1015cm-3
以下)に更にCを1×1018cm-3ドーピングしてFET
層構造を形成し、それを用いて実施例と同様にFETを
製造し、その電気的特性を評価したところ、上記した実
施例の場合と同様の結果が得られた。
That is, by doping Mg at a concentration of 1 × 10 17 cm −3 , the carriers of the undoped GaN crystal layer are canceled. Therefore, the Mg-doped GaN crystal layer 2B (carrier concentration: 1 × 10 15 cm −3)
FET) doped with C at 1 × 10 18 cm -3
A layer structure was formed, and a FET was manufactured using the layer structure in the same manner as in the example. The electrical characteristics of the FET were evaluated. As a result, the same result as in the above example was obtained.

【0021】[0021]

【発明の効果】以上の説明で明らかなように、本発明方
法によれば、高抵抗のGaN結晶層を製造することがで
きる。そして、本発明を適用することにより、高温動作
が可能なGaN系のFETを製造することができるの
で、その工業的価値は大である。
As is apparent from the above description, according to the method of the present invention, a high-resistance GaN crystal layer can be manufactured. By applying the present invention, a GaN-based FET capable of operating at a high temperature can be manufactured, so that its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法で、基板の上に高抵抗のGaN結晶
層を成膜した状態を示す断面図である。
FIG. 1 is a cross-sectional view showing a state in which a high-resistance GaN crystal layer is formed on a substrate by the method of the present invention.

【図2】本発明による高抵抗GaN結晶層の上にSiド
ープGaN結晶層を成膜した状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state in which a Si-doped GaN crystal layer is formed on a high-resistance GaN crystal layer according to the present invention.

【図3】GaN系FETの断面構造を示す断面図であ
る。
FIG. 3 is a cross-sectional view illustrating a cross-sectional structure of a GaN-based FET.

【符号の説明】[Explanation of symbols]

1 半絶縁性基板(サファイア) 2A バッファ層 2B MgドープGaN結晶層 3 SiドープGaN結晶層 Reference Signs List 1 semi-insulating substrate (sapphire) 2A buffer layer 2B Mg-doped GaN crystal layer 3 Si-doped GaN crystal layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 29/812 Fターム(参考) 4G077 AA03 BE15 DA05 EB01 EB02 ED06 EF01 EF03 HA06 SA04 5F045 AA04 AA05 AB14 AC08 AC09 AC19 AD10 AD12 AE05 AE07 AF04 AF09 BB16 CA06 DA53 DA59 DA66 5F102 GB01 GC01 GD01 GJ10 GK04 GL04 GS01 GT03 HC01 HC11 HC16 5F103 AA05 DD01 GG01 HH03 HH04 JJ01 KK01 KK07 KK10 LL08 RR05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H01L 29/812 F-term (Reference) 4G077 AA03 BE15 DA05 EB01 EB02 ED06 EF01 EF03 HA06 SA04 5F045 AA04 AA05 AB14 AC08 AC09 AC19 AD10 AD12 AE05 AE07 AF04 AF09 BB16 CA06 DA53 DA59 DA66 5F102 GB01 GC01 GD01 GJ10 GK04 GL04 GS01 GT03 HC01 HC11 HC16 5F103 AA05 DD01 GG01 HH03 HH04 JJ01 KK01 KK07 KK10 LL08 RR05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 GaN結晶をエピタキシャル成長させる
際に、C,Mg,Znの群から選ばれる少なくとも1種
のp型不純物をドーピングすることを特徴とする高抵抗
GaN結晶層の製造方法。
1. A method for manufacturing a high-resistance GaN crystal layer, comprising doping at least one type of p-type impurity selected from the group consisting of C, Mg, and Zn when epitaxially growing a GaN crystal.
【請求項2】 GaN結晶をエピタキシャル成長させる
際に、温度600℃以上の水素雰囲気中でMgまたはZ
nをドーピングする請求項1の高抵抗GaN結晶層の製
造方法。
2. When epitaxially growing a GaN crystal, Mg or Z in a hydrogen atmosphere at a temperature of 600 ° C. or higher.
The method for producing a high-resistance GaN crystal layer according to claim 1, wherein n is doped.
【請求項3】 GaN結晶をエピタキシャル成長させる
際に、MgまたはZnを1×1017cm-3以上の濃度でド
ーピングしたのち、更にCを1×1018cm-3以上の濃度
でドーピングする請求項1の高抵抗GaN結晶層の製造
方法。
3. When epitaxially growing a GaN crystal, after doping Mg or Zn at a concentration of 1 × 10 17 cm −3 or more, C is further doped at a concentration of 1 × 10 18 cm −3 or more. 1. A method for manufacturing a high-resistance GaN crystal layer.
JP2000058829A 2000-01-25 2000-03-03 Method for producing high-resistance GaN crystal layer Expired - Lifetime JP4429459B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000058829A JP4429459B2 (en) 2000-03-03 2000-03-03 Method for producing high-resistance GaN crystal layer
US09/770,526 US20010015437A1 (en) 2000-01-25 2001-01-25 GaN field-effect transistor, inverter device, and production processes therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000058829A JP4429459B2 (en) 2000-03-03 2000-03-03 Method for producing high-resistance GaN crystal layer

Publications (2)

Publication Number Publication Date
JP2001247399A true JP2001247399A (en) 2001-09-11
JP4429459B2 JP4429459B2 (en) 2010-03-10

Family

ID=18579365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058829A Expired - Lifetime JP4429459B2 (en) 2000-01-25 2000-03-03 Method for producing high-resistance GaN crystal layer

Country Status (1)

Country Link
JP (1) JP4429459B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003098708A1 (en) * 2001-06-06 2005-09-22 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオンAMMONO Sp.zo.o. Phosphor single crystal substrate, manufacturing method thereof, and nitride semiconductor device using the same
JP2006135274A (en) * 2004-10-06 2006-05-25 New Japan Radio Co Ltd Nitride semiconductor device and its manufacturing method
JP2007518266A (en) * 2004-01-07 2007-07-05 クリー インコーポレイテッド Co-doping to control the Fermi level in semi-insulating III-nitrides
US7459718B2 (en) 2005-03-23 2008-12-02 Nichia Corporation Field effect transistor
US7750355B2 (en) 2001-10-26 2010-07-06 Ammono Sp. Z O.O. Light emitting element structure using nitride bulk single crystal layer
US7811380B2 (en) 2002-12-11 2010-10-12 Ammono Sp. Z O.O. Process for obtaining bulk mono-crystalline gallium-containing nitride
US7871843B2 (en) 2002-05-17 2011-01-18 Ammono. Sp. z o.o. Method of preparing light emitting device
US7905957B2 (en) 2004-11-26 2011-03-15 Ammono Sp. Z.O.O. Method of obtaining bulk single crystals by seeded growth
JP2011068548A (en) * 2009-08-31 2011-04-07 Ngk Insulators Ltd GROUP 3B NITRIDE CRYSTAL IN WHICH Zn IS DOPED, MANUFACTURING METHOD THEREFOR, AND ELECTRONIC DEVICE
US8110848B2 (en) 2002-12-11 2012-02-07 Ammono Sp. Z O.O. Substrate for epitaxy and method of preparing the same
US8398767B2 (en) 2004-06-11 2013-03-19 Ammono S.A. Bulk mono-crystalline gallium-containing nitride and its application
US20140030549A1 (en) * 2007-03-14 2014-01-30 Ricoh Company, Ltd. Group iii element nitride crystal producing method and group-iii element nitride crystal

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003098708A1 (en) * 2001-06-06 2005-09-22 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオンAMMONO Sp.zo.o. Phosphor single crystal substrate, manufacturing method thereof, and nitride semiconductor device using the same
US7744697B2 (en) 2001-06-06 2010-06-29 Nichia Corporation Bulk monocrystalline gallium nitride
US7750355B2 (en) 2001-10-26 2010-07-06 Ammono Sp. Z O.O. Light emitting element structure using nitride bulk single crystal layer
US7935550B2 (en) 2001-10-26 2011-05-03 Ammono Sp. Z O.O. Method of forming light-emitting device using nitride bulk single crystal layer
US7871843B2 (en) 2002-05-17 2011-01-18 Ammono. Sp. z o.o. Method of preparing light emitting device
US8110848B2 (en) 2002-12-11 2012-02-07 Ammono Sp. Z O.O. Substrate for epitaxy and method of preparing the same
US7811380B2 (en) 2002-12-11 2010-10-12 Ammono Sp. Z O.O. Process for obtaining bulk mono-crystalline gallium-containing nitride
JP2007518266A (en) * 2004-01-07 2007-07-05 クリー インコーポレイテッド Co-doping to control the Fermi level in semi-insulating III-nitrides
US8398767B2 (en) 2004-06-11 2013-03-19 Ammono S.A. Bulk mono-crystalline gallium-containing nitride and its application
JP2006135274A (en) * 2004-10-06 2006-05-25 New Japan Radio Co Ltd Nitride semiconductor device and its manufacturing method
US7905957B2 (en) 2004-11-26 2011-03-15 Ammono Sp. Z.O.O. Method of obtaining bulk single crystals by seeded growth
US7459718B2 (en) 2005-03-23 2008-12-02 Nichia Corporation Field effect transistor
US20140030549A1 (en) * 2007-03-14 2014-01-30 Ricoh Company, Ltd. Group iii element nitride crystal producing method and group-iii element nitride crystal
JP2011068548A (en) * 2009-08-31 2011-04-07 Ngk Insulators Ltd GROUP 3B NITRIDE CRYSTAL IN WHICH Zn IS DOPED, MANUFACTURING METHOD THEREFOR, AND ELECTRONIC DEVICE

Also Published As

Publication number Publication date
JP4429459B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP2817995B2 (en) III-V compound semiconductor heterostructure substrate and III-V compound heterostructure semiconductor device
JP3428962B2 (en) GaN based high mobility transistor
JP3398044B2 (en) Field effect transistor
US20010015437A1 (en) GaN field-effect transistor, inverter device, and production processes therefor
JPH10223901A (en) Field effect transistor and manufacture of the same
JP2007165431A (en) Field effect transistor, and method of fabrication same
JP2000277724A (en) Field-effect transistor and semiconductor device equipped with the same and manufacture of the same
JP3449116B2 (en) Semiconductor device
JP3439111B2 (en) High mobility transistor
JP4429459B2 (en) Method for producing high-resistance GaN crystal layer
JPH09330916A (en) Method for etching nitride compound semiconductor and manufacture of semiconductor device
JP2003100778A (en) Semiconductor device
JP2003243424A (en) Heterojunction field effect transistor
JP3423598B2 (en) GaN-based insulated gate transistor and method of forming the same
JPH10173203A (en) Mis field effect transistor
JP3843884B2 (en) Bipolar transistor manufacturing method
JP3180734B2 (en) Method for manufacturing field effect transistor
JP3615068B2 (en) Heterojunction nitride semiconductor device
JP2003086784A (en) GaN-BASED SEMICONDUCTOR DEVICE
JP2000174031A (en) Heterojunction bipolar transistor
JPH10214999A (en) Iii-v nitride semiconductor device
JP3298436B2 (en) Semiconductor device
JPH1056023A (en) Semiconductor device
JP3164150B2 (en) Method for manufacturing field effect transistor
JP2000323491A (en) Heterojunction bipolar transistor and manufacture thereof

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4429459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term