JP4429459B2 - Method for producing high-resistance GaN crystal layer - Google Patents

Method for producing high-resistance GaN crystal layer Download PDF

Info

Publication number
JP4429459B2
JP4429459B2 JP2000058829A JP2000058829A JP4429459B2 JP 4429459 B2 JP4429459 B2 JP 4429459B2 JP 2000058829 A JP2000058829 A JP 2000058829A JP 2000058829 A JP2000058829 A JP 2000058829A JP 4429459 B2 JP4429459 B2 JP 4429459B2
Authority
JP
Japan
Prior art keywords
crystal layer
gan crystal
doped
gan
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000058829A
Other languages
Japanese (ja)
Other versions
JP2001247399A (en
Inventor
清輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2000058829A priority Critical patent/JP4429459B2/en
Priority to US09/770,526 priority patent/US20010015437A1/en
Publication of JP2001247399A publication Critical patent/JP2001247399A/en
Application granted granted Critical
Publication of JP4429459B2 publication Critical patent/JP4429459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高抵抗GaN結晶層の製造方法に関し、更に詳しくは、GaN系材料を用いたMES(金属−半導体)型の電界効果トランジスタ(FET)の製造時に適用して好適な高抵抗GaN結晶層の製造方法に関する。
【0002】
【従来の技術】
最近、化合物半導体材料を用いたMES型FETの開発研究が盛んに進められている。その場合、用いる化合物半導体としては、通常、GaAs系の材料が主流になっていて、一般に、次のようにして製造される。
まず、半絶縁性のGaN単結晶基板の上に、例えばMOCVD法により、半絶縁性のアンドープのGaAsから成るバッファ層を成膜し、更にその上に、例えばTMG(トリメチルガリウム)またはTMA(トリメチルアルミニウム)とアルシン(AsH3)を用い、またn型ドーパントとしてシランガスを用いてn型のAlGaAs結晶層を活性層として成膜しFET層構造を形成する。
【0003】
ついで、このn型AlGaAs層の上に、例えばプラズマCVD法でSiO2などを堆積させたのち、そこにフォトリソグラフィーと化学エッチング処理などを組み合わせて、ソース電極、ドレイン電極、およびゲート電極を形成するためのパターニングを行い、ソース電極とドレイン電極の形成箇所には例えばAuGe/Niを蒸着し、またゲート電極の形成箇所にはAlを蒸着して目的とするFETが製造される。
【0004】
ところで、GaN系材料を用いたFETは、高温特性が良好であって、400℃近い温度環境下においても熱暴走することなく動作するということが知られている。
このGaN系FETを製造する場合、GaN系材料では、GaAs結晶の場合のように大口径の単結晶基板を製造することが困難であるため、単結晶基板の上に所定のGaN系結晶をエピタキシャル成長させて所望するFET層構造を形成することができない。
【0005】
そのため、GaN系のFETを製造する際には、基板としてサファイア,SiC,GaAsなどの異種類の材料から成る基板を用い、その上に例えばMOCVD法で、一旦、アンドープのGaN結晶層を成膜し、ついでその上にn型のGaN結晶層を活性層として成膜し、全体のFET層構造を形成している。
上記したFET層構造を有するGaN系FETが動作するためには、n型活性層の下に位置するアンドープのGaN結晶層は高抵抗になっていることが必要である。
【0006】
しかしながら、上記したFET層構造を形成するとき、アンドープのGaN結晶中には窒素空孔に基づく欠陥が多数存在し、この欠陥がn型のキャリアとして働くため、一般に、n型で低抵抗化してしまうという問題が生ずる。
このように、従来は、MOCVD法でGaN系FETを製造する場合、活性層の下に位置するアンドープGaN結晶層を高抵抗化する技術は確立されていないのが現状である。
【0007】
【発明が解決しようとする課題】
本発明はGaN系材料でFET層構造を形成するときの上記した問題を解決し、GaN系FETの製造に適用して有効な高抵抗GaN結晶層の製造方法の提供を目的とする。
【0008】
【課題を解決するための手段】
上記した目的を達成するために、本発明においては、GaN結晶をエピタキシャル成長させる際に、C,Mg,Znの群から選ばれる少なくとも1種のp型不純物をドーピングすることを特徴とする高抵抗GaN結晶層の製造方法が提供される。
【0009】
具体的には、GaN結晶をエピタキシャル成長させる際に、温度600℃以上の水素雰囲気中でMgまたはZnをドーピングする高抵抗GaN結晶層の製造方法や、GaN結晶をエピタキシャル成長させる際に、MgまたはZnを1×1017cm-3以上の濃度でドーピングしたのち、更にCを1×1018cm-3以上の濃度でドーピングする高抵抗GaN結晶層の製造方法が提供される。
【0010】
【発明の実施の形態】
GaN結晶には窒素空孔などが多数存在していて、それがn型不純物と同様の働きをするために、無添加のGaN結晶は通常のn型導電性を示す。この導電性を打ち消すために、本発明方法では、エピタキシャル成長法でGaN結晶層を成膜する際に、そこに、C,Mg,Znの1種または2種以上から成るp型不純物を予めドーピングしておき、そのp型不純物により、上記欠陥に基づくn型の残留キャリアを打ち消す。もって当該GaN結晶層のn型化を抑制してその高抵抗化が図られる。すなわち、形成されたFET層構造において、n型の活性層の下に位置するGaN結晶層は高抵抗になっている。
【0011】
具体的には、次のような態様が実施される。
第1の態様はMgまたはZnを用いた場合であって、この場合には、GaN結晶層の成膜を高温のH2雰囲気中で行い、そのときに、MgまたはZnをドーピングする。この過程で、MgまたはZnはHと結合し、その結果、成膜されたGaN結晶層は電気的に不活性となる。すなわち、高抵抗化する。このときの温度は600℃以上に設定される。600℃より低い温度の場合は、上記した結合反応が充分に進行しないからである。このような状態にあるGaN結晶層の上にn型の活性層を成膜しても、当該GaN結晶層がn型化して低抵抗化することは起こりづらくなる。
【0012】
第2の態様はCを用いた場合であって、この場合には、GaN結晶層の成膜時にMgまたはZnをドーピングして成膜されるGaN結晶層におけるキャリア濃度を低減し、その状態で更に高濃度のCをドーピングする。ドーピングされたCはGaN結晶層中に深い準位を形成するのでGaN結晶層は高抵抗化する。
この場合、GaN結晶層のキャリア濃度を補償するためにドーピングする上記MgまたはZnの濃度は1×1017cm―3以上に設定される。濃度がこれより高くなると、GaN結晶層はp型傾向を示しはじめるからである。また、Cのドーピング濃度は1×1018cm―3以上に設定される。濃度がこれより低くなると、GaN結晶層中の準位は浅くなって、高抵抗化の実現が困難になるからである。
【0013】
【実施例】
本発明の実施例を、GaN系FETの製造に適用した事例として以下に説明する。
まず、図1で示したように、例えばサファイアから成る半絶縁性基板1の上に、MBE法で、ジメチルヒドラジン(3×10-6Torr),金属Ga(5×10-7Torr),金属Mg(1×10-8Torr)、およびH2(5×10-8Torr)を用い、成長温度640℃で厚み2nmのGaN結晶層をバッファ層2Aとして成膜し、更にその上に、厚み1μmのMgドープGaN結晶層(Mgのドーピング濃度:1×1017cm-3)2Bを成膜した。
【0014】
ついで、MgドープGaN結晶層2Bにジメチルヒドラジン(3×10-6Torr)を照射しながら温度640℃で10分間保持した。
更に、金属Ga(8×10-7Torr)とアンモニア(5×10-5Torr)を用い、またn型ドーパントとしてSi(1×10-9Torr)を用い、成長温度850℃でMgドープGaN結晶層2Bの上に厚み30nmのn型のSiドープGaN結晶層3を成膜した。このときにn型キャリア濃度が2×1017cm-3になることは、事前にホール測定で確認してある。
【0015】
ついで、SiドープGaN結晶層3の全面にSiO2膜を成膜し、更にその上にフォトレジストを塗布したのちパターニングし、ついでフッ酸を用いてSiO2膜に部分的に窓あけを行った。
そして、エレクトロサイクロトロンレゾナンス(ECR)プラズマ装置を用い、メタン,アルゴン,水素の混合ガスをプラズマ化したエッチングガスを前記した窓あけ部分に照射して当該部分にMgドープGaN結晶層2Bの表面が表出するまでのエッチング処理を行ったのち、残りのSiO2膜の全体をエッチング除去した。
【0016】
ついで、SiドープGaN結晶層3の上に、フォトレジストを用いてソース電極とドレイン電極の形成箇所をパターニングしたのち、その形成箇所にTi/Alを真空蒸着してソース電極とドレイン電極を形成し、それ以外の部分のTi/Alはリフトオフした。
更に、フォトレジストを用いてゲート電極の形成箇所をパターニングし、その形成箇所にTi/Ptを真空蒸着してゲート電極を形成し、それ以外のTi/Ptをリフトオフすることにより、図3で示したFETを製造した。
【0017】
このFETの電気的特性の評価を行った。
ソース電極とドレイン電極間のコンタクト抵抗は1×10-6Ω・cm2であり、両電極はオーミック接触していることが確認された。また、ゲート電極は整流特性を示し、そのときの立ち上がり電圧は1.1Vであった。更に、FETの飽和特性も良好であった。
【0018】
このようなことから、本発明方法を適用して成膜したバッファ層2AとMgドープGaN結晶層はいずれも高抵抗であることを確認することができる。
なお、上記実施例では、GaN結晶層の成膜時における窒素源としてはジメチルヒドラジンとアンモニア、Ga源としては金属Gaを用いたが、プラズマ窒素,ラジカル窒素を用いることもでき、またGa源としてはTEGやTMGを用いることもできる。
【0019】
更に、上記実施例では、エピタキシャル成長法としてMBE法を採用したが、MOCVD法でも同様の結果を得ることができた。
なお、上記実施例のMgドープGaN結晶層2Bのキャリア濃度は1×1015cm-3以下であった。そして、Mgをドーピングしないときに成膜されるアンドープGaN結晶層のキャリア濃度は1×1017cm-3であった。
【0020】
すなわち、Mgを1×1017cm-3の濃度でドーピングすることにより、上記アンドープGaN結晶層のキャリアは打ち消されている。
そこで、このMgドープGaN結晶層2B(キャリア濃度:1×1015cm-3以下)に更にCを1×1018cm-3ドーピングしてFET層構造を形成し、それを用いて実施例と同様にFETを製造し、その電気的特性を評価したところ、上記した実施例の場合と同様の結果が得られた。
【0021】
【発明の効果】
以上の説明で明らかなように、本発明方法によれば、高抵抗のGaN結晶層を製造することができる。そして、本発明を適用することにより、高温動作が可能なGaN系のFETを製造することができるので、その工業的価値は大である。
【図面の簡単な説明】
【図1】本発明方法で、基板の上に高抵抗のGaN結晶層を成膜した状態を示す断面図である。
【図2】本発明による高抵抗GaN結晶層の上にSiドープGaN結晶層を成膜した状態を示す断面図である。
【図3】GaN系FETの断面構造を示す断面図である。
【符号の説明】
1 半絶縁性基板(サファイア)
2A バッファ層
2B MgドープGaN結晶層
3 SiドープGaN結晶層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a high-resistance GaN crystal layer, and more specifically, a high-resistance GaN crystal layer suitable for application in the manufacture of MES (metal-semiconductor) type field effect transistors (FETs) using a GaN-based material. It relates to the manufacturing method.
[0002]
[Prior art]
Recently, research and development of MES type FETs using compound semiconductor materials has been actively conducted. In that case, as a compound semiconductor to be used, a GaAs-based material is usually mainstream, and is generally manufactured as follows.
First, a buffer layer made of semi-insulating undoped GaAs is formed on a semi-insulating GaN single crystal substrate by, for example, MOCVD, and further, for example, TMG (trimethyl gallium) or TMA (trimethyl). An FET layer structure is formed by forming an n-type AlGaAs crystal layer as an active layer using aluminum) and arsine (AsH 3 ) and using silane gas as an n-type dopant.
[0003]
Next, after depositing SiO 2 or the like on the n-type AlGaAs layer by, for example, plasma CVD, a source electrode, a drain electrode, and a gate electrode are formed by combining photolithography and chemical etching treatment there. Therefore, for example, AuGe / Ni is vapor-deposited at the location where the source electrode and drain electrode are formed, and Al is vapor-deposited at the location where the gate electrode is formed, thereby producing the target FET.
[0004]
Incidentally, it is known that an FET using a GaN-based material has good high temperature characteristics and operates without thermal runaway even in a temperature environment close to 400 ° C.
When manufacturing this GaN-based FET, it is difficult to manufacture a large-diameter single-crystal substrate with a GaN-based material, as in the case of GaAs crystals, so a predetermined GaN-based crystal is epitaxially grown on the single-crystal substrate. Thus, the desired FET layer structure cannot be formed.
[0005]
Therefore, when manufacturing a GaN-based FET, a substrate made of a different kind of material such as sapphire, SiC, GaAs or the like is used as a substrate, and an undoped GaN crystal layer is once formed thereon by MOCVD, for example. Then, an n-type GaN crystal layer is formed thereon as an active layer to form the entire FET layer structure.
In order for the GaN-based FET having the FET layer structure described above to operate, the undoped GaN crystal layer located under the n-type active layer needs to have a high resistance.
[0006]
However, when the above FET layer structure is formed, there are many defects based on nitrogen vacancies in the undoped GaN crystal, and these defects function as n-type carriers. Problem arises.
Thus, in the past, when manufacturing a GaN-based FET by the MOCVD method, there is currently no established technique for increasing the resistance of the undoped GaN crystal layer located under the active layer.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems when forming a FET layer structure with a GaN-based material, and to provide a method for manufacturing a high-resistance GaN crystal layer that is effective when applied to the manufacture of a GaN-based FET.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, when epitaxially growing a GaN crystal, at least one p-type impurity selected from the group of C, Mg, and Zn is doped. A method for producing a crystalline layer is provided.
[0009]
Specifically, when epitaxially growing a GaN crystal, a method of manufacturing a high-resistance GaN crystal layer in which Mg or Zn is doped in a hydrogen atmosphere at a temperature of 600 ° C. or higher, or when epitaxially growing a GaN crystal, Mg or Zn is added. A method of manufacturing a high-resistance GaN crystal layer is provided in which doping is performed at a concentration of 1 × 10 17 cm −3 or more, and then C is further doped at a concentration of 1 × 10 18 cm −3 or more.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The GaN crystal has many nitrogen vacancies and the like, and it functions in the same manner as an n-type impurity, so that the additive-free GaN crystal exhibits normal n-type conductivity. In order to cancel this conductivity, in the method of the present invention, when a GaN crystal layer is formed by an epitaxial growth method, a p-type impurity composed of one or more of C, Mg, and Zn is previously doped therein. The n-type residual carriers based on the defects are canceled out by the p-type impurities. Therefore, the GaN crystal layer can be prevented from becoming n-type and its resistance can be increased. That is, in the formed FET layer structure, the GaN crystal layer located under the n-type active layer has a high resistance.
[0011]
Specifically, the following modes are implemented.
In the first embodiment, Mg or Zn is used. In this case, the GaN crystal layer is formed in a high-temperature H 2 atmosphere, and at that time, Mg or Zn is doped. In this process, Mg or Zn combines with H, and as a result, the deposited GaN crystal layer becomes electrically inactive. That is, the resistance is increased. The temperature at this time is set to 600 ° C. or higher. This is because the bonding reaction described above does not proceed sufficiently when the temperature is lower than 600 ° C. Even if an n-type active layer is formed on the GaN crystal layer in such a state, it is difficult for the GaN crystal layer to become n-type and have a low resistance.
[0012]
The second mode is the case of using C. In this case, the carrier concentration in the GaN crystal layer formed by doping Mg or Zn during the formation of the GaN crystal layer is reduced, and in this state Further, a high concentration of C is doped. Since the doped C forms a deep level in the GaN crystal layer, the resistance of the GaN crystal layer is increased.
In this case, the concentration of Mg or Zn doped for compensating the carrier concentration of the GaN crystal layer is set to 1 × 10 17 cm −3 or more. This is because when the concentration is higher than this, the GaN crystal layer starts to show a p-type tendency. The doping concentration of C is set to 1 × 10 18 cm −3 or more. This is because when the concentration is lower than this, the level in the GaN crystal layer becomes shallow, and it becomes difficult to achieve high resistance.
[0013]
【Example】
Examples of the present invention will be described below as examples applied to the manufacture of GaN-based FETs.
First, as shown in FIG. 1, dimethylhydrazine (3 × 10 −6 Torr), metal Ga (5 × 10 −7 Torr), metal, and the like are formed on a semi-insulating substrate 1 made of, for example, sapphire by MBE. Using Mg (1 × 10 −8 Torr) and H 2 (5 × 10 −8 Torr), a GaN crystal layer having a thickness of 2 nm is formed as a buffer layer 2A at a growth temperature of 640 ° C., and a thickness is further formed thereon. A 1 μm Mg-doped GaN crystal layer (Mg doping concentration: 1 × 10 17 cm −3 ) 2B was formed.
[0014]
Subsequently, the Mg-doped GaN crystal layer 2B was held at 640 ° C. for 10 minutes while being irradiated with dimethylhydrazine (3 × 10 −6 Torr).
Further, using metal Ga (8 × 10 −7 Torr) and ammonia (5 × 10 −5 Torr), and using Si (1 × 10 −9 Torr) as an n-type dopant, Mg-doped GaN at a growth temperature of 850 ° C. An n-type Si-doped GaN crystal layer 3 having a thickness of 30 nm was formed on the crystal layer 2B. At this time, the n-type carrier concentration of 2 × 10 17 cm −3 has been confirmed in advance by Hall measurement.
[0015]
Next, a SiO 2 film was formed on the entire surface of the Si-doped GaN crystal layer 3, and a photoresist was applied thereon, followed by patterning, and then a window was partially opened in the SiO 2 film using hydrofluoric acid. .
Then, using an electrocyclotron resonance (ECR) plasma apparatus, an etching gas obtained by converting a mixed gas of methane, argon, and hydrogen into plasma is irradiated to the above-described window opening portion, and the surface of the Mg-doped GaN crystal layer 2B is exposed to the portion. After performing the etching process until the removal, the entire remaining SiO 2 film was removed by etching.
[0016]
Next, the source electrode and the drain electrode are patterned on the Si-doped GaN crystal layer 3 using a photoresist, and Ti / Al is vacuum-deposited to form the source electrode and the drain electrode. The other parts of Ti / Al were lifted off.
Further, by patterning the formation portion of the gate electrode using a photoresist, forming a gate electrode by vacuum-depositing Ti / Pt at the formation portion, and lifting off the other Ti / Pt, as shown in FIG. FET was manufactured.
[0017]
The electrical characteristics of this FET were evaluated.
The contact resistance between the source electrode and the drain electrode was 1 × 10 −6 Ω · cm 2 , and it was confirmed that both electrodes were in ohmic contact. The gate electrode exhibited rectification characteristics, and the rising voltage at that time was 1.1V. Further, the saturation characteristics of the FET were also good.
[0018]
Thus, it can be confirmed that both the buffer layer 2A and the Mg-doped GaN crystal layer formed by applying the method of the present invention have high resistance.
In the above embodiment, dimethylhydrazine and ammonia are used as the nitrogen source when forming the GaN crystal layer, and metal Ga is used as the Ga source. However, plasma nitrogen and radical nitrogen can also be used, and the Ga source can be used as the Ga source. TEG or TMG can also be used.
[0019]
Furthermore, in the above embodiment, the MBE method was adopted as the epitaxial growth method, but the same result could be obtained by the MOCVD method.
Note that the carrier concentration of the Mg-doped GaN crystal layer 2B of the above example was 1 × 10 15 cm −3 or less. The carrier concentration of the undoped GaN crystal layer formed when not doped with Mg was 1 × 10 17 cm −3 .
[0020]
That is, by doping Mg with a concentration of 1 × 10 17 cm −3 , the carriers of the undoped GaN crystal layer are canceled.
Therefore, this Mg-doped GaN crystal layer 2B (carrier concentration: 1 × 10 15 cm −3 or less) is further doped with C 1 × 10 18 cm −3 to form an FET layer structure, which is used in the examples and Similarly, when an FET was manufactured and its electrical characteristics were evaluated, the same result as in the above-described example was obtained.
[0021]
【The invention's effect】
As is apparent from the above description, according to the method of the present invention, a high-resistance GaN crystal layer can be manufactured. By applying the present invention, a GaN-based FET capable of high-temperature operation can be manufactured, and its industrial value is great.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a state in which a high-resistance GaN crystal layer is formed on a substrate by the method of the present invention.
FIG. 2 is a cross-sectional view showing a state in which a Si-doped GaN crystal layer is formed on a high-resistance GaN crystal layer according to the present invention.
FIG. 3 is a cross-sectional view showing a cross-sectional structure of a GaN-based FET.
[Explanation of symbols]
1 Semi-insulating substrate (sapphire)
2A Buffer layer 2B Mg-doped GaN crystal layer 3 Si-doped GaN crystal layer

Claims (2)

GaN結晶をエピタキシャル成長させる際に、MgまたはZnを1×1017cm−3以上の濃度でドーピングし、更に前記GaN結晶にCを1×1018cm−3以上の濃度でドーピングすることを特長とする高抵抗GaN結晶層の製造方法。When epitaxially growing a GaN crystal, Mg or Zn is doped at a concentration of 1 × 10 17 cm −3 or more, and C is further doped at a concentration of 1 × 10 18 cm −3 or more. A method for manufacturing a high-resistance GaN crystal layer. 温度600℃以上の水素雰囲気中で前記MgまたはZnをドーピングする請求項1の高抵抗GaN結晶層の製造方法。  The method for producing a high-resistance GaN crystal layer according to claim 1, wherein the Mg or Zn is doped in a hydrogen atmosphere at a temperature of 600 ° C or higher.
JP2000058829A 2000-01-25 2000-03-03 Method for producing high-resistance GaN crystal layer Expired - Lifetime JP4429459B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000058829A JP4429459B2 (en) 2000-03-03 2000-03-03 Method for producing high-resistance GaN crystal layer
US09/770,526 US20010015437A1 (en) 2000-01-25 2001-01-25 GaN field-effect transistor, inverter device, and production processes therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000058829A JP4429459B2 (en) 2000-03-03 2000-03-03 Method for producing high-resistance GaN crystal layer

Publications (2)

Publication Number Publication Date
JP2001247399A JP2001247399A (en) 2001-09-11
JP4429459B2 true JP4429459B2 (en) 2010-03-10

Family

ID=18579365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058829A Expired - Lifetime JP4429459B2 (en) 2000-01-25 2000-03-03 Method for producing high-resistance GaN crystal layer

Country Status (1)

Country Link
JP (1) JP4429459B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI277666B (en) * 2001-06-06 2007-04-01 Ammono Sp Zoo Process and apparatus for obtaining bulk mono-crystalline gallium-containing nitride
WO2003043150A1 (en) 2001-10-26 2003-05-22 Ammono Sp.Zo.O. Light emitting element structure using nitride bulk single crystal layer
US20060138431A1 (en) 2002-05-17 2006-06-29 Robert Dwilinski Light emitting device structure having nitride bulk single crystal layer
ATE445722T1 (en) 2002-12-11 2009-10-15 Ammono Sp Zoo STENCIL-LIKE SUBSTRATE AND METHOD FOR PRODUCING IT
JP4824313B2 (en) 2002-12-11 2011-11-30 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン Process for obtaining a gallium-containing nitride bulk single crystal, a process for eliminating impurities from the obtained crystal, and a process for producing a substrate comprising a gallium-containing nitride bulk single crystal
US7135715B2 (en) * 2004-01-07 2006-11-14 Cree, Inc. Co-doping for fermi level control in semi-insulating Group III nitrides
JP5014804B2 (en) 2004-06-11 2012-08-29 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン Bulk single crystal gallium-containing nitride and its use
JP2006135274A (en) * 2004-10-06 2006-05-25 New Japan Radio Co Ltd Nitride semiconductor device and its manufacturing method
PL371405A1 (en) 2004-11-26 2006-05-29 Ammono Sp.Z O.O. Method for manufacture of volumetric monocrystals by their growth on crystal nucleus
US7459718B2 (en) 2005-03-23 2008-12-02 Nichia Corporation Field effect transistor
JP4821007B2 (en) * 2007-03-14 2011-11-24 国立大学法人大阪大学 Method for producing group III element nitride crystal and group III element nitride crystal
JP5039813B2 (en) * 2009-08-31 2012-10-03 日本碍子株式会社 Zn-doped group 3B nitride crystal, method for producing the same, and electronic device

Also Published As

Publication number Publication date
JP2001247399A (en) 2001-09-11

Similar Documents

Publication Publication Date Title
JP2817995B2 (en) III-V compound semiconductor heterostructure substrate and III-V compound heterostructure semiconductor device
EP1655766B1 (en) Substrate for growth of nitride semiconductor
JP3428962B2 (en) GaN based high mobility transistor
KR101553721B1 (en) Epitaxial substrate for field effect transistor and field effect transistor
JP4224737B2 (en) Semiconductor element
US20010015437A1 (en) GaN field-effect transistor, inverter device, and production processes therefor
US7635877B2 (en) Nitride semiconductor device and manufacturing method thereof
JP3398044B2 (en) Field effect transistor
JP2007165431A (en) Field effect transistor, and method of fabrication same
JPH10223901A (en) Field effect transistor and manufacture of the same
JP4429459B2 (en) Method for producing high-resistance GaN crystal layer
JP3449116B2 (en) Semiconductor device
JP2000294768A (en) Semiconductor element and manufacture thereof
JP3423598B2 (en) GaN-based insulated gate transistor and method of forming the same
JP3753068B2 (en) Method for manufacturing epitaxial wafer for field effect transistor
JP5746927B2 (en) Semiconductor substrate, semiconductor device, and method of manufacturing semiconductor substrate
JP3547320B2 (en) GaN-based compound semiconductor device
JP3152152B2 (en) Compound semiconductor epitaxial wafer
JP3180734B2 (en) Method for manufacturing field effect transistor
JP6765589B1 (en) Epitaxial wafer, semiconductor device and method for manufacturing epitaxial wafer
JP4514252B2 (en) GaN-based semiconductor device manufacturing method
JPH10214999A (en) Iii-v nitride semiconductor device
JP2000277440A (en) Nitride iii-v compound semiconductor crystal film, semiconductor device, and semiconductor laser using the same
JP2000174034A (en) Heterojunction nitride semiconductor device
JPH06267867A (en) Crystal growing method of compound semiconductor and formation of ohmic contact using same

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4429459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term