JP2001244501A - Epitaxial wafer for infrared-emitting diode and light emitting diode formed thereof - Google Patents

Epitaxial wafer for infrared-emitting diode and light emitting diode formed thereof

Info

Publication number
JP2001244501A
JP2001244501A JP2000051633A JP2000051633A JP2001244501A JP 2001244501 A JP2001244501 A JP 2001244501A JP 2000051633 A JP2000051633 A JP 2000051633A JP 2000051633 A JP2000051633 A JP 2000051633A JP 2001244501 A JP2001244501 A JP 2001244501A
Authority
JP
Japan
Prior art keywords
type
emitting diode
epitaxial
epitaxial layer
epitaxial wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000051633A
Other languages
Japanese (ja)
Inventor
Takashi Watanabe
隆史 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2000051633A priority Critical patent/JP2001244501A/en
Publication of JP2001244501A publication Critical patent/JP2001244501A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a GaAlAs infrared LED which is hardly lowered in luminous efficiency even if a small current is applied. SOLUTION: In an epitaxial wafer for an infrared-emitting diode having a structure of a junction of an Si-doped N-type Ga1-xAlxAs (0<=X<1) epitaxial layer and an Si-doped P-type Ga1-yAlyAs (0<=y<1) epitaxial layer, the Si content of the PN junction of the Si-doped N-type Ga1-xAlxAs (0<=X<1) epitaxial layer and the Si-doped P-type Ga1-yAlyAs (0<=y<1) epitaxial layer is made to range from 2×1019 cm-3 to 9×1019 cm-3, and an Al compositional ratio (y) at the PN junction is so set as to satisfy a formula, 0.01<=y<=0.1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はGa1-ZAlZAs
(0≦z<1)(以下、GaAlAsと略す)結晶を用
いた赤外発光ダイオード用エピタキシャルウェーハ及び
このエピタキシャルウェハを用いて作製した発光ダイオ
ードに関する。
[0001] The present invention relates to Ga 1 -Z Al Z As.
The present invention relates to an epitaxial wafer for infrared light emitting diode using (0 ≦ z <1) (hereinafter abbreviated as GaAlAs) crystal and a light emitting diode manufactured using the epitaxial wafer.

【0002】[0002]

【従来の技術】シリコンドープのn型GaAlAsエピ
タキシャル層と、シリコンドープのp型GaAlAsエ
ピタキシャル層によりpn接合を形成した赤外発光ダイ
オード(LED)用エピタキシャルウェハは、フォトカ
プラや各種の光センサー、リモートコントローラーの光
源等に用いられている。赤外LEDは通電電流により、
リモートコントローラーなどの高電流通電条件で用いら
れるものと、フォトカプラなどの低電流通電条件で用い
られるものとに大別される。
2. Description of the Related Art An infrared light-emitting diode (LED) epitaxial wafer in which a pn junction is formed by a silicon-doped n-type GaAlAs epitaxial layer and a silicon-doped p-type GaAlAs epitaxial layer is provided by a photocoupler, various optical sensors, and a remote control. It is used as a light source for controllers. For the infrared LED,
Devices used under high-current energizing conditions, such as remote controllers, and those used under low-current energizing conditions, such as photocouplers, are broadly classified.

【0003】一般的に、これらの赤外LEDのpn接合
部分は、両性不純物であるシリコンのnp自然反転を利
用して、徐冷法液相エピタキシャル成長法により製造さ
れている。GaAsあるいはGaAlAsの液相エピタ
キシャル成長においてシリコンをドーパントとして用い
ると、高温ではn型エピタキシャル層が成長し、低温で
はp型エピタキシャル層が成長する。従って、n型から
p型に変わるnp反転温度よりも高温からエピタキシャ
ル成長を開始し、np反転温度より低い温度まで成長を
行うことにより、一つの成長溶液から、n型エピタキシ
ャル層とp型エピタキシャル層を連続的に成長させるこ
とができる。このような成長方法は製造が容易で生産性
が高いという利点がある。
In general, the pn junction of these infrared LEDs is manufactured by a slow cooling method liquid phase epitaxial growth method utilizing np natural inversion of silicon, which is an amphoteric impurity. When silicon is used as a dopant in the liquid phase epitaxial growth of GaAs or GaAlAs, an n-type epitaxial layer grows at a high temperature and a p-type epitaxial layer grows at a low temperature. Therefore, by starting epitaxial growth from a temperature higher than the np inversion temperature at which the n-type is changed to n-type and growing to a temperature lower than the np inversion temperature, the n-type epitaxial layer and the p-type epitaxial layer can be formed from one growth solution. It can be grown continuously. Such a growth method has the advantages of easy production and high productivity.

【0004】[0004]

【発明が解決しようとする課題】しかし、np自然反転
を用いて製造したGaAlAs赤外LEDは、低電流通
電で用いる場合に高電流通電条件に比べ発光効率が低下
するという問題があった。
However, a GaAlAs infrared LED manufactured using np spontaneous inversion has a problem that its luminous efficiency is lower when used at a low current flow than under a high current flow condition.

【0005】これを解決するのが本発明の目的である。It is an object of the present invention to solve this.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記問題点
を解決すべく鋭意努力検討した結果、従来原理では、結
晶性が劣化し、発光効率が低下するとされていた濃度範
囲にnp自然反転部のSi濃度を規定することにより、
低電流通電時の発光効率が大幅に改善されることを見出
した。また、本発明者は、Si濃度を増加させると発光
波長は長波長化するため、フォトカプラ用途など受光側
の波長特性に制限がある場合では発光波長のずれが問題
となるが、pn接合近傍のAl混晶比を高くすることに
より長波長化した発光波長を短波長化し、低電流通電時
の発光効率をさらに大幅に改善させることを見出し本発
明を完成させた。即ち本発明は、[1]Siドープのn
型Ga1-xAlxAs(0≦x<1)エピタキシャル層と
Siドープのp型Ga1-yAlyAs(0≦y<1)エピ
タキシャル層とが接合する構造を有する赤外LED用エ
ピタキシャルウェハで、p型Ga1-yAlyAsエピタキ
シャル層とn型Ga1-xAlxAsエピタキシャル層のp
n接合部のSi濃度が、2×1019cm-3〜9×1019
cm-3の範囲内であることを特徴とする赤外LED用エ
ピタキシャルウェハ、[2]p型Ga1-yAlyAsエピ
タキシャル層の、n型Ga1-xAlxAsエピタキシャル
層とのpn接合部におけるAl組成比が、0.01≦y
≦0.1であることを特徴とする[1]に記載の赤外L
ED用エピタキシャルウェハ、[3]発光ピーク波長が
900nm以上で950nm以下であることを特徴とす
る[1]または[2]に記載の赤外LED用エピタキシ
ャルウェハ、[4][1]〜[3]の何れか1項に記載
の赤外LED用エピタキシャルウェハを用いて製造した
発光ダイオード、[5][4]に記載の発光ダイオード
を用いたフォトカプラ、フォトインタラプタに関する。
Means for Solving the Problems The present inventor has made intensive studies to solve the above-mentioned problems, and as a result, it has been found that, in the conventional principle, the crystallinity is deteriorated and the luminous efficiency is reduced to the np natural range. By defining the Si concentration of the inversion part,
It has been found that the luminous efficiency when applying a low current is greatly improved. In addition, the present inventor has found that, when the Si concentration is increased, the emission wavelength becomes longer. Therefore, when the wavelength characteristics on the light receiving side are limited, such as in a photocoupler, the shift of the emission wavelength becomes a problem. It has been found that the emission wavelength, which has been made longer by increasing the Al mixed crystal ratio, is shortened, and the luminous efficiency when a low current is applied is further improved, thereby completing the present invention. That is, the present invention relates to [1] Si-doped n
Infrared LED having a structure in which an epitaxial layer of Ga 1-x Al x As (0 ≦ x <1) and a p-type Ga 1-y Al y As (0 ≦ y <1) epitaxial layer doped with Si are joined. The p-type Ga 1-y Al y As epitaxial layer and the n-type Ga 1-x Al x As epitaxial layer
The Si concentration at the n-junction is 2 × 10 19 cm −3 to 9 × 10 19
Infrared LED epitaxial wafer, which is a range of cm -3, [2] of the p-type Ga 1-y Al y As epitaxial layer, pn of the n-type Ga 1-x Al x As epitaxial layer The Al composition ratio at the joint is 0.01 ≦ y
≦ 0.1, the infrared ray L according to [1],
ED epitaxial wafer, [3] infrared LED epitaxial wafer according to [1] or [2], wherein the emission peak wavelength is 900 nm or more and 950 nm or less, [4] [1] to [3] And a photocoupler and a photointerrupter using the light-emitting diode according to [5] or [4].

【0007】[0007]

【発明の実施の形態】本発明の赤外LED用エピタキシ
ャルウェハは、Siドープのn型Ga1-xAlxAs(0
≦x<1)エピタキシャル層とSiドープのp型Ga
1-yAlyAs(0≦y<1)エピタキシャル層とが接合
する構造を有する。
BEST MODE FOR CARRYING OUT THE INVENTION An epitaxial wafer for infrared LED of the present invention is a Si-doped n-type Ga 1-x Al x As (0
≦ x <1) epitaxial layer and Si-doped p-type Ga
It has a structure in which it is bonded to a 1-y Al y As (0 ≦ y <1) epitaxial layer.

【0008】本発明では、LEDの低電流駆動時の発光
効率を高めるため、p型Ga1-yAlyAsエピタキシャ
ル層とn型Ga1-xAlxAsエピタキシャル層との界面
部のSi濃度を、2×1019cm-3〜9×1019cm-3
の範囲内とする。従来原理では、Si濃度を上記範囲ま
で増加させると、結晶性劣化により発光効率が低下する
とされ、上記範囲より低いSi濃度の構造が用いられて
きた。
According to the present invention, in order to increase the luminous efficiency at the time of driving the LED at a low current, the Si concentration at the interface between the p-type Ga 1-y Al y As epitaxial layer and the n-type Ga 1-x Al x As epitaxial layer is improved. From 2 × 10 19 cm −3 to 9 × 10 19 cm −3
Within the range. According to the conventional principle, when the Si concentration is increased to the above range, the luminous efficiency is reduced due to the deterioration of crystallinity, and a structure having a lower Si concentration than the above range has been used.

【0009】ここで言うSi濃度とはキャリア濃度では
なく、Siそのものの濃度である。Siは両性不純物で
あり、GaAlAs中ではSiドナーおよびSiアクセ
プタの両方が存在し、補償関係にある。従って、Siを
含むドナー濃度とアクセプタ濃度の差がキャリア濃度と
なる。
The Si concentration mentioned here is not the carrier concentration but the concentration of Si itself. Si is an amphoteric impurity, and in GaAlAs, both a Si donor and a Si acceptor are present and have a compensation relationship. Therefore, the difference between the donor concentration including Si and the acceptor concentration is the carrier concentration.

【0010】また本発明では、LEDの低電流駆動時の
発光効率を高めるため、p型Ga1- yAlyAsエピタキ
シャル層と、n型Ga1-xAlxAsエピタキシャル層と
の界面部におけるAl組成比yを、0.01≦y≦0.
1とすることが好ましい。
Further, in the present invention, in order to enhance the luminous efficiency at the time of driving the LED at a low current, the interface between the p-type Ga 1- y Al y As epitaxial layer and the n-type Ga 1-x Al x As epitaxial layer is improved. When the Al composition ratio y is 0.01 ≦ y ≦ 0.
It is preferably set to 1.

【0011】本発明の赤外LED用エピタキシャルウェ
ハは、特に発光ピーク波長が900nm以上で950n
m以下で用いることが、発光効率を高める上で好まし
い。また本発明の赤外LED用エピタキシャルウェハを
用いて製造した発光ダイオードは、特に低電流通電用途
で用いられるフォトカプラ、フォトインタラプタ等に用
いることが好ましい。
The epitaxial wafer for an infrared LED of the present invention has an emission peak wavelength of 900 nm or more, particularly 950 nm.
It is preferable to use m or less in order to increase the luminous efficiency. Further, the light emitting diode manufactured using the epitaxial wafer for infrared LED of the present invention is preferably used for a photocoupler, a photointerrupter, and the like, which are used particularly for a low-current application.

【0012】[0012]

【実施例】次に本発明を実施例および比較例を用いて詳
細に説明する。
Next, the present invention will be described in detail with reference to examples and comparative examples.

【0013】(実施例1)Ga融液を入れるための黒鉛
製溶液槽を2個有する液相エピタキシャル成長用装置を
用意し、徐冷法液相エピタキシャル成長方法で、GaA
s基板上にシリコンを添加したGaAlAsからなるn
p自然反転エピタキシャル層を成膜後、その上に前記G
aAlAsエピタキシャル層で発光する光の発光波長に
対して透明となるGaAlAsからなるエピタキシャル
層を積層した。具体的な成膜は以下のように行った。
(Example 1) An apparatus for liquid phase epitaxial growth having two graphite solution tanks for holding a Ga melt was prepared.
n made of GaAlAs doped with silicon on s substrate
After forming a p-negative inversion epitaxial layer, the G
An epitaxial layer made of GaAlAs, which is transparent to the emission wavelength of light emitted from the aAlAs epitaxial layer, was laminated. Specific film formation was performed as follows.

【0014】成長装置の、黒鉛製溶液槽の第1の槽に、
第1融液として、溶媒としての金属Ga、溶質としての
GaAs多結晶、および、ドーパントとしてのSiを仕
込んだ。仕込量は、Ga1kgに対してGaAs多結晶
145g、Si6gとした。
[0014] In the first tank of the graphite solution tank of the growth apparatus,
Metal Ga as a solvent, GaAs polycrystal as a solute, and Si as a dopant were charged as the first melt. The charged amounts were 145 g of GaAs polycrystal and 6 g of Si per kg of Ga.

【0015】黒鉛製溶液槽の第2の槽に、第2融液とし
て、溶媒としての金属Ga、溶質としてのGaAs多結
晶、AlおよびドーパントとしてのZnを仕込んだ。仕
込量は、Ga1kgに対してGaAs多結晶80g、A
l1.3g、Zn1.5gとした。
In a second tank of the graphite solution tank, metal Ga as a solvent, GaAs polycrystal as a solute, Al and Zn as a dopant were charged as a second melt. The charged amount was 80 g of GaAs polycrystal per kg of Ga, and A
l1.3 g and Zn 1.5 g.

【0016】GaAs基板を成長装置に載置し、成長装
置を成長炉内に入れて水素雰囲気で室温から910℃ま
で昇温した。各溶液が完全に溶解した後、905℃まで
降温し、基板と第1融液を接触させた。その後、1℃/
分の冷却速度で、870℃まで降温して、GaAs基板
上にnp自然反転エピタキシャル層を成長させた後、基
板と第1融液とを分離した。続いて基板と第2融液とを
接触させた。その後、1℃/分の冷却速度で820℃ま
で降温してさらにエピタキシャル層を成長させた後、基
板と第2融液を分離し、雰囲気ガスをアルゴンに換えて
放冷した。この工程により第1図に示すエピタキシャル
ウェハが得られた。
The GaAs substrate was placed on a growth apparatus, and the growth apparatus was placed in a growth furnace and heated from room temperature to 910 ° C. in a hydrogen atmosphere. After the respective solutions were completely dissolved, the temperature was lowered to 905 ° C., and the substrate was brought into contact with the first melt. Then, 1 ℃ /
After the temperature was lowered to 870 ° C. at a cooling rate of 1 minute to grow an np spontaneous inversion epitaxial layer on the GaAs substrate, the substrate and the first melt were separated. Subsequently, the substrate was brought into contact with the second melt. Thereafter, the temperature was lowered to 820 ° C. at a cooling rate of 1 ° C./min to further grow an epitaxial layer. Then, the substrate and the second melt were separated, and the atmosphere gas was changed to argon and allowed to cool. Through this step, the epitaxial wafer shown in FIG. 1 was obtained.

【0017】このようにして得られたエピタキシャルウ
ェハの特性を評価した。Si濃度はSIMSにより測定
した。pn接合位置は、エピタキシャル成長方向のキャ
リア濃度分布をCV評価法により測定することにより調
べた。その結果、pn接合部におけるSi濃度は、5.
6×1019cm-3であった。
The characteristics of the epitaxial wafer thus obtained were evaluated. The Si concentration was measured by SIMS. The pn junction position was examined by measuring the carrier concentration distribution in the epitaxial growth direction by a CV evaluation method. As a result, the Si concentration at the pn junction becomes 5.
It was 6 × 10 19 cm −3 .

【0018】このエピタキシャルウェハをLEDとして
特性を評価した。発光ピーク波長は、950nmであっ
た。
The characteristics of this epitaxial wafer were evaluated as LEDs. The emission peak wavelength was 950 nm.

【0019】(実施例2)第1槽の第1融液を、Siの
添加量を種々増減調合した以外は、実施例1と同様にエ
ピタキシャル成長させて、エピタキシャルウェハを得
た。これらのウェハを実施例1と同様にLEDに加工
し、特性を評価した。
Example 2 An epitaxial wafer was obtained by epitaxially growing the first melt in the first tank in the same manner as in Example 1 except that the amount of Si added was varied. These wafers were processed into LEDs as in Example 1, and the characteristics were evaluated.

【0020】(実施例3)第1槽の第1融液として、金
属Gaに対して所望のGaAs多結晶とSiに加え、さ
らにAlを添加した以外は、実施例1と同様にエピタキ
シャル成長させて、エピタキシャルウェハを得た。第1
融液の仕込量は、Ga1kgに対してGaAs多結晶1
45g、Al0.5g、Si6gとした。このウェハの
特性を評価した結果、pn接合近傍におけるSi濃度
は、5.4×1019cm-3であった。また、pn接合近
傍におけるAl混晶比は、0.06であった。このウェ
ハを実施例1と同様にLEDに加工し、特性を評価し
た。その結果、LEDの発光ピーク波長は935nmで
あった。
Example 3 Epitaxial growth was carried out in the same manner as in Example 1 except that as a first melt in a first tank, Al was added to metal Ga in addition to desired GaAs polycrystal and Si. Thus, an epitaxial wafer was obtained. First
The charge amount of the melt was 1 kg of Ga per 1 kg of GaAs polycrystal.
45 g, Al 0.5 g, and Si 6 g. As a result of evaluating the characteristics of this wafer, the Si concentration near the pn junction was 5.4 × 10 19 cm −3 . The Al mixed crystal ratio in the vicinity of the pn junction was 0.06. This wafer was processed into LEDs in the same manner as in Example 1, and the characteristics were evaluated. As a result, the emission peak wavelength of the LED was 935 nm.

【0021】(実施例4)第1槽の第1融液を、Siお
よびAlの添加量を種々増減調合した以外は、実施例1
と同様にエピタキシャル成長させて、エピタキシャルウ
ェハを得た。これらのウェハを実施例1と同様にLED
に加工し、特性を評価した。
Example 4 Example 1 was repeated except that the amounts of Si and Al added to the first melt in the first tank were varied.
The epitaxial growth was performed in the same manner as in the above to obtain an epitaxial wafer. These wafers were replaced with LEDs as in Example 1.
And the characteristics were evaluated.

【0022】(比較例1)比較のため、上記実施例製造
条件と製造工程の内、第1融液のSi添加量が本発明の
範囲外となるよう調合した以外は、実施例1と同様にエ
ピタキシャル成長させて、エピタキシャルウェハを得
た。
(Comparative Example 1) For comparison, the same as Example 1 except that, among the manufacturing conditions and manufacturing steps of the above example, the amount of Si added to the first melt was adjusted so as to fall outside the range of the present invention. To obtain an epitaxial wafer.

【0023】(比較例2)比較のため、上記実施例製造
条件と製造工程の内、第1融液のSi添加量およびAl
添加量をそれぞれ本発明の範囲外となるよう調合した以
外は、実施例3と同様にエピタキシャル成長させて、エ
ピタキシャルウェハを得た。
Comparative Example 2 For comparison, the amount of Si added to the first melt and Al
An epitaxial wafer was obtained by epitaxial growth in the same manner as in Example 3, except that the addition amounts were adjusted so as to be outside the range of the present invention.

【0024】実施例1、2、比較例1で得られたエピタ
キシャルウェハを用いたLEDの特性を評価し、pn接
合近傍のSi濃度と相対発光出力との関係を、通電電流
を変えて調査した結果を、図2に示す。
The characteristics of the LEDs using the epitaxial wafers obtained in Examples 1 and 2 and Comparative Example 1 were evaluated, and the relationship between the Si concentration in the vicinity of the pn junction and the relative light emission output was investigated by changing the flowing current. The results are shown in FIG.

【0025】図2から明らかなとおり、pn接合近傍の
Si濃度を2×1019cm-3以上で9×1019cm-3
下、好ましくは4×1019cm-3以上で8×1019cm
-3以下とすることにより、低電流通電時の相対発光出力
を高めることが可能なことが明らかになった。
As is clear from FIG. 2, the Si concentration in the vicinity of the pn junction is 2 × 10 19 cm −3 or more and 9 × 10 19 cm −3 or less, preferably 4 × 10 19 cm −3 or more and 8 × 10 19 cm −3. cm
It has been clarified that the relative luminous output at the time of applying a low current can be increased by setting -3 or less.

【0026】実施例3、4、比較例2で得られたエピタ
キシャルウェハを用いた赤外LEDの特性を評価し、p
型Ga1-yAlyAs層のn型Ga1-xAlxAsエピタキ
シャル層との界面におけるAl混晶比と発光出力との関
係を、通電電流を変えて調べた結果を、図3に示す。G
aAsにAlを添加するとバンドギャップが大きくな
り、発光ピーク波長が短波長側にシフトする。短波長に
なっても影響のない場合には問題ないが、フォトカプラ
用等、受光側の波長特性に合わせる必要がある場合に
は、所定の波長に納まるように調整する必要がある。A
l添加量およびSi添加量を調整し、発光ピーク波長が
900nm〜950nmの範囲として、Al混晶比に対
する出力特性の依存性を比較した。
The characteristics of the infrared LEDs using the epitaxial wafers obtained in Examples 3 and 4 and Comparative Example 2 were evaluated.
FIG. 3 shows the relationship between the Al mixed crystal ratio and the luminous output at the interface between the n - type Ga 1-y Al y As layer and the n-type Ga 1-x Al x As epitaxial layer, while varying the flowing current. Show. G
When Al is added to aAs, the band gap increases and the emission peak wavelength shifts to the shorter wavelength side. There is no problem if there is no effect even if the wavelength becomes shorter, but if it is necessary to match the wavelength characteristics on the light receiving side, such as for a photocoupler, it is necessary to adjust the wavelength to fall within a predetermined wavelength. A
The addition amount of 1 and the addition amount of Si were adjusted, and the emission peak wavelength was in the range of 900 nm to 950 nm, and the dependence of the output characteristics on the Al mixed crystal ratio was compared.

【0027】図3から明らかなとおり、pn接合界面に
おけるAl混晶比を、0.01以上で0.1以下、好ま
しくは0.02以上で0.09以下、より好ましくは
0.04以上で0.08以下とすることにより、低電流
通電時の高効率出力化を達成することが可能となった。
As is clear from FIG. 3, the Al mixed crystal ratio at the pn junction interface is 0.01 to 0.1, preferably 0.02 to 0.09, more preferably 0.04 to 0.09. By setting the content to 0.08 or less, it is possible to achieve a high efficiency output when a low current is applied.

【0028】なお、実施例ではZnをドーパントとした
p型GaAlAsエピタキシャル層をpn接合層の上に
窓層(透明層)とする場合について説明したが、p型G
aAlAsエピタキシャル層(窓層)をZn以外のp型
ドーパントを用いて成長させた場合に得られるエピタキ
シャルウェハ、およびそれを用いて製造されたLEDに
おいても同様の効果が得られた。
In this embodiment, the case where a p-type GaAlAs epitaxial layer using Zn as a dopant is used as a window layer (transparent layer) on a pn junction layer has been described.
Similar effects were obtained in an epitaxial wafer obtained when the aAlAs epitaxial layer (window layer) was grown using a p-type dopant other than Zn, and in an LED manufactured using the same.

【0029】また、実施例ではp型GaAlAsエピタ
キシャル層をpn接合層の上に窓層(透明層)とする場
合について説明したが、窓層としてp型GaAlAsエ
ピタキシャル層を載置しない構造のエピタキシャルウェ
ハ、およびそれを用いて製造されたLEDにおいても同
様の効果が得られる。
Further, in the embodiment, the case where the p-type GaAlAs epitaxial layer is used as the window layer (transparent layer) on the pn junction layer has been described, but the epitaxial wafer having the structure in which the p-type GaAlAs epitaxial layer is not mounted as the window layer is described. And the LED manufactured using the same can obtain the same effect.

【0030】さらに、実施例ではGaAs基板上にエピ
タキシャル層を成長させ、そのまま用いる場合について
説明したが、エッチング等によりGaAs基板層を除去
した構造のエピタキシャルウェハ、およびそれを用いて
製造されたLEDにおいても同様の効果が得られる。
Further, in the embodiment, the case where an epitaxial layer is grown on a GaAs substrate and used as it is has been described. However, in an epitaxial wafer having a structure in which the GaAs substrate layer is removed by etching or the like, and in an LED manufactured using the same, Has the same effect.

【0031】[0031]

【発明の効果】本発明の構成の赤外LED用エピタキシ
ャルウェハにおいて、p型Ga1-yAlyAsエピタキシ
ャル層とn型Ga1-xAlxAsエピタキシャル層のpn
接合部のSi濃度を、2×1019cm-3〜9×1019
-3の範囲内とすると、低電流通電に際しても高い相対
発光出力が得られるLEDを製造することができる。
In the infrared LED epitaxial wafer of the present invention, the pn of the p-type Ga 1-y Al y As epitaxial layer and the n-type Ga 1-x Al x As epitaxial layer
The Si concentration at the junction is 2 × 10 19 cm −3 to 9 × 10 19 c
When it is within the range of m −3 , it is possible to manufacture an LED that can obtain a high relative emission output even when a low current is applied.

【0032】特に、pn接合部におけるAl組成比を、
0.01≦y≦0.1、発光ピーク波長を900nm以
上で950nm以下とすることにより、より発光効率を
高めることができる。
In particular, the Al composition ratio at the pn junction is
By setting 0.01 ≦ y ≦ 0.1 and the emission peak wavelength to be 900 nm or more and 950 nm or less, the luminous efficiency can be further increased.

【0033】また、本発明のエピタキシャルウェハを用
いて製造したLEDを、特にフォトカプラ、フォトイン
タラプタに用いると、電流効率の高い素子を作製するこ
とができる。
When an LED manufactured by using the epitaxial wafer of the present invention is used particularly for a photocoupler or a photointerrupter, an element having high current efficiency can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に示した本発明のエピタキシャルウェハ
の構造を示す断面図。
FIG. 1 is a sectional view showing a structure of an epitaxial wafer of the present invention shown in an embodiment.

【図2】pn接合部のSi濃度と相対発光出力との関係
を示す図。
FIG. 2 is a diagram showing a relationship between a Si concentration at a pn junction and a relative light emission output.

【図3】pn接合部のAl混晶比と相対発光出力との関
係を示す図。
FIG. 3 is a diagram showing a relationship between an Al mixed crystal ratio at a pn junction and a relative light emission output.

【符号の説明】[Explanation of symbols]

1 GaAs基板 2 n型GaAsエピタキシャル層(Siドープ) 3 p型GaAsエピタキシャル層(Siドープ) 4 p型GaAlAsエピタキシャル層 Reference Signs List 1 GaAs substrate 2 n-type GaAs epitaxial layer (Si-doped) 3 p-type GaAs epitaxial layer (Si-doped) 4 p-type GaAlAs epitaxial layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Siドープのn型Ga1-xAlxAs(0≦
x<1)エピタキシャル層とSiドープのp型Ga1-y
AlyAs(0≦y<1)エピタキシャル層とが接合す
る構造を有する赤外発光ダイオード用エピタキシャルウ
ェハで、p型Ga1- yAlyAsエピタキシャル層とn型
Ga1-xAlxAsエピタキシャル層のpn接合部のSi
濃度が、2×1019cm-3〜9×1019cm-3の範囲内
であることを特徴とする赤外発光ダイオード用エピタキ
シャルウェハ。
1. An Si-doped n-type Ga 1-x Al x As (0 ≦
x <1) epitaxial layer and Si-doped p-type Ga 1-y
An epitaxial wafer for an infrared light-emitting diode having a structure in which an Al y As (0 ≦ y <1) epitaxial layer is bonded, comprising a p-type Ga 1- y Al y As epitaxial layer and an n-type Ga 1-x Al x As epitaxial Si of pn junction of layer
An epitaxial wafer for an infrared light-emitting diode, wherein the concentration is in the range of 2 × 10 19 cm −3 to 9 × 10 19 cm −3 .
【請求項2】p型Ga1-yAlyAsエピタキシャル層
の、n型Ga1-xAlxAsエピタキシャル層とのpn接
合部におけるAl組成比が、0.01≦y≦0.1であ
ることを特徴とする請求項1に記載の赤外発光ダイオー
ド用エピタキシャルウェハ。
2. An Al composition ratio at a pn junction of a p-type Ga 1-y Al y As epitaxial layer and an n-type Ga 1-x Al x As epitaxial layer is 0.01 ≦ y ≦ 0.1. The epitaxial wafer for an infrared light emitting diode according to claim 1, wherein:
【請求項3】発光ピーク波長が900nm以上で950
nm以下であることを特徴とする請求項1または請求項
2に記載の赤外発光ダイオード用エピタキシャルウェ
ハ。
3. An emission peak wavelength of 950 at 900 nm or more.
3. The epitaxial wafer for an infrared light emitting diode according to claim 1, wherein the thickness is not more than nm. 4.
【請求項4】請求項1〜3の何れか1項に記載の赤外発
光ダイオード用エピタキシャルウェハを用いて製造した
発光ダイオード。
4. A light emitting diode manufactured using the infrared light emitting diode epitaxial wafer according to claim 1.
【請求項5】請求項4に記載の発光ダイオードを用いた
フォトカプラ、フォトインタラプタ。
5. A photocoupler or photointerrupter using the light emitting diode according to claim 4.
JP2000051633A 2000-02-28 2000-02-28 Epitaxial wafer for infrared-emitting diode and light emitting diode formed thereof Pending JP2001244501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000051633A JP2001244501A (en) 2000-02-28 2000-02-28 Epitaxial wafer for infrared-emitting diode and light emitting diode formed thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000051633A JP2001244501A (en) 2000-02-28 2000-02-28 Epitaxial wafer for infrared-emitting diode and light emitting diode formed thereof

Publications (1)

Publication Number Publication Date
JP2001244501A true JP2001244501A (en) 2001-09-07

Family

ID=18573261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000051633A Pending JP2001244501A (en) 2000-02-28 2000-02-28 Epitaxial wafer for infrared-emitting diode and light emitting diode formed thereof

Country Status (1)

Country Link
JP (1) JP2001244501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103254A (en) * 2008-10-22 2010-05-06 Sumitomo Electric Ind Ltd GaAs SUBSTRATE, MULTILAYER SUBSTRATE AND ELECTRONIC DEVICE USING THE SAME, DUMMY GaAs SUBSTRATE, AND GaAs SUBSTRATE FOR REUSE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56101786A (en) * 1980-01-18 1981-08-14 Matsushita Electric Ind Co Ltd Light emitting semiconductor device and manufacture thereof
JPH08139358A (en) * 1994-09-12 1996-05-31 Showa Denko Kk Epitaxial wafer
JPH11186591A (en) * 1997-12-24 1999-07-09 Showa Denko Kk Epitaxial wafer and light-emitting diode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56101786A (en) * 1980-01-18 1981-08-14 Matsushita Electric Ind Co Ltd Light emitting semiconductor device and manufacture thereof
JPH08139358A (en) * 1994-09-12 1996-05-31 Showa Denko Kk Epitaxial wafer
JPH11186591A (en) * 1997-12-24 1999-07-09 Showa Denko Kk Epitaxial wafer and light-emitting diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103254A (en) * 2008-10-22 2010-05-06 Sumitomo Electric Ind Ltd GaAs SUBSTRATE, MULTILAYER SUBSTRATE AND ELECTRONIC DEVICE USING THE SAME, DUMMY GaAs SUBSTRATE, AND GaAs SUBSTRATE FOR REUSE

Similar Documents

Publication Publication Date Title
JP2011238971A (en) Method of manufacturing nitride semiconductor light-emitting element
JPS6057214B2 (en) Method of manufacturing electroluminescent materials
US3931631A (en) Gallium phosphide light-emitting diodes
US4001056A (en) Epitaxial deposition of iii-v compounds containing isoelectronic impurities
JP2000091234A (en) Manufacture of iii-v nitride compound semiconductor
JPH08335715A (en) Epitaxial wafer and its manufacture
JP2005129923A (en) Nitride semiconductor, light emitting element using it, light emitting diode, laser element, lamp, and manufacturing method for those
JP3146874B2 (en) Light emitting diode
JPS5846686A (en) Blue light emitting diode
JP2001244501A (en) Epitaxial wafer for infrared-emitting diode and light emitting diode formed thereof
JP2001274454A (en) Light emitting diode and its manufacturing method
JPH06342935A (en) Gap pure green light-emitting device substrate
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
JP4865149B2 (en) Epitaxial wafer for light emitting diode, light emitting diode, and method for manufacturing epitaxial wafer for light emitting diode
JPH05343740A (en) Gallium arsenide phosphide epitaxial wafer
JPS63213378A (en) Manufacture of semiconductor light emitting element
JP4156873B2 (en) Epitaxial wafer manufacturing method
JP2804093B2 (en) Optical semiconductor device
JP2783580B2 (en) Double hetero-type infrared light emitting device
JPH1197740A (en) Epitaxial wafer for gap light emitting diode and gap light emitting diode
JP3116495B2 (en) Manufacturing method of light emitting diode
JPH04328878A (en) Manufacture of light emitting diode epitaxial wafer
JP5862472B2 (en) Epitaxial wafer manufacturing method and epitaxial wafer
JP2001036136A (en) Epitaxial wafer and light emitting diode
JP2001077410A (en) Epitaxial wafer for infrared emission diode and light- emitting element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323