JP6808682B2 - Inspection device and inspection method for joint members - Google Patents

Inspection device and inspection method for joint members Download PDF

Info

Publication number
JP6808682B2
JP6808682B2 JP2018106118A JP2018106118A JP6808682B2 JP 6808682 B2 JP6808682 B2 JP 6808682B2 JP 2018106118 A JP2018106118 A JP 2018106118A JP 2018106118 A JP2018106118 A JP 2018106118A JP 6808682 B2 JP6808682 B2 JP 6808682B2
Authority
JP
Japan
Prior art keywords
wave
head
probe
crack
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018106118A
Other languages
Japanese (ja)
Other versions
JP2019211281A (en
Inventor
博 鶴崎
博 鶴崎
悟 城下
悟 城下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Non Destructive Inspection Co Ltd
Original Assignee
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Non Destructive Inspection Co Ltd filed Critical Non Destructive Inspection Co Ltd
Priority to JP2018106118A priority Critical patent/JP6808682B2/en
Publication of JP2019211281A publication Critical patent/JP2019211281A/en
Application granted granted Critical
Publication of JP6808682B2 publication Critical patent/JP6808682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、接合部材の検査装置及び検査方法に関する。さらに詳しくは、複数の被接合部材を貫通しこれらを接合する接合部材に超音波を入射させると共に前記接合部材からの反射波を受信する探触子と、前記探触子で受信した反射波に基づいて前記接合部材における割れを評価する信号処理部とを備えた接合部材の検査装置及び検査方法に関する。
The present invention relates to an inspection device and an inspection method for joint members. More specifically, the probe that penetrates a plurality of members to be joined and incidents ultrasonic waves on the joining member and receives the reflected wave from the joining member, and the reflected wave received by the probe. The present invention relates to an inspection device and an inspection method for a joint member including a signal processing unit for evaluating cracks in the joint member based on the above.

板状部材など複数の部材(被接合部材)を接合する手段として、従来よりリベット接合(リベット継手)が行われている。リベット接合は、リベットが接合する被接合部材の孔部が割れのストップホールの役目を果たし、脆性破壊で瞬時に破断しないので、溶接よりも信頼性が高く、船や橋梁などの接合部で多く採用されているが、接合後に経年劣化等の健全性の確認(点検)方法が確立されていない。その手法として、打音・目視検査が実施されているが、作業者の技量に依存するため、定量的評価の可能な非破壊検査手法が求められていた。また、リベット接合が多量に用いられている場合、検査効率の向上も要求される。 Conventionally, rivet joining (rivet joint) has been performed as a means for joining a plurality of members (members to be joined) such as a plate-shaped member. In rivet joining, the hole of the member to be joined to which the rivet joins acts as a stop hole for cracking, and it does not break instantly due to brittle fracture, so it is more reliable than welding and is often used in joints such as ships and bridges. Although it has been adopted, a method for confirming (inspecting) the soundness such as deterioration over time after joining has not been established. As the method, tapping sound and visual inspection are carried out, but since it depends on the skill of the operator, a non-destructive inspection method capable of quantitative evaluation has been required. Further, when rivet joining is used in a large amount, improvement of inspection efficiency is also required.

これに対して、例えば特許文献1に記載の如き検査方法が知られている。この方法では、リベットの先端部を潰してかしめ部を形成し、かしめ部側の部材表面にパルスを発信し、該パルスのうち、部材表面からかしめ部に伝搬される透過パルスの成分と、リベット軸を経由してかしめ部に伝搬される透過パルスの成分とを、リベットのかしめ部表面において夫々受信し、各透過パルスの到達時間と透過パルスの高さとを夫々測定し、両透過パルスを予め測定した正規接合部における透過パルスと比較しリベットの状態を判定している。しかし、周囲の構造物の形状や寸法等により送信用探触子と受信用探触子とを近接配置することが困難な場合が多く、検査対象が限られていた。しかも、検査可能な箇所であっても、リベットの頭部が平坦でなければ、送信用探触子及び受信用探触子の双方の接触状態が安定せず、検出精度が低下する場合もあった。 On the other hand, for example, an inspection method as described in Patent Document 1 is known. In this method, the tip of the rivet is crushed to form a crimped portion, a pulse is transmitted to the member surface on the crimped portion side, and among the pulses, the component of the transmitted pulse propagated from the member surface to the crimped portion and the rivet. The components of the transmitted pulse propagated to the crimped portion via the axis are received on the surface of the crimped portion of the rivet, the arrival time of each transmitted pulse and the height of the transmitted pulse are measured, and both transmitted pulses are measured in advance. The state of the rivet is judged by comparing with the transmitted pulse at the measured normal junction. However, it is often difficult to arrange the transmitting probe and the receiving probe in close proximity due to the shape and dimensions of the surrounding structure, and the inspection target is limited. Moreover, even if the part can be inspected, if the head of the rivet is not flat, the contact state of both the transmitting probe and the receiving probe may not be stable, and the detection accuracy may decrease. It was.

特開平10−249474号公報Japanese Unexamined Patent Publication No. 10-249474

かかる従来の実情に鑑みて、本発明は、簡便且つ精度よく接合部材の軸部と頭部との境界部の割れの有無を判定することの可能な接合部材の検査装置及び検査方法を提供することを目的とする。 In view of such conventional circumstances, the present invention provides an inspection device and an inspection method for a joining member capable of easily and accurately determining the presence or absence of cracks in the boundary between the shaft portion and the head portion of the joining member. The purpose is.

上記目的を達成するため、本発明に係る接合部材の検査装置の特徴は、複数の被接合部材を貫通しこれらを接合する接合部材に超音波を入射させると共に前記接合部材からの反射波を受信する探触子と、前記探触子で受信した反射波に基づいて前記接合部材における割れを評価する信号処理部とを備えた構成において、前記接合部材は、前記被接合部材を貫通する軸部と、前記軸部よりも大径で且つ前記被接合部材の表面から突出する頭部とを有し、前記頭部は、外面の少なくとも一部に一定の曲率形状となる湾曲面部を有し、前記探触子は、前記湾曲面部に略一致する走査面を備えた楔部材に取り付けられてあり、前記探触子は、前記楔部材を介して前記頭部へ前記超音波を入射させて前記接合部材に横波及び縦波を伝搬させると共に前記湾曲面部に沿って走査され、前記信号処理部は、前記受信した反射波の内の前記横波の反射波に基づいて前記軸部と前記超音波が入射された頭部との境界部の割れの有無を判定することにある。 In order to achieve the above object, the feature of the joining member inspection apparatus according to the present invention is that ultrasonic waves are incident on the joining member that penetrates a plurality of joined members and joins them, and the reflected wave from the joining member is received. In a configuration including a probe to be used and a signal processing unit for evaluating cracks in the joint member based on the reflected wave received by the probe, the joint member is a shaft portion penetrating the joint member. The head has a head portion having a diameter larger than that of the shaft portion and protruding from the surface of the member to be joined, and the head portion has a curved surface portion having a constant curved shape on at least a part of the outer surface. The probe is attached to a wedge member having a scanning surface that substantially coincides with the curved surface portion, and the probe causes the ultrasonic wave to be incident on the head through the wedge member. The transverse wave and the longitudinal wave are propagated to the joining member and scanned along the curved surface portion, and the signal processing unit has the shaft portion and the ultrasonic wave based on the reflected wave of the transverse wave among the received reflected waves. The purpose is to determine the presence or absence of cracks at the boundary with the incident head.

検査対象となる接合部材は、被接合部材を貫通する軸部と、軸部よりも大径で且つ被接合部材の表面から突出する頭部とを有する。そして、この頭部は、外面の少なくとも一部に一定の曲率形状となる湾曲面部を有する。このような接合部材では、探触子が載置される頭部と軸部との境界部において、割れは軸部の外側から中心に向けて発生する。そのため、割れからの反射波と頭部の座面からの反射波は、ほぼ同じ位置に表れることとなり、割れに起因する信号を識別することが困難となる。 The joint member to be inspected has a shaft portion penetrating the joint member and a head portion having a diameter larger than that of the shaft portion and protruding from the surface of the joint member. The head has a curved surface portion having a constant curvature shape at least a part of the outer surface. In such a joining member, cracks occur from the outside to the center of the shaft at the boundary between the head and the shaft on which the probe is placed. Therefore, the reflected wave from the crack and the reflected wave from the seating surface of the head appear at substantially the same position, and it becomes difficult to identify the signal caused by the crack.

上記構成によれば、探触子は、湾曲面部に略一致する走査面を備えた楔部材に取り付けられてあり、探触子は、楔部材を介して頭部へ超音波を入射させて接合部材に横波及び縦波を伝搬させると共に湾曲面部に沿って走査される。ここで、縦波は横波と比較して指向性が鈍く拡がって伝搬するので、頭部内を伝搬した縦波は割れ及び被接合部材の表面に対向する(接する)頭部の座面において反射する。他方、横波は指向性が鋭いので、頭部内を伝搬した大部分の横波は、頭部の座面には伝搬(到達)せずに第一境界部へ向かって伝搬する。よって、信号処理部が、受信した反射波の内の横波の反射波に基づいて軸部と超音波が入射された頭部との境界部の割れの有無を判定することが可能となる。 According to the above configuration, the probe is attached to a wedge member having a scanning surface that substantially coincides with the curved surface portion, and the probe is joined by injecting ultrasonic waves into the head through the wedge member. Transverse waves and longitudinal waves are propagated to the member and scanned along the curved surface portion. Here, since the longitudinal wave has a slower directivity than the transverse wave and propagates, the longitudinal wave propagating in the head is reflected on the seating surface of the head facing (contacting) the surface of the crack and the member to be joined. To do. On the other hand, since the transverse wave has a sharp directivity, most of the transverse waves propagating in the head do not propagate (reach) to the seating surface of the head, but propagate toward the first boundary. Therefore, the signal processing unit can determine whether or not there is a crack in the boundary portion between the shaft portion and the head portion on which the ultrasonic wave is incident, based on the reflected wave of the transverse wave among the received reflected waves.

上記構成において、前記信号処理部は、前記受信した反射波の走査画像を生成することが望ましい。これにより、割れの有無の判定が視覚的に容易となる。係る場合、前記走査画像は、前記頭部の縁部と頂部との間を走査した際のものであるとよい。頭部の縁部と頂部との間を走査することで、常に、縦波の超音波ビームの中心が接合部材の軸部と超音波が入射された頭部との境界部近傍に位置するため、座面からの反射信号と割れからの反射信号の双方が得られる。よって、これら縦波による反射信号が目印となり、横波による割れからの反射信号を容易に検出(識別)することができる。そして、前記走査画像は、例えばBスキャン画像であるとよく、Aスキャン画像であってもよい。 In the above configuration, it is desirable that the signal processing unit generate a scanned image of the received reflected wave. This makes it easy to visually determine the presence or absence of cracks. In such a case, the scanned image may be the one when scanning between the edge and the top of the head. By scanning between the edge and the top of the head, the center of the longitudinal ultrasonic beam is always located near the boundary between the shaft of the joining member and the head where the ultrasonic waves are incident. , Both the reflected signal from the seat surface and the reflected signal from the crack can be obtained. Therefore, the reflected signals due to the longitudinal waves serve as markers, and the reflected signals from the cracks due to the transverse waves can be easily detected (identified). Then, the scanned image may be, for example, a B-scan image, or may be an A-scan image.

上記いずれかの構成に加えて、前記信号処理部は、前記受信した反射波の内の前記頭部の座面からの前記縦波の反射波と前記割れからの前記縦波の反射波とに基づいて前記割れの深さを推定するようにしてもよい。上述したように、頭部内を伝搬した縦波は、指向性が鈍く拡がって伝搬するので、割れ及び座面で反射する。割れを検出する探触子が頭部の縁部から頂部へ移動するため、割れが剪断応力によって軸部の外面から軸部の中心に向かって伸びる(大きくなる)に従い、探触子から割れまでの縦波の伝搬距離は長くなる。従って、頭部の座面からの縦波の反射波と割れからの縦波の反射波とに基づいて割れの深さを推定することができる。 In addition to any of the above configurations, the signal processing unit may include the reflected wave of the longitudinal wave from the seating surface of the head and the reflected wave of the longitudinal wave from the crack among the received reflected waves. The depth of the crack may be estimated based on the above. As described above, the longitudinal wave propagating in the head has a dull directivity and spreads and propagates, so that it is reflected by the crack and the seat surface. As the probe that detects the crack moves from the edge of the head to the top, the crack extends (becomes larger) from the outer surface of the shaft toward the center of the shaft due to shear stress, and from the probe to the crack. The propagation distance of the longitudinal wave of is long. Therefore, the depth of the crack can be estimated based on the reflected wave of the longitudinal wave from the seating surface of the head and the reflected wave of the longitudinal wave from the crack.

また、上記いずれかの構成において、前記探触子は、縦波垂直探触子であるとよい。また、前記頭部の外面は、例えば球面状を呈する。 Further, in any of the above configurations, the probe may be a longitudinal wave vertical probe. Further, the outer surface of the head has a spherical shape, for example.

上記目的を達成するため、本発明に係る接合部材の検査方法の特徴は、複数の被接合部材を貫通しこれらを接合する接合部材に探触子により超音波を入射させると共に前記接合部材からの反射波を受信し、前記探触子で受信した反射波に基づいて前記接合部材における割れを評価する接合部材の検査方法において、前記接合部材は、前記被接合部材を貫通する軸部と、前記軸部よりも大径で且つ前記被接合部材の表面から突出する頭部とを有し、前記頭部は、外面の少なくとも一部に一定の曲率形状となる湾曲面部を有し、前記探触子は、前記湾曲面部に略一致する走査面を備えた楔部材に取り付けられてあり、前記楔部材を介して前記探触子から前記頭部へ前記超音波を入射させて前記接合部材に横波及び縦波を伝搬させると共に前記探触子を前記湾曲面部に沿って走査し、前記受信した反射波の内の前記横波の反射波に基づいて前記軸部と前記超音波が入射された頭部との境界部の割れの有無を判定することにある。
In order to achieve the above object, the feature of the method for inspecting a joint member according to the present invention is that ultrasonic waves are incident on the joint member that penetrates a plurality of members to be joined and joins them with a probe, and the ultrasonic waves are incident on the joint member. In a method for inspecting a joint member that receives a reflected wave and evaluates cracks in the joint member based on the reflected wave received by the probe, the joint member includes a shaft portion penetrating the joint member and the shaft portion. It has a head portion having a diameter larger than that of the shaft portion and projecting from the surface of the member to be joined, and the head portion has a curved surface portion having a constant curved shape on at least a part of the outer surface, and the probe has a curved surface portion. The child is attached to a wedge member having a scanning surface that substantially coincides with the curved surface portion, and the ultrasonic wave is incident on the head from the probe through the wedge member to cause a transverse wave to the joint member. And the longitudinal wave is propagated, the probe is scanned along the curved surface portion, and the shaft portion and the head portion to which the ultrasonic wave is incident based on the reflected wave of the transverse wave among the received reflected waves. The purpose is to determine the presence or absence of cracks at the boundary with.

係る場合、前記探触子を前記頭部の縁部から頂部に向けて走査すると共に、その走査を前記頭部の周方向に繰り返し行うとよい。これにより、接合部材の境界部の全周を効率よく検査することができる。 In such a case, the probe may be scanned from the edge of the head toward the top, and the scanning may be repeated in the circumferential direction of the head. As a result, the entire circumference of the boundary portion of the joining member can be efficiently inspected.

また、上記いずれかの構成に加えて、前記受信した反射波の内の前記頭部の座面からの前記縦波の反射波と前記割れからの前記縦波の反射波とに基づいて前記割れの深さを推定するようにしてもよい。 Further, in addition to any of the above configurations, the crack is based on the reflected wave of the longitudinal wave from the seating surface of the head and the reflected wave of the longitudinal wave from the crack among the received reflected waves. You may try to estimate the depth of.

上記本発明に係る接合部材の検査装置及び検査方法の特徴によれば、簡便且つ精度よく接合部材の軸部と頭部との境界部の割れの有無を判定することが可能となった。 According to the characteristics of the inspection device and the inspection method for the joint member according to the present invention, it has become possible to easily and accurately determine the presence or absence of cracks in the boundary portion between the shaft portion and the head portion of the joint member.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。 Other objects, configurations and effects of the present invention will be apparent from the sections of embodiments of the invention below.

本発明に係る検査装置を示す概略図である。It is the schematic which shows the inspection apparatus which concerns on this invention. 接合部材の割れD2,D3に対する超音波送信位置を説明する図である。It is a figure explaining the ultrasonic wave transmission position with respect to the crack D22D3 of a joint member. 接合部材の割れD1に対し超音波を入射させた場合の反射波を模式的に示す図である。It is a figure which shows typically the reflected wave when the ultrasonic wave is incident on the crack D1 of a joining member. 入射した縦波及び横波の伝搬を説明する図である。It is a figure explaining the propagation of the incident longitudinal wave and transverse wave. 接合部材の縁部近傍での縦波及び横波の伝搬状態を説明する図である。It is a figure explaining the propagation state of the longitudinal wave and the transverse wave in the vicinity of the edge portion of a joining member. 接合部材の頂部近傍での縦波及び横波の伝搬状態を説明する図である。It is a figure explaining the propagation state of a longitudinal wave and a transverse wave near the top of a joining member. 走査経路の一例を示す図である。It is a figure which shows an example of a scanning path. 走査経路の他の一例を示す図である。It is a figure which shows another example of a scanning path. 深さ1mmの人工欠陥を設けた試験体におけるBスキャン画像の一例を示す図である。It is a figure which shows an example of the B scan image in the test body provided with the artificial defect of 1mm depth. 深さ2mmの人工欠陥を設けた試験体におけるBスキャン画像の一例を示す図である。It is a figure which shows an example of the B scan image in the test body provided with the artificial defect of the depth 2mm. 深さ3mmの人工欠陥を設けた試験体におけるBスキャン画像の一例を示す図である。It is a figure which shows an example of the B scan image in the test body provided with the artificial defect of the depth 3mm. 深さ1mmの人工欠陥を設けた試験体におけるAスキャン画像の一例を示す図であり、上段は人工欠陥部を走査したAスキャン画像、下段は健全部を走査したAスキャン画像を示す。It is a figure which shows an example of the A scan image in the test body provided with the artificial defect of 1mm depth, the upper part shows the A scan image which scanned the artificial defect part, and the lower part shows the A scan image which scanned the sound part.

次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。
本発明に係る検査装置1は、図1に示すように、大略、接合部材100に超音波Pを入射させると共に接合部材100からの反射波Qを受信する探触子2と、探触子2で受信した反射波Qに基づいて接合部材100における割れD1を評価する信号処理部3とを備える。
Next, the present invention will be described in more detail with reference to the accompanying drawings as appropriate.
As shown in FIG. 1, the inspection device 1 according to the present invention generally includes a probe 2 for incidenting ultrasonic waves P on the joining member 100 and receiving a reflected wave Q from the joining member 100, and a probe 2 A signal processing unit 3 that evaluates a crack D1 in the joining member 100 based on the reflected wave Q received in

本実施形態の検査対象となる接合部材100は、図1に示すように、例えば、被接合体110としての複数の板状の被接合部材111,112を接合するリベットである。接合部材としてのリベット100は、被接合部材111,112の貫通孔110aを貫通する軸部102と、軸部102よりも大径で且つ被接合体110(被接合部材111)の表面110bから突出する一対の頭部101A,101Bとよりなる。本実施形態において、リベット100の頭部101A,101Bは、その外面103が略球面状を呈する。また、外面103全体が、一定の曲率形状となる湾曲面部となる。さらに、頭部101A,101Bは、被接合体110(被接合部材111)の表面110bに対向する(接する)座面105と、軸部102よりも外側部分に位置する縁部107とを有する。 As shown in FIG. 1, the joining member 100 to be inspected in the present embodiment is, for example, a rivet for joining a plurality of plate-shaped joined members 111 and 112 as the joined body 110. The rivet 100 as a joining member has a shaft portion 102 penetrating through the through holes 110a of the joined members 111 and 112 and a diameter larger than that of the shaft portion 102 and protrudes from the surface 110b of the joined body 110 (joined member 111). It consists of a pair of heads 101A and 101B. In the present embodiment, the outer surfaces 103 of the heads 101A and 101B of the rivet 100 have a substantially spherical shape. Further, the entire outer surface 103 becomes a curved surface portion having a constant curvature shape. Further, the heads 101A and 101B have a seat surface 105 facing (contacting) the surface 110b of the body to be joined 110 (member to be joined 111), and an edge portion 107 located on the outer side of the shaft portion 102.

このようなリベット接合では、図2に示すように、板状の被接合部材111,112による剪断応力fがリベット100に負荷されるため、頭部101A,101Bと軸部102との各境界部104A,104Bや被接合部材111,112が相対する部分112Nに被接合部材111,112の平面に沿う方向に割れD1〜D3が発生する。 In such a rivet joint, as shown in FIG. 2, since the shear stress f by the plate-shaped members to be joined 111 and 112 is applied to the rivet 100, each boundary portion between the head portions 101A and 101B and the shaft portion 102 is formed. Cracks D1 to D3 are generated in the portions 112N facing the 104A and 104B and the members 111 and 112 to be joined in the direction along the plane of the members 111 and 112 to be joined.

ここで、被接合部材111,112が相対する部分112Nや探触子2から離隔した(超音波Pが入射されない)頭部101Bと軸部102との第二境界部104Bでは、図2に示すように、これら部位に向けて直接超音波Pを送信することで、割れD2,D3からの反射波(コーナー反射信号)を他の信号と明瞭に識別することができ、割れD2,D3の検出は容易である。 Here, the second boundary portion 104B between the head portion 101B and the shaft portion 102 separated from the portions 112N where the joined members 111 and 112 face each other and the probe 2 (the ultrasonic wave P is not incident) is shown in FIG. As described above, by transmitting the ultrasonic wave P directly to these parts, the reflected wave (corner reflected signal) from the cracks D2 and D3 can be clearly distinguished from other signals, and the cracks D2 and D3 can be detected. Is easy.

一方、探触子2が載置される(超音波Pが入射される)頭部101Aと軸部102との第一境界部104Aでは、図3に示すように、頭部101Aの座面105(被接合体100との係止部分)の直近の軸部102の外側から中心に向かって割れD1が発生する。そのため、割れD1からの反射波Q’と座面105からの反射波Q’’は、ほぼ同じタイミングで受信されるので、識別することが困難となる。そこで、他方の頭部101Bから第一境界部104Aへ向けて超音波Pを入射させることも考えられるが、被接合体110の構造によっては、図3に例示する如き障害物Obにより、頭部101Bに探触子2を載置できない場合もある。 On the other hand, at the first boundary portion 104A between the head portion 101A on which the probe 2 is placed (the ultrasonic wave P is incident) and the shaft portion 102, the seat surface 105 of the head portion 101A is as shown in FIG. A crack D1 is generated from the outside of the shaft portion 102 closest to the (locking portion with the object to be joined 100) toward the center. Therefore, the reflected wave Q ″ from the crack D1 and the reflected wave Q ″ from the seat surface 105 are received at substantially the same timing, so that it is difficult to distinguish them. Therefore, it is conceivable to inject ultrasonic waves P from the other head 101B toward the first boundary portion 104A, but depending on the structure of the object to be joined 110, the head may be caused by an obstacle Ob as illustrated in FIG. In some cases, the probe 2 cannot be placed on the 101B.

このように、本発明は、被接合体110(被接合部材111)の表面110bから突出する頭部101Aから超音波Pを入射させて、接合部材100の軸部102と超音波Pを入射させた頭部101Aとの第一境界部104に生じる割れD1の有無を判定するものである。 As described above, in the present invention, the ultrasonic wave P is incident from the head 101A protruding from the surface 110b of the joint member 110 (joint member 111), and the shaft portion 102 of the joint member 100 and the ultrasonic wave P are incident. The presence or absence of the crack D1 generated at the first boundary portion 104 with the head head 101A is determined.

本実施形態において、探触子2には、例えば縦波垂直探触子が用いられる。そして、この探触子2は、図1に示すように、頭部101の湾曲面部103に略一致する走査面23を備えた楔部材21の固定部22に取り付けられてある。以下の説明において、縦波垂直探触子2及び楔部材21を合わせて、斜角探触子20と称する。 In the present embodiment, for example, a longitudinal wave vertical probe is used as the probe 2. Then, as shown in FIG. 1, the probe 2 is attached to a fixing portion 22 of a wedge member 21 provided with a scanning surface 23 that substantially coincides with the curved surface portion 103 of the head 101. In the following description, the longitudinal wave vertical probe 2 and the wedge member 21 are collectively referred to as an oblique probe 20.

信号処理部3は、例えばパーソナルコンピューターにより構成され、図1に示すように、パルサー32を制御して探触子2から超音波パルスを発生させる。送信された超音波パルスは、楔部材21内を伝搬し、頭部101Aに横波PS及び縦波PLを伝搬させる。そして、リベット100内部から反射波Qが探触子2で受信される。受信した反射信号(反射波Q)は、プリアンプ33により増幅されてレシーバー34で受信され、フィルター35によりノイズが除去された状態でA/D変換部36によりデジタル信号に変換される。そして、信号処理部3にて信号処理がなされ、表示部6に表示される。 The signal processing unit 3 is composed of, for example, a personal computer, and as shown in FIG. 1, controls the pulsar 32 to generate an ultrasonic pulse from the probe 2. The transmitted ultrasonic pulse propagates in the wedge member 21 and propagates the transverse wave PS and the longitudinal wave PL to the head 101A. Then, the reflected wave Q is received by the probe 2 from the inside of the rivet 100. The received reflected signal (reflected wave Q) is amplified by the preamplifier 33, received by the receiver 34, and converted into a digital signal by the A / D converter 36 in a state where noise is removed by the filter 35. Then, the signal processing unit 3 performs signal processing and displays it on the display unit 6.

また、信号処理部3は、斜角探触子20の走査位置を検出する位置検出部4の走査位置データを計数部5を介して受信した反射信号と共に処理し、Aスキャン画像やBスキャン画像等の走査画像を生成して、表示器6に表示させる。さらに、信号処理部3は、割れD1の存在を警告する警告部7を備えることも可能である。なお、この信号処理部3をパーソナルコンピューターにより構成したが、同様に機能を有する信号処理部3と、パルサー32、プリアンプ33、レシーバー34、フィルター35、A/D変換部36、表示部6及び計数部5を有する探傷装置10を用いることも可能である。 Further, the signal processing unit 3 processes the scanning position data of the position detecting unit 4 for detecting the scanning position of the oblique angle probe 20 together with the reflected signal received via the counting unit 5, and processes the A scan image and the B scan image. Etc. are generated and displayed on the display 6. Further, the signal processing unit 3 can also include a warning unit 7 that warns of the presence of the crack D1. Although the signal processing unit 3 is composed of a personal computer, the signal processing unit 3 having the same function, the pulsar 32, the preamplifier 33, the receiver 34, the filter 35, the A / D conversion unit 36, the display unit 6, and the counting unit 3 are used. It is also possible to use the flaw detection device 10 having the portion 5.

次に、図4,5を参照しながら頭部101A内での超音波(横波PS及び縦波PL)の伝搬について説明する。
上述したように、被接合体110の剪断応力fによって、第一境界部104の割れD1は、主に、被接合部材111の平面に沿う方向(軸部102の径方向)に軸部102の外面から軸部102の中心に向けて発生する。
Next, the propagation of ultrasonic waves (transverse wave PS and longitudinal wave PL) in the head 101A will be described with reference to FIGS. 4 and 5.
As described above, due to the shear stress f of the object to be joined 110, the crack D1 of the first boundary portion 104 is mainly formed of the shaft portion 102 in the direction along the plane of the member to be joined 111 (the radial direction of the shaft portion 102). It is generated from the outer surface toward the center of the shaft portion 102.

ここで、図4に示すように、割れD1に超音波Pが垂直に入射する場合を考えると、頭部101A内への縦波屈折角θLは、下記式1で求められる。
θL=sin-1((R2−h)/R1)・・・・式1
ここで、R2は軸部102の半径、hは割れD1の深さ(軸部102の外面から縦波PLの超音波ビームの中心と割れD1との交点までの距離)、R1は頭部101Aの半径である。
Here, as shown in FIG. 4, considering the case where the ultrasonic wave P is vertically incident on the crack D1, the longitudinal wave refraction angle θ L in the head 101A is obtained by the following equation 1.
θ L = sin -1 ((R2-h) / R1) ... Equation 1
Here, R2 is the radius of the shaft portion 102, h is the depth of the crack D1 (distance from the outer surface of the shaft portion 102 to the intersection of the center of the ultrasonic beam of the longitudinal wave PL and the crack D1), and R1 is the head 101A. Is the radius of.

一方、頭部101A内への横波屈折角θSは、スネルの法則により下記式2で求められる。
θS=sin-1(CS・sinθL/CL)・・・・式2
ここで、CSは頭部101A(リベット100)内の横波音速、CLは頭部101A内の縦波音速である。
On the other hand, the transverse wave refraction angle θ S into the head 101A is obtained by the following equation 2 according to Snell's law.
θ S = sin -1 (C S · sinθ L / C L) ···· formula 2
Here, C S is the transverse wave sound velocity in the head 101A (rivet 100), and C L is the longitudinal wave sound velocity in the head 101A.

例えば図4において、縦波入射角αL=13.6°、R2=11mm、h=1.0mm、R1=17.5mmとした場合、縦波屈折角θL=34.8°、横波屈折角θS=18.2°となり、頭部101A内を縦波PL及び横波PSの双方が存在(伝搬)する。しかし、縦波入射角αLを大きくし、例えばαL=25.4°とした場合、横波音速CSは=3230m/s、縦波音速CL=5900m/sとすると、横波屈折角θS=34.8°となるが、縦波屈折角θLは求めることができない。すなわち、楔部材21から頭部101Aへの縦波入射角αLが大きくなると、縦波屈折角θL及び横波屈折角θSも大きくなり、縦波屈折角θLが90°を超えると頭部101A内に縦波PLは伝搬(存在)せず、横波PSのみ伝搬(存在)することとなる。 For example, in FIG. 4, when the longitudinal wave incident angle α L = 13.6 °, R2 = 11 mm, h = 1.0 mm, and R1 = 17.5 mm, the longitudinal wave refraction angle θ L = 34.8 ° and the transverse wave refraction. The angle θ S = 18.2 °, and both longitudinal wave PL and transverse wave PS exist (propagate) in the head 101A. However, if the longitudinal wave incident angle α L is increased and, for example, α L = 25.4 °, the transverse wave sound velocity C S is = 3230 m / s and the longitudinal wave sound velocity C L = 5900 m / s, then the transverse wave refraction angle θ Although S = 34.8 °, the longitudinal refraction angle θ L cannot be obtained. That is, when the longitudinal wave incident angle α L from the wedge member 21 to the head 101A increases, the longitudinal wave refraction angle θ L and the transverse wave refraction angle θ S also increase, and when the longitudinal wave refraction angle θ L exceeds 90 °, the head The longitudinal wave PL does not propagate (exist) in the unit 101A, and only the transverse wave PS propagates (exists).

超音波の指向角φは、下記式3で求められる。
φ=70λ/d・・・・式3
ここで、λは波長、dは探触子2の振動子の直径である。
例えば、周波数が5MHzで振動子の直径が1/4インチ(6.35mm)の探触子2を使用した場合、上述の縦波音速CL及び横波音速CSの値で計算すると、縦波指向角φL=13.0°、横波指向角φS=7.1°となる。このように、縦波PLは、横波PSに比べ指向性が鈍く幅広の拡がりPL’をもって伝搬するが、横波PSは指向性が鋭いので縦波PLほど広がらず幅狭の拡がりPS’をもって伝搬する。
The directivity angle φ of the ultrasonic wave is calculated by the following equation 3.
φ = 70λ / d ... Equation 3
Here, λ is the wavelength and d is the diameter of the oscillator of the probe 2.
For example, when a probe 2 having a frequency of 5 MHz and an oscillator diameter of 1/4 inch (6.35 mm) is used, the longitudinal wave is calculated using the above-mentioned longitudinal wave sound velocity C L and transverse wave sound velocity C S. The directional angle φ L = 13.0 ° and the transverse wave directional angle φ S = 7.1 °. In this way, the longitudinal wave PL has a slower directivity than the transverse wave PS and propagates with a wide spread PL', but since the transverse wave PS has a sharp directivity, it does not spread as much as the longitudinal wave PL and propagates with a narrow spread PS'. ..

そして、図5Aに示すように、斜角探触子20が縁部107近傍に位置する場合、縦波PLは、縦波屈折角θLにより座面105及び割れD1の双方で反射する。一方、横波PSは、横波屈折角θSは縦波屈折角θLよりも屈折角度及び指向角が小さいので、座面105にほとんど伝搬することなく、割れD1で反射する。そして、図5Bに示すように、斜角探触子20が頂部106近傍に位置する場合、縦波PLは、縦波屈折角θLにより座面105及び割れD1の双方で反射する。一方、横波PSは、横波屈折角θSは縦波屈折角θLよりも角度が小さいので、この場合においても、座面105にほとんど伝搬することなく、割れD1で反射する。また、例え横波PSが座面105へ入射したとしても、その横波PSは超音波の音圧が非常に弱い部分(拡がりPS’の外縁部分)であるので、反射信号としては微小なものとなり、きず信号の識別に与える影響は小さい。 Then, as shown in FIG. 5A, when the oblique probe 20 is located near the edge 107, the longitudinal wave PL is reflected by the longitudinal wave refraction angle θ L on both the seat surface 105 and the crack D1. On the other hand, in the transverse wave PS, since the transverse wave refraction angle θ S has a smaller refraction angle and directivity angle than the longitudinal wave refraction angle θ L, it hardly propagates to the bearing surface 105 and is reflected by the crack D1. Then, as shown in FIG. 5B, when the oblique probe 20 is located near the top 106, the longitudinal wave PL is reflected by the longitudinal wave refraction angle θ L on both the seat surface 105 and the crack D1. On the other hand, in the transverse wave PS, since the transverse wave refraction angle θ S is smaller than the longitudinal wave refraction angle θ L , even in this case, it hardly propagates to the bearing surface 105 and is reflected by the crack D1. Further, even if the transverse wave PS is incident on the seat surface 105, the transverse wave PS is a portion where the sound pressure of ultrasonic waves is very weak (the outer edge portion of the spreading PS'), so that the reflected signal becomes minute. The effect on the identification of the flaw signal is small.

このように、本発明では、頭部101Aに縦波PL又は横波PSの双方を発生(伝搬)させて、図5A,5Bに示す如く斜角探触子20を走査することで、割れD1からの反射信号を縦波PL又は横波PSの双方から得ると共に、座面105からの反射信号を実質的に縦波PLのみとすることで、割れD1の識別を可能とする。 As described above, in the present invention, both the longitudinal wave PL and the transverse wave PS are generated (propagated) in the head 101A, and the oblique angle probe 20 is scanned as shown in FIGS. 5A and 5B from the crack D1. The cracked D1 can be identified by obtaining the reflected signal of the above from both the longitudinal wave PL and the transverse wave PS and substantially only the longitudinal wave PL as the reflected signal from the seat surface 105.

次に、検査方法について説明する。
まず、検査対象となるリベット(接合部材)100の頭部101Aの外面(湾曲面部)103の曲率形状に略一致するように楔部材21の走査面23を形成する。また、頭部101A内に縦波PL及び横波PSの双方が伝搬するように縦波入射角αLを定め、楔部材21の固定部22を形成する。この楔部材21に縦波垂直探触子2を固定する。そして、斜角探触子20を縁部107から頂部106に向けて走査し、向きを変えて頂部106から縁部107に向けて走査する。これを頭部101Aの周方向に適宜間隔をおいて順次繰り返し行い、図6に示す如く走査し、軸部102と斜角探触子20が載置された頭部101Aとの第一境界部104Aの割れD1の有無を判定する。
Next, the inspection method will be described.
First, the scanning surface 23 of the wedge member 21 is formed so as to substantially match the curvature shape of the outer surface (curved surface portion) 103 of the head 101A of the rivet (joining member) 100 to be inspected. Further, the longitudinal wave incident angle α L is determined so that both the longitudinal wave PL and the transverse wave PS propagate in the head 101A, and the fixed portion 22 of the wedge member 21 is formed. The longitudinal wave vertical probe 2 is fixed to the wedge member 21. Then, the oblique angle probe 20 is scanned from the edge portion 107 toward the top portion 106, and the orientation is changed to scan from the top portion 106 toward the edge portion 107. This is repeated sequentially at appropriate intervals in the circumferential direction of the head 101A, scanned as shown in FIG. 6, and the first boundary portion between the shaft portion 102 and the head 101A on which the oblique angle probe 20 is placed. The presence or absence of the crack D1 of 104A is determined.

判定に際しては、例えば、図8〜10に示す如きBスキャン画像やAスキャン画像を表示部6に表示等し、横波PSの反射信号の有無により割れD1の有無を判定する。 In the determination, for example, a B scan image or an A scan image as shown in FIGS. 8 to 10 is displayed on the display unit 6, and the presence or absence of the crack D1 is determined based on the presence or absence of the reflected signal of the transverse wave PS.

ここで、発明者らは、本発明に係る検査装置及び検査方法の有用性を検証するために、割れD1を模した人工欠陥を形成した試験体を用いて実験を行った。その結果を図8〜10に示す。これらの図(グラフ)の横軸は走査距離であり、縦軸は超音波伝搬距離(時間)を示す。人工欠陥として、図6に示す如く、放電加工により深さde(軸部102の径方向の長さ)が1mm,2mm,3mmのスリットd1a〜d1cを軸部102の外側から中心に向けて形成した。また、斜角探触子20の走査は、図6に示す如き経路Cにて行った。 Here, in order to verify the usefulness of the inspection apparatus and inspection method according to the present invention, the inventors conducted an experiment using a test body in which an artificial defect imitating a crack D1 was formed. The results are shown in FIGS. 8-10. The horizontal axis of these figures (graphs) is the scanning distance, and the vertical axis is the ultrasonic wave propagation distance (time). As an artificial defect, as shown in FIG. 6, slits d1a to d1c having depths de (diametrical length of the shaft portion 102) of 1 mm, 2 mm, and 3 mm are formed from the outside to the center of the shaft portion 102 by electric discharge machining. did. Further, the scanning of the oblique angle probe 20 was performed by the path C as shown in FIG.

図8に示すように、健全部Hにおいては、楔部材21からの縦波PLの反射信号QL0及び座面105からの縦波PLの反射信号QL1が出現している。一方、深さdeが1mmのスリットd1aでは、楔部材21からの縦波PLの反射信号QL0の他、スリットd1aからの縦波PLの反射信号QL2及びスリットd1aからの横波PSの反射信号QS2が出現している。スリットの深さを異ならせた場合においても、図9,10に示すように、同様の結果となった。このように、横波PSの反射信号QS2は、健全部Hでは出現していないので、横波PSの反射信号QS2により容易に割れD1の有無を判定可能であることが分かる。 As shown in FIG. 8, in the sound portion H, the reflected signal Q L0 of the longitudinal wave PL from the wedge member 21 and the reflected signal Q L1 of the longitudinal wave PL from the seat surface 105 appear. On the other hand, in the slit d1a having a depth de of 1 mm, in addition to the longitudinal wave PL reflected signal Q L0 from the wedge member 21, the longitudinal wave PL reflected signal Q L2 from the slit d1a and the transverse wave PS reflected signal from the slit d1a. Q S2 has appeared. Even when the slit depths were different, the same results were obtained as shown in FIGS. 9 and 10. As described above, since the reflected signal Q S2 of the transverse wave PS does not appear in the sound portion H, it can be seen that the presence or absence of the crack D1 can be easily determined by the reflected signal Q S 2 of the transverse wave PS.

最後に、本発明の他の実施形態の可能性について言及する。なお、上述の実施形態と同様の部材には同一の符号を附してある。
上記実施形態において、検査対象となる接合部材100を軸部102の両端に頭部101A,101Bを有するリベットとした。しかし、接合部材100はこのリベットに限られるものではなく、例えば、図1に二点鎖線に示す如く、一方の頭部101’Bが平坦なリベットや、一方の頭部101が省略された部材であってもよい。
Finally, the possibility of other embodiments of the present invention is mentioned. The same reference numerals are given to the same members as those in the above-described embodiment.
In the above embodiment, the joining member 100 to be inspected is a rivet having heads 101A and 101B at both ends of the shaft portion 102. However, the joining member 100 is not limited to this rivet. For example, as shown by the alternate long and short dash line in FIG. 1, a rivet in which one head 101'B is flat or a member in which one head 101 is omitted is omitted. It may be.

上記実施形態において、図6に示すように、斜角探触子20(探触子2)を頭部101Aの縁部107と頂部106との間を走査させると共にその走査を頭部101Aの周方向に繰り返し行った(経路C)。しかし、例えば図7に示す如き、斜角探触子20(探触子2)を縁部107側において頭部101Aの周方向に1周走査させて、その後頂部106側にずらして同様に1周走査させても構わない(経路C’)。また、頭部101A上を渦巻き状に走査することも可能である。但し、これらの走査の場合、超音波ビームの中心が第一境界部104Aの軸部102の外面近傍(割れD1の発生位置)からズレる可能性がある。一方、上記実施形態の如き、縁部107と頂部106との間を走査する場合、図5に示す如く、超音波ビームの中心が、割れD1の発生し得る部位を横切るため、検出精度の点で上記実施形態が優れている。 In the above embodiment, as shown in FIG. 6, the oblique angle probe 20 (probe 2) is scanned between the edge 107 and the top 106 of the head 101A, and the scanning is performed around the head 101A. Repeatedly in the direction (path C). However, for example, as shown in FIG. 7, the oblique angle probe 20 (probe 2) is scanned once in the circumferential direction of the head 101A on the edge 107 side, and then shifted to the top 106 side in the same manner. Peripheral scanning may be performed (path C'). It is also possible to scan on the head 101A in a spiral shape. However, in the case of these scans, the center of the ultrasonic beam may deviate from the vicinity of the outer surface of the shaft portion 102 of the first boundary portion 104A (the position where the crack D1 is generated). On the other hand, when scanning between the edge portion 107 and the top portion 106 as in the above embodiment, as shown in FIG. 5, the center of the ultrasonic beam crosses the portion where the crack D1 can occur, so that the detection accuracy is improved. The above embodiment is excellent.

また、上記実施形態においては、横波PSの反射信号QS2により割れD1の有無を判定した。ここで、図8〜10を比較すると、健全部Hにおける座面105からの縦波PLの反射信号QL1に対して人工欠陥(スリット)d1a〜d1c(割れD1)からの縦波PLの反射信号QL2との出現位置(時間差Δt)が変化していることが分かる。これは、割れD1の深さが大きくなるに従って、軸部102の中心側でも割れD1からの反射信号を検出できるので、超音波の伝搬時間が長くなるためである(Δt1<Δt2<Δt3)。すわなち、信号処理部3において、割れD1が存在すると判定した場合に、受信した反射波の内の頭部101Aの座面105からの縦波PLの反射波(反射信号QL1)と割れD1からの縦波PLの反射波(反射信号QL2)とに基づいて割れD1の深さを推定することも可能である。例えば、予め既知の長さの割れD1に起因する反射信号の出現位置(座面105からのピーク信号と既知の割れd1からのピーク信号との時間差Δt)を求めておき、それに基づいて割れD1の深さを推定する。なお、縦波PLの反射波による割れD1の深さの推定を単独で実施することも可能である。 Further, in the above embodiment, the presence or absence of the crack D1 is determined by the reflected signal Q S2 of the transverse wave PS. Here, comparing FIGS. 8 to 10, the reflection of the longitudinal wave PL from the artificial defects (slits) d1a to d1c (cracking D1) with respect to the reflected signal Q L1 of the longitudinal wave PL from the seat surface 105 in the sound portion H. It can be seen that the appearance position (time difference Δt) with the signal Q L2 has changed. This is because as the depth of the crack D1 increases, the reflected signal from the crack D1 can be detected also on the center side of the shaft portion 102, so that the propagation time of the ultrasonic wave becomes longer (Δt1 <Δt2 <Δt3). That is, when the signal processing unit 3 determines that the crack D1 exists, it cracks with the reflected wave (reflected signal Q L1 ) of the longitudinal wave PL from the seat surface 105 of the head 101A among the received reflected waves. It is also possible to estimate the depth of the crack D1 based on the reflected wave (reflected signal Q L2 ) of the longitudinal wave PL from D1. For example, the appearance position of the reflected signal due to the crack D1 of a known length (time difference Δt between the peak signal from the seat surface 105 and the peak signal from the known crack d1) is obtained in advance, and the crack D1 is based on the time difference Δt. Estimate the depth of. It is also possible to estimate the depth of the crack D1 by the reflected wave of the longitudinal wave PL independently.

また、上記実施形態において、図8〜10に示す如きBスキャン画像を例に説明した。しかし、走査画像は、Bスキャン画像に限られるものではなく、Aスキャン画像でも構わない。図11に示すように、第一境界部103Aに形成した人工欠陥(スリット)から得られる横波PSの反射信号Q’S2の出現位置(時間T)において、その信号強度に差異(強弱)が生じる。この差異により、割れD1の有無の判定が可能となる。例えば、既知の深さの人工欠陥から得られる横波PSの反射信号Q’S2の出現位置における信号強度に基づいて予め閾値を設定しておき、測定(検査)時に同出現位置における信号強度を閾値と比較することにより、割れD1の有無を判定する。なお、同図はスリットの深さが1mmの例であるが、他の寸法でも同様に割れD1の検出は可能である。 Further, in the above embodiment, a B-scan image as shown in FIGS. 8 to 10 has been described as an example. However, the scanned image is not limited to the B-scan image, and may be an A-scan image. As shown in FIG. 11, the appearance position of the reflected signal Q 'S2 of transverse waves PS obtained from the artificial defect formed in the first boundary portion 103A (slit) (time T), the difference (intensity) is generated in the signal strength .. This difference makes it possible to determine the presence or absence of the crack D1. For example, to set the threshold value in advance based on the signal strength at the occurrence position of the reflected signal Q 'S2 of transverse waves PS obtained from the artificial defect of known depth advance, measurement threshold signal strength at the appearance position when (test) The presence or absence of the crack D1 is determined by comparing with. Although the figure shows an example in which the slit depth is 1 mm, crack D1 can be detected in the same manner with other dimensions.

また、接合部材100の頭部101の外面形状も上記実施形態の如き球面に限らず、頭部101の外面103が球面を呈する頭部101の外面103の少なくとも一部に一定の曲率形状となる湾曲面部を有する形状のものであれば、リベットの他、ボルトやこのような形状部分を有する試験体等であってもよい。 Further, the outer surface shape of the head 101 of the joining member 100 is not limited to the spherical surface as in the above embodiment, and the outer surface 103 of the head 101 has a constant curvature shape at least a part of the outer surface 103 of the head 101 having a spherical surface. In addition to rivets, a bolt or a test piece having such a shaped portion may be used as long as it has a curved surface portion.

本発明は、例えば、板状部材など複数の部材(被接合部材)を接合するリベット接合(リベット継手)におけるリベット等の接合部材の検査装置及び検査方法として利用することができる。 The present invention can be used, for example, as an inspection device and an inspection method for a joint member such as a rivet in a rivet joint (rivet joint) for joining a plurality of members (members to be joined) such as a plate-shaped member.

1:検査装置、2:探触子(縦波垂直探触子)、3:信号処理部(PC)、20:斜角探触子、21:楔部材、22:固定部、23:走査面、100:接合部材(リベット)、101,101A,101B,101’:頭部、102,102’:軸部、103:外面(湾曲面部)、104A:第一境界部、104B:第二境界部、105:座面(係止部)、106:頂部、107:縁部、110:被接合体、110a:貫通孔、110b:表面、111,112:被接合部材、D1〜D3:割れ(亀裂)、d1:人工欠陥(スリット)、f:剪断応力、H:健全部、Ob:障害物、P:超音波、PL:縦波、PS:横波、Q:反射波、R1:頭部の半径、R2:軸部の半径、θL:縦波屈折角、θS:横波屈折角、αL:縦波入射角 1: Inspection device 2: Detector (longitudinal wave vertical probe) 3: Signal processing unit (PC), 20: Oblique probe, 21: Wedge member, 22: Fixed part, 23: Scanning surface , 100: Joining member (rivet), 101, 101A, 101B, 101': Head, 102, 102': Shaft, 103: Outer surface (curved surface), 104A: First boundary, 104B: Second boundary , 105: Seat surface (locking portion), 106: Top, 107: Edge, 110: Jointed body, 110a: Through hole, 110b: Surface, 111, 112: Jointed member, D1 to D3: Crack (crack) ), D1: Artificial defect (slit), f: Shedding stress, H: Sound part, Ob: Obstacle, P: Ultrasonic wave, PL: Longitudinal wave, PS: Transverse wave, Q: Reflected wave, R1: Head radius , R2: Shaft radius, θ L : Longitudinal wave refraction angle, θ S : Transverse wave refraction angle, α L : Longitudinal wave incident angle

Claims (11)

複数の被接合部材を貫通しこれらを接合する接合部材に超音波を入射させると共に前記接合部材からの反射波を受信する探触子と、前記探触子で受信した反射波に基づいて前記接合部材における割れを評価する信号処理部とを備えた接合部材の検査装置であって、
前記接合部材は、前記被接合部材を貫通する軸部と、前記軸部よりも大径で且つ前記被接合部材の表面から突出する頭部とを有し、
前記頭部は、外面の少なくとも一部に一定の曲率形状となる湾曲面部を有し、
前記探触子は、前記湾曲面部に略一致する走査面を備えた楔部材に取り付けられてあり、
前記探触子は、前記楔部材を介して前記頭部へ前記超音波を入射させて前記接合部材に横波及び縦波を伝搬させると共に前記湾曲面部に沿って走査され、
前記信号処理部は、前記受信した反射波の内の前記横波の反射波に基づいて前記軸部と前記超音波が入射された頭部との境界部の割れの有無を判定する接合部材の検査装置。
A probe that allows ultrasonic waves to be incident on a joining member that penetrates a plurality of members to be joined and receives a reflected wave from the joining member, and the joining based on the reflected wave received by the probe. An inspection device for joint members equipped with a signal processing unit that evaluates cracks in the members.
The joining member has a shaft portion penetrating the joined member and a head portion having a diameter larger than that of the shaft portion and protruding from the surface of the joined member.
The head has a curved surface portion having a constant curvature shape at least a part of the outer surface.
The probe is attached to a wedge member having a scanning surface that substantially coincides with the curved surface portion.
The probe is subjected to incident the ultrasonic wave on the head through the wedge member to propagate transverse waves and longitudinal waves to the joint member, and is scanned along the curved surface portion.
The signal processing unit inspects the joining member for determining whether or not there is a crack in the boundary portion between the shaft portion and the head portion to which the ultrasonic wave is incident, based on the reflected wave of the transverse wave among the received reflected waves. apparatus.
前記信号処理部は、前記受信した反射波の走査画像を生成する請求項1記載の接合部材の検査装置。 The signal processing unit is the inspection device for a joining member according to claim 1, wherein a scanned image of the received reflected wave is generated. 前記走査画像は、前記頭部の縁部と頂部との間を走査した際のものである請求項2記載の接合部材の検査装置。 The inspection device for a joint member according to claim 2, wherein the scanned image is obtained when scanning between the edge and the top of the head. 前記走査画像は、Bスキャン画像である請求項2又は3記載の接合部材の検査装置。 The inspection device for a joint member according to claim 2 or 3, wherein the scanned image is a B-scan image. 前記走査画像は、Aスキャン画像である請求項2又は3記載の接合部材の検査装置。 The inspection device for a joint member according to claim 2 or 3, wherein the scanned image is an A-scan image. 前記信号処理部は、前記受信した反射波の内の前記頭部の座面からの前記縦波の反射波と前記割れからの前記縦波の反射波とに基づいて前記割れの深さを推定する請求項1〜5のいずれかに記載の接合部材の検査装置。 The signal processing unit estimates the depth of the crack based on the reflected wave of the longitudinal wave from the seating surface of the head and the reflected wave of the longitudinal wave from the crack among the received reflected waves. The device for inspecting a joint member according to any one of claims 1 to 5. 前記探触子は、縦波垂直探触子である請求項1〜6のいずれかに記載の接合部材の検査装置。 The joining member inspection device according to any one of claims 1 to 6, wherein the probe is a longitudinal wave vertical probe. 前記頭部の外面は、球面状を呈する請求項1〜7のいずれかに記載の接合部材の検査装置。 The device for inspecting a joining member according to any one of claims 1 to 7, wherein the outer surface of the head has a spherical shape. 複数の被接合部材を貫通しこれらを接合する接合部材に探触子により超音波を入射させると共に前記接合部材からの反射波を受信し、前記探触子で受信した反射波に基づいて前記接合部材における割れを評価する接合部材の検査方法であって、
前記接合部材は、前記被接合部材を貫通する軸部と、前記軸部よりも大径で且つ前記被接合部材の表面から突出する頭部とを有し、
前記頭部は、外面の少なくとも一部に一定の曲率形状となる湾曲面部を有し、
前記探触子は、前記湾曲面部に略一致する走査面を備えた楔部材に取り付けられてあり、
前記楔部材を介して前記探触子から前記頭部へ前記超音波を入射させて前記接合部材に横波及び縦波を伝搬させると共に前記探触子を前記湾曲面部に沿って走査し、
前記受信した反射波の内の前記横波の反射波に基づいて前記軸部と前記超音波が入射された頭部との境界部の割れの有無を判定する接合部材の検査方法。
An ultrasonic wave is incident on a joining member that penetrates a plurality of members to be joined by a probe and receives a reflected wave from the joining member, and the joining is based on the reflected wave received by the probe. A method for inspecting joint members to evaluate cracks in the members.
The joining member has a shaft portion penetrating the joined member and a head portion having a diameter larger than that of the shaft portion and protruding from the surface of the joined member.
The head has a curved surface portion having a constant curvature shape at least a part of the outer surface.
The probe is attached to a wedge member having a scanning surface that substantially coincides with the curved surface portion.
The ultrasonic waves are incident on the head from the probe through the wedge member to propagate transverse waves and longitudinal waves to the joint member, and the probe is scanned along the curved surface portion.
A method for inspecting a joining member for determining whether or not there is a crack in a boundary portion between the shaft portion and the head portion on which the ultrasonic wave is incident, based on the reflected wave of the transverse wave among the received reflected waves.
前記探触子を前記頭部の縁部と頂部との間を走査すると共にその走査を前記頭部の周方向に繰り返し行う請求項9記載の接合部材の検査方法。 The method for inspecting a joint member according to claim 9, wherein the probe is scanned between the edge and the top of the head, and the scanning is repeated in the circumferential direction of the head. 前記受信した反射波の内の前記頭部の座面からの前記縦波の反射波と前記割れからの前記縦波の反射波とに基づいて前記割れの深さを推定する請求項9又は10記載の接合部材の検査方法。 Claim 9 or 10 for estimating the depth of the crack based on the reflected wave of the longitudinal wave from the seating surface of the head and the reflected wave of the longitudinal wave from the crack among the received reflected waves. The described method for inspecting a joining member.
JP2018106118A 2018-06-01 2018-06-01 Inspection device and inspection method for joint members Active JP6808682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018106118A JP6808682B2 (en) 2018-06-01 2018-06-01 Inspection device and inspection method for joint members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018106118A JP6808682B2 (en) 2018-06-01 2018-06-01 Inspection device and inspection method for joint members

Publications (2)

Publication Number Publication Date
JP2019211281A JP2019211281A (en) 2019-12-12
JP6808682B2 true JP6808682B2 (en) 2021-01-06

Family

ID=68845007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018106118A Active JP6808682B2 (en) 2018-06-01 2018-06-01 Inspection device and inspection method for joint members

Country Status (1)

Country Link
JP (1) JP6808682B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318263A (en) * 1986-07-10 1988-01-26 Nippon Steel Corp Ultrasonic flaw detection for bolt
JP3878969B2 (en) * 1997-03-05 2007-02-07 株式会社ジャスト Inspection method for rivet joints
US7698949B2 (en) * 2005-09-09 2010-04-20 The Boeing Company Active washers for monitoring bolted joints
JP2010019622A (en) * 2008-07-09 2010-01-28 Saitama Univ Ultrasonic flaw detection method and device
US20140020467A1 (en) * 2012-07-17 2014-01-23 Honeywell International Inc. Non-destructive evaluation methods for machine-riveted bearings

Also Published As

Publication number Publication date
JP2019211281A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP4544240B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
US9976988B2 (en) Apparatus and method for inspecting a laminated structure
KR101163549B1 (en) Calibration block for phased-array ultrasonic inspection
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
EP3489674B1 (en) Ultrasonic inspection of a structure with a ramp
JP4690167B2 (en) Weld penetration depth exploration method and weld penetration depth exploration device
JP5192939B2 (en) Defect height estimation method by ultrasonic flaw detection
CN106840053A (en) A kind of leg size of fillet weld and internal flaw ultrasonic non-destructive measuring method
US5005420A (en) Ultrasonic method for measurement of depth of surface opening flaw in solid mass
JP4679319B2 (en) Method and apparatus for detecting tissue change by ultrasound
NL1024726C2 (en) Method for checking a weld between two metal pipelines.
CA2390712A1 (en) Method for inspecting clad pipe
JP5730644B2 (en) Ultrasonic measurement method and apparatus for surface crack depth
KR101163551B1 (en) Sensistivity calibration referece block for phased-array ultrasonic inspection
JP2001021542A (en) Measuring of weld line transverse crack defect length
JP6808682B2 (en) Inspection device and inspection method for joint members
JP2009058238A (en) Method and device for defect inspection
JP2007047116A (en) Ultrasonic flaw detection method
JP2021047091A (en) Method and device for ultrasonic inspection
Peng et al. The use of multi-mode tfm to measure the depth of small surface-break cracks in welds
Chang et al. Development of non-contact air coupled ultrasonic testing system for reinforced concrete structure
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
Hesse et al. Defect detection in rails using ultrasonic surface waves
JPH07325070A (en) Ultrasonic method for measuring depth of defect
Dugan et al. Ultrasonic inspection of austenitic stainless steel welds with artificially produced stress corrosion cracks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201209

R150 Certificate of patent or registration of utility model

Ref document number: 6808682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250