JP3878969B2 - Inspection method for rivet joints - Google Patents

Inspection method for rivet joints Download PDF

Info

Publication number
JP3878969B2
JP3878969B2 JP05060097A JP5060097A JP3878969B2 JP 3878969 B2 JP3878969 B2 JP 3878969B2 JP 05060097 A JP05060097 A JP 05060097A JP 5060097 A JP5060097 A JP 5060097A JP 3878969 B2 JP3878969 B2 JP 3878969B2
Authority
JP
Japan
Prior art keywords
rivet
pulse
probe
caulking portion
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05060097A
Other languages
Japanese (ja)
Other versions
JPH10249474A (en
Inventor
達也 小川
靖 池ケ谷
亨 加藤
忠勝 大河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Just Co., Ltd.
Toyota Motor Corp
Nippon Pop Rivets and Fasteners Ltd
Original Assignee
Just Co., Ltd.
Toyota Motor Corp
Nippon Pop Rivets and Fasteners Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Just Co., Ltd., Toyota Motor Corp, Nippon Pop Rivets and Fasteners Ltd filed Critical Just Co., Ltd.
Priority to JP05060097A priority Critical patent/JP3878969B2/en
Publication of JPH10249474A publication Critical patent/JPH10249474A/en
Application granted granted Critical
Publication of JP3878969B2 publication Critical patent/JP3878969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、接合部を破壊することなく接合部の良否を検査するリベット接合部の検査方法に関する。
【0002】
【従来の技術】
部材(例えば板状)を接合する手段として、広くリベット接合が使用されている。この接合部が健全にかしめられているか否かを確認するには、製品を破壊するか、非破壊による場合は目視による以外には方法がなかった。
【0003】
【発明が解決しようとする課題】
前記従来の検査方法で、目視による場合は、多少の浮きや斜めの接合は見落とされるおそれがあった。また、緩い接合や多少浮き上がったリベットでも見掛け上、適正な外観形状を保ってあれば、リベットとの部材の接合程度を計量的に測定する訳ではないので、健全と判断される問題点があった。
【0004】
また、リベットかしめ頭の画像処理による非破壊の検査方法も提案されている(特開平5−248837等)が、画像処理による方法では、やはり外観に現れない軸部の良否を検査できないと共に、小径のリベットの場合には検査し難いという問題点があった。
【0005】
【課題を解決するための手段】
然るにこの発明は、パルスを使用して、リベットの軸部に関係する測定もするので、前記問題点を解決した。
【0006】
即ち、この発明の方法は、複数の部材にリベットを貫通させて、該リベットの先端部をつぶして、かしめ、かしめ部を形成して前記各部材を接合した接合部の検査方法において、前記かしめ部側の部材の表面からパルスを発信し、該パルスのうち、部材表面からかしめ部に伝搬される透過パルスの成分と、リベット軸を経由してかしめ部に伝搬される透過パルスの成分とを、リベットのかしめ部表面において夫々受信し、各透過パルスの到達時間と透過パルスの高さとを夫々測定し、両透過パルスを、予め測定した正規接合部における透過パルスと比較検討し、前記リベットの状態を判定することを特徴としたリベット接合部の検査方法である。
【0007】
【試験例】
(1)試験方法
試験体30:下記6種類、11体を使用した。
(1)正規品 φ5.2 N1-5.2 N2-5.2
(2)正規品 φ9.0 N1-9 N2-9
(3)不良品(軸が斜め) φ5.2 S1-5.2 S2-5.2
(4)不良品(軸が斜め) φ9.0 S1-9 S2-9
(5)不良品(かしめが浮き)φ5.2 F1-5.2 −
(6)不良品(かしめが浮き)φ9.0 F1-9 F2-9
探傷器31:クラウトクレーマー社製 USD−15
探触子:送信用の探触子8 ジャパンプローブ製
5Z5.5×5A40
5Z8.9×5A70
受信用の探触子10 パナメトリックス製 V535
【0008】
図17(a)のように、試験体30は、所定形状の2枚の鋼板20、20のリベット孔22、22にリベット17の軸18を挿通して先端を潰してかしめ、かしめ部19を形成して両鋼板20、20を接合して構成する。
【0009】
発信用の探触子8を、試験体30のリベット17のかしめ部19に近接した鋼板20上に配置する。また、受信用の探触子10を、試験体30のリベット17の軸18の上方にかからないようにかしめ部19の上に配置する。
【0010】
パルス透過法により、探触子8からパルスを発信し、その透過パルスを探触子10で受信し、透過パルスの遅延時間T(画面32上は鋼板中の距離を表示してある。図6〜16)及び透過パルスの高さを測定すると共に、透過パルスの波形を記録する。また、測定は図17(b)のように、試験体のリベットの軸の回りで、時計回りに45度毎に、D 方向(第1)、D方向(第2)、D 方向(第3)、D 方向(第4)、・・・・、D 方向(第8)の各位置(8点)で測定を行う。
【0011】
(2)試験結果探傷器31の画面32に表示された透過パルスの波形を、11個の試験体毎に、かつD 〜D の各方向毎に記録し、その結果を図6乃至図16に示す。
【0012】
また、探傷器31の画面32上に表示される透過パルスの立上がり(正確には画面32で5%の高さに達する位置)までの鋼板中距離Tの測定値を下記表1に示す。
【0013】
【表1】

Figure 0003878969
【0014】
表1中で、「40+N」は送信側が屈折角40度の斜角探触子で、受信側が垂直探触子であることを表す。また、表1の内容をグラフで表したものを図18、19、20に示す。
【0015】
(3)結論リベット17が鋼板20、20に密着していれば、鋼板20の表面21からリベット17のかしめ部19に、直接伝達される透過パルス(経路A)が確認された。また、リベット17のかしめ部19や頭部が浮いているか否かに拘らず、鋼板20のリベット孔22の中に十分充填されている場合には、リベット孔22及びリベット17の軸18を経由して伝搬する透過パルス(経路B)によって確認することができる(図17(a))。
【0016】
従って、以下のようなことが言える。
【0017】
即ち、リベット17の接合状態によって、鋼板20から発信したパルスが、直接にリベット17のかしめ部19を通過して伝搬されて受信される経路(経路A)によるパルスPA と、鋼板20から発信されたパルスがリベット17の軸18及びリベット17のかしめ部19を通過して伝搬されて受信される経路(経路B)によるパルスPB とが、伝搬経路が異なることから、検出するパルスPA 、PB に相違が生じる。即ち、受信までの時間TA 、TB 及びエコー高さを測定することにより、リベット17の接合状態を検査できる。
【0018】
図1において、正規品の場合には伝搬経路Aの透過パルスPA を受けた(時間TA )後に、伝搬経路Bの高いパルスPB を受ける(時間TB )。その際の探触子のスコープ波形の概略を示す(図1(a))。これは、リベット17の軸18に対して8方向において同様になる。
【0019】
これに対して、リベット17の軸18が斜めになった不良品では、かしめ部19も斜めになるので、D 〜D のいずれかの測定方向で、伝搬経路Aの透過パルスPA を受けることなく、伝搬経路BのパルスPB を受ける(図1(b))。この場合、かしめ部19が鋼板20に接した測定方向ではパルスPA を受けることになる。また、軸が斜めになっているので、D 〜D の測定方向によって、パルスPB の波形(到達時間TB 及び高さ)にばらつきが生じることになる。
【0020】
また、かしめ部19が鋼板20の表面21から浮いた状態では、鋼板20とかしめ部19とが接していないので、伝搬経路Aの透過パルスPA を受けないで、伝搬経路BのパルスPB のみ受けることになる(図1(c))。
【0021】
また、リベット17の軸18が回転するような不良品では、伝搬経路A、Bのいずれのパルスも検出しない(図1(d))。
【0022】
以上のようにして、パルスPA 、PB の波形(到達時間TA 、TB 及び高さ)の比較検討により、リベット17の施工状態を検査できる。
【0023】
また、鋼板20の表面には、実際の製品と同様に塗装膜を有していたが、リベットの健全性を判断できた。また、発信用の探触子の射角との関係では、40+Nの組合わせで正規品と、不良品との差異が大きく、高い信頼性で推定できると思われる。尚、70+Nの組合わせでは、差異が小さいので、実際の現場で使用する場合には工夫が必要である。
【0024】
【実施の態様】
リベットのかしめ部側の部材の表面にパルス発信用の探触子を密着させ、かしめられたリベットのかしめ部の表面に、パルス受信用の探触子を密着させる。発信用の探触子からパルスを送信する。部材表面からかしめ部に伝搬される透過パルスの成分と、リベット軸を経由してかしめ部に伝搬される透過パルスの成分とを、リベットのかしめ部表面のパルス受信用の探触子で受信する。この透過パルスの到達時間と透過パルス高さを測定し、透過パルスの波形を記録し、これらを正常品の接合部のものと比較検討して、リベットの軸及びかしめ部と部材との密着の度合い(接合状態)を判定することにより、リベット接合部の良否を検査する。
【0025】
また、所定のケース内にパルス送信用の探触子を固定する。ケース内で、送信用の探触子に近接して、パルス受信用の探触子を、昇降自在でかつ下方に押圧して取付ける。各探触子の送信受信面に、弾性を有する高分子材料からなるカップリングシートによる層を形成してリベット接合部の測定装置を構成する。この測定装置は、所定のデーター表示処理手段を持った探傷器などに接続して、リベット検査に使用される。
【0026】
【実施例1】
図3に基づきこの発明の実施に使用する検査装置について説明する。
【0027】
並列した側板1、1の上縁を頂板2で連設してなる下方に開放したケース3の一側4下部に、発信用の探触子8を取付ける。また、ケース3の他側5で側板1、1の内面1aに弾性を有した緩衝支持板(各種ゴム材)6、6を対向して貼着する。前記緩衝支持板6、6で挟むように受信用の探触子10を取付ける。受信用の探触子10は、緩衝支持板6、6に挟まれ、ケース3内の上下の所望位置に保持できる。前記における送信用の探触子は横波斜角探触子(角度40又は70)、受信用の探触子は縦波垂直探触子を使用する。
【0028】
また、前記探触子8の底面9には、ほぼ全面に亘って、弾性を有する合成樹脂製(例えば、シリコーンゴム製。今井ゴム(株)製:SN001-S30 等)のカップリングシート13を貼着する。同様に、受信用の探触子10の底面11にも、ほぼ全面に亘って、同様のカップリングシート13を貼着する。
【0029】
以上のようにして、リベット接合部の測定装置15を構成する(図3(a)(b))。装置15の使用法については、実施例2の欄で説明する。
【0030】
前記実施例において、ケース3内面に緩衝支持板6を設けて測定装置15を構成したが、他の手段を使用して受信用の探触子10を昇降自在でかつ下方に付勢した状態で取付けることもできる。例えば、受信用の探触子10の両側面に略水平方向の案内棒25、25を突設し、ケース3内に収容した探触子10の該案内棒25を、ケース3の側板1、1に穿設した縦長孔26、26から突出させる。ケース3の頂板2と探触子10との間にスプリング27を介装して、測定装置15を構成する(図3(c)(d))。この場合、探触子10は案内棒25と縦長孔26とに案内され、昇降自在であり、またスプリング27により下方に付勢される。
【0031】
また、前記実施例において、水平面内で90度、あるいは180度の角度を保って、2組の測定装置を連結して、測定装置15を構成することもできる(図示していない)。この場合には、1回の配置で、2方向の測定ができるので、測定作業を簡略化できる。更に、4組の測定装置15、15を90度づつ角度を保って、結合して測定装置を構成することもできる(図示していない)。
【0032】
【実施例2】
次に、図1、2、4、5等に基づき方法の発明の実施例について説明する。
【0033】
板材(鋼板)20、20のリベット孔22に、リベット17の軸18を挿通して、他側の板材20の表面21で、軸18の先端部が潰されかしめ、かしめ部19が形成されて、板材20、20が接合されている。
【0034】
前記試験例のように、測定装置15の探触子8、10を所定の探傷器31に接続する(図17(a))。測定装置15をリベット17のかしめ部19にできるだけ近くなるように、探触子8を板材20の表面21に位置させ(D 方向)、同時に、探触子8が板材20の表面21と当接した際に、探触子10がリベット17のかしめ部分19の表面19aに当接するように、探触子10をケース3内で移動させる(図2(a)(b))。
【0035】
受信用の探触子10をリベット17のかしめ部19の表面19aに接触し、発信用の探触子8を、板材20の表面21で、リベット17に近接した位置に、所定の圧力で当接密着させる。ここで、受信用の探触子10を摺動させ、所定高さ位置で止める。この位置で、探触子10は緩衝支持板6、6に挟まれているので、リベット17のかしめ部19の表面19aに弾性して当接する。
【0036】
また、この際、探触子8、10の下面にはカップリングシート13が貼着してあるので、探触子8、10は、板材20の表面21、リベット17のかしめ部19に夫々密着できる。
【0037】
続いて、探傷器31を作動させ、探触子8から発信したパルスを探触子10で受け、透過パルスを計測する。透過パルスが、図1(a)のような波形であれば、この方向では正常と判断される。同様に、90度回転し、D 方向に向きを変え、同様にパルスを計測する。以下、90度づつ移動して、D 方向、D 方向の合計4ヶ所でパルスを計測する。この際、送受信の探触子8、10がケース3内に収納されているので、測定装置15はケース3を持って検査対象(リベット17、板材20)に当接させれば、片手で操作できる。
【0038】
この計測によりD 、D 、D 、D 全ての位置で、図1(a)のような波形であれば、このリベットは正常と判断される。また、経路Bのみのパルスが計測されれば、その方向では、かしめ部19に浮きがあることがわかる。また、経路A、Bのいずれの経路のパルスも計測されなければ、リベット孔22とリベット軸18とに緩みがある不良品であると判断できる。
【0039】
また、複数の測定位置で検査するので、不良品である場合、リベット全体(全方向)が不良なのか、一部(不良パルスが生じた方向のみ)で不良が発生しているのかが判別できる。従って、施工不良の発生原因の究明の一手段とすることもできる。例えば、一方向でのみパルスAが生じ、パルスBの到達時間TB や高さが方向により、ばらつきがある場合には、リベットの軸が斜になっていることが予想される。
【0040】
前記実施例の方法において90度毎に、4ヶ所で、測定したが、少なくとも3ヶ所(120°毎)以上で測定することが望ましい。また、6ヶ所(60°毎)、8ヶ所(45°毎)あるいはそれ以上の位置で測定すれば、より正確にリベットの接合状態を検査できる。
【0041】
また、前記実施例の方法において、カップリングシート13を用いて、ドライカップリングにより測定したが、従来のような各種の接触媒質(液状シリコン樹脂など)24を使用することもできる(図4)。ただし、この場合には、経路Aの検出において、図4に示すように、接触媒質24から直接透過するパルスP と、接触媒質24内で1回反射した透過パルスP 、接触媒質24内で2回反射した透過パルスP など、接触媒質24内の多重反射の位相の違いにより、まれに、パルスの大きさに変化(雑音が加わる)が発生する(図5(b))。従って、ドライカップリングとする方がパルスのみだれが生じるおそれなく(図5(a))、また測定面が接触媒質24で汚れることもないので望ましい。
【0042】
また、前記実施例の方法において、前記測定装置15を使用すれば、送信用探触子に近接して、受信用探触子を、昇降自在でかつ下方に押圧して取付けたので、片手で測定装置を扱うことができると共に、高さが異なる部材の表面とリベットのかしめ部とに容易に探触子を密着できる効果があるので望ましいが、従来の他の受信用の探触子、発信用の探触子を使用することもできる(図示していない)。
【0043】
【発明の効果】
この発明によれば、部材表面でパルスを発信し、部材表面からかしめ部に伝搬する成分と、リベット軸を経由してかしめ部に伝搬される成分とを、リベットのかしめ部表面において受信し、リベットのかしめ部の良否のみではなく、リベットの軸の充填・密封の良否も合わせて判断でき、リベットを破壊することなく、適格にリベットの施工の良否を判定できる。また、パルスによる検査としたので、部材の表面に塗装などの各種被膜が形成されている場合にも、検査できる効果がある。
【0044】
従って、ある程度の気密性を要求される製品の検査等にも使用でき、リベットの信頼性を高めることができるので、施工が容易なリベットの利用範囲を広げることができる効果もある。更に、ドライカップリングによる方法・装置とすれば、検査面を汚すことなく検査でできるので、最終製品の状態で検査することができる。
【図面の簡単な説明】
【図1】リベットを検査中の概略した縦断面図とその時のパルスとを表す図で、(a)は正常品、(b)は軸が斜になった不良品、(c)はかしめが浮いた不良品、(d)は軸が回転する不良品を夫々表す。
【図2】この発明の実施例の検査方法を説明する図で、(a)はリベットとケースとを破切した正面図、(b)はケースを破切した平面図である。
【図3】この発明の実施に使用する測定装置で、(a)は実施例の正面図、(b)は同じく側面図、(c)は他の実施例の正面図、(d)は同じく側面図である。
【図4】接触媒質を使用した検査方法を説明する縦断面図である。
【図5】カップリングの違いによるパルスを表した図で、(a)は接触媒質を使用せずドライカップリングとした場合、(b)は接触媒質を使用した場合を夫々表す。
【図6】(a)〜(h)は、試験結果の1〜8の各方向のパルスで、正規品φ5.2 No1を表す。
【図7】(a)〜(h)は同じく、正規品φ5.2 No2を表す。
【図8】(a)〜(h)は同じく、正規品φ9 No1を表す。
【図9】(a)〜(h)は同じく、正規品φ9 No2を表す。
【図10】(a)〜(h)は同じく、不良品(斜め)φ5.2 No1を表す。
【図11】(a)〜(h)は同じく、不良品(斜め)φ5.2 No2を表す。
【図12】(a)〜(h)は同じく、不良品(斜め)φ9 No1を表す。
【図13】(a)〜(h)は同じく、不良品(斜め)φ9 No2を表す。
【図14】(a)〜(h)は同じく、不良品(浮き)φ5.2 No1を表す。
【図15】(a)〜(h)は同じく、不良品(浮き)φ9 No1を表す。
【図16】(a)〜(h)は同じく、不良品(浮き)φ9 No2を表す。
【図17】この発明の測定方法の構成を表す概略した図で(a)は正面図、(b)は平面図である。
【図18】遅延時間の測定結果を示したグラフで、正規品を表す。
【図19】同じく、不良品(斜め)を表す。
【図20】同じく、不良品(浮き)を表す。
【図21】測定結果からリベットの状態を3次元で表したグラフで、(a)は射角40度、(b)は射角70度を夫々表す。
【符号の説明】
3 ケース
6 緩衝支持板
8 発信用の探触子
9 探触子8の底面
10 受信用の探触子
11 探触子10の底面
13 カップリングシート
15 測定装置
17 リベット
18 リベットの軸
19 リベットのかしめ部
19a かしめ部の表面
20 板材(鋼板)
21 板材(鋼板)の表面
22 板材(鋼板)のリベット孔
24 接触媒質
25 案内棒
26 縦長孔
27 スプリング
30 試験体
31 探傷器[0001]
BACKGROUND OF THE INVENTION
This invention relates to the inspection how the rivet joint to inspect the quality of the joint portion without destroying the joint.
[0002]
[Prior art]
As a means for joining members (for example, plates), rivet joining is widely used. In order to confirm whether or not the joint portion is caulked soundly, there was no method other than visual destruction in the case of breaking the product or nondestructing.
[0003]
[Problems to be solved by the invention]
In the conventional inspection method, when visually observed, some floating and oblique joining may be overlooked. In addition, even if the rivet is loosely joined or slightly lifted, it is difficult to measure the degree of joining of the member with the rivet as long as the appearance is appropriate. It was.
[0004]
Further, a non-destructive inspection method using image processing of a rivet caulking head has been proposed (Japanese Patent Laid-Open No. 5-248837, etc.). In the case of rivets, there was a problem that it was difficult to inspect.
[0005]
[Means for Solving the Problems]
However, the present invention solves the above-mentioned problem because the pulse is used to measure the rivet shaft.
[0006]
That is, the method of the present invention is a method for inspecting a joint portion in which a plurality of members are pierced with rivets, the tip portions of the rivets are crushed, caulked, and caulking portions are formed to join the members. A pulse is transmitted from the surface of the member on the part side, and a component of the transmission pulse propagated from the member surface to the caulking portion and a component of the transmission pulse propagated to the caulking portion via the rivet axis are included in the pulse. , Receiving each of the rivet caulking part surface, measuring the arrival time of each transmission pulse and the height of the transmission pulse, and comparing both transmission pulses with the transmission pulse at the normal junction measured in advance, A method for inspecting a rivet joint, characterized by determining a state.
[0007]
[Test example]
(1) Test method Test body 30: The following 6 types and 11 bodies were used.
(1) Regular φ5.2 N1-5.2 N2-5.2
(2) Genuine φ9.0 N1-9 N2-9
(3) Defective product (shaft is diagonal) φ5.2 S1-5.2 S2-5.2
(4) Defective product (shaft is diagonal) φ9.0 S1-9 S2-9
(5) Defective product (caulking is floating) φ5.2 F1-5.2 −
(6) Defective product (caulking float) φ9.0 F1-9 F2-9
Flaw detector 31: USD-15 manufactured by Kraut Kramer
Probe: Transmitter probe 8 Made by Japan Probe
5Z5.5 × 5A40
5Z8.9 × 5A70
Probe for reception 10 V535 made by Panametrics
[0008]
As shown in FIG. 17 (a), the test body 30 is inserted into the rivet holes 22 and 22 of the two steel plates 20 and 20 having a predetermined shape, the shaft 18 of the rivet 17 is crushed and the tip is crushed, and the caulking portion 19 is It forms and joins both the steel plates 20 and 20, and comprises.
[0009]
The transmitting probe 8 is disposed on the steel plate 20 close to the caulking portion 19 of the rivet 17 of the test body 30. Further, the receiving probe 10 is disposed on the caulking portion 19 so as not to be placed above the shaft 18 of the rivet 17 of the test body 30.
[0010]
A pulse is transmitted from the probe 8 by the pulse transmission method, the transmission pulse is received by the probe 10, and a delay time T of the transmission pulse (the distance on the steel plate is displayed on the screen 32). -16) and measuring the height of the transmitted pulse and recording the waveform of the transmitted pulse. The measurement as shown in FIG. 17 (b), the about the axis of the rivet of the test body, every 45 degrees clockwise, D 1 direction (the 1), D 2 direction (a 2), D 3 directions (a 3), D 4 directions (4), ..., measured at D 8 direction each position (8) of (8) performing.
[0011]
(2) Test result The waveform of the transmission pulse displayed on the screen 32 of the flaw detector 31 is recorded for each of the 11 specimens and for each direction of D 1 to D 8 , and the results are shown in FIGS. 16 shows.
[0012]
Table 1 below shows measured values of the steel plate intermediate distance T until the rising of the transmission pulse displayed on the screen 32 of the flaw detector 31 (more precisely, the position where the height reaches 5% on the screen 32).
[0013]
[Table 1]
Figure 0003878969
[0014]
In Table 1, “40 + N” indicates that the transmitting side is an oblique probe having a refraction angle of 40 degrees, and the receiving side is a vertical probe. Moreover, what represented the content of Table 1 with the graph is shown in FIG.
[0015]
(3) Conclusion When the rivet 17 is in close contact with the steel plates 20 and 20, a transmission pulse (path A) directly transmitted from the surface 21 of the steel plate 20 to the caulking portion 19 of the rivet 17 was confirmed. Further, regardless of whether the caulking portion 19 or the head of the rivet 17 is floating, when the rivet hole 22 of the steel plate 20 is sufficiently filled, it passes through the rivet hole 22 and the shaft 18 of the rivet 17. Then, it can be confirmed by the transmitted pulse (path B) propagating (FIG. 17A).
[0016]
Therefore, the following can be said.
[0017]
That is, depending on the joining state of the rivet 17, a pulse PA transmitted from the steel plate 20 and a pulse P A by a route (path A) that is directly propagated and received through the caulking portion 19 of the rivet 17 and is transmitted from the steel plate 20. pulse P a pulse and a pulse P B by the shaft 18 and the path to be received is transmitted through the crimped portion 19 of the rivet 17 (route B) of the rivet 17, since the propagation paths are different, to detect , P B is different. That is, the time T A to the reception, by measuring the T B and the echo height can be inspected bonding state of the rivet 17.
[0018]
In Figure 1, after the case of genuine received a transmission pulse P A propagation path A (time T A) to receive a high propagation path B pulse P B (time T B). An outline of the scope waveform of the probe at that time is shown (FIG. 1A). This is the same in eight directions with respect to the axis 18 of the rivet 17.
[0019]
In contrast, in the defectives shaft 18 becomes oblique rivet 17, since the caulking portion 19 is also obliquely, in either measurement direction D 1 to D 8, the transmitted pulse P A propagation paths A The pulse P B of the propagation path B is received without being received (FIG. 1B). In this case, the receive pulses P A in the measuring direction of the caulking portion 19 is in contact with the steel plate 20. Further, since the axis is inclined, the waveform (arrival time T B and height) of the pulse P B varies depending on the measurement directions D 1 to D 8 .
[0020]
In a state where the crimping portion 19 is floated from the surface 21 of the steel sheet 20, since the steel plate 20 and the caulking portion 19 is not in contact, without receiving the transmission pulse P A propagation path A, the pulse P B of propagation path B (Fig. 1 (c)).
[0021]
In addition, in a defective product in which the shaft 18 of the rivet 17 rotates, neither pulse of the propagation paths A and B is detected (FIG. 1 (d)).
[0022]
As described above, the construction state of the rivet 17 can be inspected by comparing and examining the waveforms of the pulses P A and P B (arrival times T A and T B and height).
[0023]
Moreover, although the surface of the steel plate 20 had the coating film similarly to the actual product, the soundness of the rivet could be judged. Also, regarding the relationship with the firing angle of the probe for transmission, the difference between the regular product and the defective product is large for the combination of 40 + N, and it can be estimated with high reliability. In addition, since the difference is small in the combination of 70 + N, it is necessary to devise when using it in the actual site.
[0024]
Embodiment
A pulse transmitting probe is brought into close contact with the surface of the rivet caulking portion, and a pulse receiving probe is brought into close contact with the surface of the caulking portion of the rivet being caulked. Transmit a pulse from the probe for transmission. The transmitted pulse component propagated from the member surface to the caulking portion and the transmitted pulse component propagated to the caulking portion via the rivet axis are received by the probe for receiving the pulse on the caulking portion surface of the rivet. . Measure the arrival time and transmission pulse height of this transmission pulse, record the transmission pulse waveform, compare these with those of the normal joint, and check the contact between the rivet shaft and the caulking part and the member. The quality of the rivet joint is checked by determining the degree (joint state).
[0025]
In addition, a probe for pulse transmission is fixed in a predetermined case. In the case, a pulse receiving probe is mounted in a manner that can be moved up and down and pressed downward in the vicinity of the transmitting probe. A measuring device for a rivet joint is configured by forming a layer of a coupling sheet made of a polymer material having elasticity on the transmission / reception surface of each probe. This measuring apparatus is connected to a flaw detector having a predetermined data display processing means and used for rivet inspection.
[0026]
[Example 1]
An inspection apparatus used for carrying out the present invention will be described with reference to FIG.
[0027]
A transmitting probe 8 is attached to the lower part of one side 4 of the case 3 which is opened downward by connecting the upper edges of the parallel side plates 1 and 1 with the top plate 2. Further, on the other side 5 of the case 3, buffer support plates (various rubber materials) 6 and 6 having elasticity are attached to the inner surfaces 1 a of the side plates 1 and 1 so as to face each other. A receiving probe 10 is attached so as to be sandwiched between the buffer support plates 6. The receiving probe 10 is sandwiched between the buffer support plates 6 and 6 and can be held at desired positions above and below the case 3. The transmitting probe in the above uses a transverse wave oblique angle probe (angle 40 or 70), and the receiving probe uses a longitudinal wave vertical probe.
[0028]
Further, on the bottom surface 9 of the probe 8, a coupling sheet 13 made of a synthetic resin having elasticity (for example, made of silicone rubber, manufactured by Imai Rubber Co., Ltd .: SN001-S30, etc.) is provided over almost the entire surface. Adhere. Similarly, a similar coupling sheet 13 is attached to the bottom surface 11 of the receiving probe 10 over substantially the entire surface.
[0029]
As described above, the rivet joint measuring device 15 is configured (FIGS. 3A and 3B). The usage of the device 15 will be described in the column of Example 2.
[0030]
In the above-described embodiment, the measuring device 15 is configured by providing the buffer support plate 6 on the inner surface of the case 3. However, the receiving probe 10 can be moved up and down and urged downward using other means. It can also be installed. For example, substantially horizontal guide rods 25, 25 project from both side surfaces of the receiving probe 10, and the guide rods 25 of the probe 10 accommodated in the case 3 are connected to the side plate 1 of the case 3, 1 is protruded from the vertically long holes 26, 26 formed in the hole 1. A measuring device 15 is configured with a spring 27 interposed between the top plate 2 of the case 3 and the probe 10 (FIGS. 3C and 3D). In this case, the probe 10 is guided by the guide rod 25 and the vertically long hole 26, can be moved up and down, and is urged downward by the spring 27.
[0031]
In the embodiment, the measuring device 15 can be configured by connecting two sets of measuring devices while maintaining an angle of 90 ° or 180 ° in the horizontal plane (not shown). In this case, the measurement work can be simplified because the measurement can be performed in two directions with one arrangement. Furthermore, the four measuring devices 15 and 15 can be combined at an angle of 90 degrees to form a measuring device (not shown).
[0032]
[Example 2]
Next, with be described in the examples of the invention of a process based on Figure 1, 2, 4 and 5 or the like.
[0033]
The shaft 18 of the rivet 17 is inserted into the rivet hole 22 of the plate material (steel plate) 20, 20, and the tip end portion of the shaft 18 is crushed and caulked on the surface 21 of the plate material 20 on the other side, and the caulking portion 19 is formed. The plate members 20 and 20 are joined.
[0034]
As in the test example, the probes 8 and 10 of the measuring apparatus 15 are connected to a predetermined flaw detector 31 (FIG. 17A). A measuring device 15 as close as possible to the crimped portion 19 of the rivet 17, to position the probe 8 on the surface 21 of the plate 20 (D 8 direction), at the same time, the probe 8 and the surface 21 of the plate 20 equivalents When contacted, the probe 10 is moved within the case 3 so that the probe 10 contacts the surface 19a of the caulking portion 19 of the rivet 17 (FIGS. 2A and 2B).
[0035]
The receiving probe 10 is brought into contact with the surface 19a of the caulking portion 19 of the rivet 17, and the transmitting probe 8 is applied to the surface 21 of the plate material 20 at a position close to the rivet 17 with a predetermined pressure. Close contact. Here, the receiving probe 10 is slid and stopped at a predetermined height position. At this position, the probe 10 is sandwiched between the shock-absorbing support plates 6, 6, and thus elastically contacts the surface 19 a of the caulking portion 19 of the rivet 17.
[0036]
At this time, since the coupling sheet 13 is adhered to the lower surfaces of the probes 8 and 10, the probes 8 and 10 are in close contact with the surface 21 of the plate member 20 and the caulking portion 19 of the rivet 17, respectively. it can.
[0037]
Subsequently, the flaw detector 31 is operated, the pulse transmitted from the probe 8 is received by the probe 10, and the transmitted pulse is measured. If the transmitted pulse has a waveform as shown in FIG. 1A, it is determined to be normal in this direction. Similarly, it rotated by 90 degrees, changing the direction in the D 2 direction, similarly to measure the pulse. Hereinafter, moves by 90 degrees, measures the pulse D 3 direction, D 4 direction of a total of four places. At this time, since the transmission / reception probes 8 and 10 are accommodated in the case 3, the measurement device 15 can be operated with one hand if the case 3 is held in contact with the object to be inspected (the rivet 17 and the plate member 20). it can.
[0038]
If the waveform shown in FIG. 1A is obtained at all positions D 1 , D 2 , D 3 , and D 4 by this measurement, the rivet is determined to be normal. In addition, if the pulse of only the path B is measured, it can be seen that the caulking portion 19 is lifted in that direction. Further, if the pulse of any of the paths A and B is not measured, it can be determined that the rivet hole 22 and the rivet shaft 18 are defective with a looseness.
[0039]
In addition, since the inspection is performed at a plurality of measurement positions, if it is a defective product, it is possible to determine whether the entire rivet (all directions) is defective or only a part (only the direction in which the defective pulse occurs) is defective. . Therefore, it can also be used as a means for investigating the cause of construction failure. For example, occur pulse A in only one direction, the arrival time T B and height of the pulse B is a direction, if there is a variation, it is expected that the shaft of the rivet is set to obliquely.
[0040]
In the method of the above embodiment, the measurement was performed at four positions every 90 degrees, but it is desirable to measure at least three positions (every 120 °). Further, if the measurement is performed at 6 positions (every 60 °), 8 positions (every 45 °) or more, the rivet joining state can be inspected more accurately.
[0041]
Further, in the method of the above embodiment, measurement was performed by dry coupling using the coupling sheet 13, but various conventional contact media (liquid silicon resin, etc.) 24 can also be used (FIG. 4). . However, in this case, in the detection of the path A, as shown in FIG. 4, the pulse P 0 directly transmitted from the contact medium 24, the transmitted pulse P 1 reflected once in the contact medium 24, in such transmitted pulse P 2 reflected twice by the phase difference of the multiple reflection in the couplant 24, rarely change (noise is added) to the magnitude of the pulse is generated (Figure 5 (b)). Therefore, it is desirable to use dry coupling because there is no possibility of generating only a pulse (FIG. 5A) and the measurement surface is not contaminated by the contact medium 24.
[0042]
Further, in the method of the above embodiment, if the measuring device 15 is used, the receiving probe is mounted so as to be movable up and down and pressed downward in the vicinity of the transmitting probe. This is desirable because it has the effect of being able to handle the measuring device and easily attach the probe to the surface of a member having a different height and the caulking portion of the rivet. A probe can be used (not shown).
[0043]
【The invention's effect】
According to the present invention, a component that transmits a pulse on the surface of the member and propagates from the member surface to the caulking portion and a component that propagates to the caulking portion via the rivet shaft are received on the caulking portion surface of the rivet, Not only the quality of the rivet caulking part but also the quality of filling and sealing of the rivet shaft can be judged together, and the quality of rivet construction can be judged properly without breaking the rivet. In addition, since the inspection is performed by the pulse, there is an effect that the inspection can be performed even when various coatings such as coating are formed on the surface of the member.
[0044]
Therefore, it can also be used for inspection of products that require a certain degree of airtightness, and the reliability of rivets can be increased, so that there is an effect that the range of use of rivets that are easy to construct can be expanded. Furthermore, if the method / apparatus is based on dry coupling, the inspection can be performed without soiling the inspection surface, so that the final product can be inspected.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic longitudinal sectional view during inspection of a rivet and a pulse at that time, where (a) is a normal product, (b) is a defective product whose axis is slanted, and (c) is caulking. The floated defective product, (d) represents the defective product whose shaft rotates.
FIGS. 2A and 2B are diagrams for explaining an inspection method according to an embodiment of the present invention, in which FIG. 2A is a front view in which a rivet and a case are broken, and FIG. 2B is a plan view in which the case is broken;
3A is a front view of an embodiment of the present invention, FIG. 3B is a side view of the embodiment, FIG. 3C is a front view of another embodiment, and FIG. It is a side view.
FIG. 4 is a longitudinal sectional view for explaining an inspection method using a contact medium.
5A and 5B are diagrams showing pulses due to coupling differences, where FIG. 5A shows a case where dry contact is not used, and FIG. 5B shows a case where a contact medium is used.
FIGS. 6A to 6H are pulses in each direction of test results 1 to 8, and represent a regular product φ5.2 No1.
FIGS. 7A to 7H similarly represent a regular product φ5.2 No. 2;
FIGS. 8A to 8H similarly represent a regular product φ9 No1.
FIGS. 9A to 9H show the regular product φ9 No2.
FIGS. 10A to 10H similarly show a defective product (oblique) φ5.2 No1.
FIGS. 11A to 11H similarly show defective products (diagonal) φ5.2 No. 2;
FIGS. 12A to 12H similarly show a defective product (oblique) φ9 No1.
FIGS. 13A to 13H similarly show defective products (diagonal) φ9 No2.
FIGS. 14A to 14H similarly show defective products (floating) φ5.2 No1.
FIGS. 15A to 15H similarly show defective products (floating) φ9 No1.
FIGS. 16A to 16H similarly show defective products (floating) φ9 No2.
17A and 17B are schematic views showing the configuration of the measuring method of the present invention, where FIG. 17A is a front view, and FIG. 17B is a plan view.
FIG. 18 is a graph showing measurement results of delay time, and represents a regular product.
FIG. 19 similarly represents a defective product (diagonal).
FIG. 20 similarly shows a defective product (floating).
FIGS. 21A and 21B are graphs showing the rivet state in three dimensions from the measurement results, in which FIG. 21A shows an incident angle of 40 degrees, and FIG. 21B shows an incident angle of 70 degrees.
[Explanation of symbols]
3 Case 6 Buffer support plate 8 Transmitting probe 9 Bottom surface 10 of probe 8 Receiving probe 11 Bottom surface of probe 13 Coupling sheet 15 Measuring device 17 Rivet 18 Rivet shaft 19 Rivet Caulking portion 19a Caulking portion surface 20 Plate material (steel plate)
21 Surface 22 of plate material (steel plate) Rivet hole 24 of plate material (steel plate) Contact medium 25 Guide rod 26 Long hole 27 Spring 30 Specimen 31 Flaw detector

Claims (1)

複数の部材にリベットを貫通させて、該リベットの先端部をつぶして、かしめ、かしめ部を形成して前記各部材を接合した接合部の検査方法において、前記かしめ部側の部材の表面からパルスを発信し、該パルスのうち、部材表面からかしめ部に伝搬される透過パルスの成分と、リベット軸を経由してかしめ部に伝搬される透過パルスの成分とを、リベットのかしめ部表面において夫々受信し、各透過パルスの到達時間と透過パルスの高さとを夫々測定し、両透過パルスを、予め測定した正規接合部における透過パルスと比較検討し、前記リベットの状態を判定することを特徴としたリベット接合部の検査方法。  In a method for inspecting a joint portion in which a plurality of members are penetrated and a rivet is crushed, the tip portion of the rivet is squeezed, and a staking portion is formed to join the respective members, a pulse is applied from the surface of the staking portion side member. Among the pulses, the transmitted pulse component propagated from the member surface to the caulking portion and the transmitted pulse component propagated to the caulking portion via the rivet axis are respectively present on the caulking portion surface of the rivet. Receiving and measuring the arrival time of each transmission pulse and the height of the transmission pulse, comparing both transmission pulses with the transmission pulse at the normal junction measured in advance, and determining the state of the rivet, Inspection method for rivet joints.
JP05060097A 1997-03-05 1997-03-05 Inspection method for rivet joints Expired - Fee Related JP3878969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05060097A JP3878969B2 (en) 1997-03-05 1997-03-05 Inspection method for rivet joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05060097A JP3878969B2 (en) 1997-03-05 1997-03-05 Inspection method for rivet joints

Publications (2)

Publication Number Publication Date
JPH10249474A JPH10249474A (en) 1998-09-22
JP3878969B2 true JP3878969B2 (en) 2007-02-07

Family

ID=12863471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05060097A Expired - Fee Related JP3878969B2 (en) 1997-03-05 1997-03-05 Inspection method for rivet joints

Country Status (1)

Country Link
JP (1) JP3878969B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671202A1 (en) * 2018-12-17 2020-06-24 Shimadzu Corporation Inspection apparatus and inspection method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759480B (en) * 2011-04-28 2014-04-23 鸿富锦精密工业(深圳)有限公司 Blind rivet quality test device
JP6808682B2 (en) * 2018-06-01 2021-01-06 非破壊検査株式会社 Inspection device and inspection method for joint members
WO2020079780A1 (en) 2018-10-17 2020-04-23 株式会社島津製作所 Aircraft inspection support device and aircraft inspection support method
KR102283355B1 (en) * 2019-11-19 2021-07-28 김용찬 Apparatus for measuring shear strength of rivet contact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671202A1 (en) * 2018-12-17 2020-06-24 Shimadzu Corporation Inspection apparatus and inspection method

Also Published As

Publication number Publication date
JPH10249474A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
JP5166724B2 (en) Ultrasonic inspection system and method
Rosli et al. In-plane and out-of-plane measurements of Rayleigh waves using EMATs for characterising surface cracks
WO2006025591A1 (en) Evaluation method and device for spot welded portion by ultrasonic wave
Sanabria et al. Air-coupled ultrasound as an accurate and reproducible method for bonding assessment of glued timber
JPH0352908B2 (en)
JP3878969B2 (en) Inspection method for rivet joints
CN108226283A (en) A kind of ultrasonic detection device of lack of penetration weld seam
JP7353545B2 (en) Bonded interface evaluation method and bonded interface evaluation device
JP5564802B2 (en) Joint inspection method and joint inspection apparatus
JP6576715B2 (en) Plate material welded portion inspection method and inspection apparatus
Ma et al. Application of C-mode scanning acoustic microscopy in packaging
Dawson et al. Acquisition and analysis of angle-beam wavefield data
Cuc et al. Disbond detection in adhesively bonded structures using piezoelectric wafer active sensors
US10794867B2 (en) System and method of diagnosing tube sensor integrity by analysis of excited stress waves
Bělský et al. Non-destructive Methods for Damage Assessment of Composite Sandwich Structures
JPS591980B2 (en) Ultrasonic inspection device
KR101391772B1 (en) A indentor with a functional sensor, indentation tester and analysis system using the indentor
JP5421544B2 (en) Ultrasonic spot weld evaluation method and apparatus
US7415865B2 (en) Determining the extent of a lateral shadow zone in an ultrasound inspection method
KR102547984B1 (en) Ultrasonic inspection probe
JP3754669B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
Pialucha et al. The reflection of ultrasound from interface layers in adhesive joints
KR101069459B1 (en) The Measurement Method and Apparatus of Ultrasound Re-direction Offset using Normal and Angled Ultrasonic Transducers
Puchot et al. Inspection technique for above ground storage tank floors using MsS technology
JP5243229B2 (en) Ultrasonic flaw detection method and probe unit for ultrasonic flaw detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees