JP4865149B2 - Epitaxial wafer for light emitting diode, light emitting diode, and method for manufacturing epitaxial wafer for light emitting diode - Google Patents

Epitaxial wafer for light emitting diode, light emitting diode, and method for manufacturing epitaxial wafer for light emitting diode Download PDF

Info

Publication number
JP4865149B2
JP4865149B2 JP2001164275A JP2001164275A JP4865149B2 JP 4865149 B2 JP4865149 B2 JP 4865149B2 JP 2001164275 A JP2001164275 A JP 2001164275A JP 2001164275 A JP2001164275 A JP 2001164275A JP 4865149 B2 JP4865149 B2 JP 4865149B2
Authority
JP
Japan
Prior art keywords
type
epitaxial
light
emitting diode
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001164275A
Other languages
Japanese (ja)
Other versions
JP2002359395A (en
Inventor
秀樹 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001164275A priority Critical patent/JP4865149B2/en
Publication of JP2002359395A publication Critical patent/JP2002359395A/en
Application granted granted Critical
Publication of JP4865149B2 publication Critical patent/JP4865149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Ga1-x-yInxAlyAs(0<x<0.02、0≦y<0.2、0<x+y<0.22)(以下、GaInAlAsと略記する)を用いた発光ダイオード用エピタキシャルウェハ、該エピタキシャルウェハを用いて作製した発光ダイオード、および発光ダイオード用エピタキシャルウェハの製造方法に関する。
【0002】
【従来の技術】
シリコン(Si)ドープのN型GaAsまたはGaAlAsエピタキシャル層とSiドープのP型GaAsまたはGaAlAsエピタキシャル層によりPN接合を形成した赤外発光ダイオード(LED)は、フォトカプラや各種の光センサー、リモートコントローラーの光源等に用いられている。これらの赤外LEDは動作時の通電電流により、リモートコントローラーなどの高電流通電条件で用いられるものと、フォトカプラなどの低電流通電条件で用いられるものとに大別される。
【0003】
一般にこれらの赤外LEDのPN接合は、両性不純物であるSiのNP自然反転を利用して、徐冷法の液相エピタキシャル成長法により製造されている。この製造方法では、GaAsあるいはGaAlAsの液相エピタキシャル成長においてSiをドーパントとして用いると、高温ではN型エピタキシャル層が成長し、低温ではP型エピタキシャル層が成長することを利用し、NP自然反転温度よりも高い温度でGaAs層あるいはGaAlAs層のエピタキシャル成長を開始し、NP反転温度よりも低い温度まで成長を行うことにより、一つの成長溶液からN型エピタキシャル層とP型エピタキシャル層を連続的に成長させている。この成長方法を用いると高品質の発光ダイオード用エピタキシャルウェハが容易に製造でき、生産性も高いという利点がある。
【0004】
【発明が解決しようとする課題】
しかし、このNP自然反転を利用して形成したGaAs層またはGaAlAs層のPN接合を用いた赤外LEDは、低電流通電条件で用いる場合に高電流通電条件に比べ発光出力が低下するという問題があった。
【0005】
この問題に対し、例えば特願2000−51633号ではPN接合部のSi濃度、PN接合部のAl組成を適正化することにより、0.1mA〜1mA程度の低電流駆動時の出力を改善している。しかし、この方法ではAlを添加する為にLEDの発光波長が短波長化してしまうという問題が生じていた。
【0006】
またGaAs層にInを添加し、SiのNP反転を利用して液相エピタキシャル成長法により、GaInAsからなる発光ダイオードを作製した例としては、例えばR.I.Bolkhovityanova and Yu.B.Bolkhovityanov,phys.stat.sol.(a)37,193(1976)に報告されている。この例では成長溶液中のSiの添加量が0.1質量%と少ない為、作製されたLEDの発光波長は940nm程度となっている。また発光出力も1〜1.5%と低くなっている。この原因はInAsの格子定数6.058ÅがGaAsの格子定数5.653Åに比べ格段に大きい為、GaAs基板上にGaInAs層をエピタキシャル成長する際に、GaAs基板とGaInAs層の格子定数の違いによりGaInAs層の結晶性が低下し、LEDの発光出力の低下を招く為であると考えられていた。
【0007】
本発明は、0.1〜1mAの低電流通電条件での発光出力が高く、従来のGaAsからなるLEDと同等の940nm又はそれより長い発光波長を有する赤外発光ダイオードを作ることが課題である。
【0008】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく鋭意努力検討した結果、GaAs層またはGaAlAs層からなる発光層にInを添加することにより、LEDの低電流通電条件における発光出力が増加し、また発光波長が大幅に長波長化することができることを見出した。更に、GaAs層またはGaAlAs層からなる発光層へのSiの添加量を従来よりも高い範囲で調整し、またAlを少量添加することにより、低電流通電条件でのLEDの発光出力をさらに高めることに成功した。
【0009】
すなわち本発明は、
(1)SiがドープされたN型Ga1-x-yInxAlyAs(0<x<0.02、0≦y<0.2、0<x+y<0.22)エピタキシャル層とSiがドープされたP型Ga1-x-yInxAlyAs(0<x<0.02、0≦y<0.2、0<x+y<0.22)エピタキシャル層によりPN接合が形成され、該PN接合界面におけるN型Ga1-x-yInxAlyAsエピタキシャル層とP型Ga1-x-yInxAlyAsエピタキシャル層のIn組成xがともに0.005≦x≦0.010の範囲にあることを特徴とする発光ダイオード用エピタキシャルウェハ。
(2)PN接合界面におけるN型Ga1-x-yInxAlyAsエピタキシャル層とP型Ga1-x-yInxAlyAsエピタキシャル層のIn組成xがともに0.008であることを特徴とする(1)に記載の発光ダイオード用エピタキシャルウェハ。
(3)PN接合界面におけるN型Ga1-x-yInxAlyAsエピタキシャル層とP型Ga1-x-yInxAlyAsエピタキシャル層のSi濃度がともに2×1019〜6×1019cm-3の範囲にあることを特徴とする(1)または(2)に記載の発光ダイオード用エピタキシャルウェハ。
(4)PN接合界面におけるN型Ga1-x-yInxAlyAsエピタキシャル層とP型Ga1-x-yInxAlyAsエピタキシャル層のAl組成yがともに0.02≦y≦0.10の範囲にあることを特徴とする(1)ないし(3)のいずれか1に記載の発光ダイオード用エピタキシャルウェハ。
(5)GaAs基板上にN型Ga1-x-yInxAlyAsエピタキシャル層とP型Ga1-x-yInxAlyAsエピタキシャル層が順次積層されていることを特徴とする(1)ないし(4)のいずれか1に記載の発光ダイオード用エピタキシャルウェハ。である。
【0010】
また本発明は、
(6)(1)ないし(5)のいずれか1に記載の発光ダイオード用エピタキシャルウェハを用いて作製した発光ダイオード。
(7)発光のピーク波長が950nm以上1000nm以下の範囲であることを特徴とする(6)に記載の発光ダイオード。
である。
【0011】
また本発明は、
(8)Siが高温で成長したエピタキシャル層内ではドナー不純物となり、低温で成長したエピタキシャル層内ではアクセプター不純物となることを利用して、Si、Ga、In、AsまたはこれらにさらにAlを含む成長溶液から液相エピタキシャル成長によって、SiがドープされたN型Ga1-x-yInxAlyAsエピタキシャル層とSiがドープされたP型Ga1-x-yInxAlyAsエピタキシャル層をGaAs基板上に連続して成長することを特徴とする(1)ないし(5)のいずれか1に記載の発光ダイオード用エピタキシャルウェハの製造方法。
(9)液相エピタキシャル成長開始時の成長溶液中のIn濃度が7質量%〜35質量%、Si濃度が0.2〜0.57質量%、Al濃度が0.02質量%〜0.13質量%であり、成長溶液の残部がAs及びGaであり、Asは前記溶液中で成長開始時に飽和濃度以上となることを特徴とする(8)に記載の発光ダイオード用エピタキシャルウェハの製造方法。
(10)エピタキシャル成長の開始温度が830℃〜930℃の範囲にあることを特徴とする(8)または(9)に記載の発光ダイオード用エピタキシャルウェハの製造方法。である。
【0012】
【発明の実施の形態】
本発明者は、結晶性の低下により発光出力が低下するに至らない低いIn組成のSiがドープされたGaInAs混晶を用いて発光層を作製したLEDの特性を詳細に調査した。その結果、Inを添加したLEDでは低電流通電条件での発光出力が、Inを添加しない場合と比較して大幅に上昇していることを見出した。また、In組成xが0.015程度では、バンドギャップの変化からはLEDの発光のピーク波長は高々5nm程度しか長波長化しないことが予想される。しかし実際に作製したLEDでは、In組成xが0.014の場合でも発光のピーク波長が50nm以上長波長化することも明らかとなった。
【0013】
また本発明者は、更に低電流通電条件におけるLEDの発光出力を高めるべく、Inを添加した上でさらにSi及びAlの添加量を調整したLED用エピタキシャルウェハを試作し、それらから得られたLEDの特性を評価した。その結果、発光波長を従来のSiがドープされたGaAsからなるLEDに比べて短波長化させること無く、Inのみを添加する場合よりも更に低電流通電条件でのLEDの発光出力を高めることに成功した。
【0014】
本発明の赤外LED用エピタキシャルウェハは、SiドープのN型Ga1-x-yAlxInyAs(0≦x<0.02、0<y<0.2、0<x+y<0.22)エピタキシャル層とSiドープのP型Ga1-x-yAlxInyAs(0≦x<0.02、0<y<0.2、0<x+y<0.22)エピタキシャル層がPN接合を形成する構造を持ち、PN接合界面におけるN型Ga1-x-yInxAlyAsエピタキシャル層とP型Ga1-x-yInxAlyAsエピタキシャル層のIn組成xを0.002≦x≦0.012、更に好ましくは0.003≦x≦0.010の範囲、例えば0.005≦x≦0.010、あるいは0.008とすることにより低電流通電条件での発光出力を高め、同時に発光波長を長波長化している。
【0015】
また本発明では、PN接合界面におけるN型Ga1-x-yInxAlyAsエピタキシャル層とP型Ga1-x-yInxAlyAsエピタキシャル層のSi濃度をともに2×1019〜6×1019cm-3の範囲とすることにより低電流通電条件における発光出力を更に高めている。なおここで言うSi濃度とは、GaInAlAsエピタキシャル層のキャリア濃度ではなく、GaInAlAsエピタキシャル層に含まれるSiそのものの濃度である。GaInAlAs層中では、Siはドナー及びアクセプターの両方の状態で存在し、電気的には補償関係にある。従って、Siを含むドナー不純物の濃度とSiを含むアクセプタ不純物の濃度の差がキャリア濃度となる。このSi濃度は、例えばSIMS(二次イオン質量分析)などにより測定することができる。
【0016】
また本発明では、PN接合界面におけるN型Ga1-x-yInxAlyAsエピタキシャル層とP型Ga1-x-yInxAlyAsエピタキシャル層のAl組成yをともに0.02≦y≦0.10とすることにより、低電流通電条件におけるLEDの発光出力を更に高めている。
【0017】
本発明の発光ダイオード用エピタキシャルウェハは、N型GaInAlAs層の厚さを50〜80μm程度、P型GaInAlAs層の厚さを40〜70μmとするのが好ましい。また、P型GaInAlAs層の表面キャリア濃度は、2〜4×1018cm-3の範囲とするのが好ましい。N型GaInAlAs層およびP型GaInAlAs層の層厚およびキャリア濃度をこれらの値に制御することにより、発光出力、順方向電圧(VF)、信頼性等の特性の優れたLEDを作製することができる。
【0018】
本発明の発光ダイオード用エピタキシャルウェハは、両性不純物であるSiのNP自然反転を利用して、徐冷法の液相エピタキシャル成長法により製造するのが好ましい。N型GaInAlAs層およびP型GaInAlAs層の層厚およびキャリア濃度の値は、液相エピタキシャル成長のためのSi、Ga、In、Al、Asを含む成長溶液の組成(原料仕込み量)に応じて、エピタキシャル層の成長開始温度、成長終了温度、ウェハ間の溶液の厚さ等を調整することにより制御することが出来る。例えば、成長溶液のIn濃度を上昇させた場合はNP反転温度が下がる為、成長開始温度、成長終了温度を下げる必要がある。また、成長溶液にAlを添加する場合は、Asの溶解度が減少する為成長溶液の厚みを増やす必要がある。また、Si添加量を減少させた場合には、表面キャリア濃度を高める為に成長終了温度を下げる必要がある。
【0019】
本発明の発光ダイオード用エピタキシャルウェハは、GaAs基板上にSiドープのN型GaInAlAsエピタキシャル層及びP型GaInAlAsエピタキシャル層を順次積層して作製することができる。このエピタキシャルウェハは、構造が最も単純であるため作製が容易であると言う利点がある。また本発明の発光ダイオード用エピタキシャルウェハは、GaAs基板上にSiドープのN型GaInAlAsエピタキシャル層及び薄いP型GaInAlAsエピタキシャル層を順次積層し、さらにP型GaInAlAsエピタキシャル層の上にLEDの発光に対して透明な例えばP型GaAlAsからなる窓層を積んだ構造とすることができ、このエピタキシャルウェハに対しても本発明の効果が得られる。特にLEDのPN接合の界面でAlが添加されている場合には、上記の窓層を有する構造は、P型GaInAlAsエピタキシャル層によるLEDの発光の吸収を押さえることができるため、LEDの発光出力を高めることができる。
【0020】
本発明の発光ダイオードは、GaAs基板上にエピタキシャル層を成長させて発光ダイオード用エピタキシャルウェハを作製した後、そのままLEDの作製に用いても良いし、エッチング等により基板を除去した後LEDの作製に用いても良い。特にLEDのPN接合の界面でAlが添加されている場合には、基板を除去したLEDは基板によるLEDの発光の吸収を押さえることができるため、LEDの発光出力を高めることができる。
【0021】
【実施例】
次に本発明を実験例を用いて詳細に説明する。
【0022】
(実験例1)
本実験例1で作製した発光ダイオード用エピタキシャルウェハは、図1に示すようにGaAs基板1上にN型GaInAlAs層2、P型GaInAlAs層3を積層した構造とした。また、N型GaInAlAs層2とP型GaInAlAs層3はドーパントであるSiが自然反転することを利用し、徐冷法の液相エピタキシャル成長法により連続した成長で形成した。
【0023】
GaAs基板1としては、N型のSiドープのGaAs単結晶基板を用いた。基板のキャリア濃度は、2〜8×1017cm-3であった。形状は直径2インチのD型で、HB法(水平ブリッジマン法)により成長したものを用いた。また面方位が(100)面のものを用いた。基板の前処理として、表面ポリッシュ後の基板を硫酸(98質量%):過酸化水素(35質量%):水=3:1:1の体積比で混合した溶液中で50℃で2分間揺動した。その後水洗および乾燥を行った。基板のエッチング量は両面で20μm程度であった。
【0024】
N型GaInAlAs層2、P型GaInAlAs層3の成長は縦型環状炉を用い、ウェハを縦に置くディッピング法によって以下の手順で実施した。先ず、所定の量のGa、In、Al、Si及びAsからなるエピタキシャル成長用の成長溶液を準備した。本実験例1では、InとGaの量を変化させた計9水準の原料仕込み量の成長溶液について、エピタキシャル成長を実施した。9水準(水準1−1〜1−9)の原料仕込み量を表1の原料仕込み量の欄に示す。また、Siの添加量は成長溶液に占める割合が約0.3質量%となるよう調整した。AsはGaAs多結晶の形で300gを成長溶液に加えた。Asは成長溶液中で成長開始時に飽和濃度以上となる。
【0025】
【表1】

Figure 0004865149
【0026】
上記の成長溶液の原料を成長用坩堝内に準備し、縦型環状炉内に載置した。次に、前処理により表面を清浄化した基板を基板ホルダーにセットし、昇降可能な石英棒の先端に基板ホルダーを固定した。基板に対する成長溶液の厚さは2〜4mm程度となるよう基板ホルダーの間隔を調整した。基板ホルダーを坩堝の上方にセットした後、炉を密閉し、炉内の雰囲気をArガスに置換した。
【0027】
炉内の雰囲気をArガスに置換した後、減圧下で1時間原料を500℃に保持した。その後、炉内に水素ガスを大気圧で毎分5リットルの流量で流しながら表1の成長開始温度まで昇温した。さらに成長開始温度で2時間保持し、成長溶液の原料を均一に溶解した。続いて基板を原料直上で原料融液とほぼ等温になるまで保持した後、基板を坩堝内の成長溶液に浸漬させた。
【0028】
基板を浸漬させた成長溶液の温度を10分間で5℃上げて、基板の表面を10μm程度溶解した後、成長溶液の温度を1℃/minの冷却速度で650℃まで冷却してGaAs基板上にN型GaInAlAs層とP型GaInAlAs層を連続的にエピタキシャル成長させた。その後エピタキシャルウェハを成長溶液から分離し、炉内の雰囲気を水素からArに切り替えて室温まで放冷した。
【0029】
本実験例1では、9水準の原料仕込み量の成長溶液について、それぞれ上記の方法でエピタキシャルウェハを作製した。
【0030】
水準1−6で得られたエピタキシャルウェハのIn組成及びSi濃度をSIMSにより測定した所、PN接合界面でのIn組成はx=0.008であり、Si濃度は3.2×1019cm-3であった。なお、エピタキシャルウェハの表面からのPN接合界面の位置は、エピタキシャルウェハの劈開面をフッ酸系のエッチャントでエッチングした後、光学顕微鏡で観察して求めた。また他の水準のエピタキシャルウェハの特性も同様にして測定した。
【0031】
上記のようにして作製した9水準のエピタキシャルウェハは、GaAs基板の裏面およびP型GaInAlAs層の表面にそれぞれN型およびP型の電極を形成した後、0.3mm角のチップに分離して発光ダイオードとなした。さらに作製した発光ダイオードはTO−18ステム上にマウントして、発光出力および発光ピーク波長を測定した。測定したLEDの発光出力および発光ピーク波長を表1に示す。ただし、発光出力は水準1−1のLEDを基準とした時の相対値で示した。
【0032】
(実験例2)
本実験例2では、所定量のInを添加した上でさらにSiの添加量を変化させた計8水準の原料仕込み量の成長溶液を用いて、実験例1と同様にしてエピタキシャルウェハを作製した。8水準(水準2−1〜2−8)の原料仕込み量を表2の原料仕込み量の欄に示す。
【0033】
【表2】
Figure 0004865149
【0034】
本実験例2により作製した8水準のSi濃度を有する発光ダイオード用エピタキシャルウェハを、実験例1と同じ方法でLEDとなし、発光出力および発光ピーク波長を測定した。測定したLEDの発光出力および発光ピーク波長を表2に示す。ただし、発光出力は水準2−1のLEDを基準とした時の相対値で示した。
【0035】
(実験例3)
本実験例3では、所定量のInとSiを添加した上でさらにAlの添加量を変化させた計8水準の原料仕込み量の成長溶液を用いて、実験例1と同様にしてエピタキシャルウェハを作製した。8水準(水準3−1〜3−8)の原料仕込み量を表3の原料仕込み量の欄に示す。
【0036】
【表3】
Figure 0004865149
【0037】
本実験例3により作製した8水準のAl組成を有する発光ダイオード用エピタキシャルウェハを、実験例1と同じ方法でLEDとなし、発光出力および発光ピーク波長を測定した。測定したLEDの発光出力および発光ピーク波長を表3に示す。ただし、発光出力は水準3−1のLEDを基準とした時の相対値で示した。
【0038】
実験例1で得られたエピタキシャルウェハを用いて作製したLEDの発光出力とPN接合界面におけるIn組成xとの関係を調査した結果を図2に示す。図2から、PN接合部にInを添加することにより低電流通電条件(LEDに流す電流を0.1mAまたは1mAとする)における発光出力が増加することが判る。またInの添加量が増えると出力は上昇するが、一定量以上のInを添加すると出力は低下し始める。これは結晶性の低下による出力の低下がInの添加による出力の上昇効果を上回る為であると考えられる。
【0039】
図2からPN接合部のIn組成xを0.002≦x≦0.012の範囲、より好ましくは0.003≦x≦0.010の範囲とすることにより、低電流通電条件における発光出力をIn組成xが0の場合と比較して、大幅に向上させることができることが明らかとなった。
【0040】
また実験例2で得られたエピタキシャルウェハを用いて作製したLEDの発光出力とPN接合界面におけるSi濃度との関係を調査した結果を図3に示す。ここで言うSi濃度とは、GaInAlAs層にドナーまたはアクセプターとして取りこまれているSi濃度の総和を表す。図3からPN接合界面におけるSi濃度は低すぎても高すぎても発光出力は低下し、PN接合界面のSi濃度を2.0×1019〜6×1019cm-3の範囲とすることにより、低電流通電条件での発光出力を高めることが可能であることが明らかとなった。
【0041】
また実験例3で得られたエピタキシャルウェハを用いて作製したLEDの発光出力とPN接合界面におけるAl組成との関係を調査した結果を図4に示す。図4からPN接合界面のAl組成を0.02≦y≦0.10の範囲とすることにより低電流通電条件での発光出力を高めることが可能であることが明らかとなった。
【0042】
さらに実験例1で得られたエピタキシャルウェハを用いて作製したLEDの発光波長とPN接合界面でのIn組成xの関係を調査した結果を図5に示す。図5から発光のピーク波長はPN接合部のIn組成xが増加するに従い長波長化することが判る。図2に示した発光出力のIn組成依存性の結果を考慮すると、PN接合部のIn組成xを0.012まで増加させることにより低電流通電条件での発光出力が低下することなく、従来のGaAlAs系LEDでは得られなかった発光ピーク波長が1000nmの長波長のLEDを得ることが可能であることが明らかとなった。
【0043】
また、実験例2で得られたエピタキシャルウェハを用いて作製したLEDの発光波長とPN接合部のSi濃度の関係を調査した結果を図6に示す。図6から発光ピーク波長はPN接合部のSi濃度が増加するに従い長波長化することが判る。
実験例2で得られたPN接合部のIn組成がx=0.008の場合には、PN接合部のSi濃度を低電流での発光出力が高い2.0×1019〜6×1019cm-3の範囲で変化させることにより、発光ピーク波長を975nm〜995nmの範囲で変化させることができることが明らかとなった。
【0044】
また、実験例3で得られたエピタキシャルウェハを用いて作製したLEDの発光波長とPN接合部のAl組成yの関係を調査した結果を図7に示す。この図から発光ピーク波長はPN接合部のAl組成yが増加するに従い短波長化することが判る。この際、PN接合部のIn組成がx=0.008の場合には、Al組成yを低電流の出力が高いy=0.02〜0.10の範囲で変化させることにより発光ピーク波長を983nmから965nmの範囲で変化させられることが明らかとなった。
【0045】
上記の結果のように本発明の発光ダイオードは、N型GaInAlAs層とP型GaInAlAs層とのPN接合界面におけるIn組成xを0.002≦x≦0.012、より好ましくは0.003≦x≦0.010の範囲で制御し、さらに加えて好ましくはSi濃度を2.0×1019〜6×1019cm-3の範囲、Al組成yを0.02≦y≦0.10の範囲でそれぞれ最適に制御することにより、低電流通電条件で発光出力が高く、かく950nm〜1000nmの間の所望の発光ピーク波長を有するLEDを作製することが可能となった。
【0046】
本発明の発光ダイオードの発光ピーク波長を調整する手順としては、発光ピーク波長に1番大きく影響するのはIn組成である為、先ず例えば図5から望ましい波長となるIn組成を求め、次いでSi濃度やAl添加量で調整すると良い。例えば実験例1で作製したLEDではPN接合界面におけるSi濃度が3.2×1019cm-3であるから、In組成を決めた後にSi濃度を本発明の2〜6×1019cm-3の範囲で増減すれば、図6から分かるように発光ピーク波長は±10nmの範囲で調整できる。さらに、PN接合界面におけるAl組成yを0.02≦y≦0.10の範囲で添加することにより、発光ピーク波長を更に20nmの範囲で短波長化することができる。
【0047】
【発明の効果】
本発明の発光ダイオード用エピタキシャルウェハからは、発光ピーク波長が950nm以上1000nm以下の範囲で、従来にない低電流通電条件における発光出力の高い発光ダイオードが得られるようになった。また、本発明の発光ダイオードは、従来の940nm付近に発光ピーク波長を持つSiドープのGaAsからなる赤外LEDよりも長波長の発光が要求される用途や、低電流通電条件で用いられるフォトカプラ、フォトインタラプタ等に好適に用いることができる。
【図面の簡単な説明】
【図1】実験例1、2、3で作製した発光ダイオード用エピタキシャルウェハの積層構造を示す図
【図2】PN接合界面のIn組成xと発光出力との関係を示す図
【図3】PN接合界面のSi濃度と発光出力との関係を示す図
【図4】PN接合界面のAl組成yと発光出力との関係を示す図
【図5】PN接合界面のIn組成xと発光ピーク波長との関係を示す図
【図6】PN接合界面のSi濃度と発光ピーク波長との関係を示す図
【図7】PN接合界面のAl組成yと発光ピーク波長との関係を示す図
【符号の説明】
1 GaAs基板
2 N型GaInAlAs層
3 P型GaInAlAs層[0001]
BACKGROUND OF THE INVENTION
The present invention is, Ga 1-xy In x Al y As (0 <x <0.02,0 ≦ y <0.2,0 <x + y <0.22) ( hereinafter, abbreviated as GaInAlAs) emission using The present invention relates to an epitaxial wafer for a diode, a light emitting diode manufactured using the epitaxial wafer, and a method for manufacturing an epitaxial wafer for a light emitting diode.
[0002]
[Prior art]
An infrared light emitting diode (LED) in which a PN junction is formed by a silicon (Si) -doped N-type GaAs or GaAlAs epitaxial layer and a Si-doped P-type GaAs or GaAlAs epitaxial layer is used in photocouplers, various optical sensors, and remote controllers. Used for light sources. These infrared LEDs are roughly classified into those used under high-current energization conditions such as a remote controller and those used under low-current energization conditions such as a photocoupler, depending on the energization current during operation.
[0003]
In general, the PN junction of these infrared LEDs is manufactured by a slow-cooling liquid phase epitaxial growth method using NP spontaneous reversal of Si, which is an amphoteric impurity. In this manufacturing method, when Si is used as a dopant in the liquid phase epitaxial growth of GaAs or GaAlAs, an N-type epitaxial layer grows at a high temperature and a P-type epitaxial layer grows at a low temperature. The epitaxial growth of the GaAs layer or the GaAlAs layer is started at a high temperature, and the N-type epitaxial layer and the P-type epitaxial layer are continuously grown from one growth solution by growing to a temperature lower than the NP inversion temperature. . When this growth method is used, there is an advantage that a high-quality light-emitting diode epitaxial wafer can be easily manufactured and the productivity is high.
[0004]
[Problems to be solved by the invention]
However, the infrared LED using the PN junction of the GaAs layer or the GaAlAs layer formed by utilizing the NP natural inversion has a problem that the light emission output is lower than that in the high current conduction condition when used in the low current conduction condition. there were.
[0005]
For example, Japanese Patent Application No. 2000-51633 improves the output at the time of low current driving of about 0.1 mA to 1 mA by optimizing the Si concentration of the PN junction and the Al composition of the PN junction. Yes. However, this method has a problem that the emission wavelength of the LED is shortened due to the addition of Al.
[0006]
As an example of fabricating a light-emitting diode made of GaInAs by adding In to the GaAs layer and performing liquid phase epitaxial growth using NP inversion of Si, for example, R.K. I. Bolkhovityanova and Yu. B. Bolkhovityanov, phys. stat. sol. (A) 37, 193 (1976). In this example, since the addition amount of Si in the growth solution is as small as 0.1% by mass, the emission wavelength of the manufactured LED is about 940 nm. Also, the light emission output is as low as 1 to 1.5%. This is because the lattice constant of InAs 6.058Å is much larger than the lattice constant of 5.653Å of GaAs. Therefore, when the GaInAs layer is epitaxially grown on the GaAs substrate, the difference in lattice constant between the GaAs substrate and the GaInAs layer causes the GaInAs layer. It was thought that this was because the crystallinity of the LED decreased and led to a decrease in the light emission output of the LED.
[0007]
It is an object of the present invention to produce an infrared light emitting diode having a high light emission output under a low current conduction condition of 0.1 to 1 mA and having a light emission wavelength equivalent to 940 nm or longer than that of a conventional GaAs LED. .
[0008]
[Means for Solving the Problems]
As a result of diligent efforts to solve the above problems, the present inventor has added light to the light emitting layer composed of a GaAs layer or a GaAlAs layer, thereby increasing the light emission output of the LED under a low current conduction condition, and the emission wavelength. Found that the wavelength can be significantly increased. Furthermore, the amount of Si added to the light-emitting layer composed of a GaAs layer or a GaAlAs layer is adjusted in a higher range than before, and a small amount of Al is added to further increase the light-emitting output of the LED under low current conduction conditions. succeeded in.
[0009]
That is, the present invention
(1) N-type Ga 1-xy In x Al y As doped with Si (0 <x <0.02, 0 ≦ y <0.2, 0 <x + y <0.22) Epitaxial layer and Si doped PN junction is formed by a P-type Ga 1-xy In x Al y As (0 <x <0.02,0 ≦ y <0.2,0 <x + y <0.22) epitaxial layer is, the PN junction The In composition x of the N-type Ga 1 -xy In x Al y As epitaxial layer and the P-type Ga 1 -xy In x Al y As epitaxial layer at the interface is in the range of 0.005 ≦ x ≦ 0.010. Epitaxial wafer for light emitting diode.
(2) The In composition x of the N-type Ga 1 -xy In x Al y As epitaxial layer and the P-type Ga 1 -xy In x Al y As epitaxial layer at the PN junction interface is both 0.008. The epitaxial wafer for light emitting diodes as described in (1).
(3) The Si concentrations of the N-type Ga 1 -xy In x Al y As epitaxial layer and the P-type Ga 1 -xy In x Al y As epitaxial layer at the PN junction interface are both 2 × 10 19 to 6 × 10 19 cm −. The epitaxial wafer for light-emitting diodes according to (1) or (2), which is in the range of 3 .
(4) The Al composition y of the N-type Ga 1 -xy In x Al y As epitaxial layer and the P-type Ga 1 -xy In x Al y As epitaxial layer at the PN junction interface is 0.02 ≦ y ≦ 0.10. The epitaxial wafer for light-emitting diodes according to any one of (1) to (3), which is in a range.
(5) An N-type Ga 1 -xy In x Al y As epitaxial layer and a P-type Ga 1 -xy In x Al y As epitaxial layer are sequentially stacked on a GaAs substrate. The epitaxial wafer for light-emitting diodes according to any one of 4). It is.
[0010]
The present invention also provides
(6) A light-emitting diode produced using the light-emitting diode epitaxial wafer described in any one of (1) to (5).
(7) The light emitting diode according to (6), wherein a peak wavelength of light emission is in a range of 950 nm to 1000 nm.
It is.
[0011]
The present invention also provides
(8) Si, Ga, In, As, or further containing Al is grown by utilizing the fact that Si becomes a donor impurity in an epitaxial layer grown at a high temperature and an acceptor impurity in an epitaxial layer grown at a low temperature. An N-type Ga 1 -xy In x Al y As epitaxial layer doped with Si and a P-type Ga 1 -xy In x Al y As epitaxial layer doped with Si are continuously formed on the GaAs substrate by liquid phase epitaxial growth from a solution. The method for producing an epitaxial wafer for a light-emitting diode according to any one of (1) to (5), characterized in that the epitaxial wafer is grown.
(9) In concentration in the growth solution at the start of liquid phase epitaxial growth is 7 mass% to 35 mass%, Si concentration is 0.2 to 0.57 mass%, and Al concentration is 0.02 mass% to 0.13 mass. %, And the balance of the growth solution is As and Ga, and As is equal to or higher than a saturated concentration at the start of growth in the solution. The method for producing an epitaxial wafer for a light-emitting diode according to (8),
(10) The method for producing an epitaxial wafer for light-emitting diodes according to (8) or (9), wherein the starting temperature of epitaxial growth is in the range of 830 ° C. to 930 ° C. It is.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The inventor has investigated in detail the characteristics of an LED in which a light-emitting layer is produced using a GaInAs mixed crystal doped with Si having a low In composition that does not cause a decrease in light emission output due to a decrease in crystallinity. As a result, it was found that the light emission output under low-current energization conditions was significantly increased in the LED added with In compared with the case where In was not added. In addition, when the In composition x is about 0.015, the peak wavelength of light emission of the LED is expected to be increased only about 5 nm from the change of the band gap. However, it has also been clarified that the actually produced LED has a light emission peak wavelength of 50 nm or longer even when the In composition x is 0.014.
[0013]
In addition, the present inventor made a trial manufacture of an epitaxial wafer for an LED in which the addition amount of Si and Al was further adjusted after adding In in order to further increase the light emission output of the LED under low-current energization conditions, and the LED obtained therefrom The characteristics were evaluated. As a result, it is possible to increase the light emission output of the LED under a current-carrying condition lower than the case of adding only In, without shortening the light emission wavelength compared with the conventional LED made of GaAs doped with Si. Successful.
[0014]
The infrared-LED epitaxial wafer of the present invention is a Si-doped N-type Ga 1-xy Al x In y As (0 ≦ x <0.02, 0 <y <0.2, 0 <x + y <0.22). The epitaxial layer and the Si-doped P-type Ga 1-xy Al x In y As (0 ≦ x <0.02, 0 <y <0.2, 0 <x + y <0.22) epitaxial layer forms a PN junction. has a structure, N-type Ga 1-xy in the PN junction interface x Al y as epitaxial layer and the P-type Ga 1-xy in x Al y as epitaxial layer of in composition x of 0.002 ≦ x ≦ 0.012, More preferably, the range of 0.003 ≦ x ≦ 0.010, for example, 0.005 ≦ x ≦ 0.010, or 0.008 is used to increase the light emission output under low current conduction conditions and at the same time increase the light emission wavelength. It has become a wavelength.
[0015]
In the present invention, the Si concentrations of the N-type Ga 1 -xy In x Al y As epitaxial layer and the P-type Ga 1 -xy In x Al y As epitaxial layer at the PN junction interface are both 2 × 10 19 to 6 × 10 19. By setting it in the range of cm −3 , the light emission output under the low current conduction condition is further enhanced. The Si concentration referred to here is not the carrier concentration of the GaInAlAs epitaxial layer but the concentration of Si itself contained in the GaInAlAs epitaxial layer. In the GaInAlAs layer, Si exists in both a donor state and an acceptor state, and is electrically compensated. Therefore, the carrier concentration is the difference between the concentration of the donor impurity containing Si and the concentration of the acceptor impurity containing Si. This Si concentration can be measured, for example, by SIMS (secondary ion mass spectrometry).
[0016]
In the present invention, the Al composition y of the N-type Ga 1 -xy In x Al y As epitaxial layer and the P-type Ga 1 -xy In x Al y As epitaxial layer at the PN junction interface is 0.02 ≦ y ≦ 0. By setting it to 10, the light emission output of the LED under the low current conduction condition is further increased.
[0017]
In the epitaxial wafer for a light-emitting diode of the present invention, the thickness of the N-type GaInAlAs layer is preferably about 50 to 80 μm, and the thickness of the P-type GaInAlAs layer is preferably 40 to 70 μm. The surface carrier concentration of the P-type GaInAlAs layer is preferably in the range of 2-4 × 10 18 cm −3 . By controlling the thickness and carrier concentration of the N-type GaInAlAs layer and the P-type GaInAlAs layer to these values, an LED having excellent characteristics such as light emission output, forward voltage (VF), and reliability can be manufactured. .
[0018]
The epitaxial wafer for light-emitting diodes of the present invention is preferably produced by a slow-cooling liquid phase epitaxial growth method utilizing NP spontaneous reversal of Si, which is an amphoteric impurity. The layer thickness and carrier concentration values of the N-type GaInAlAs layer and the P-type GaInAlAs layer depend on the composition (raw material charge amount) of the growth solution containing Si, Ga, In, Al, and As for liquid phase epitaxial growth. It can be controlled by adjusting the growth start temperature of the layer, the growth end temperature, the thickness of the solution between the wafers, and the like. For example, when the In concentration of the growth solution is raised, the NP inversion temperature is lowered, so it is necessary to lower the growth start temperature and the growth end temperature. In addition, when Al is added to the growth solution, it is necessary to increase the thickness of the growth solution because the solubility of As decreases. Further, when the Si addition amount is decreased, it is necessary to lower the growth end temperature in order to increase the surface carrier concentration.
[0019]
The epitaxial wafer for light emitting diodes of the present invention can be produced by sequentially laminating a Si-doped N-type GaInAlAs epitaxial layer and a P-type GaInAlAs epitaxial layer on a GaAs substrate. This epitaxial wafer has an advantage that it is easy to manufacture because of its simplest structure. The epitaxial wafer for a light-emitting diode according to the present invention is formed by sequentially laminating a Si-doped N-type GaInAlAs epitaxial layer and a thin P-type GaInAlAs epitaxial layer on a GaAs substrate. For example, a transparent window layer made of, for example, P-type GaAlAs can be stacked, and the effect of the present invention can be obtained for this epitaxial wafer. In particular, when Al is added at the interface of the PN junction of the LED, the structure having the window layer can suppress the absorption of the light emission of the LED by the P-type GaInAlAs epitaxial layer. Can be increased.
[0020]
The light-emitting diode of the present invention may be used for the production of an LED as it is after an epitaxial layer is grown on a GaAs substrate to produce an epitaxial wafer for the light-emitting diode, or after the substrate is removed by etching or the like. It may be used. In particular, when Al is added at the interface of the PN junction of the LED, the LED from which the substrate is removed can suppress the absorption of the light emission of the LED by the substrate, so that the light emission output of the LED can be increased.
[0021]
【Example】
Next, the present invention will be described in detail using experimental examples.
[0022]
(Experimental example 1)
The light-emitting diode epitaxial wafer produced in Experimental Example 1 has a structure in which an N-type GaInAlAs layer 2 and a P-type GaInAlAs layer 3 are stacked on a GaAs substrate 1 as shown in FIG. Further, the N-type GaInAlAs layer 2 and the P-type GaInAlAs layer 3 were formed by continuous growth by a slow-cooling liquid phase epitaxial growth method utilizing the fact that Si as a dopant was naturally inverted.
[0023]
As the GaAs substrate 1, an N-type Si-doped GaAs single crystal substrate was used. The carrier concentration of the substrate was 2-8 × 10 17 cm −3 . The shape was a D-type with a diameter of 2 inches, and the one grown by the HB method (horizontal Bridgman method) was used. Also, those having a (100) plane orientation were used. As a pretreatment of the substrate, the substrate after surface polishing was shaken at 50 ° C. for 2 minutes in a mixed solution of sulfuric acid (98 mass%): hydrogen peroxide (35 mass%): water = 3: 1: 1. It moved. Thereafter, washing and drying were performed. The etching amount of the substrate was about 20 μm on both sides.
[0024]
The growth of the N-type GaInAlAs layer 2 and the P-type GaInAlAs layer 3 was performed by the following procedure using a vertical annular furnace and a dipping method in which the wafer was placed vertically. First, a growth solution for epitaxial growth composed of a predetermined amount of Ga, In, Al, Si and As was prepared. In this Experimental Example 1, epitaxial growth was carried out on a total of 9 levels of raw material charging solution with varying amounts of In and Ga. The raw material charge amounts of 9 levels (levels 1-1 to 1-9) are shown in the raw material charge amount column of Table 1. Further, the amount of Si added was adjusted so that the proportion of the growth solution was about 0.3% by mass. 300 g of As was added to the growth solution in the form of GaAs polycrystal. As becomes a saturated concentration or more at the start of growth in the growth solution.
[0025]
[Table 1]
Figure 0004865149
[0026]
The raw material of the growth solution was prepared in a growth crucible and placed in a vertical annular furnace. Next, the substrate whose surface was cleaned by pretreatment was set in the substrate holder, and the substrate holder was fixed to the tip of a quartz rod that can be moved up and down. The distance between the substrate holders was adjusted so that the growth solution with respect to the substrate had a thickness of about 2 to 4 mm. After setting the substrate holder above the crucible, the furnace was sealed, and the atmosphere in the furnace was replaced with Ar gas.
[0027]
After replacing the atmosphere in the furnace with Ar gas, the raw material was kept at 500 ° C. under reduced pressure for 1 hour. Thereafter, the temperature was raised to the growth start temperature shown in Table 1 while flowing hydrogen gas into the furnace at a flow rate of 5 liters per minute at atmospheric pressure. Furthermore, it was kept at the growth start temperature for 2 hours to uniformly dissolve the raw material of the growth solution. Subsequently, the substrate was held immediately above the raw material until it became substantially isothermal with the raw material melt, and then the substrate was immersed in the growth solution in the crucible.
[0028]
The temperature of the growth solution in which the substrate is immersed is increased by 5 ° C. over 10 minutes to dissolve the surface of the substrate by about 10 μm, and then the temperature of the growth solution is cooled to 650 ° C. at a cooling rate of 1 ° C./min. An N-type GaInAlAs layer and a P-type GaInAlAs layer were epitaxially grown continuously. Thereafter, the epitaxial wafer was separated from the growth solution, and the atmosphere in the furnace was switched from hydrogen to Ar and allowed to cool to room temperature.
[0029]
In this Experimental Example 1, epitaxial wafers were produced by the above-described methods for the growth solutions with 9 levels of raw material charge.
[0030]
When the In composition and Si concentration of the epitaxial wafer obtained at level 1-6 were measured by SIMS, the In composition at the PN junction interface was x = 0.008, and the Si concentration was 3.2 × 10 19 cm −. It was 3 . The position of the PN junction interface from the surface of the epitaxial wafer was determined by observing with an optical microscope after etching the cleavage plane of the epitaxial wafer with a hydrofluoric acid-based etchant. The characteristics of other levels of epitaxial wafers were also measured in the same manner.
[0031]
The nine-level epitaxial wafer produced as described above is formed by forming N-type and P-type electrodes on the back surface of the GaAs substrate and the surface of the P-type GaInAlAs layer, respectively, and then separating the light into 0.3 mm square chips to emit light. It became a diode. Furthermore, the produced light emitting diode was mounted on a TO-18 stem, and the light emission output and the light emission peak wavelength were measured. Table 1 shows the measured light emission output and light emission peak wavelength of the LED. However, the light emission output is shown as a relative value with respect to the LED of level 1-1.
[0032]
(Experimental example 2)
In this Experimental Example 2, an epitaxial wafer was produced in the same manner as in Experimental Example 1, using a growth solution with a total of 8 levels of raw material charged, in which a predetermined amount of In was added and the addition amount of Si was further changed. . The raw material charge amounts of 8 levels (levels 2-1 to 2-8) are shown in the raw material charge amount column of Table 2.
[0033]
[Table 2]
Figure 0004865149
[0034]
The epitaxial wafer for light-emitting diodes having an Si concentration of 8 levels produced in this Experimental Example 2 was made into an LED by the same method as in Experimental Example 1, and the light emission output and the light emission peak wavelength were measured. Table 2 shows the measured light emission output and light emission peak wavelength of the LED. However, the light emission output is shown as a relative value when the LED of level 2-1 is used as a reference.
[0035]
(Experimental example 3)
In this Experimental Example 3, an epitaxial wafer was formed in the same manner as in Experimental Example 1, using a growth solution with a total of 8 levels of raw material charged in which a predetermined amount of In and Si were added and then the addition amount of Al was further changed. Produced. The raw material charging amounts at 8 levels (levels 3-1 to 3-8) are shown in the raw material charging amount column of Table 3.
[0036]
[Table 3]
Figure 0004865149
[0037]
The epitaxial wafer for light emitting diodes having an Al composition of 8 levels produced in this Experimental Example 3 was made into an LED by the same method as in Experimental Example 1, and the light emission output and the light emission peak wavelength were measured. Table 3 shows the measured light emission output and light emission peak wavelength of the LED. However, the light emission output is shown as a relative value with respect to the LED of level 3-1.
[0038]
FIG. 2 shows the result of investigating the relationship between the light emission output of the LED manufactured using the epitaxial wafer obtained in Experimental Example 1 and the In composition x at the PN junction interface. From FIG. 2, it can be seen that the light emission output under the low current conduction condition (the current flowing through the LED is 0.1 mA or 1 mA) is increased by adding In to the PN junction. The output increases as the amount of In added increases, but the output starts to decrease when a certain amount of In is added. This is presumably because the decrease in output due to the decrease in crystallinity exceeds the increase in output due to the addition of In.
[0039]
From FIG. 2, by setting the In composition x of the PN junction in the range of 0.002 ≦ x ≦ 0.012, more preferably in the range of 0.003 ≦ x ≦ 0.010, the light emission output under the low current conduction condition can be obtained. As compared with the case where the In composition x is 0, it has been clarified that it can be greatly improved.
[0040]
Moreover, the result of investigating the relationship between the light emission output of the LED produced using the epitaxial wafer obtained in Experimental Example 2 and the Si concentration at the PN junction interface is shown in FIG. The Si concentration mentioned here represents the sum of Si concentrations incorporated as a donor or acceptor in the GaInAlAs layer. From FIG. 3, the light emission output decreases if the Si concentration at the PN junction interface is too low or too high, and the Si concentration at the PN junction interface is in the range of 2.0 × 10 19 to 6 × 10 19 cm −3. As a result, it has been clarified that the light emission output can be increased under the low current conduction condition.
[0041]
Moreover, the result of investigating the relationship between the light emission output of LED produced using the epitaxial wafer obtained in Experimental Example 3 and the Al composition at the PN junction interface is shown in FIG. From FIG. 4, it was revealed that the light emission output under the low current conduction condition can be increased by setting the Al composition at the PN junction interface in the range of 0.02 ≦ y ≦ 0.10.
[0042]
Furthermore, the result of investigating the relationship between the emission wavelength of the LED produced using the epitaxial wafer obtained in Experimental Example 1 and the In composition x at the PN junction interface is shown in FIG. FIG. 5 shows that the peak wavelength of light emission becomes longer as the In composition x of the PN junction increases. Considering the result of the In composition dependence of the light emission output shown in FIG. 2, the light emission output under the low current conduction condition does not decrease by increasing the In composition x of the PN junction to 0.012. It has been clarified that it is possible to obtain a long wavelength LED having an emission peak wavelength of 1000 nm, which was not obtained with a GaAlAs LED.
[0043]
Moreover, the result of having investigated the relationship between the light emission wavelength of LED produced using the epitaxial wafer obtained by Experimental example 2, and Si density | concentration of a PN junction part is shown in FIG. It can be seen from FIG. 6 that the emission peak wavelength becomes longer as the Si concentration at the PN junction increases.
When the In composition of the PN junction obtained in Experimental Example 2 is x = 0.008, the Si concentration of the PN junction is 2.0 × 10 19 to 6 × 10 19 with a high light emission output at a low current. It was revealed that the emission peak wavelength can be changed in the range of 975 nm to 995 nm by changing in the range of cm −3 .
[0044]
Moreover, the result of investigating the relationship between the light emission wavelength of the LED produced using the epitaxial wafer obtained in Experimental Example 3 and the Al composition y of the PN junction is shown in FIG. From this figure, it can be seen that the emission peak wavelength becomes shorter as the Al composition y of the PN junction increases. At this time, when the In composition of the PN junction is x = 0.008, the emission peak wavelength is changed by changing the Al composition y in the range of y = 0.02 to 0.10 where the output of the low current is high. It was revealed that the thickness could be changed in the range of 983 nm to 965 nm.
[0045]
As described above, in the light emitting diode of the present invention, the In composition x at the PN junction interface between the N-type GaInAlAs layer and the P-type GaInAlAs layer is 0.002 ≦ x ≦ 0.012, more preferably 0.003 ≦ x. ≦ 0.010, and in addition, preferably the Si concentration is in the range of 2.0 × 10 19 to 6 × 10 19 cm −3 , and the Al composition y is in the range of 0.02 ≦ y ≦ 0.10. Thus, it is possible to produce an LED having a high light emission output under a low current conduction condition and thus having a desired light emission peak wavelength between 950 nm and 1000 nm.
[0046]
As a procedure for adjusting the emission peak wavelength of the light emitting diode of the present invention, it is the In composition that has the greatest influence on the emission peak wavelength. It is good to adjust with the amount of Al added. For example, in the LED manufactured in Experimental Example 1, since the Si concentration at the PN junction interface is 3.2 × 10 19 cm −3 , the Si concentration is set to 2 to 6 × 10 19 cm −3 of the present invention after determining the In composition. As shown in FIG. 6, the emission peak wavelength can be adjusted within a range of ± 10 nm. Furthermore, by adding the Al composition y at the PN junction interface in the range of 0.02 ≦ y ≦ 0.10, the emission peak wavelength can be further shortened in the range of 20 nm.
[0047]
【Effect of the invention】
From the epitaxial wafer for light emitting diodes of the present invention, an unprecedented light emitting diode with a high light emission output under a low current conduction condition can be obtained in the range of the emission peak wavelength of 950 nm to 1000 nm. The light-emitting diode of the present invention is a photocoupler used in applications requiring light emission of longer wavelength than conventional infrared LEDs made of Si-doped GaAs having a light emission peak wavelength near 940 nm, and under low current conduction conditions. It can be suitably used for photo interrupters and the like.
[Brief description of the drawings]
FIG. 1 is a diagram showing a laminated structure of an epitaxial wafer for a light emitting diode fabricated in Experimental Examples 1, 2, and 3. FIG. 2 is a diagram showing a relationship between an In composition x at a PN junction interface and a light emission output. FIG. 4 is a diagram showing the relationship between the Si concentration at the junction interface and the light emission output. FIG. 4 is a diagram showing the relationship between the Al composition y at the PN junction interface and the light emission output. FIG. 6 is a diagram showing the relationship between the Si concentration at the PN junction interface and the emission peak wavelength. FIG. 7 is a diagram showing the relationship between the Al composition y at the PN junction interface and the emission peak wavelength. ]
1 GaAs substrate 2 N-type GaInAlAs layer 3 P-type GaInAlAs layer

Claims (10)

SiがドープされたN型Ga1-x-yInxAlyAs(0<x<0.02、0≦y<0.2、0<x+y<0.22)エピタキシャル層とSiがドープされたP型Ga1-x-yInxAlyAs(0<x<0.02、0≦y<0.2、0<x+y<0.22)エピタキシャル層によりPN接合が形成され、該PN接合界面におけるN型Ga1-x-yInxAlyAsエピタキシャル層とP型Ga1-x-yInxAlyAsエピタキシャル層のIn組成xがともに0.005≦x≦0.010の範囲にあることを特徴とする発光ダイオード用エピタキシャルウェハ。P the Si-doped N-type Ga 1-xy In x Al y As (0 <x <0.02,0 ≦ y <0.2,0 <x + y <0.22) epitaxial layer and the Si-doped PN junction is formed by the mold Ga 1-xy in x Al y As (0 <x <0.02,0 ≦ y <0.2,0 <x + y <0.22) epitaxial layer, N in the PN junction interface The In composition x of the p - type Ga 1-xy In x Al y As epitaxial layer and the p-type Ga 1-xy In x Al y As epitaxial layer is characterized in that both are in the range of 0.005 ≦ x ≦ 0.010. Epitaxial wafer for light emitting diode. PN接合界面におけるN型Ga1-x-yInxAlyAsエピタキシャル層とP型Ga1-x-yInxAlyAsエピタキシャル層のIn組成xがともに0.008であることを特徴とする請求項1に記載の発光ダイオード用エピタキシャルウェハ。Claim, characterized in that N-type Ga 1-xy In x Al y As epitaxial layer and the P-type Ga 1-xy In x Al y As epitaxial layer of In composition x in the PN junction interface are both 0.008 1 An epitaxial wafer for light-emitting diodes as described in 1. PN接合界面におけるN型Ga1-x-yInxAlyAsエピタキシャル層とP型Ga1-x-yInxAlyAsエピタキシャル層のSi濃度がともに2×1019〜6×1019cm-3の範囲にあることを特徴とする請求項1または2に記載の発光ダイオード用エピタキシャルウェハ。The Si concentration of the N-type Ga 1 -xy In x Al y As epitaxial layer and the P-type Ga 1 -xy In x Al y As epitaxial layer at the PN junction interface is in the range of 2 × 10 19 to 6 × 10 19 cm −3 . The epitaxial wafer for light-emitting diodes according to claim 1 or 2, wherein PN接合界面におけるN型Ga1-x-yInxAlyAsエピタキシャル層とP型Ga1-x-yInxAlyAsエピタキシャル層のAl組成yがともに0.02≦y≦0.10の範囲にあることを特徴とする請求項1ないし3のいずれか1項に記載の発光ダイオード用エピタキシャルウェハ。The Al composition y of the N-type Ga 1 -xy In x Al y As epitaxial layer and the P-type Ga 1 -xy In x Al y As epitaxial layer at the PN junction interface is in the range of 0.02 ≦ y ≦ 0.10. The epitaxial wafer for light-emitting diodes according to any one of claims 1 to 3, wherein GaAs基板上にN型Ga1-x-yInxAlyAsエピタキシャル層とP型Ga1-x-yInxAlyAsエピタキシャル層が順次積層されていることを特徴とする請求項1ないし4のいずれか1項に記載の発光ダイオード用エピタキシャルウェハ。5. The N-type Ga 1 -xy In x Al y As epitaxial layer and the P-type Ga 1 -xy In x Al y As epitaxial layer are sequentially stacked on the GaAs substrate. 2. An epitaxial wafer for a light-emitting diode according to item 1. 請求項1ないし5のいずれか1項に記載の発光ダイオード用エピタキシャルウェハを用いて作製した発光ダイオード。A light-emitting diode produced using the light-emitting diode epitaxial wafer according to claim 1. 発光のピーク波長が950nm以上1000nm以下の範囲であることを特徴とする請求項6に記載の発光ダイオード。The light emitting diode according to claim 6, wherein a peak wavelength of light emission is in a range of 950 nm to 1000 nm. Siが高温で成長したエピタキシャル層内ではドナー不純物となり、低温で成長したエピタキシャル層内ではアクセプター不純物となることを利用して、Si、Ga、In、AsまたはこれらにさらにAlを含む成長溶液から徐冷反転法の液相エピタキシャル成長によって、SiがドープされたN型Ga1-x-yInxAlyAsエピタキシャル層とSiがドープされたP型Ga1-x-yInxAlyAsエピタキシャル層をGaAs基板上に連続して成長することを特徴とする請求項1ないし5のいずれか1項に記載の発光ダイオード用エピタキシャルウェハの製造方法。By utilizing the fact that Si becomes a donor impurity in an epitaxial layer grown at a high temperature and an acceptor impurity in an epitaxial layer grown at a low temperature, it is gradually grown from a growth solution containing Si, Ga, In, As, or Al. Si-doped N-type Ga 1-xy In x Al y As epitaxial layer and Si-doped P-type Ga 1-xy In x Al y As epitaxial layer on a GaAs substrate by liquid phase epitaxial growth of the cold inversion method 6. The method for producing an epitaxial wafer for a light-emitting diode according to claim 1, wherein the epitaxial wafer is grown continuously. 液相エピタキシャル成長開始時の成長溶液中のIn濃度が7質量%〜35質量%、Si濃度が0.2〜0.57質量%、Al濃度が0.02質量%〜0.13質量%であり、成長溶液の残部がAs及びGaであり、Asは前記溶液中で成長開始時に飽和濃度以上となることを特徴とする請求項8に記載の発光ダイオード用エピタキシャルウェハの製造方法。The In concentration in the growth solution at the start of the liquid phase epitaxial growth is 7 to 35% by mass, the Si concentration is 0.2 to 0.57% by mass, and the Al concentration is 0.02 to 0.13% by mass. 9. The method for producing an epitaxial wafer for a light-emitting diode according to claim 8, wherein the remainder of the growth solution is As and Ga, and As is equal to or higher than a saturated concentration at the start of growth in the solution. エピタキシャル成長の開始温度が830℃〜930℃の範囲にあることを特徴とする請求項8または9に記載の発光ダイオード用エピタキシャルウェハの製造方法。The method for producing an epitaxial wafer for a light-emitting diode according to claim 8 or 9, wherein the start temperature of epitaxial growth is in the range of 830 ° C to 930 ° C.
JP2001164275A 2001-05-31 2001-05-31 Epitaxial wafer for light emitting diode, light emitting diode, and method for manufacturing epitaxial wafer for light emitting diode Expired - Fee Related JP4865149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001164275A JP4865149B2 (en) 2001-05-31 2001-05-31 Epitaxial wafer for light emitting diode, light emitting diode, and method for manufacturing epitaxial wafer for light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001164275A JP4865149B2 (en) 2001-05-31 2001-05-31 Epitaxial wafer for light emitting diode, light emitting diode, and method for manufacturing epitaxial wafer for light emitting diode

Publications (2)

Publication Number Publication Date
JP2002359395A JP2002359395A (en) 2002-12-13
JP4865149B2 true JP4865149B2 (en) 2012-02-01

Family

ID=19007120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001164275A Expired - Fee Related JP4865149B2 (en) 2001-05-31 2001-05-31 Epitaxial wafer for light emitting diode, light emitting diode, and method for manufacturing epitaxial wafer for light emitting diode

Country Status (1)

Country Link
JP (1) JP4865149B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580377A (en) * 1978-12-13 1980-06-17 Fujitsu Ltd Semiconductor luminous element
JPH0712095B2 (en) * 1989-03-24 1995-02-08 日亜化学工業株式会社 Epitaxial wafer for infrared light emitting diode
JPH05160434A (en) * 1991-12-05 1993-06-25 Mitsubishi Cable Ind Ltd Light emitting element having heterojunction and manufacture thereof
JPH06164060A (en) * 1992-11-27 1994-06-10 Fujitsu Ltd Semconductor laser
JPH07202262A (en) * 1994-01-07 1995-08-04 Hitachi Cable Ltd Light emitting diode
JPH09214052A (en) * 1996-02-01 1997-08-15 Hitachi Cable Ltd Organic metal vapor growth method
JP2001077410A (en) * 1999-09-06 2001-03-23 Showa Denko Kk Epitaxial wafer for infrared emission diode and light- emitting element using the same

Also Published As

Publication number Publication date
JP2002359395A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
JP2016013934A (en) METHOD OF MANUFACTURING β-Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
JPH06105797B2 (en) Semiconductor substrate and manufacturing method thereof
JP2001192300A (en) Nitride-based compound semiconductor substrate and method of producing the same
JP3356041B2 (en) Gallium phosphide green light emitting device
JP4865149B2 (en) Epitaxial wafer for light emitting diode, light emitting diode, and method for manufacturing epitaxial wafer for light emitting diode
RU2610388C2 (en) Method of simultaneous production of p-i-n structure of gaas with p, i and n area in one epitaxial layer
JPH09129927A (en) Blue light emitting element
US3619304A (en) Method of manufacturing gallium phosphide electro luminescent diodes
JP3116495B2 (en) Manufacturing method of light emitting diode
JP4946247B2 (en) Epitaxial substrate and liquid phase epitaxial growth method
JP4570728B2 (en) Epitaxial wafer for semiconductor light emitting device
US6388274B1 (en) Epitaxial wafer for infrared light-emitting device and light-emitting device using the same
KR102429972B1 (en) High resistivity wafer manufacturing method
JP2001244501A (en) Epitaxial wafer for infrared-emitting diode and light emitting diode formed thereof
JPH05343740A (en) Gallium arsenide phosphide epitaxial wafer
US6348703B1 (en) Epitaxial wafer for infrared light-emitting device and light-emitting device using the same
JP4319291B2 (en) Epitaxial substrate for semiconductor light emitting device and light emitting device
JPH0550154B2 (en)
JPH11238912A (en) Light-emitting diode
CN115279954A (en) Heavily doped n-type germanium
JP5424476B2 (en) Single crystal substrate, manufacturing method thereof, semiconductor thin film formed on the single crystal substrate, and semiconductor structure
JP3927847B2 (en) Method for manufacturing light emitting device
JPS5918686A (en) Gallium phosphide light emitting diode
JPH058155B2 (en)
JP2001077410A (en) Epitaxial wafer for infrared emission diode and light- emitting element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees