JP2000346831A - Ultrasonic flaw detection method and ultrasonic probe for plastic pipe - Google Patents
Ultrasonic flaw detection method and ultrasonic probe for plastic pipeInfo
- Publication number
- JP2000346831A JP2000346831A JP11161572A JP16157299A JP2000346831A JP 2000346831 A JP2000346831 A JP 2000346831A JP 11161572 A JP11161572 A JP 11161572A JP 16157299 A JP16157299 A JP 16157299A JP 2000346831 A JP2000346831 A JP 2000346831A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- defect
- mhz
- probe
- flaw detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/52—Joining tubular articles, bars or profiled elements
- B29C66/522—Joining tubular articles
- B29C66/5221—Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/18—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
- B29C65/20—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/82—Testing the joint
- B29C65/8292—Testing the joint by the use of ultrasonic, sonic or infrasonic waves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/114—Single butt joints
- B29C66/1142—Single butt to butt joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
- B29C66/73921—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、プラスチック管に
おける欠陥、特には、プラスチック管の端面同士の融着
部における欠陥を超音波により検出するプラスチック管
の超音波探傷法及び超音波探触子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method and an ultrasonic probe for a plastic pipe for detecting a defect in a plastic pipe, particularly, a defect in a welded portion between end faces of the plastic pipe by ultrasonic waves. .
【0002】[0002]
【従来の技術】上水、下水、温泉、泥水等を流通させる
輸送管としては、従来、強度が高いという点から、鋳鉄
管、鋼管等の金属管が使用されていた。そして、このよ
うな輸送管は、特に損傷、破裂等しない限り、30年、
40年という長期間に渡って使用される。しかし、鋳鉄
管、鋼管等の金属管は、管内を流通する上水、下水、温
泉、泥水等により内壁面が、又、雨水、化学物質等によ
り外壁面が腐食し易く、耐久性に問題がある。又、比重
が大きいとともに、可撓性も有しないため、敷設作業に
多大の時間と労力を要するという問題もある。そこで、
近年、かかる問題点を解消するものとして、塩化ビニ
ル、フェノール、ポリエチレン等からなるプラスチック
管が使用されるようになってきた。2. Description of the Related Art Conventionally, metal pipes such as cast iron pipes and steel pipes have been used as transport pipes for distributing clean water, sewage water, hot springs, muddy water and the like because of their high strength. And such transport pipes have been in operation for 30 years, unless otherwise damaged or ruptured.
Used for as long as 40 years. However, metal pipes such as cast iron pipes and steel pipes have a problem in durability because the inner wall surface is easily corroded by clean water, sewage water, hot springs, muddy water, etc., and the outer wall surface is easily corroded by rainwater, chemical substances, etc. is there. In addition, since it has a large specific gravity and does not have flexibility, there is also a problem that laying work requires a great deal of time and labor. Therefore,
In recent years, plastic tubes made of vinyl chloride, phenol, polyethylene, and the like have been used to solve such problems.
【0003】上水、下水、温泉、泥水等を流通させる管
路は、かかるプラスチック管を多数連結することにより
構成されるが、プラスチック管の場合には、フランジを
形成してボルト、ナットにより締結して接合するような
方式のみでなく、プラスチック管の端面同士を熱融着さ
せて接合する方式も一般的で普及している。[0003] Pipes for flowing water, sewage, hot springs, muddy water and the like are constituted by connecting a large number of such plastic pipes. In the case of plastic pipes, flanges are formed and fastened with bolts and nuts. In addition to a method of joining by joining together, a method of joining by joining the end faces of the plastic tubes by heat is common and widely used.
【0004】かかる熱融着による接合方法として、図1
に示すバット融着装置1を使用して、先ず、ヒータープ
レート2をプラスチック管3a,3bの端面に当接して
溶融させ、次に、プラスチック管3a,3bの端面同士
を当接させて接合するバット融着方法が知られている。
そして、バット融着の実施に際しては、溶融温度、融着
圧力、融着時間等の種々設定条件を高精度に制御する必
要がある。[0004] As a joining method by such heat fusion, FIG.
First, the heater plate 2 is brought into contact with the end faces of the plastic pipes 3a and 3b to be melted, and then the end faces of the plastic pipes 3a and 3b are brought into contact with each other and joined. A butt fusion method is known.
When performing butt fusion, it is necessary to control various setting conditions such as a fusion temperature, a fusion pressure, and a fusion time with high accuracy.
【0005】プラスチック管3a,3bの端面同士の融
着部における欠陥を検査する方法としては、例えば、融
着部にX線を投射して、内部映像により欠陥を検査する
X線投射法、融着部に検査溶液を塗布して、浸透状況に
より欠陥を検査する浸透探傷法、融着部に超音波を放射
して、反射波により欠陥を検査する超音波探傷法等が考
えられる。このうち、X線投射法は、X線を使用するた
め検査装置が大型になるし、住宅地等人が密集する場所
では実施できない。浸透探傷法は、溶液の浸透を見るた
め表面に開口する欠陥しか検査できない。[0005] As a method of inspecting a defect at a fusion portion between the end faces of the plastic tubes 3a and 3b, for example, an X-ray projection method of projecting an X-ray to the fusion portion and inspecting the defect with an internal image, a fusion method, or the like. A penetrating inspection method in which an inspection solution is applied to a bonding portion and a defect is inspected based on a penetration state, an ultrasonic inspection method in which ultrasonic waves are radiated to a fusion portion and a defect is inspected by a reflected wave, and the like are considered. Among them, the X-ray projection method uses an X-ray, so that the inspection apparatus becomes large, and cannot be implemented in a place such as a residential area where people are crowded. Penetrant inspection can only inspect defects that open to the surface to see the penetration of the solution.
【0006】一方、超音波探傷法は、図2に示すトラン
スデューサー5と楔6とからなる超音波探触子4を使用
するが、従来、トランスデューサー5としては2.5〜
5.0MHz、楔6としてはポリエチレン製のものが使
用されている。超音波探傷法では、プラスチック管路内
から流体を除去する必要はないが、従来は、超音波の減
衰が大きく、遠くまで伝搬しないため、厚肉のプラスチ
ック管3a,3bでは融着部の深い部所まで探傷できな
い。又、融着面7に超音波sを当てるため入射角θ1 を
大きくすると、入射損失が大きくなり、欠陥の検出感度
が悪くなる。さらに、ビード8a,8bが形成されてい
るため、超音波探触子4を融着部に接近させるにも限界
があり、プラスチック管3a,3bの表面から所定深さ
まで探傷不能領域uが生じる。[0006] On the other hand, the ultrasonic flaw detection method uses an ultrasonic probe 4 composed of a transducer 5 and a wedge 6 shown in FIG.
A wedge 6 of 5.0 MHz is made of polyethylene. In the ultrasonic flaw detection method, it is not necessary to remove the fluid from the inside of the plastic pipe, but conventionally, since the ultrasonic wave is largely attenuated and does not propagate far, the thick plastic pipes 3a and 3b have deep fusion parts. No flaws can be detected in any part. Also, increasing the angle of incidence theta 1 for applying ultrasonic s the fusing surface 7, the incident loss increases, the detection sensitivity of the defect is deteriorated. Further, since the beads 8a and 8b are formed, there is a limit to the approach of the ultrasonic probe 4 to the fused portion, and an undetectable area u is formed from the surfaces of the plastic tubes 3a and 3b to a predetermined depth.
【0007】[0007]
【発明が解決しようとする課題】上述のように、X線投
射法では、検査装置が大型になり、住宅地等人が密集す
る場所では実施できず、浸透探傷法では、表面に開口す
る欠陥しか検査できないず、検査を実施する際に数々の
制限があった。又、超音波探傷法では、深い部所まで探
傷できず、欠陥の検出感度が悪く、表面近傍で探傷不能
領域uが生じるという問題があった。そのため、従来
は、プラスチック管3a,3bの端面同士の融着部にお
ける微小欠陥を容易、確実に発見することはできなかっ
た。As described above, in the X-ray projection method, the inspection apparatus becomes large and cannot be performed in a place where people are densely located, such as a residential area. Can only be tested, and there are a number of limitations in performing the test. In addition, the ultrasonic flaw detection method has a problem that flaw detection cannot be performed to a deep part, the defect detection sensitivity is poor, and a flaw-detection-impossible area u is generated near the surface. For this reason, conventionally, it has not been possible to easily and reliably find a minute defect in the fusion portion between the end faces of the plastic tubes 3a and 3b.
【0008】本発明は、かかる従来の問題点を解決すべ
く為されたものであって、その目的とするところは、深
い部所まで探傷でき、欠陥の検出感度が良く、表面近傍
も十分探傷でき、プラスチック管3a,3bの端面同士
の融着部における微小欠陥を容易、確実に発見すること
ができるプラスチック管の超音波探傷法及び超音波探触
子を提供せんとするものである。The present invention has been made to solve such a conventional problem, and its object is to detect flaws in deep portions, to have good defect detection sensitivity, and to sufficiently detect flaws near the surface. It is an object of the present invention to provide an ultrasonic flaw detection method and an ultrasonic probe for a plastic tube that can easily and surely find a minute defect in a fusion portion between end faces of the plastic tubes 3a and 3b.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、本発明のプラスチック管の超音波探傷法は、周波数
0.5〜2.0MHzの超音波を放射するとともに、被
検体との境界において超音波の入射角θ1 よりも屈折角
θ2 を大きくすることを特徴とするものである。In order to achieve the above object, an ultrasonic flaw detection method for a plastic tube according to the present invention emits ultrasonic waves having a frequency of 0.5 to 2.0 MHz, and emits ultrasonic waves at a boundary with a subject. it is characterized in that to increase the refraction angle theta 2 than the incident angle theta 1 of the ultrasound.
【0010】本発明の超音波探触子9は、上記超音波探
傷法を実施するためのものであって、図3に示すよう
に、周波数0.5〜2.0MHzの超音波を放射するト
ランスデューサー10と、音速が被検体よりも遅い材料
よりなる楔11とからなることを特徴とするものであ
る。The ultrasonic probe 9 according to the present invention is for performing the above-described ultrasonic flaw detection method, and emits ultrasonic waves having a frequency of 0.5 to 2.0 MHz as shown in FIG. It is characterized by comprising a transducer 10 and a wedge 11 made of a material whose sound speed is lower than that of the subject.
【0011】超音波の減衰は周波数が低いほど小さい
が、検出限界欠陥寸法は波長の1/2であることを考慮
すれば、超音波の周波数は0.5〜2.0MHz、好ま
しくは0.75〜1.75MHz、特に好ましくは1.
0〜1.5MHzとする。Although the attenuation of the ultrasonic wave is smaller as the frequency is lower, the frequency of the ultrasonic wave is 0.5 to 2.0 MHz, preferably 0.5 to 2.0 MHz, considering that the detection limit defect size is の of the wavelength. 75-1.75 MHz, particularly preferably 1.75 MHz.
0 to 1.5 MHz.
【0012】検出限界欠陥寸法dは、波長をλ、周波数
をν、音速をcとすれば、 d=λ/2=c/(2ν) と書き表すことができ、ポリエチレンよりなるプラスチ
ック管の音速は2200m/sであるから、超音波の周
波数を1.0MHzとすれば、検出限界欠陥寸法dは、 d=c/(2ν)=2200/(2×1.0×106 ) =1.1×10-3 となり、約1mmの欠陥まで検出できることとなる。The detection limit defect size d can be expressed as d = λ / 2 = c / (2ν) where λ is the wavelength, ν is the frequency, and c is the sound speed. The sound speed of a plastic tube made of polyethylene is Assuming that the frequency of the ultrasonic wave is 1.0 MHz, the detection limit defect size d is as follows: d = c / (2ν) = 2200 / (2 × 1.0 × 10 6 ) = 1.1 × 10 -3 , which means that a defect of about 1 mm can be detected.
【0013】このように、超音波の周波数を0.5〜
2.0MHzとすることによって、従来に比較して、超
音波の減衰が小さくなるため、プラスチック管の融着部
の深い部所まで探傷でき、欠陥の検出感度も良好とな
る。As described above, the frequency of the ultrasonic wave is set to 0.5 to
By setting the frequency to 2.0 MHz, the attenuation of the ultrasonic wave is reduced as compared with the related art, so that it is possible to detect a flaw in a deep portion of the fusion joint of the plastic tube and to improve the defect detection sensitivity.
【0014】又、被検体との境界において超音波の入射
角θ1 よりも屈折角θ2 を大きくする、すなわち、音速
が被検体よりも遅い材料よりなる楔11を使用すると、
図3に示すように、従来に比較して、小さな入射角θ1
でありながら十分に大きな屈折角θ2 を得ることができ
る。よって、入射角θ1 を小さくすることによって、入
射損失を小さくすることができ、欠陥の検出感度を良好
とすることができる。又、探触子9をビード8a,8b
に限界まで接近させることによって、プラスチック管3
a,3bの表面からの探傷不能領域uを大幅に減少させ
ることができる。When the angle of refraction θ 2 is made larger than the angle of incidence θ 1 of the ultrasonic wave at the boundary with the subject, that is, when a wedge 11 made of a material whose sound speed is lower than that of the subject is used,
As shown in FIG. 3, the incident angle θ 1 is smaller than that of the related art.
However, a sufficiently large refraction angle θ 2 can be obtained. Thus, by reducing the incident angle theta 1, it is possible to reduce the incidence loss can be a good detection sensitivity of defects. Further, the probe 9 is connected to the beads 8a and 8b.
Close to the limit, the plastic tube 3
The undetectable area u from the surfaces a and 3b can be greatly reduced.
【0015】尚、超音波が大きく屈折することによっ
て、トランスデューサー10の見かけの直径が小さくな
るので、図3に斜線で示すように、超音波ビームの幅w
が上下方向により広がることになる。よって、実際に
は、さらに表面近傍の欠陥までも検出が可能となる。Since the apparent diameter of the transducer 10 is reduced by the refraction of the ultrasonic wave, the width w of the ultrasonic beam is reduced as shown by the oblique lines in FIG.
Will spread more vertically. Therefore, in practice, it is possible to detect even a defect near the surface.
【0016】音速が2200m/sであるポリエチレン
よりなるプラスチック管の場合には、音速がポリエチレ
ンより遅いフッ素樹脂、例えば、音速が1500m/s
であるポリテトラフルオロエチレン(PTFE:テフロ
ン(登録商標)等)よりなる楔11を使用することによ
り、超音波の入射角θ1 よりも屈折角θ2 を大きくする
ことができる。しかし、楔11の材料は、PTFEに限
らず、テトラフルオロエチレン・ヘキサフルオロプロピ
レン共重合体(FEP:ネオフロンFEP(登録商標)
等)、テトラフルオロエチレン・ペルフルオロビニルエ
ーテル共重合体(PFA:テフロンPFA(登録商標)
等)等のフッソ樹脂でもよく、被検体よりも音速が遅い
任意の材料でよい。In the case of a plastic pipe made of polyethylene having a sound speed of 2200 m / s, a fluorine resin having a sound speed lower than that of polyethylene, for example, a sound speed of 1500 m / s
Polytetrafluoroethylene is (PTFE: Teflon (registered trademark)) by using a wedge 11 made of, it is possible to increase the refraction angle theta 2 than the incident angle theta 1 of the ultrasound. However, the material of the wedge 11 is not limited to PTFE, but may be a tetrafluoroethylene / hexafluoropropylene copolymer (FEP: NEOFLON FEP (registered trademark)).
Etc.), tetrafluoroethylene / perfluorovinyl ether copolymer (PFA: Teflon PFA (registered trademark))
Etc.), or any material having a lower sound velocity than the subject.
【0017】[0017]
【発明の実施の形態】次に、本発明のプラスチック管の
超音波探傷法及び超音波探触子について、超音波探傷し
た実験例を提示し、作用、効果とともに具体的に説明す
る。BEST MODE FOR CARRYING OUT THE INVENTION Next, an ultrasonic flaw detection method and an ultrasonic probe for a plastic pipe according to the present invention will be described in detail with reference to experimental examples of ultrasonic flaw detection and the operation and effects thereof.
【0018】1.内部欠陥検出実験 探触子 次のような3種の超音波探触子を製作した。各超音波探
触子の楔は、図4に示すような形状、表1に示すような
寸法である。 1)探触子A60−1.5 トランスデューサー A548S(日本パナメトリクス(株)製) 超音波周波数ν 1.5MHz 楔 ポリテトラフルオロエチレン(PTFE:テフロン) 被検体との屈折角θ2 59°(対ポリエチレン) 2)探触子A50−1.0 トランスデューサー V539SM(日本パナメトリクス(株)製) 超音波周波数ν 1.0MHz 楔 ポリテトラフルオロエチレン(PTFE:テフロン) 被検体との屈折角θ2 50°(対ポリエチレン) 3)探触子A40−1.0 トランスデューサー V539SM(日本パナメトリクス(株)製) 超音波周波数ν 1.0MHz 楔 ポリテトラフルオロエチレン(PTFE:テフロン) 被検体との屈折角θ2 42°(対ポリエチレン)[0018] 1. Experimental probe for internal defect detection The following three types of ultrasonic probes were manufactured. The wedge of each ultrasonic probe has a shape as shown in FIG. 4 and dimensions as shown in Table 1. 1) manufactured by probe A60-1.5 transducer A548S (Nippon Panametrics Co.) ultrasonic frequency [nu 1.5 MHz wedge polytetrafluoroethylene (PTFE: Teflon) refraction angle theta 2 59 ° of the subject ( 2) Probe A50-1.0 Transducer V539SM (manufactured by Nippon Panametrics Co., Ltd.) Ultrasonic frequency ν 1.0 MHz Wedge Polytetrafluoroethylene (PTFE: Teflon) Refraction angle θ 2 with subject 50 ° (relative to polyethylene) 3) Probe A40-1.0 Transducer V539SM (manufactured by Nippon Panametrics Co., Ltd.) Ultrasonic frequency ν 1.0 MHz Wedge Polytetrafluoroethylene (PTFE: Teflon) Refraction with subject Angle θ 2 42 ° (vs. polyethylene)
【0019】[0019]
【表1】 [Table 1]
【0020】被検体 図5に示すように、ポリエチレン板(高密度ポリエチレ
ン)の側面の所定位置に所定直径の円形穴13,14,
15,16を多数形成して被検体12とした。すなわ
ち、ポリエチレン板の上面12aをプラスチック管の表
面と、円形穴の底面13a,14a,15a,16aを
プラスチック管に生じた平面円形欠陥と仮定した。よっ
て、例えば、ポリエチレン板の上面12aから30mm
の位置に形成されたφ3.0の円形穴の底面15aは、
プラスチック管の表面から深さ30mmの位置に形成さ
れたφ3.0の平面円形欠陥に相当する。As shown in the subject Figure 5, a circular hole 13 having a predetermined diameter at a predetermined position of the side surface of the polyethylene plate (high density polyethylene),
A large number of samples 15 and 16 were formed as a subject 12. That is, the upper surface 12a of the polyethylene plate was assumed to be the surface of the plastic tube, and the bottom surfaces 13a, 14a, 15a, 16a of the circular holes were assumed to be planar circular defects generated in the plastic tube. Therefore, for example, 30 mm from the upper surface 12a of the polyethylene plate
The bottom surface 15a of the φ3.0 circular hole formed at the position
This corresponds to a φ3.0 plane circular defect formed at a depth of 30 mm from the surface of the plastic tube.
【0021】実験方法 被検体であるポリエチレン板の上面12aに各探触子を
載置し、円形穴13,14,15,16の軸方向に移動
して、各平面円形欠陥が検出できるか否か確認した。図
6に示すように、超音波sは平面円形欠陥17に対して
垂直に当たらないので、そのほとんどはトランスデュー
サー10に帰還せず、帰還して検出される超音波sのほ
とんどは平面円形欠陥の端部17aで発生する回析波
(端部エコー)である。 Experimental Method Each probe was placed on the upper surface 12a of a polyethylene plate as an object, and moved in the axial direction of the circular holes 13, 14, 15, 16 to determine whether or not each planar circular defect could be detected. I checked. As shown in FIG. 6, since the ultrasonic wave s does not hit the plane circular defect 17 perpendicularly, most of the ultrasonic wave s does not return to the transducer 10 and most of the ultrasonic wave s detected by returning returns to the plane circular defect 17. Is a diffracted wave (end echo) generated at the end 17a.
【0022】実験結果 平面円形欠陥17の各深さにおける検出限界直径は、前
記3種の探触子について次の通りであった。 1)探触子A60−1.5 深さ20mm未満 検出限界直径1.0mm 2)探触子A50−1.0 深さ30mm未満 検出限界直径1.0mm 深さ40mm未満 検出限界直径3.0mm 3)探触子A40−1.0 深さ40mm未満 検出限界直径1.0mm 深さ50mm未満 検出限界直径4.0mm 深さ60mm 検出限界直径5.0mm Experimental Results The detection limit diameter of the planar circular defect 17 at each depth was as follows for the above three types of probes. 1) Probe A60-1.5 Depth less than 20 mm Detection limit diameter 1.0 mm 2) Probe A50-1.0 Depth less than 30 mm Detection limit diameter 1.0 mm Depth less than 40 mm Detection limit diameter 3.0 mm 3) Probe A40-1.0 Depth less than 40mm Detection limit diameter 1.0mm Depth less than 50mm Detection limit diameter 4.0mm Depth 60mm Detection limit diameter 5.0mm
【0023】以上のことから、前記3種の探触子を使用
することによって、平面円形欠陥17については、深さ
40mmまでは検出限界直径1.0mm、深さ40〜5
0mmでは検出限界直径4.0mm、深さ50〜60m
mでは検出限界直径5.0mmで探傷できることが分か
った。As described above, by using the above three types of probes, the plane circular defect 17 can have a detection limit diameter of 1.0 mm and a depth of 40 to 5 mm up to a depth of 40 mm.
At 0 mm, the detection limit diameter is 4.0 mm and the depth is 50-60 m
In the case of m, flaw detection was possible at a detection limit diameter of 5.0 mm.
【0024】2.表面欠陥検出実験 被検体 図7に示すように、長さ方向に段差を形成したポリエチ
レン板(高密度ポリエチレン)の側面より所定位置に所
定深さのスリット24を形成して被検体18とした。す
なわち、ポリエチレン板の各段19,20,21,2
2,23の上面19a,20a,21a,22a,23
aをプラスチック管の表面と、スリット24をプラスチ
ック管に生じた表面欠陥と仮定した。よって、例えば、
ポリエチレン板の高さ16mmの段20におけるスリッ
ト24は、プラスチック管の表面から深さ2mmまで形
成された表面欠陥に相当する。[0024] 2. Surface Defect Detection Experiment Subject As shown in FIG. 7, a slit 24 having a predetermined depth was formed at a predetermined position from a side surface of a polyethylene plate (high-density polyethylene) having a step formed in the length direction, thereby obtaining a test object 18. That is, each step 19, 20, 21, and 2 of the polyethylene plate
Upper surfaces 19a, 20a, 21a, 22a, 23 of 2, 23
a was assumed to be the surface of the plastic tube, and the slit 24 was assumed to be a surface defect generated in the plastic tube. So, for example,
The slits 24 in the 16 mm high step 20 of the polyethylene plate correspond to surface defects formed from the surface of the plastic tube to a depth of 2 mm.
【0025】実験方法 被検体であるポリエチレン板の各段の上面19a,20
a,21a,22a,23aに探触子A60−1.5を
載置し、スリット24との距離を10mm又は15mm
に設定して、各表面欠陥25が検出できるか否か確認し
た。図8に示すように、実際には、超音波ビームには所
定の幅wがあるので、音軸sよりも上方の表面近傍まで
探傷が可能である。 Experimental Method Upper surfaces 19a, 20 of each step of a polyethylene plate as a test object
a, 21a, 22a, and 23a, the probe A60-1.5 is placed, and the distance from the slit 24 is set to 10 mm or 15 mm.
Was set, and it was confirmed whether or not each surface defect 25 could be detected. As shown in FIG. 8, since the ultrasonic beam actually has a predetermined width w, flaw detection can be performed up to near the surface above the sound axis s.
【0026】実験結果 探触子A60−1.5によれば、スリット24との距離
を10mmに設定した場合には、深さ2mmの表面欠陥
まで、スリット24との距離を15mmに設定した場合
には、深さ3mmの表面欠陥まで検出することができ
た。 Experimental Results According to the probe A60-1.5, when the distance to the slit 24 was set to 10 mm, the distance to the slit 24 was set to 15 mm up to a surface defect having a depth of 2 mm. , A surface defect with a depth of 3 mm could be detected.
【0027】以上のことから、探触子A60−1.5を
使用することによって、ビード8a,8bの幅が20m
mの場合には深さ2mm以上、ビード8a,8bの幅が
30mmの場合には深さ3mm以上の欠陥を探傷できる
ことがわかった。As described above, by using the probe A60-1.5, the width of the beads 8a and 8b is reduced to 20 m.
In the case of m, a defect having a depth of 2 mm or more can be detected, and when the width of the beads 8a and 8b is 30 mm, a defect having a depth of 3 mm or more can be detected.
【0028】3.欠陥高さ測定実験 実験方法 内部欠陥検出実験において使用した被検体12であるポ
リエチレン板の上面12aに探触子A40−1.0を載
置し、図9に示すように、円形穴13,14,15,1
6の軸方向に微小距離移動させて、各平面円形欠陥17
の上端部17aのエコー及び下端部17bのエコーを検
出した。そして、その微小移動距離xを測定した。[0028] 3. Defect Height Measurement Experiment Experimental Method The probe A40-1.0 was placed on the upper surface 12a of the polyethylene plate which was the subject 12 used in the internal defect detection experiment, and the circular holes 13 and 14 were formed as shown in FIG. , 15,1
6 is moved by a small distance in the axial direction, and each planar circular defect 17 is moved.
At the upper end 17a and the echo at the lower end 17b. Then, the minute movement distance x was measured.
【0029】算出方法 平面円形欠陥17の高さhは、微小移動距離をx、屈折
角をθ2 とすれば、 h=x/tanθ2 と書き表すことができる。The height h of the calculation method flat circular defect 17, if the small moving distance x, the refraction angle and theta 2, can be written as h = x / tanθ 2.
【0030】実験結果 探触子A40−1.0によれば、深さ30mm未満の直
径4.0mm以上の平面円形欠陥17については、その
高さhを±0.5mmの誤差範囲内で測定することがで
きた。直径4.0mm未満の平面円形欠陥17について
は、上端部17aのエコーと下端部17bのエコーとを
明確に識別することができず、その高さhを測定するこ
とはできなかった。 Experimental Results According to the probe A40-1.0, for a plane circular defect 17 having a diameter of 4.0 mm or more and a depth of less than 30 mm, the height h was measured within an error range of ± 0.5 mm. We were able to. Regarding the planar circular defect 17 having a diameter of less than 4.0 mm, the echo at the upper end 17a and the echo at the lower end 17b could not be clearly distinguished, and the height h could not be measured.
【図1】バット融着装置によりプラスチック管の端面同
士を接合する状態を示す斜視図である。FIG. 1 is a perspective view showing a state in which end faces of plastic tubes are joined by a butt fusion device.
【図2】従来の超音波探触子によりプラスチック管の融
着部を探傷する状態を示す要部断面図である。FIG. 2 is a cross-sectional view of a main part showing a state in which a fused part of a plastic tube is detected by a conventional ultrasonic probe.
【図3】本発明の超音波探触子によりプラスチック管の
融着部を探傷する状態を示す要部断面図である。FIG. 3 is a cross-sectional view of a main part showing a state in which the ultrasonic probe according to the present invention detects a flaw in a fused portion of a plastic tube.
【図4】実験において使用する超音波探触子の楔の各面
図である。FIG. 4 is a plan view of a wedge of an ultrasonic probe used in an experiment.
【図5】内部欠陥検出実験において使用する被検体の各
面図である。FIG. 5 is a view showing each surface of an object used in an internal defect detection experiment.
【図6】本発明の超音波探触子によりプラスチック管の
内部欠陥を検出する状態を示す要部断面図である。FIG. 6 is a sectional view of a main part showing a state where an internal defect of a plastic tube is detected by the ultrasonic probe of the present invention.
【図7】表面欠陥検出実験において使用する被検体の各
面図である。FIG. 7 is a view showing each surface of an object used in a surface defect detection experiment.
【図8】本発明の超音波探触子によりプラスチック管の
表面欠陥を検出する状態を示す要部断面図である。FIG. 8 is a cross-sectional view illustrating a state where a surface defect of a plastic tube is detected by the ultrasonic probe according to the present invention.
【図9】本発明の超音波探触子によりプラスチック管の
内部欠陥の高さを測定する方法を示す要部断面図であ
る。FIG. 9 is a cross-sectional view of a main part showing a method for measuring the height of an internal defect in a plastic tube using the ultrasonic probe of the present invention.
3a,3b プラスチック管 9 超音波探触子 10 トランスデューサー 11 楔 3a, 3b Plastic tube 9 Ultrasonic probe 10 Transducer 11 Wedge
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G047 AA08 AB01 BB02 BC08 BC09 EA05 EA08 GB27 4F211 AG08 AG21 AJ03 AM02 AM23 TA01 TC11 TD07 TW39 5D019 AA01 AA22 FF05 GG01 GG03 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G047 AA08 AB01 BB02 BC08 BC09 EA05 EA08 GB27 4F211 AG08 AG21 AJ03 AM02 AM23 TA01 TC11 TD07 TW39 5D019 AA01 AA22 FF05 GG01 GG03
Claims (8)
放射することを特徴とするプラスチック管の超音波探傷
法。1. An ultrasonic flaw detection method for a plastic tube, which emits an ultrasonic wave having a frequency of 0.5 to 2.0 MHz.
θ1 よりも屈折角θ 2 を大きくすることを特徴とするプ
ラスチック管の超音波探傷法。2. An incident angle of an ultrasonic wave at a boundary with a subject.
θ1Angle of refraction θ TwoIs characterized by increasing
Ultrasonic flaw detection of plastic tubes.
放射するとともに、被検体との境界において超音波の入
射角θ1 よりも屈折角θ2 を大きくすることを特徴とす
るプラスチック管の超音波探傷法。3. A plastic tube which emits an ultrasonic wave having a frequency of 0.5 to 2.0 MHz and has a refraction angle θ 2 larger than an incident angle θ 1 of the ultrasonic wave at a boundary with a subject. Ultrasonic inspection method.
放射するトランスデューサーと、楔とからなることを特
徴とする超音波探触子。4. An ultrasonic probe comprising a transducer for emitting ultrasonic waves having a frequency of 0.5 to 2.0 MHz and a wedge.
りも遅い材料よりなる楔とからなることを特徴とする超
音波探触子。5. An ultrasonic probe comprising a transducer and a wedge made of a material whose sound speed is lower than that of a subject.
放射するトランスデューサーと、音速が被検体よりも遅
い材料よりなる楔とからなることを特徴とする超音波探
触子。6. An ultrasonic probe comprising: a transducer that emits an ultrasonic wave having a frequency of 0.5 to 2.0 MHz; and a wedge made of a material whose sound speed is lower than that of a subject.
ことを特徴とする請求項5又は6に記載の超音波探触
子。7. The ultrasonic probe according to claim 5, wherein the wedge is made of a fluorine resin.
チレン(PTFE)であることを特徴とする請求項7に
記載の超音波探触子。8. The ultrasonic probe according to claim 7, wherein the fluorine resin is polytetrafluoroethylene (PTFE).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11161572A JP2000346831A (en) | 1999-06-08 | 1999-06-08 | Ultrasonic flaw detection method and ultrasonic probe for plastic pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11161572A JP2000346831A (en) | 1999-06-08 | 1999-06-08 | Ultrasonic flaw detection method and ultrasonic probe for plastic pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000346831A true JP2000346831A (en) | 2000-12-15 |
Family
ID=15737671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11161572A Pending JP2000346831A (en) | 1999-06-08 | 1999-06-08 | Ultrasonic flaw detection method and ultrasonic probe for plastic pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000346831A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003071939A (en) * | 2001-09-04 | 2003-03-12 | Kitz Corp | Method for welding resin member and welded resin member manufactured by using the same |
JP2006132952A (en) * | 2004-11-02 | 2006-05-25 | National Institute Of Advanced Industrial & Technology | Movable FBG ultrasonic sensor |
RU2725107C1 (en) * | 2019-12-30 | 2020-06-29 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Method of ultrasonic examination of solid materials and device for its implementation |
-
1999
- 1999-06-08 JP JP11161572A patent/JP2000346831A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003071939A (en) * | 2001-09-04 | 2003-03-12 | Kitz Corp | Method for welding resin member and welded resin member manufactured by using the same |
JP2006132952A (en) * | 2004-11-02 | 2006-05-25 | National Institute Of Advanced Industrial & Technology | Movable FBG ultrasonic sensor |
JP4565093B2 (en) * | 2004-11-02 | 2010-10-20 | 独立行政法人産業技術総合研究所 | Movable FBG ultrasonic sensor |
RU2725107C1 (en) * | 2019-12-30 | 2020-06-29 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Method of ultrasonic examination of solid materials and device for its implementation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108562647B (en) | Ultrasonic testing device and method of polyethylene pipeline hot-melt butt joint combined with PA-TOFD | |
CN111239251B (en) | Ultrasonic detection method for defects of welding positions of wall penetrating pipes of peak shaving unit | |
WO2014202976A1 (en) | Ultrasonic ndt inspection system | |
WO2012103628A1 (en) | Method for ultrasonic inspection of welds | |
CN106841392A (en) | A kind of phased array ultrasonic detecting method for nuclear power station BOSS weld seams | |
JPH0219424B2 (en) | ||
Hagglund et al. | A novel phased array ultrasonic testing (PAUT) system for on-site inspection of welded joints in plastic pipes | |
WO2021053939A1 (en) | Ultrasonic examination method and ultrasonic examination device | |
Crawford et al. | Preliminary assessment of NDE methods on inspection of HDPE butt fusion piping joints for lack of fusion | |
Stakenborghs et al. | Microwave based NDE inspection of HDPE pipe welds | |
JP2000346831A (en) | Ultrasonic flaw detection method and ultrasonic probe for plastic pipe | |
Hagglund et al. | Development of phased array ultrasonic inspection techniques for testing welded joints in plastic (PE) pipes | |
Miao et al. | Ultrasonic phased array inspection with water wedge for butt fusion joints of polyethylene pipe | |
Burch et al. | M-skip: a quantitative technique for the measurement of wall loss in inaccessible components | |
JP2001330594A (en) | Inspection method of metal pipe bonded body | |
CN112326799A (en) | Method for applying phased array technology to pressure pipeline regular inspection and grading | |
Guo et al. | Experimental Investigation on Coupling Focusing Ultrasonic Technique for Inspection of Polyethylene Butt-Fusion Joint | |
KR102690778B1 (en) | Calibration method of sonic speed for test device | |
Spicer et al. | Development and validation of an automated ultrasonic system for the non-destructive evaluation of welded joints in thermoplastic storage tanks | |
Reber et al. | Ultrasonic in-line inspection tools to inspect older pipelines for cracks in girth and long-seam welds | |
Alavijeh et al. | Application of a chord transducer for ultrasonic detection and characterisation of defects in MDPE butt fusion joints | |
Zhong et al. | The Research on Automatic Defect Recognition for Phased Array Ultrasonic Inspection of Polyolefin Butt Thermal-Fusion Joint | |
Qian et al. | Research on Flexible Phased Array Technique for Testing the Inserted Fillet Welds | |
Iizuka et al. | Ultrasonic inspection for scattered oxides in ERW pipe welds. | |
JP4636967B2 (en) | Ultrasonic flaw detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20060320 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080527 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080728 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081209 |