JP3423598B2 - GaN-based insulated gate transistor and method of forming the same - Google Patents

GaN-based insulated gate transistor and method of forming the same

Info

Publication number
JP3423598B2
JP3423598B2 JP32763297A JP32763297A JP3423598B2 JP 3423598 B2 JP3423598 B2 JP 3423598B2 JP 32763297 A JP32763297 A JP 32763297A JP 32763297 A JP32763297 A JP 32763297A JP 3423598 B2 JP3423598 B2 JP 3423598B2
Authority
JP
Japan
Prior art keywords
layer
gan
substrate
semiconductor layer
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32763297A
Other languages
Japanese (ja)
Other versions
JPH11163334A (en
Inventor
清輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP32763297A priority Critical patent/JP3423598B2/en
Publication of JPH11163334A publication Critical patent/JPH11163334A/en
Application granted granted Critical
Publication of JP3423598B2 publication Critical patent/JP3423598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、GaN系絶縁ゲー
ト型トランジスタに関し、更に詳細には、高温で安定し
て動作するGaN系絶縁ゲート型トランジスタに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a GaN-based insulated gate transistor, and more particularly to a GaN-based insulated gate transistor that operates stably at high temperatures.

【0002】[0002]

【従来の技術】金属ゲート−ゲート絶縁膜−半導体層か
らなる絶縁ゲート型トランジスタ、即ちMISFET
は、従来、シリコン系材料を使用したものが多く開発、
実用化されている。シリコン系MOSFETは、MIS
FETの一種であって、例えば半導体層にSi基板を、
絶縁層にSiO2 膜を、及び金属電極にポリシリコン電
極を使用している。シリコン系MOSFET40を形成
する場合には、例えば、図5に示すように、p型Si半
導体を基板42として用い、ソース/ドレイン電極形成
領域の半導体基板層にn型不純物を拡散させてn+ 反転
層44を形成する。次いで、半導体基板全面を酸化し
て、半導体基板面にSiO2 膜46を形成する。次に、
フォトリソグラフィ及びエッチング技術を用いて、Si
2 膜をパターニングして、ゲート電極形成領域にのみ
SiO2 膜を残し、ソース、ドレイン電極を形成領域の
SiO2 膜を除去する。このようなパターニングを行っ
た後、SiO2 膜46上にソース電極48を、反転層4
4上にそれぞれドレイン電極50及びゲート電極52を
形成する。
2. Description of the Related Art Insulated gate type transistor composed of metal gate-gate insulating film-semiconductor layer, that is, MISFET
In the past, many developed using silicon materials,
It has been put to practical use. Silicon MOSFET is MIS
A type of FET, for example, a Si substrate on the semiconductor layer,
A SiO 2 film is used for the insulating layer and a polysilicon electrode is used for the metal electrode. When the silicon-based MOSFET 40 is formed, for example, as shown in FIG. 5, a p-type Si semiconductor is used as the substrate 42, and n-type impurities are diffused into the semiconductor substrate layer in the source / drain electrode formation region to form n + inversion. Form layer 44. Then, the entire surface of the semiconductor substrate is oxidized to form a SiO 2 film 46 on the surface of the semiconductor substrate. next,
Using photolithography and etching technology, Si
The O 2 film is patterned to leave the SiO 2 film only in the gate electrode formation region, and remove the SiO 2 film in the source and drain electrode formation regions. After performing such patterning, the source electrode 48 is formed on the SiO 2 film 46 and the inversion layer 4 is formed.
A drain electrode 50 and a gate electrode 52 are formed on each of the electrodes 4.

【0003】[0003]

【発明が解決しようとする課題】化合物半導体のMIS
(金属−絶縁層−半導体)構造を持つ電界効果型トラン
ジスタの開発が、最近、盛んに行われているものの、G
a As 系MISFETの開発が主流となっており、Ga
Asよりも高温で動作可能であり、しかも耐放射線性に
優れるGaN,AlGaNなどのワイドギャップ半導体
系のGaN系MISFETは、今のところその開発が緒
についたばかりであって、その形成プロセスは確立され
ていない。また、従来、特にゲート絶縁膜にどのような
材料がこのましいのかが問題であった。
[Problems to be Solved by the Invention] MIS of compound semiconductor
Although a field effect transistor having a (metal-insulating layer-semiconductor) structure has recently been actively developed, G
The development of a As MISFET has become the mainstream, and Ga
Wide-gap semiconductor-based GaN-based MISFETs such as GaN and AlGaN, which can operate at a higher temperature than As and have excellent radiation resistance, have only just begun to be developed, and their formation process has been established. Not not. Further, conventionally, there has been a problem of what kind of material is preferable for the gate insulating film.

【0004】そこで、本発明の目的は、高温で安定して
動作するGaN系MISFETを提供することである。
Therefore, an object of the present invention is to provide a GaN-based MISFET that operates stably at high temperatures.

【0005】[0005]

【課題を解決するための手段】ダイヤモンドは、バンド
ギャップエネルギーが5.5eVと大きく、不純物が添
加されていないダイヤモンドはほぼ絶縁体と評価できる
高抵抗体になる。また、AINはバンドギャップエネル
ギーが6.2eVと大きく、AlリッチのAlGaNも
高抵抗になる。このAlGaNとダイヤモンドとを積層
した積層膜は、それぞれの層における貫通転位を防ぐこ
とができ、漏れ電流のない高絶縁性の良好な絶縁層に形
成することができる。そこで、本発明者は、高抵抗ダイ
ヤモンドとAlGaNとを積層した積層構造絶縁膜をゲ
ート絶縁膜とするGaN系MISFETを着想し、実験
を重ねて本発明を完成するに到った。
DISCLOSURE OF THE INVENTION Diamond has a large band gap energy of 5.5 eV, and diamond to which impurities are not added becomes a high resistance body which can be evaluated as an insulator. Further, AIN has a large band gap energy of 6.2 eV, and Al-rich AlGaN also has a high resistance. The laminated film in which AlGaN and diamond are laminated can prevent threading dislocation in each layer and can be formed as an insulating layer having a high insulating property with no leakage current. Therefore, the present inventor has conceived a GaN-based MISFET having a laminated insulating film, in which high-resistance diamond and AlGaN are laminated, as a gate insulating film, and repeated experiments to complete the present invention.

【0006】よって、上記目的を達成するために、本発
明に係るGaN系絶縁ゲート型トランジスタは、金属ゲ
ート−ゲート絶縁膜−GaN系半導体層からなるGaN
系絶縁ゲート型トランジスタにおいて、ゲート絶縁膜
が、高抵抗のダイヤモンド層と、AlリッチAlGaN
との積層構造により形成されていることを特徴として
る。
Therefore, in order to achieve the above object, a GaN-based insulated gate transistor according to the present invention is a GaN composed of a metal gate, a gate insulating film, and a GaN-based semiconductor layer.
In a system-insulated gate transistor, the gate insulating film includes a high-resistance diamond layer and Al-rich AlGaN
That it is formed by a stacked structure of a layer Ru have <br/> as characterized.

【0007】本発明に係るの好適な実施態様は、サファ
イア基板又は半絶縁性基板からなる基板と、基板上に形
成された第1の導電型のGaN系半導体層と、第1のG
aN系半導体層上部に埋め込み形成された第2の導電型
のGaN系半導体層からなるソース/ドレイン領域と、
少なくともゲート領域上に形成されている、ダイヤモン
ド層とのGaN系密着層とを備え、ゲート絶縁膜が密着
層上に形成されている。本発明で使用するGaN系半導
体層には、AlGaN層、InGaN層、GaN層、I
nGaAlN層等がある。
A preferred embodiment of the present invention is a safa
A substrate made of an ear substrate or a semi-insulating substrate, a first conductivity type GaN-based semiconductor layer formed on the substrate , and a first G
a source / drain region formed of a GaN-based semiconductor layer of the second conductivity type embedded in the upper part of the aN-based semiconductor layer;
At least a GaN-based adhesion layer with a diamond layer is formed on the gate region, and a gate insulating film is formed on the adhesion layer. The GaN-based semiconductor layer used in the present invention includes AlGaN layer, InGaN layer, GaN layer, I
There is an nGaAlN layer or the like.

【0008】本発明に係るGaN系絶縁ゲート型トラン
ジスタの形成方法は、サファイア基板又は半絶縁性基板
からなる基板上に第1の導電型のGaN系半導体層を形
成する工程と、第1の導電型のGaN系半導体層をエッ
チングして、その上部にソース/ドレイン領域形成部を
凹部状に形成する工程と、凹部状のソース/ドレイン領
域形成部内に第2の導電型のGaN系半導体層を選択的
に埋め込み成長させる工程と、少なくともゲート電極形
成領域にダイヤモンド層との密着層として、高濃度でカ
ーボンドープされた薄い膜厚のGaN系半導体層を選択
的に成長させる工程と、密着層上に、ダイヤモンド層と
AlリッチAlGaN層との積層構造のゲート絶縁膜を
選択的に形成する工程とを有することを特徴としてい
る。
A method for forming a GaN-based insulated gate transistor according to the present invention is a sapphire substrate or a semi-insulating substrate.
Forming a first conductive type GaN-based semiconductor layer on a substrate made of, and etching the first conductive type GaN-based semiconductor layer to form a source / drain region forming portion in a recessed shape thereover. And a step of selectively burying and growing a second conductivity type GaN-based semiconductor layer in the recessed source / drain region forming portion, and a high concentration as a contact layer with the diamond layer at least in the gate electrode forming region. And a step of selectively growing a thin GaN-based semiconductor layer carbon-doped with a diamond layer on the adhesion layer.
And a step of selectively forming a gate insulating film having a laminated structure with an Al-rich AlGaN layer .

【0009】例えば、デバイスとしての活性層となる半
導体層は、p型GaN系エピタキシャル層を予め基板全
面に形成しておき、次にソース/ドレイン領域となる部
分に選択成長法によりn型GaNを選択成長させ、更に
選択成長法を用いてゲート電極領域にゲート絶縁膜とし
て、ダイヤモンド層とAlリッチAlGaN層とを交互
に成長させる。
For example, as a semiconductor layer to be an active layer as a device, a p-type GaN-based epitaxial layer is formed on the entire surface of the substrate in advance, and then n-type GaN is selectively grown on the portions to be source / drain regions. After selective growth, a diamond layer and an Al-rich AlGaN layer are alternately grown as a gate insulating film in the gate electrode region by using the selective growth method.

【0010】[0010]

【発明の実施の形態】GaN、InGaN、AlGaN
膜等のナイトライド系の半導体は、ワイドバンドギャッ
プ半導体として、Siなどをドーパンドとして用いれ
ば、容易にn型の半導体層になって、電子デバイスの活
性層に用いることができるので、絶縁ゲート型トランジ
スタのソース/ドレイン領域として用いることができ
る。また、ダイヤモンド層とAlリッチAlGaN層と
を積層させたものをゲート絶縁膜として用いる。p型半
導体領域にn型半導体領域を局所的に形成する際、Si
系半導体ではイオン注入法が一般的に用いられている
が、GaN系ではイオン注入法によりイオン注入して
も、キャリアとして活性化するのが、非常に難しく、今
までのところ、イオン注入の成功報告は見当たらない。
そこで、本発明では、p型半導体層内に形成した凹部に
n型半導体層を選択成長法により形成することにより、
活性な領域を容易に形成することができる。以下に、実
施形態例を挙げ、添付図面を参照して、本発明の実施の
形態を具体的かつ詳細に説明する。
DETAILED DESCRIPTION OF THE INVENTION GaN, InGaN, AlGaN
When a nitride-based semiconductor such as a film is used as a wide band gap semiconductor and Si is used as a dopant, it can be easily converted into an n-type semiconductor layer and used as an active layer of an electronic device. It can be used as a source / drain region of a transistor. Further, a stack of a diamond layer and an Al-rich AlGaN layer is used as a gate insulating film. When locally forming the n-type semiconductor region in the p-type semiconductor region, Si
The ion implantation method is generally used for semiconductors, but it is very difficult to activate as a carrier even if the ion implantation method is used for GaN-based semiconductors. I can't find the report.
Therefore, in the present invention, by forming the n-type semiconductor layer in the recess formed in the p-type semiconductor layer by the selective growth method,
The active region can be easily formed. Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to the accompanying drawings with reference to the accompanying drawings.

【0011】実施形態例 本実施形態例は、本発明に係る絶縁ゲート型半導体装置
の実施形態の一例であって、図1(a)は本実施形態例
の絶縁ゲート型半導体装置の層構造を示す基板断面図、
図1(b)は本実施形態例の絶縁ゲート型半導体装置の
積層構造のゲート絶縁膜を示す断面図である。本実施形
態例の絶縁ゲート型半導体装置10(以下、簡単に半導
体装置10と言う)は、図1(a)に示すように、サフ
ァイア等の半絶縁性基板12と、基板12上に、順次、
分子線エピタキシャル成長法により成膜されたp型Ga
Nバッファ層14と、p型AlGaN層16とを備えて
いる。また、半導体装置10は、p型AlGaN層16
の上部に埋め込み形成されたn型AlGaN層からなる
ソース/ドレイン領域18、20と、上層のダイヤモン
ド層とp型AlGaN層16との結晶のつながりを良く
するためにソース/ドレイン領域18、20以外の領域
に設けられた1×1019cm-3以上の高濃度でカーボン
ドープした膜厚50Å程度のAlGaN層22とを備え
ている。更に、半導体装置10は、ゲート絶縁膜とし
て、AlGaN層22上に選択的に成長させた、膜厚5
0Åのダイヤモンド層24と、膜厚30Åの絶縁性の高
いAlリッチAlGaN層26との積層構造を周期的に
繰り返して膜厚500Åの積層絶縁膜28を備えてい
る。ソース/ドレイン領域18、20のn型AlGaN
層上及びゲート電極領域のゲート絶縁膜28上には、T
i/Al電極30、32、34が、それぞれ、設けられ
ている。
Embodiment Example This embodiment example is an example of an embodiment of an insulated gate semiconductor device according to the present invention, and FIG. 1A shows a layer structure of the insulated gate semiconductor device of this embodiment example. Board cross-sectional view,
FIG. 1B is a cross-sectional view showing the gate insulating film of the laminated structure of the insulated gate semiconductor device of this embodiment. As shown in FIG. 1A, a insulated gate semiconductor device 10 of the present embodiment (hereinafter, simply referred to as a semiconductor device 10) includes a semi- insulating substrate 12 such as sapphire, and a substrate 12 on which a semiconductor substrate 12 is sequentially formed. ,
P-type Ga formed by molecular beam epitaxial growth method
The N buffer layer 14 and the p-type AlGaN layer 16 are provided. In addition, the semiconductor device 10 includes the p-type AlGaN layer 16
Other than the source / drain regions 18 and 20 in order to improve the crystal connection between the source / drain regions 18 and 20 formed of the n-type AlGaN layer embedded in the upper part of the and the upper diamond layer and the p-type AlGaN layer 16. And an AlGaN layer 22 with a film thickness of about 50 Å that is carbon-doped at a high concentration of 1 × 10 19 cm −3 or more. Further, the semiconductor device 10 has a film thickness of 5 as a gate insulating film grown selectively on the AlGaN layer 22.
A laminated insulating film 28 having a film thickness of 500 Å is provided by periodically repeating a laminated structure of a 0 Å diamond layer 24 and a highly insulating Al-rich AlGaN layer 26 having a film thickness of 30 Å. N-type AlGaN in source / drain regions 18, 20
On the layer and on the gate insulating film 28 in the gate electrode region, T
i / Al electrodes 30, 32, and 34 are provided, respectively.

【0012】以下に、図2〜図4を参照して、本実施形
態例の半導体装置10の形成方法を説明する。図2
(a)から(c)、図3(d)から(f)、及び図4
(g)と(h)は、各工程毎の基板断面図である。超高
真空に維持できるエピタキシャル成長装置を使い、反応
ガスとして分圧3×10-6Torr のジメチルヒドラジン
と分圧5×10-7Torr のGaを用いて分子線エピタキ
シャル成長法により、成長温度640℃で、先ず、図2
(a)に示すように、成長室内の基板12上に膜厚50
nmのGaNバッファ層14をエピタキシャル成長させ
る。更に、反応ガスとして分圧1×10-6Torr のトリ
メチルガリウム(TMG)、分圧5×10-7Torr のト
リメチルアルミニウム(TMA)、及び分圧5×10-5
Torr のアンモニアを用い、かつドーパントとして分圧
5×10-8Torr のMgを用いて、成長温度850℃
で、GaNバッファ層14上に膜厚300nmのp型A
lGaN層16を形成する。
A method for forming the semiconductor device 10 of this embodiment will be described below with reference to FIGS. Figure 2
(A) to (c), FIG. 3 (d) to (f), and FIG.
(G) and (h) are substrate cross-sectional views in each step. Using an epitaxial growth system capable of maintaining an ultrahigh vacuum, a reaction temperature of 640 ° C at a growth temperature of 640 ° C by a molecular beam epitaxial growth method using dimethylhydrazine with a partial pressure of 3 × 10 -6 Torr and Ga with a partial pressure of 5 × 10 -7 Torr First, Fig. 2
As shown in (a), a film thickness of 50 is formed on the substrate 12 in the growth chamber.
nm epitaxially grows the GaN buffer layer 14. Further, as reaction gas, trimethylgallium (TMG) with a partial pressure of 1 × 10 −6 Torr, trimethylaluminum (TMA) with a partial pressure of 5 × 10 −7 Torr, and partial pressure of 5 × 10 −5.
The growth temperature is 850 ° C., using ammonia of Torr, and Mg of partial pressure 5 × 10 −8 Torr as a dopant.
Then, the p-type A having a thickness of 300 nm is formed on the GaN buffer layer 14.
The lGaN layer 16 is formed.

【0013】次に、GaNバッファ層14とp型AlG
aN16とを有する基板12を成長室から取り出して、
図2(b)に示すように、SiO2 等の酸化膜17を基
板面に成膜し、ソース/ドレイン領域18、20が露出
するように、フォトリソグラフィ及びエッチングにより
酸化膜をパターニングしてマスク17を形成する。続い
て、そのマスク17を用いて、図2(c)に示すよう
に、プラズマエッチングによりソース/ドレイン領域1
8、20のp型AlGaN層16を選択的にエッチング
して、ソース/ドレイン領域形成部19、21を深さ2
000Åの凹部状に形成する。エッチングガスには、メ
タン、アルゴン及び水素の混合ガスをプラズマ化したも
のを用いる。
Next, the GaN buffer layer 14 and the p-type AlG
Taking out the substrate 12 having aN16 from the growth chamber,
As shown in FIG. 2B, an oxide film 17 such as SiO 2 is formed on the substrate surface, and the oxide film is patterned by photolithography and etching so that the source / drain regions 18 and 20 are exposed. Form 17. Then, using the mask 17, as shown in FIG. 2C, the source / drain regions 1 are formed by plasma etching.
The p-type AlGaN layer 16 of 8 and 20 is selectively etched to form the source / drain region forming portions 19 and 21 to a depth of 2
It is formed in a concave shape of 000Å. As an etching gas, a mixed gas of methane, argon and hydrogen which is made into plasma is used.

【0014】次いで、図3(d)に示すように、p型A
lGaN層16を選択的にエッチングした形成した凹部
19、21にn型AlGaNを選択的に埋め込み成長さ
せる。即ち、反応ガスとして分圧1×10-6Torr のG
a、分圧5×10-7Torr のAl、分圧5×10-5Torr
のアンモニアを用い、かつドーパントとして分圧5×1
-8Torr のSiを用いて、マスク17を使って選択的
に、成長温度850℃で、厚さ2000Åのn型AlG
aN層18、20を埋め込み成長させる。
Then, as shown in FIG. 3D, p-type A
n-type AlGaN is selectively embedded and grown in the recesses 19 and 21 formed by selectively etching the lGaN layer 16. That is, as a reaction gas, G with a partial pressure of 1 × 10 −6 Torr
a, partial pressure 5 × 10 -7 Torr Al, partial pressure 5 × 10 -5 Torr
Ammonia is used, and the partial pressure is 5 × 1 as a dopant.
Using 0 -8 Torr of Si, selectively using the mask 17 at a growth temperature of 850 ° C. and a thickness of 2000 Å n-type AlG
The aN layers 18 and 20 are embedded and grown.

【0015】次に、マスク17を除去し、図3(e)に
示すように、基板上にSiO2 膜を成膜し、続いてフォ
トリソグラフィ及びエッチングによりパターニングし
て、ソース/ドレイン領域18、20を覆うマスク23
を形成する。次いで、図3(f)に示すように、上層の
ダイヤモンド層と下層のp型AlGaN層16との結晶
のつながりを良くするために、1×1019cm-3以上の
高濃度でカーボンドープした、50Å程度の極薄いAl
GaN層22を、マスク23でマスクしたソース/ドレ
イン領域18、20以外の領域に、ジメチルヒドラジ
ン、Ga及びジメチルアルミニウムハイドライドを用い
て、選択的に成長させる。
Next, the mask 17 is removed, and as shown in FIG. 3E, a SiO 2 film is formed on the substrate and then patterned by photolithography and etching to form the source / drain regions 18, Mask 23 covering 20
To form. Then, as shown in FIG. 3F, in order to improve the crystal connection between the upper diamond layer and the lower p-type AlGaN layer 16, carbon doping was performed at a high concentration of 1 × 10 19 cm −3 or more. , 50 Å ultra-thin Al
The GaN layer 22 is selectively grown on regions other than the source / drain regions 18 and 20 masked by the mask 23 using dimethylhydrazine, Ga and dimethylaluminum hydride.

【0016】続いて、図4(g)に示すように、マスク
23を載せたまま、マスク23でマスクしたソース/ド
レイン領域18、20以外の領域に絶縁層として50Å
程度の膜厚のダイヤモンド層24を選択的に成長させ
る。ダイヤモンド層24の形成に際しては、基板温度を
850℃に維持し、97容量%水素に3%容量メタンを
混ぜた圧力30Torrの混合ガスを20sccmの流量で流
し、2300℃に加熱したフィラメントにガスを接触さ
せる。加熱フィラメントに接触した混合ガスは、分解
し、ラジカル化した炭素系ガスが基板上に蒸着してダイ
ヤモンド層24を形成する。
Subsequently, as shown in FIG. 4G, with the mask 23 still mounted, 50 Å is formed as an insulating layer in the regions other than the source / drain regions 18 and 20 masked by the mask 23.
The diamond layer 24 having a film thickness of approximately the same is selectively grown. When forming the diamond layer 24, the substrate temperature was maintained at 850 ° C., a mixed gas of 97 vol% hydrogen and 3% vol methane at a pressure of 30 Torr was flowed at a flow rate of 20 sccm, and the gas was heated to a filament heated to 2300 ° C. Contact. The mixed gas in contact with the heating filament is decomposed, and the radicalized carbon-based gas is deposited on the substrate to form the diamond layer 24.

【0017】次いで、図1(b)に示すように、ジメチ
ルヒドラジン、Ga及びジメチルアルミニウムハイドラ
イドを用い、絶縁層の結晶性を向上させる事を目的とし
て選択的に膜厚30Åの絶縁性AlリッチAlGaN層
26をダイヤモンド層24上に成長させる。更に、図1
(b)に示すように、AlリッチAlGaN層26上に
膜厚50Åのダイヤモンド層24を成長させる。膜厚5
0Åのダイヤモンド層24と膜厚30ÅのAlリッチA
lGaN層26とからなる積層構造を周期的に繰り返し
成長させることによって、500Å程度の積層構造の絶
縁膜28を選択的に形成する。マスク23上にも多結晶
のダイヤモンドが積層するので、積層構造の絶縁膜28
を形成した後、HFを用いて、図4(h)に示すよう
に、SiO2 のマスク23を除去すると、マスク23上
に堆積した多結晶ダイヤモンドは、リフトオフされて除
去される。
Then, as shown in FIG. 1 (b), dimethylhydrazine, Ga and dimethylaluminum hydride are used to selectively improve the crystallinity of the insulating layer, and the insulating Al-rich AlGaN having a film thickness of 30 Å is selectively formed. Layer 26 is grown on diamond layer 24. Furthermore, FIG.
As shown in (b), a diamond layer 24 having a film thickness of 50Å is grown on the Al-rich AlGaN layer 26. Film thickness 5
0 Å diamond layer 24 and 30 Å film thickness Al-rich A
The insulating film 28 having a laminated structure of about 500 Å is selectively formed by periodically and repeatedly growing the laminated structure including the lGaN layer 26. Since the polycrystalline diamond is laminated also on the mask 23, the insulating film 28 having the laminated structure is formed.
4H, the SiO 2 mask 23 is removed using HF, and the polycrystalline diamond deposited on the mask 23 is lifted off and removed.

【0018】このようにして、積層構造の絶縁層28を
形成した後、基板面にTi/Al電極を蒸着し、更にパ
ターニングして、ソース/ドレイン領域、ゲート領域に
電極30、32、34を形成する。このようにして、図
1(a)に示すような、絶縁ゲート型トランジスタの半
導体装置10を形成した。本実施形態例と同じようにし
て半導体装置を試作し、評価試験を行ったところ、30
0℃の加熱状態でも、トランジスタ特性は劣化せず、高
温での安定した動作を確認することができた。
After forming the insulating layer 28 having a laminated structure in this manner, a Ti / Al electrode is vapor-deposited on the surface of the substrate and further patterned to form electrodes 30, 32 and 34 in the source / drain regions and the gate region. Form. In this way, the semiconductor device 10 of the insulated gate transistor as shown in FIG. 1A was formed. A semiconductor device was prototyped in the same manner as in the present embodiment, and an evaluation test was conducted.
Even when heated at 0 ° C., the transistor characteristics did not deteriorate, and stable operation at high temperature could be confirmed.

【0019】本実施形態例では、AlGaNを用いた
が、InGaN,GaN,InGaAlNを用いても良
い。
Although AlGaN is used in the present embodiment, InGaN, GaN, InGaAlN may be used.

【0020】[0020]

【発明の効果】本発明によれば、高抵抗のダイヤモンド
層と、AlリッチAlGaN層との積層構造でゲート絶
縁膜を形成することにより、高温で安定して動作する高
性能のGaN系絶縁ゲート型トランジスタを形成するこ
とができる。
According to the present invention, a high-performance GaN-based insulated gate that operates stably at high temperature is formed by forming a gate insulating film with a laminated structure of a high resistance diamond layer and an Al-rich AlGaN layer. Type transistors can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)及び(b)は、それぞれ、本実施形
態例の絶縁ゲート型半導体装置の層構造を示す基板断面
図及び本実施形態例の絶縁ゲート型半導体装置の積層構
造の絶縁膜を示す断面図である。
1A and 1B are respectively a substrate cross-sectional view showing a layer structure of an insulated gate semiconductor device of the present embodiment example and a laminated structure of the insulated gate semiconductor device of the present embodiment example, respectively. It is sectional drawing which shows an insulating film.

【図2】図2(a)から(c)は、それぞれ、本実施形
態例の半導体装置の各工程毎の基板断面図である。
FIG. 2A to FIG. 2C are cross-sectional views of a substrate for each step of the semiconductor device of the present embodiment example.

【図3】図3(d)から(f)は、それぞれ、図2
(c)に続く、本実施形態例の半導体装置の各工程毎の
基板断面図である。
3 (d) to 3 (f) are respectively shown in FIG.
FIG. 7C is a sectional view of the substrate in each step of the semiconductor device of the present embodiment example, following FIG.

【図4】図4(g)と(h)は、それぞれ、図3(f)
に続く、本実施形態例の半導体装置の各工程毎の基板断
面図である。
4 (g) and 4 (h) are respectively FIG. 3 (f).
FIG. 11 is a substrate cross-sectional view of each step of the semiconductor device of the present embodiment, which is continued from FIG.

【図5】シリコン系MOSFETの構成を示す基板断面
図である。
FIG. 5 is a substrate cross-sectional view showing the configuration of a silicon-based MOSFET.

【符号の説明】[Explanation of symbols]

10 実施形態例の絶縁ゲート型半導体装置 12 絶縁性基板 14 p型GaNバッファ層 16 p型AlGaN層 18、20 ソース/ドレイン領域 22 高濃度でカーボンドープしたAlGaN層 24 ダイヤモンド層 26 AlリッチAlGaN層 28 積層絶縁膜 30、32、34 Ti/Al電極 40 シリコン系MOSFET 42 p型Si半導体基板 44 n+ 反転層 46 SiO2 膜 48 ソース電極 50 ドレイン電極 52 ゲート電極10 Insulated Gate Semiconductor Device of Example Embodiment 12 Semi- Insulating Substrate 14 p-type GaN Buffer Layer 16 p-type AlGaN Layer 18, 20 Source / Drain Region 22 Highly Carbon-Doped AlGaN Layer 24 Diamond Layer 26 Al-rich AlGaN Layer 28 laminated insulating films 30, 32, 34 Ti / Al electrode 40 silicon-based MOSFET 42 p-type Si semiconductor substrate 44 n + inversion layer 46 SiO 2 film 48 source electrode 50 drain electrode 52 gate electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 H01L 21/336 H01L 29/80 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 29/78 H01L 21/336 H01L 29/80

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属ゲート−ゲート絶縁膜−GaN系半
導体層からなるGaN系絶縁ゲート型トランジスタにお
いて、 ゲート絶縁膜が、高抵抗のダイヤモンド層と、Alリッ
チAlGaN層との積層構造により形成されていること
を特徴とするGaN系絶縁ゲート型トランジスタ。
1. A GaN-based insulated gate transistor comprising a metal gate, a gate insulating film, and a GaN-based semiconductor layer, wherein the gate insulating film comprises a high-resistance diamond layer and an Al nitride layer.
A GaN-based insulated gate transistor, which is formed by a laminated structure with an AlGaN layer .
【請求項2】 サファイア基板又は半絶縁性基板からな
る基板と、基板上に形成された第1の導電型のGaN系
半導体層と、第1のGaN系半導体層上部に埋め込み形
成された第2の導電型のGaN系半導体層からなるソー
ス/ドレイン領域と、少なくともゲート領域上に形成さ
れている、ダイヤモンド層とのGaN系密着層とを備
え、 ゲート絶縁膜が密着層上に形成されていることを特徴と
する請求項1に記載のGaN系絶縁ゲート型トランジス
タ。
2. A sapphire substrate or a semi-insulating substrate
Source / drain including a substrate , a first conductivity type GaN-based semiconductor layer formed on the substrate, and a second conductivity type GaN-based semiconductor layer embedded and formed on the first GaN semiconductor layer. The GaN-based adhesive layer according to claim 1, further comprising: a region, and a GaN-based adhesion layer formed on at least the gate region and with the diamond layer, wherein the gate insulating film is formed on the adhesion layer. Insulated gate type transistor.
【請求項3】 サファイア基板又は半絶縁性基板からな
基板上に第1の導電型のGaN系半導体層を形成する
工程と、 第1の導電型のGaN系半導体層をエッチングして、そ
の上部にソース/ドレイン領域形成部を凹部状に形成す
る工程と、 凹部状のソース/ドレイン領域形成部内に第2の導電型
のGaN系半導体層を選択的に埋め込み成長させる工程
と、 少なくともゲート電極形成領域にダイヤモンド層との密
着層として、高濃度でカーボンドープされた薄い膜厚の
GaN系半導体層を選択的に成長させる工程と、 密着層上に、ダイヤモンド層とAlリッチAlGaN層
との積層構造のゲート絶縁膜を選択的に形成する工程と
を有することを特徴とするGaN系絶縁ゲート型トラン
ジスタの形成方法。
3. A sapphire substrate or a semi-insulating substrate
Forming a first conductivity type GaN-based semiconductor layer on a substrate that, the first conductivity type GaN-based semiconductor layer is etched to form the source / drain regions formed portion recessed thereon A step of selectively burying and growing a second conductivity type GaN-based semiconductor layer in the recessed source / drain region forming part, and a high concentration as an adhesion layer with a diamond layer at least in the gate electrode forming region. Step of selectively growing a carbon-doped thin GaN-based semiconductor layer, and selectively forming a gate insulating film having a laminated structure of a diamond layer and an Al-rich AlGaN layer on the adhesion layer And a step of forming a GaN-based insulated gate transistor.
JP32763297A 1997-11-28 1997-11-28 GaN-based insulated gate transistor and method of forming the same Expired - Lifetime JP3423598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32763297A JP3423598B2 (en) 1997-11-28 1997-11-28 GaN-based insulated gate transistor and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32763297A JP3423598B2 (en) 1997-11-28 1997-11-28 GaN-based insulated gate transistor and method of forming the same

Publications (2)

Publication Number Publication Date
JPH11163334A JPH11163334A (en) 1999-06-18
JP3423598B2 true JP3423598B2 (en) 2003-07-07

Family

ID=18201227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32763297A Expired - Lifetime JP3423598B2 (en) 1997-11-28 1997-11-28 GaN-based insulated gate transistor and method of forming the same

Country Status (1)

Country Link
JP (1) JP3423598B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2311061C (en) * 1999-06-11 2009-10-06 National Research Council Of Canada Molecular beam epitaxy (mbe) growth of semi-insulating c-doped gan
JP2001277937A (en) * 2000-04-04 2001-10-10 Furukawa Electric Co Ltd:The Large current load control device
JP2001267555A (en) 2000-03-22 2001-09-28 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP4676046B2 (en) * 2000-05-10 2011-04-27 古河電気工業株式会社 GaN-based insulated gate field effect transistor
US6593193B2 (en) 2001-02-27 2003-07-15 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
KR100811492B1 (en) * 2002-02-26 2008-03-07 주식회사 엘지이아이 MANUFACTURING METHOD FOR GaN TYPE ELECTRIC DEVICE
JP2005268507A (en) * 2004-03-18 2005-09-29 Furukawa Electric Co Ltd:The Field effect transistor and its manufacturing method
US7459718B2 (en) 2005-03-23 2008-12-02 Nichia Corporation Field effect transistor
JP2008159631A (en) * 2006-12-20 2008-07-10 Furukawa Electric Co Ltd:The Group iii-v nitride compound semiconductor field effect transistor and method for manufacturing the same
JP2008227432A (en) * 2007-03-16 2008-09-25 Furukawa Electric Co Ltd:The Nitride compound semiconductor element and its production process
KR101027138B1 (en) 2009-12-24 2011-04-05 페어차일드코리아반도체 주식회사 Nitride based semiconductor device employing dlc passivation and method for fabricating the same
JP5866769B2 (en) * 2011-02-16 2016-02-17 富士通株式会社 Semiconductor device, power supply device and amplifier
JP7139774B2 (en) 2018-08-16 2022-09-21 富士通株式会社 Compound semiconductor device, method for manufacturing compound semiconductor device, and amplifier

Also Published As

Publication number Publication date
JPH11163334A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
US11699748B2 (en) Normally-off HEMT transistor with selective generation of 2DEG channel, and manufacturing method thereof
US8603871B2 (en) Compound semiconductor device and its manufacture method
JP2817995B2 (en) III-V compound semiconductor heterostructure substrate and III-V compound heterostructure semiconductor device
JP3428962B2 (en) GaN based high mobility transistor
JP4507285B2 (en) Semiconductor device and manufacturing method thereof
WO2010050021A1 (en) Compound semiconductor device and method for manufacturing the same
JP3398044B2 (en) Field effect transistor
US8030638B2 (en) Quasi single crystal nitride semiconductor layer grown over polycrystalline SiC substrate
US8551821B2 (en) Enhancement normally off nitride semiconductor device manufacturing the same
JP2007165431A (en) Field effect transistor, and method of fabrication same
US7786509B2 (en) Field-effect transistor and method of making same
JPH10223901A (en) Field effect transistor and manufacture of the same
JP3423598B2 (en) GaN-based insulated gate transistor and method of forming the same
JP6882503B2 (en) Gallium Nitride High Electron Mobility Transistor with High Breakdown Voltage and Its Formation Method
JP2004165387A (en) Gan-based field effect transistor
JP4429459B2 (en) Method for producing high-resistance GaN crystal layer
CN212182338U (en) Semiconductor structure
JP4748501B2 (en) High electron mobility transistor
CN116490979A (en) Semiconductor structure and manufacturing method thereof
JP2001308196A (en) Insulating gate type semiconductor device
TWI760937B (en) Semiconductor structure and method of making the same
CN112382662B (en) Gallium nitride enhancement mode device and method of making same
JP2002016262A (en) Vertical field-effect transistor
JP2003086784A (en) GaN-BASED SEMICONDUCTOR DEVICE
US20240162283A1 (en) Semiconductor Structure and Method for Manufacturing the Same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

EXPY Cancellation because of completion of term