JP2001221781A - Method of ultrasonic flaw detection - Google Patents

Method of ultrasonic flaw detection

Info

Publication number
JP2001221781A
JP2001221781A JP2000030417A JP2000030417A JP2001221781A JP 2001221781 A JP2001221781 A JP 2001221781A JP 2000030417 A JP2000030417 A JP 2000030417A JP 2000030417 A JP2000030417 A JP 2000030417A JP 2001221781 A JP2001221781 A JP 2001221781A
Authority
JP
Japan
Prior art keywords
wave
ultrasonic
inspected
flaw detection
transverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000030417A
Other languages
Japanese (ja)
Inventor
Hideaki Tanaka
秀秋 田中
Yoshitoshi Yotsutsuji
美年 四辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Idemitsu Engineering Co Ltd
Original Assignee
Japan Steel Works Ltd
Idemitsu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Idemitsu Engineering Co Ltd filed Critical Japan Steel Works Ltd
Priority to JP2000030417A priority Critical patent/JP2001221781A/en
Publication of JP2001221781A publication Critical patent/JP2001221781A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0428Mode conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely inspect flaws likely to occur in stainless piping used in a confluence part of fluids of different temperatures. SOLUTION: Transverse ultrasonic wave is made incident on a material 1 to be inspected so as to make a refraction angle θ1 around a transverse wave critical angle. This transverse wave is reflected on the back side 1a of the material 1 to be converted into a longitudinal ultrasonic wave by mode conversion, and the longitudinal wave is directed to a flaw 4. Thereby a local recess and a shallow crack in a recess part in an initial stage of cracking can be accurately detected in their early stages.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ステンレス配管
の内面や溶接部に発生する内面き裂等の内面傷を、超音
波を用いた非破壊検査にて検出する超音波探傷方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method for detecting internal flaws such as internal cracks generated on the inner surface of a stainless steel pipe or a weld by a nondestructive inspection using ultrasonic waves. .

【0002】[0002]

【従来の技術】従来、ステンレス配管の内面や溶接部に
発生する内面き裂の探傷は、外表面からの横波斜角探傷
で行うのが一般的である。横波は一般的にモード変化を
考慮する必要がないので、反射時の入射角と反射角は等
しくなるため、幾可学的計算によって容易に傷位置を算
出できるという利点を有している。この場合、内面から
垂直に伸びるき裂の探傷では、図5に示すように、探触
子10の振動子11から発した横波超音波を屈折角θで
被検査材12に入射し、被検査材の内面12aと、き裂
13による角隅部での反射波を検出している。なお、屈
折角θは、反射の際にモード変換が生じて横波が縦波に
変わる臨界角よりも充分に大きい45°以上の角度に設
定している。
2. Description of the Related Art Conventionally, flaw detection of an inner surface crack generated in an inner surface or a welded portion of a stainless steel pipe is generally performed by oblique flaw detection from an outer surface. Generally, it is not necessary to consider the mode change of the transverse wave, so that the angle of incidence at the time of reflection and the angle of reflection are equal, and therefore, there is an advantage that the flaw position can be easily calculated by geometric calculation. In this case, in the flaw detection of a crack extending vertically from the inner surface, as shown in FIG. 5, the transverse ultrasonic wave emitted from the transducer 11 of the probe 10 is incident on the material 12 to be inspected at the refraction angle θ, and The reflected wave at the corner 12a due to the inner surface 12a of the material and the crack 13 is detected. The refraction angle θ is set to an angle of 45 ° or more, which is sufficiently larger than the critical angle at which mode conversion occurs during reflection and a transverse wave changes to a longitudinal wave.

【0003】[0003]

【発明が解決しようとする課題】ところで、異なる温度
の流体が合流するようなステンレス配管の内面には、熱
疲労によって内面き裂が発生することが知られており、
その発生起源は以下に依る。最初に、配管内を流れる流
体に含まれるS(イオウ)分とステンレス鋼中のFe
(フェライト)分とが反応してFeS化合物が配管内面
に被膜状に発生する。このFeS被膜は、流体温度の変
動によるステンレス鋼の伸び縮みや流体の流れの乱れ等
を受けて局部的にき裂が生じたり、剥がれたりする。こ
れが断続的に長時間行われることによりFeS被膜のき
裂部はステンレス鋼の局部的な凹みとなる。この凹み部
が更に流体温度の変動によるステンレス鋼の伸び縮みの
応力集中部となりステンレス鋼へのき裂発生となる。ま
た、配管内面機削り時バイトによる溝や段部も応力集中
部となり、同様にき裂発生源となる。このため、初期的
なき裂検出は局部的なステンレス鋼の凹みの有無の検出
と、凹み部先端にき裂が発生していないかの確認が必要
になる。
By the way, it is known that an internal crack is generated on the inner surface of a stainless steel pipe where fluids of different temperatures join by thermal fatigue.
Its origin depends on: First, S (sulfur) contained in the fluid flowing through the pipe and Fe in the stainless steel
The FeS compound reacts with the (ferrite) component to form a FeS compound on the inner surface of the pipe in a film form. The FeS film is locally cracked or peeled off due to expansion and contraction of stainless steel due to fluctuations in the fluid temperature, disturbance of the fluid flow, and the like. When this is performed intermittently for a long time, the crack portion of the FeS coating becomes a local depression of stainless steel. The concave portion further becomes a stress concentration portion of the expansion and contraction of the stainless steel due to the fluctuation of the fluid temperature, and cracks are generated in the stainless steel. In addition, the grooves and steps formed by the cutting tool when the inner surface of the pipe is machined also become stress concentrated portions, and similarly become crack generation sources. For this reason, in the initial crack detection, it is necessary to detect the presence or absence of a local stainless steel dent and to confirm whether or not a crack has occurred at the tip of the dent.

【0004】しかし、従来の斜角探傷方法では、図6
(A)に示すように、被検査材12の内面12a側にあ
る局所的な凹み部12bでは、反射面が超音波の入射に
対し直角とならず、また、角隅の反射とならないため、
凹みの反射面の傾き角と超音波入射波の角度の関係で、
反射波が探触子に戻ってこず反射波を得にくい。さら
に、図6(B)に示すように、凹み部12bの先端にき
裂13が発生した場合にも、検出されるエコーが低く反
射が角隅で行われるため、き裂の内面から先端までの高
さと、反射波高さの間に比例関係が得られにくいという
問題があり、さらにき裂が小さいと底面での反射波がき
ず面に到達せず、反射波が得られない。また、き裂高さ
測定もき裂が浅い場合は、角隅部での反射波とき裂先端
の反射波が分離できないため測定できない問題がある。
すなわち、従来の横波斜角探傷では、ステンレス配管の
熱疲労によるき裂の検出においては、特にき裂の初期段
階の検出能が低いという問題がある。
However, in the conventional oblique flaw detection method, FIG.
As shown in (A), in the local concave portion 12b on the inner surface 12a side of the inspection object 12, the reflection surface does not become perpendicular to the incidence of the ultrasonic wave and does not reflect at the corner.
In relation to the angle of inclination of the concave reflecting surface and the angle of the ultrasonic incident wave,
The reflected wave does not return to the probe, making it difficult to obtain a reflected wave. Further, as shown in FIG. 6 (B), even when a crack 13 occurs at the tip of the concave portion 12b, the detected echo is low and the reflection is performed at the corner, so that the crack from the inner surface to the tip of the crack is formed. There is a problem that it is difficult to obtain a proportional relationship between the height of the reflected wave and the height of the reflected wave. Further, if the crack is small, the reflected wave at the bottom surface does not reach the cut surface, and the reflected wave cannot be obtained. Also, when the crack height is shallow, the crack height cannot be measured because the reflected wave at the corner and the reflected wave at the tip of the crack cannot be separated.
That is, the conventional shear wave oblique flaw detection has a problem that, in the detection of a crack due to thermal fatigue of a stainless steel pipe, the ability to detect a crack in an early stage is low.

【0005】この発明は上記事情を背景としてなされた
ものであり、被検査材内部に生じる傷を効果的に検出す
ることができ、特に、ステンレス配管において熱疲労に
より生じる初期的なき裂も的確に検出することができる
超音波探傷方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to effectively detect a flaw generated inside a material to be inspected, and particularly to accurately detect an initial crack caused by thermal fatigue in a stainless steel pipe. It is an object of the present invention to provide an ultrasonic flaw detection method capable of detecting.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明の超音波探傷方法のうち第1の発明は、被検
査材に横波臨界角付近の屈折角になるように横波の超音
波を入射するとともに、この横波超音波を被検査材の裏
面側で反射させてモード変換により縦波の超音波に変
え、この縦波超音波を探傷位置に進行させて探傷信号を
得ることを特徴とする。
Means for Solving the Problems To solve the above problems, a first aspect of the ultrasonic flaw detection method according to the present invention is directed to a method of producing a transverse ultrasonic wave so that a material to be inspected has a refraction angle near a critical shear wave angle. Is incident, and this transverse ultrasonic wave is reflected on the back side of the material to be inspected, converted into a longitudinal ultrasonic wave by mode conversion, and the longitudinal ultrasonic wave is advanced to the flaw detection position to obtain a flaw detection signal. And

【0007】第2の発明の超音波探傷方法は、被検査材
に横波臨界角付近の屈折角になるように横波の超音波を
入射して裏面側にある凹み部を検出するとともに、該検
出の際の超音波入射位置から被検査材表面方向に沿って
入射位置を変えて横波超音波を被検査材に入射し、該横
波超音波を被検査材の裏面側で反射させてモード変換に
より縦波の超音波に変え、この縦波超音波によって凹み
部の先端にある傷を検出することを特徴とする。
In the ultrasonic flaw detection method according to the second invention, a transverse ultrasonic wave is incident on the material to be inspected so as to have a refraction angle near the critical angle of the transverse wave, and a concave portion on the back side is detected. The incident position is changed along the surface direction of the inspection target material from the ultrasonic incident position at the time, and the transverse ultrasonic wave is incident on the inspection target material, and the transverse ultrasonic wave is reflected on the back surface side of the inspection target material by mode conversion. The method is characterized in that a flaw at the tip of the recess is detected by the longitudinal wave instead of the longitudinal ultrasonic wave.

【0008】第3の発明の超音波探傷方法は、第1また
は第2の発明において、被検査材はステンレス配管であ
り、探傷目的とする傷は熱疲労内面き裂であることを特
徴とする。
The ultrasonic flaw detection method according to a third invention is characterized in that, in the first or second invention, the material to be inspected is a stainless steel pipe, and the flaw intended for flaw detection is a thermal fatigue inner crack. .

【0009】すなわち本発明は、二次クリーピング波を
探傷に用いることに特徴がある。本発明では、探触子か
ら発信される超音波を横波の臨界角である屈折角付近で
被検査材に入射させる。なお臨界角は、被検査材の材質
にも左右されるが、ステンレス鋼では約33°となる。
この臨界角を目途にして所望の屈折角が得られるように
被検査材境界への超音波の入射角を定める。
That is, the present invention is characterized in that a secondary creeping wave is used for flaw detection. In the present invention, the ultrasonic wave transmitted from the probe is incident on the inspection object near the refraction angle which is the critical angle of the transverse wave. The critical angle depends on the material of the material to be inspected, but is about 33 ° for stainless steel.
The angle of incidence of the ultrasonic wave on the boundary of the material to be inspected is determined so as to obtain a desired refraction angle with the critical angle as a target.

【0010】したがって上記横波超音波を被検査材の裏
面側に向かって発信することにより裏面で反射波がモー
ド変換され、横波から縦波の超音波に変化する。この変
化は被検査材での屈折角を臨界角付近に設定することに
より得られる。この反射波を2次クリーピング波と称す
る。この二次クリーピング波を探傷方向に進行させるこ
とができる。これは、従来の横波反射波と異なり、縦波
の反射波となり、裏面に対し5〜10°の角度で進行す
るため、凹み部に対してはその上を通過し、反射波は得
られず、凹み部の上にある傷に対してはその面に垂直に
近い角度で当たることができ反射波が得られる。これに
より、凹みでの反射と凹み先端のき裂の検出の両方を可
能にするものである。また、き裂での反射波の高さから
き裂高さの推定を行うことを可能とする。
Therefore, by transmitting the above-mentioned transverse wave ultrasonic wave toward the back surface side of the material to be inspected, the reflected wave is mode-converted on the back surface, and changes from a transverse wave to a longitudinal wave. This change can be obtained by setting the angle of refraction at the test object near the critical angle. This reflected wave is called a secondary creeping wave. This secondary creeping wave can be advanced in the flaw detection direction. This is different from the conventional shear wave reflected wave, and becomes a longitudinal wave reflected wave, which travels at an angle of 5 to 10 ° with respect to the back surface, passes over the concave portion, and the reflected wave cannot be obtained. On the other hand, a scratch on the concave portion can be hit at an angle almost perpendicular to the surface, and a reflected wave can be obtained. This enables both reflection at the dent and detection of a crack at the tip of the dent. Further, it is possible to estimate the crack height from the height of the reflected wave at the crack.

【0011】[0011]

【発明の実施の形態】以下に、本発明の一実施形態を図
1〜4に基づいて説明する。被検査材1は、図4に示す
ように、温度の異なる流体の合流部に用いられるステン
レス配管であり、本実施形態では、この合流部付近の配
管部もしくは溶接部で熱疲労に伴って発生するき裂を検
出することを目的に探傷する。探傷に際しては、図1に
示すように、横波超音波を発生させる探触子2を被検査
材1上に設置し、想定される傷位置に合わせて探傷位置
を定める。探傷位置においては、屈折角θ1は被検査材
1に入射した横波超音波が底面1aでの反射時にモード
変換によって縦波に変化する臨界角付近であって、本実
施形態では、ステンレス鋼の音響特性を考慮して屈折角
33°に設定する。この際には、探触子2の音響くさび
3bと被検査材1との音響特性の差異を考慮して被検査
材1への超音波入射角を定める。被検査材1に入射した
横波超音波はモード変化が生じることなく被検査材1中
を進む。この横波超音波は、図2(A)に示すように、
被検査材1の裏面1a側にある凹み部1bの表面に当た
る。この凹み部1bにおいて、その入射角により反射波
は横波のまま超音波を発信した探触子2の方向に反射す
る。このことで浅い凹み部1bの内在を検出することが
できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. As shown in FIG. 4, the material to be inspected 1 is a stainless steel pipe used at a junction of fluids having different temperatures. In the present embodiment, the specimen 1 is generated due to thermal fatigue at a pipe or a weld near the junction. Flaw detection for the purpose of detecting cracks. At the time of flaw detection, as shown in FIG. 1, a probe 2 for generating a shear wave ultrasonic wave is installed on a material 1 to be inspected, and a flaw detection position is determined in accordance with an assumed flaw position. At the flaw detection position, the refraction angle θ1 is near the critical angle at which the transverse ultrasonic wave incident on the material 1 changes to a longitudinal wave by mode conversion when reflected by the bottom surface 1a. The refraction angle is set to 33 ° in consideration of characteristics. At this time, the angle of incidence of the ultrasonic wave on the inspection target material 1 is determined in consideration of the difference in the acoustic characteristics between the acoustic wedge 3b of the probe 2 and the inspection target material 1. The shear wave ultrasonic wave that has entered the test object 1 travels through the test object 1 without causing a mode change. This transverse ultrasonic wave, as shown in FIG.
It hits the surface of the concave portion 1b on the back surface 1a side of the material 1 to be inspected. In the concave portion 1b, the reflected wave is reflected in the direction of the probe 2 that has transmitted the ultrasonic wave as a transverse wave due to the incident angle. This makes it possible to detect the presence of the shallow recess 1b.

【0012】次いで、凹み部1bにき裂が存在すること
を想定する場合は、凹み部1bからの反射波を検出した
位置から、探触子2を遠くする方向に移動させる(図1
の実線位置)。すると被検査材1を進行する横波超音波
は、図1および図2(B)で示すように、被検査材1の
裏面1aで反射する。この反射の際に、被検査材入射時
の屈折角が臨界角付近であることから、モード変換が起
こり、超音波は横波から縦波に変化する。この縦波超音
波(二次クリーピング波)は、裏面に対し5〜10°の
角度で進行するので、この進行方向に傷4が存在する場
合、縦波反射波によって検出されることになる。すなわ
ち上記により、凹み部1bの先端に傷4が存在する場合
にも縦波超音波は従来法と異なり確実に傷4に当たる。
傷4に当たった縦波超音波はさらにモード変換が起こ
り、横波に変化した反射波となる。この横波反射波は表
面側に進行し、そのまま探触子2で受信するか、図1に
示すように被検査材1の表面側で反射した後、探触子2
で受信される。なお、表面側で反射した横波反射波はさ
らにモード変換が起こり、縦波の反射波となり受信され
る。この様に2次クリーピング波を用いることにより、
凹み部および凹み部の先端に発生したき裂を的確に検出
することができる。したがって探触子の前後走査時の反
射波のピークの現れ方と反射波までの超音波の伝搬距離
からきずの性状を判断することができる。
Next, when it is assumed that a crack exists in the concave portion 1b, the probe 2 is moved in a direction away from the position where the reflected wave from the concave portion 1b is detected (FIG. 1).
Solid line position). Then, the transverse ultrasonic waves traveling on the inspection target material 1 are reflected on the back surface 1a of the inspection target material 1 as shown in FIGS. 1 and 2B. At the time of this reflection, since the refraction angle at the time of incidence of the material to be inspected is near the critical angle, mode conversion occurs, and the ultrasonic wave changes from a transverse wave to a longitudinal wave. Since this longitudinal ultrasonic wave (secondary creeping wave) travels at an angle of 5 to 10 ° with respect to the back surface, if a flaw 4 exists in this traveling direction, it will be detected by the longitudinal wave reflected wave. . That is, according to the above, even when the flaw 4 exists at the tip of the concave portion 1b, the longitudinal ultrasonic wave surely hits the flaw 4 unlike the conventional method.
The mode conversion of the longitudinal ultrasonic wave hitting the flaw 4 further occurs, and the reflected ultrasonic wave changes into a shear wave. The shear wave reflected wave travels to the surface side and is received by the probe 2 as it is, or is reflected by the surface side of the inspection target material 1 as shown in FIG.
Received at. The transverse wave reflected on the surface side undergoes further mode conversion, and is received as a longitudinal wave reflected wave. By using the secondary creeping wave in this way,
It is possible to accurately detect the dent and the crack generated at the tip of the dent. Therefore, it is possible to determine the nature of the flaw from the appearance of the peak of the reflected wave when the probe is scanned back and forth and the propagation distance of the ultrasonic wave to the reflected wave.

【0013】なお、上記実施形態では、凹み部を検出し
た後、探触子をずらして凹み部先端にある傷を検出した
が、予め傷の位置を想定して、当初から裏面で縦波反射
波を得て傷の検出を行うことも可能である。この場合、
上記超音波の屈折、反射、モード変換を考慮して縦波反
射波が傷に当たるように探傷位置を定める。
In the above embodiment, after detecting the dent, the probe is shifted to detect a flaw at the tip of the dent. It is also possible to detect a flaw by obtaining a wave. in this case,
The flaw detection position is determined such that the longitudinal wave reflected wave hits the flaw in consideration of the refraction, reflection, and mode conversion of the ultrasonic wave.

【0014】さらに、前記による反射波はきずの面から
の反射であり、ピークの反射波高さとき裂の深さには比
例関係が存在する。図3(A)に示すように、探触子2
を用いて試験用横穴5からの反射波の高さを基準とし、
そのときの反射波高さから、き裂深さを予測できる。図
3(B)は、径2.4mmの横穴5を用いて得られる反
射波の高さとき裂の高さとの関係を図示したものであ
り、両者には相関関係が認められる。き裂の内面からの
高さが使用している探触子周波数の波長より大きいとき
は、き裂先端での散乱波と底面とき裂との角隅での反射
波が時間軸上で分離可能で、横波斜角探触子を用いてき
裂先端での散乱波を検出し、その高さを測定することが
できる。き裂先端での散乱より、き裂高さを測定する方
法では、探触子の前後走査によっても、き裂の角隅から
の反射波とき裂先端からの反射波の時間軸上の距離は差
がないことから、探触子の前後走査を行い、そのとき、
き裂の角隅からの反射波と連動して移動する反射波を探
すことにより、き裂先端からの反射波を識別することが
可能である。この様に2次クリーピング波を用いること
により、反射波のピーク位置までの距離を読みとること
で、凹みだけの内在か凹み先端にき裂があるかの判定も
可能になる。以上で説明したように、本発明の方法は、
ステンレス配管の内部で熱疲労によって発生する凹み部
および凹み部の先端に生じるき裂の検出に極めて有効で
ある。ただし、本発明としてこの用途に限定されるもの
ではなく、他用途の被検査材の探傷に用いることもでき
る。
Further, the reflected wave is a reflection from the surface of the flaw, and there is a proportional relationship between the height of the reflected wave at the peak and the depth of the crack. As shown in FIG. 3A, the probe 2
Using the height of the reflected wave from the test side hole 5 as a reference,
The crack depth can be predicted from the reflected wave height at that time. FIG. 3B illustrates the relationship between the height of the reflected wave and the height of the crack obtained using the lateral hole 5 having a diameter of 2.4 mm, and a correlation is recognized between the two. When the height from the inner surface of the crack is larger than the wavelength of the used probe frequency, the scattered wave at the crack tip and the reflected wave at the corner between the base and the crack can be separated on the time axis Thus, it is possible to detect the scattered wave at the crack tip using the shear wave oblique probe and measure the height thereof. In the method of measuring the crack height from the scattering at the crack tip, the distance on the time axis between the reflected wave from the corner of the crack and the reflected wave from the crack tip can also be determined by scanning the probe back and forth. Since there is no difference, the probe is scanned back and forth,
By searching for a reflected wave that moves in conjunction with the reflected wave from the corner of the crack, it is possible to identify the reflected wave from the tip of the crack. By using the secondary creeping wave in this way, by reading the distance to the peak position of the reflected wave, it is possible to determine whether the dent is inherent or has a crack at the tip of the dent. As explained above, the method of the present invention comprises:
It is extremely effective in detecting a dent caused by thermal fatigue inside a stainless steel pipe and a crack generated at the tip of the dent. However, the present invention is not limited to this application, and can be used for flaw detection of a material to be inspected for another application.

【0015】[0015]

【発明の効果】以上説明したように、本発明の超音波探
傷方法によれば、被検査材に横波臨界角付近の屈折角に
なるように横波の超音波を入射するとともに、この横波
超音波を被検査材の裏面側で反射させてモード変換によ
り縦波の超音波に変え、この縦波超音波を探傷位置に進
行させて探傷信号を得るので、凹み部の先端にあるよう
な傷も確実に超音波で捉えて検出することが可能にな
る。
As described above, according to the ultrasonic flaw detection method of the present invention, a transverse ultrasonic wave is made incident on a material to be inspected so as to have a refraction angle near a critical shear wave angle, and the transverse ultrasonic wave is applied. Is reflected on the back side of the material to be inspected and converted into longitudinal ultrasonic waves by mode conversion, and the longitudinal ultrasonic waves are advanced to the flaw detection position to obtain a flaw detection signal. It becomes possible to detect by catching with ultrasonic waves.

【0016】また、被検査材に横波臨界角付近の屈折角
になるように横波の超音波を入射して裏面側にある凹み
部を検出するとともに、該検出の際の超音波入射位置か
ら被検査材表面方向に沿って入射位置を変えて横波超音
波を被検査材に入射し、該横波超音波を被検査材の裏面
側で反射させてモード変換により縦波の超音波に変え、
この縦波超音波によって凹み部の先端にある傷を検出す
れば、凹み部と凹み部先端にある傷を、その有無、性状
ともに確実に検出することができる。したがってき裂の
前兆段階である局所的な凹みの段階から検出可能で、更
に、凹みだけか凹みにき裂が存在するかの判断が可能
で、き裂の高さの推定も可能である。上記方法をステン
レス配管で生じる熱疲労内面き裂の検出に用いれば、き
裂の初期段階においても高い検出を得ることができる。
Further, a transverse ultrasonic wave is incident on the material to be inspected so as to have a refraction angle close to the critical angle of the transverse wave to detect a dent on the back side, and the ultrasonic wave incident position at the time of the detection is detected. By changing the incident position along the surface direction of the inspection material, the transverse ultrasonic wave is incident on the material to be inspected, and the transverse ultrasonic wave is reflected on the back surface side of the material to be inspected, and is converted into a longitudinal ultrasonic wave by mode conversion,
If the flaws at the tip of the dent are detected by the longitudinal ultrasonic waves, the dent and the flaw at the tip of the dent can be reliably detected both in the presence and in the properties. Therefore, it is possible to detect from a local dent stage which is a precursor stage of a crack, it is possible to determine whether only a dent or a crack is present in a dent, and it is possible to estimate a crack height. If the above method is used to detect a thermal fatigue inner surface crack generated in a stainless steel pipe, high detection can be obtained even in the initial stage of the crack.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態であって探傷の反射経路
を示す断面図である。
FIG. 1 is a cross-sectional view illustrating a reflection path of flaw detection according to an embodiment of the present invention.

【図2】 同じく、(A)は裏面側の凹み部を有する場
合、(B)は凹み部にさらに傷を有する場合の反射経路
を示す拡大断面図である。
FIG. 2A is an enlarged cross-sectional view showing a reflection path when a concave portion on the back side is provided, and FIG. 2B is a reflective path when a concave portion is further damaged.

【図3】 同じく、(A)は標準傷を用いて反射波高さ
とき裂高さとの関係を求める際の探傷状態を示す図であ
り、(B)は、その結果を示すグラフである。
FIG. 3A is a diagram showing a flaw detection state when a relationship between a reflected wave height and a crack height is obtained using a standard flaw, and FIG. 3B is a graph showing the result.

【図4】 同じく、被検査材の使用状態を示す斜視図で
ある。
FIG. 4 is a perspective view showing the state of use of a material to be inspected.

【図5】 従来の探傷方法における探傷の反射経路を示
す断面図である。
FIG. 5 is a sectional view showing a reflection path of flaw detection in a conventional flaw detection method.

【図6】 同じく、(A)は裏面側凹み部での反射経
路、(B)は裏面での反射経路を示す拡大断面図であ
る。
FIG. 6A is an enlarged cross-sectional view showing a reflection path on the back side concave portion, and FIG. 6B is a view showing a reflection path on the back side.

【符号の説明】[Explanation of symbols]

1 被検査材 1a 裏面 1b 凹み部 2 探触子 3a 振動子 3b 音響くさび 4 傷 DESCRIPTION OF SYMBOLS 1 Inspection material 1a Back surface 1b Depression 2 Probe 3a Vibrator 3b Sound wedge 4 Scratches

───────────────────────────────────────────────────── フロントページの続き (72)発明者 四辻 美年 千葉県千葉市中央区新田町37番24号 出光 エンジニアリング株式会社内 Fターム(参考) 2G047 AA07 AB01 AB07 BA02 BC07 CB01 CB02 CB06  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Mitsuo Yotsuji 37-24, Nitta-cho, Chuo-ku, Chiba-shi, Chiba F-term (reference) 2G047 AA07 AB01 AB07 BA02 BC07 CB01 CB02 CB06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検査材に横波臨界角付近の屈折角にな
るように横波の超音波を入射するとともに、この横波超
音波を被検査材の裏面側で反射させてモード変換により
縦波の超音波に変え、この縦波超音波を探傷位置に進行
させて探傷信号を得ることを特徴とする超音波探傷方法
1. A transverse ultrasonic wave is incident on a material to be inspected so as to have a refraction angle near a shear wave critical angle, and the transverse ultrasonic wave is reflected on the back side of the material to be inspected, and the longitudinal wave is converted by mode conversion. An ultrasonic flaw detection method characterized in that the flaw detection signal is obtained by advancing the longitudinal ultrasonic wave to a flaw detection position instead of ultrasonic waves.
【請求項2】 被検査材に横波臨界角付近の屈折角にな
るように横波の超音波を入射して裏面側にある凹み部を
検出するとともに、該検出の際の超音波入射位置から被
検査材表面方向に沿って入射位置を変えて横波超音波を
被検査材に入射し、該横波超音波を被検査材の裏面側で
反射させてモード変換により縦波の超音波に変え、この
縦波超音波によって凹み部の先端にある傷を検出するこ
とを特徴とする超音波探傷方法
2. A transverse wave ultrasonic wave is incident on a material to be inspected so as to have a refraction angle near a shear wave critical angle to detect a dent on the back surface side, and to detect a concave portion from the ultrasonic wave incident position at the time of the detection. By changing the incident position along the surface direction of the inspection material, the transverse ultrasonic wave is incident on the material to be inspected, the transverse ultrasonic wave is reflected on the back surface side of the material to be inspected, and is converted into a longitudinal ultrasonic wave by mode conversion. Ultrasonic flaw detection method characterized by detecting a flaw at the tip of a concave portion by longitudinal wave ultrasonic waves
【請求項3】 被検査材はステンレス配管であり、探傷
目的とする傷は熱疲労内面き裂であることを特徴とする
請求項1または2に記載の超音波探傷方法
3. The ultrasonic flaw detection method according to claim 1, wherein the material to be inspected is a stainless steel pipe, and the flaw intended for flaw detection is a thermal fatigue inner surface crack.
JP2000030417A 2000-02-08 2000-02-08 Method of ultrasonic flaw detection Pending JP2001221781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030417A JP2001221781A (en) 2000-02-08 2000-02-08 Method of ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030417A JP2001221781A (en) 2000-02-08 2000-02-08 Method of ultrasonic flaw detection

Publications (1)

Publication Number Publication Date
JP2001221781A true JP2001221781A (en) 2001-08-17

Family

ID=18555433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030417A Pending JP2001221781A (en) 2000-02-08 2000-02-08 Method of ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JP2001221781A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111103359A (en) * 2018-10-25 2020-05-05 中国计量大学 316L stainless steel early fatigue crack detection method based on critical refraction longitudinal wave and vibration sound modulation technology
CN114096840A (en) * 2019-06-28 2022-02-25 三菱重工业株式会社 Method for inspecting plant equipment and method for repairing plant equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111103359A (en) * 2018-10-25 2020-05-05 中国计量大学 316L stainless steel early fatigue crack detection method based on critical refraction longitudinal wave and vibration sound modulation technology
CN114096840A (en) * 2019-06-28 2022-02-25 三菱重工业株式会社 Method for inspecting plant equipment and method for repairing plant equipment
CN114096840B (en) * 2019-06-28 2024-05-14 三菱重工业株式会社 Method for inspecting plant equipment and method for repairing plant equipment

Similar Documents

Publication Publication Date Title
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
US7900516B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JPH0352908B2 (en)
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
JP2007163470A (en) Apparatus and method for ultrasonically detecting flaw of tube
JPH0253746B2 (en)
EP1271097A2 (en) Method for inspecting clad pipe
JP5192939B2 (en) Defect height estimation method by ultrasonic flaw detection
CA2544844A1 (en) Method for checking a weld between two metal pipelines
JP2006349486A (en) Ultrasonic probe
JP2001221781A (en) Method of ultrasonic flaw detection
JPH1194806A (en) Ultrasonic flaw detection method end surface or side face of steel material
Burch et al. M-skip: a quantitative technique for the measurement of wall loss in inaccessible components
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
WO2018135242A1 (en) Inspection method
Reber et al. Ultrasonic in-line inspection tools to inspect older pipelines for cracks in girth and long-seam welds
Razygraev Ultrasonic nondestructive testing by head waves: physical prerequisites and practical use
JP3581015B2 (en) Crack evaluation device and probe for welded part to be inspected
JP2539019B2 (en) Ultrasonic flaw detection
JP2001330594A (en) Inspection method of metal pipe bonded body
JP6808682B2 (en) Inspection device and inspection method for joint members
JPH09318605A (en) Method for testing welded part by ultrasonic surface sh wave
JP2001318085A (en) Padding pipe inspecting method
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JP2000346831A (en) Ultrasonic flaw detection method and ultrasonic probe for plastic pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817