JP2001212567A - Electric regeneration type desalting apparatus - Google Patents

Electric regeneration type desalting apparatus

Info

Publication number
JP2001212567A
JP2001212567A JP2000022675A JP2000022675A JP2001212567A JP 2001212567 A JP2001212567 A JP 2001212567A JP 2000022675 A JP2000022675 A JP 2000022675A JP 2000022675 A JP2000022675 A JP 2000022675A JP 2001212567 A JP2001212567 A JP 2001212567A
Authority
JP
Japan
Prior art keywords
chamber
water
regeneration type
chambers
electric regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000022675A
Other languages
Japanese (ja)
Inventor
Osayuki Inoue
修行 井上
Atsushi Aoyama
淳 青山
Takayoshi Kawamoto
孝善 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000022675A priority Critical patent/JP2001212567A/en
Publication of JP2001212567A publication Critical patent/JP2001212567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric regeneration type desalting apparatus avoiding excessive concentration of ions in electrode chambers, preventing the deterioration of an ion exchange membrane, by alkali attack suppressing the corrosion of electrodes and the generation amount of hydrogen and oxygen by electrolysis, removing dissolved oxygen in circulating concentrated water, suppressing the increase of dissolved oxygen of a desalting chamber and capable of achieving the recovery ratio of ultrapure water almost equal to that of a conventional electric regeneration type desalting apparatus. SOLUTION: In the electric regeneration type desalting apparatus wherein desalting chambers 5 and concentration chambers 6 are arranged between electrode chambers (anode chamber 2, cathode chamber 7) to be filled with an ion exchanger and cation exchange membranes or anion exchange membranes are alternately arranged between the respective chambers, the electrode chambers are formed as desalting constitution removing ions and concentrated water is introduced into the concentration chamber and the electrode chambers while the outlet water of the electrode chambers is converted to concentrated water through a vacuum degassing membrane device 19 to be introduced into the concentration chambers and the electrode chambers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、イオン交換膜間に
イオン交換体を充填した構成の電気再生式脱塩装置に関
し、特に極室の構成と極室液の循環に特徴を有する電気
再生式脱塩装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric regeneration type desalination apparatus having a structure in which an ion exchanger is filled between ion exchange membranes. The present invention relates to a desalination apparatus.

【0002】[0002]

【従来の技術】この種の電気再生式脱塩装置は、極室間
に陽イオン交換膜及び陰イオン交換膜を室枠を介して交
互に配列して、脱塩室及び濃縮室を交互に設け、各室に
はイオン交換体を充填して構成されている。この電気再
生式脱塩装置は、電解質を含むRO処理水(逆浸透膜を
通して1マイクロメータ(μm)以上の微粒子を除去し
た処理水)等を原水として超純水を得る装置として、イ
オン交換樹脂方式に替わって広範に使用されている。
2. Description of the Related Art In this type of electric regeneration type desalination apparatus, a cation exchange membrane and an anion exchange membrane are alternately arranged between pole chambers via a chamber frame, and a desalination chamber and a concentration chamber are alternately arranged. Each of the chambers is filled with an ion exchanger. This electric regeneration type desalination apparatus is an apparatus for obtaining ultrapure water using, for example, RO treated water containing electrolytes (treated water obtained by removing fine particles of 1 micrometer (μm) or more through a reverse osmosis membrane) as raw water, and an ion exchange resin. Widely used in place of the method.

【0003】電気再生式脱塩装置は、図1に示すよう
に、陽極1−陽極室2−陰イオン交換膜(アニオン交換
膜)3−{脱塩室5−陽イオン交換膜(カチオン交換
膜)4−濃縮室6−陰イオン交換膜3}−・・・・・・
−{脱塩室5−陽イオン交換膜4−濃縮室6−陰イオン
交換膜3}−脱塩室5−陽イオン交換膜4−陰極室7−
陰極8の順に配列して構成されている。そして陽極室2
及び陰極室7はイオンが集まってくる濃縮室の機能をも
つ濃縮室構成としている。
As shown in FIG. 1, an electric regeneration type desalination apparatus has an anode 1, an anode chamber 2, an anion exchange membrane (anion exchange membrane) 3-) a desalination chamber 5, a cation exchange membrane (cation exchange membrane). ) 4-concentration chamber 6-anion exchange membrane 3}-
-{Desalting room 5-cation exchange membrane 4-concentrating room 6-anion exchange membrane 3}-desalting room 5-cation exchange membrane 4-cathode room 7-
The cathodes 8 are arranged in this order. And anode room 2
The cathode chamber 7 has a function of a concentrating chamber in which ions are gathered.

【0004】陽極室2、陰極室7の両極室及び濃縮室6
には濃縮水を導入し、極室の液は排出(RO処理水を収
容する原水タンクに戻す)、濃縮室6から出る濃縮室出
口水の一部或いは全部を濃縮水9として循環させてい
る。即ち、原水を希釈水として濃縮室出口水と混合し、
濃縮水として極室(陽極室2及び陰極室7)及び濃縮室
6に供給し循環させている。脱塩室5からの脱塩水を超
純水10として得ている。なお、図1において、11、
12はそれぞれセル抑え板である。
The anode compartment 2, the cathode compartment 7, and the concentration compartment 6
, A liquid in the pole chamber is discharged (returned to the raw water tank containing the RO treated water), and part or all of the outlet water from the concentrating chamber exiting from the concentrating chamber 6 is circulated as the concentrated water 9. . That is, raw water is mixed with the outlet water of the concentration chamber as dilution water,
It is supplied and circulated to the pole chamber (anode chamber 2 and cathode chamber 7) and the concentrating chamber 6 as concentrated water. Demineralized water from the desalination chamber 5 is obtained as ultrapure water 10. Note that, in FIG.
Numeral 12 is a cell holding plate.

【0005】上記構成の電気再生式脱塩装置において、
陽極室2及び陰極室7の両極室のイオン濃度が上昇して
くると、陰イオン交換膜3及び陽イオン交換膜4のイオ
ン交換膜が変色する所謂膜焼けが発生し、イオン交換膜
としての機能が劣化するという問題があり、定期的にイ
オン交換膜を交換する必要がある。また、水解により陰
極室7及び陽極室2に水素及び酸素の発生が多い等の問
題もあった。また、原水に陽極1及び陰極8の電極を腐
食させるイオンが含まれているときは、そのイオンが陽
極室2及び陰極室7の極室で濃縮されるから、電極の腐
食が激しくなるという問題もある。
[0005] In the electric regeneration type desalination apparatus having the above structure,
When the ion concentration in both the anode chamber 2 and the cathode chamber 7 increases, the so-called membrane scorch occurs in which the ion exchange membranes of the anion exchange membrane 3 and the cation exchange membrane 4 are discolored. There is a problem that the function is deteriorated, and it is necessary to periodically replace the ion exchange membrane. In addition, there were also problems such as a large amount of hydrogen and oxygen generated in the cathode chamber 7 and the anode chamber 2 due to hydrolysis. In addition, if the raw water contains ions that corrode the electrodes of the anode 1 and the cathode 8, the ions are concentrated in the anode chambers 2 and the cathode chambers of the cathode chamber 7, and the corrosion of the electrodes becomes severe. There is also.

【0006】上記極室でイオン濃度が上昇するという問
題の対策として、図2に示すように、陽極室2と陰極室
7の両極室に脱塩室としての機能、即ちイオンを除去す
る機能をもたせることで、過濃縮を避け、膜焼けを防止
すると共に、水解による陰極室7の陰極8の近傍に発生
する水素H2及び陽極室2の陽極1の近傍に発生する酸
素O2の量を抑えることが可能となる。図2では陽極1
−陽極室2−陽イオン交換膜4−{濃縮室6−陰イオン
交換膜3−脱塩室5−陽イオン交換膜4}・・・・・・
{濃縮室6−陰イオン交換膜3−脱塩室5−陽イオン交
換膜4}−濃縮室6−陰イオン交換膜3−陰極室7−陰
極8の順に配列構成し、両極室にはイオンを除去する脱
塩室の機能をもたせている。
As a countermeasure against the problem that the ion concentration rises in the above-mentioned pole room, as shown in FIG. 2, both the anode room 2 and the cathode room 7 have a function as a desalting room, that is, a function for removing ions. In addition to avoiding over-concentration and preventing film burning, the amount of hydrogen H 2 generated in the vicinity of the cathode 8 of the cathode chamber 7 and oxygen O 2 generated in the vicinity of the anode 1 of the anode chamber 2 due to hydrolysis is increased. It can be suppressed. In FIG. 2, the anode 1
-Anode chamber 2-Cation exchange membrane 4- {Concentration chamber 6-Anion exchange membrane 3-Desalination chamber 5-Cation exchange membrane 4}
{Concentration room 6-anion exchange membrane 3-desalination room 5-cation exchange membrane 4} -Concentration room 6-anion exchange membrane 3-cathode room 7-cathode 8 It has the function of a desalination chamber to remove water.

【0007】電気再生式脱塩装置を図2に示すように構
成した場合でも、極室出口水は極室入口水よりイオン量
が少なく、濃縮室出口水よりはるかに良い水質になって
いるので、この極室出口水を排出してしまうことは無駄
であるばかりでなく、イオンのバランスからいって、よ
り多くの濃縮室出口水を排出する必要があり、希釈水と
しての原水量を多量に必要とすることになる。これによ
り、原水からどれだけの超純水が選られるかを示す純水
回収率が著しく悪化する。
Even when the electric regeneration type desalination apparatus is constructed as shown in FIG. 2, the water at the outlet of the pole room has a smaller amount of ions than the water at the inlet of the pole room and has much better water quality than the water at the outlet of the concentration chamber. However, it is not only wasteful to discharge the water at the outlet of the pole chamber, but also it is necessary to discharge more water at the outlet of the enrichment chamber due to the balance of ions. You will need it. Thereby, the pure water recovery rate indicating how much ultrapure water is selected from the raw water is significantly deteriorated.

【0008】そこで極室出口水を濃縮水として再循環さ
せることにより、従来どおりの純水回収率を保持するこ
とが可能となるが、極室出口水には水解により発生した
水素H2及び酸素O2が溶解しており、そのまま濃縮水と
して陽極室2及び陰極室7の極室や濃縮室6に導入する
と脱塩室5の酸素濃度が上昇するなどの問題が出てく
る。
[0008] Therefore, by recirculating the pole chamber outlet water as concentrated water, it is possible to maintain the pure water recovery rate as before, but the pole chamber outlet water contains hydrogen H 2 and oxygen generated by hydrolysis. O 2 has dissolved, comes out problems such as the concentration of oxygen to the desalting compartment 5 introduced electrode chamber and the concentration chamber 6 of the anode compartment 2 and the cathode compartment 7 as concentrated water is increased.

【0009】[0009]

【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたもので、極室におけるイオンの過濃縮を避
けイオン交換膜の膜焼けを防止し、電極の腐食を抑える
と共に、水解による水素及び酸素の発生量を抑え、循環
する濃縮水中の溶存酸素量を除去し脱塩室の溶存酸素の
増加を抑え、且つ従来の電気再生式脱塩装置と略同等の
超純水の回収率を達成できる電気再生式脱塩装置を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and it is intended to prevent overconcentration of ions in an electrode room, prevent burning of an ion-exchange membrane, suppress corrosion of an electrode, and reduce water degradation. To reduce the amount of hydrogen and oxygen generated by water, remove the amount of dissolved oxygen in the circulating concentrated water, suppress the increase in dissolved oxygen in the desalination chamber, and recover ultrapure water that is almost equivalent to conventional electric regeneration type desalination equipment. It is an object of the present invention to provide an electric regenerative desalination apparatus capable of achieving a high efficiency.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、極室間に脱塩室及び濃縮室を
配列し、各室にイオン交換体を充填し、少なくとも一部
の各室間に陽イオン交換膜或いは陰イオン交換膜を交互
に配置した電気再生式脱塩装置において、極室をイオン
が除去される脱塩構成とし、濃縮室及び極室に濃縮水を
導入すると共に、極室出口水を真空脱気膜装置を経由し
て濃縮水として濃縮室及び極室に導入することを特徴と
する。
According to the first aspect of the present invention, a desalting chamber and a concentrating chamber are arranged between pole chambers, and each chamber is filled with an ion exchanger. In a regenerative desalination apparatus in which cation exchange membranes or anion exchange membranes are alternately arranged between the chambers of the section, the pole chamber has a desalination configuration in which ions are removed, and concentrated water is supplied to the concentration chamber and the pole chamber. In addition to the introduction, the outlet water of the electrode chamber is introduced as concentrated water into the concentration chamber and the electrode chamber via a vacuum degassing membrane device.

【0011】上記のように極室を脱塩構成とするので、
極室内でのイオンの過濃縮を避けることができ、イオン
交換膜の膜焼けを防止できると共に、水解による水素及
び酸素の発生量を抑えることができる。また、極室出口
水を真空脱気膜装置を経由して濃縮水として濃縮室及び
極室に導入し、循環させることにより、従来の電気再生
式脱塩装置と略同じ純水回収率を維持できると共に、該
濃縮水中の溶存酸素を真空脱気膜装置で除去するので、
脱塩室の溶存酸素の増加を抑えることが可能になる。
As described above, since the pole chamber is desalted,
It is possible to avoid overconcentration of ions in the pole room, prevent burning of the ion exchange membrane, and suppress the generation of hydrogen and oxygen due to hydrolysis. In addition, the water at the outlet of the pole chamber is introduced into the concentrating chamber and the pole chamber as concentrated water via the vacuum degassing membrane device and circulated, thereby maintaining substantially the same pure water recovery rate as that of the conventional electric regeneration type desalination apparatus. As well as removing dissolved oxygen in the concentrated water with a vacuum degassing membrane device,
It is possible to suppress an increase in dissolved oxygen in the desalting chamber.

【0012】また、請求項2に記載の発明は、極室間に
脱塩室及び濃縮室を配列し、各室にイオン交換体を充填
し、少なくとも一部の各室間に陽イオン交換膜或いは陰
イオン交換膜を交互に配置した電気再生式脱塩装置にお
いて、極室をイオンが除去される脱塩構成とし、該極室
内の液を循環させる極液循環系を設けると共に、該極液
循環系に真空脱気膜装置を設けたことを特徴とする。
According to a second aspect of the present invention, a desalting chamber and a concentrating chamber are arranged between the pole chambers, each chamber is filled with an ion exchanger, and a cation exchange membrane is provided between at least some of the chambers. Alternatively, in an electric regeneration type desalination apparatus in which anion exchange membranes are alternately arranged, the electrode chamber has a desalination configuration in which ions are removed, and an electrode solution circulation system for circulating a liquid in the electrode chamber is provided. A circulating system is provided with a vacuum degassing membrane device.

【0013】上記のように極室内の液を循環させる極液
循環系を設けることにより、該極液に腐食性イオンが無
いか或いは除去された純水を用いることにより、極室は
脱塩構成であるから、原水からイオンが入り込むことが
無く、電極が腐食することはない。また、該極液循環系
に真空脱気膜装置を設けることにより、極液中の溶存酸
素を除去できるから、脱塩室の溶存酸素の増加を抑える
ことが可能となる。
[0013] By providing the polar liquid circulation system for circulating the liquid in the polar chamber as described above, by using pure water from which corrosive ions have no or eliminated corrosive ions, the polar chamber has a desalination structure. Therefore, ions do not enter from the raw water, and the electrode does not corrode. Further, by providing a vacuum degassing membrane device in the polar liquid circulation system, dissolved oxygen in the polar liquid can be removed, so that an increase in dissolved oxygen in the desalting chamber can be suppressed.

【0014】また、請求項3に記載の発明は、請求項2
に記載の電気再生式脱塩装置において、極液循環系の極
室出口部に気液分離器を設けると共に、該気液分離器に
液面レベルを検出する液面検出器を設け、液面が所定レ
ベル以下になったら脱塩室で脱塩処理した処理水を該気
液分離器に導入することを特徴とする。
[0014] The invention according to claim 3 provides the invention according to claim 2.
In the electric regeneration type desalination apparatus according to the above, a gas-liquid separator is provided at the outlet of the polar chamber of the polar liquid circulation system, and the gas-liquid separator is provided with a liquid level detector that detects a liquid level, When the water content falls below a predetermined level, treated water desalted in a desalination chamber is introduced into the gas-liquid separator.

【0015】上記のように極液循環系の極室出口部に気
液分離器を設けることにより、極室で発生した水素及び
酸素等を気体の極室出口水から分離することが可能とな
る。また、気液分離器に液面検出器を設け、液面が所定
レベル以下になったら脱塩室で脱塩処理した処理水を該
気液分離器に導入するので、極液量が不足した場合に脱
塩処理した処理水、即ち超純水を補充して、極液量を常
に所定量に維持することが可能となる。
By providing the gas-liquid separator at the outlet of the polar chamber in the polar liquid circulation system as described above, it becomes possible to separate hydrogen, oxygen, and the like generated in the polar chamber from the gas polar chamber outlet water. . In addition, a liquid level detector is provided in the gas-liquid separator, and when the liquid level falls below a predetermined level, treated water desalinated in a desalination chamber is introduced into the gas-liquid separator, so that the amount of polar liquid is insufficient. In this case, it is possible to replenish the desalted treated water, that is, ultrapure water, and to always maintain the electrode solution amount at a predetermined amount.

【0016】また、請求項4に記載の発明は、請求項2
に記載の電気再生式脱塩装置において、極液循環系の極
室出口部に気液分離器を設けると共に、脱塩室で脱塩処
理した脱塩処理水を該極液循環系に導入する脱塩処理水
導入流路を設けたことを特徴とする。
The invention described in claim 4 is the same as the invention described in claim 2.
In the electric regeneration type desalination apparatus according to the above, a gas-liquid separator is provided at the outlet of the pole chamber of the pole liquid circulation system, and desalinated water desalinated in the desalination chamber is introduced into the pole liquid circulation system. It is characterized in that a desalination treatment water introduction flow path is provided.

【0017】上記のように脱塩室で脱塩処理した脱塩処
理水を該極液循環系に導入する脱塩水導入流路を設けた
ことにより、簡単な構成の脱塩処理水導入流路を通して
極液の減少分を常に脱塩処理水(超純水)で補充でき
る。
By providing the desalinated water introduction passage for introducing the desalinated water desalinated in the desalination chamber as described above into the polar liquid circulation system, a desalinated treated water introduction passage having a simple structure is provided. Through the process, the reduced amount of the polar solution can always be replenished with desalted water (ultra pure water).

【0018】また、請求項5に記載の発明は、請求項4
に記載の電気再生式脱塩装置において、気液分離器に上
部から溢れる極液を排出する排出流路を設けたことを特
徴とする。
The invention described in claim 5 is the same as the claim 4.
In the electric regenerating type desalination apparatus according to the above, the gas-liquid separator is provided with a discharge channel for discharging the polar liquid overflowing from the upper part.

【0019】気液分離器に排出流路を設けたことによ
り、脱塩水流路を通して極液循環系に導入する脱塩処理
水が多く気液分離器の上部から溢れた場合、この溢れる
極液を排出することができる。
Since the gas-liquid separator is provided with a discharge channel, if a large amount of desalinated water to be introduced into the polar liquid circulation system through the desalinated water channel overflows from the upper portion of the gas-liquid separator, the overflowed liquid is Can be discharged.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づいて説明する。本発明に係る電気再生式脱塩装
置の概略構成は、図2に示すものと同じで、陽極室2と
陰極室7の両極室をイオンを除去する機能を有する脱塩
構成としている。
Embodiments of the present invention will be described below with reference to the drawings. The schematic configuration of the electric regeneration type desalination apparatus according to the present invention is the same as that shown in FIG. 2, and the anode chamber 2 and the cathode chamber 7 have a desalination structure having a function of removing ions.

【0021】図3は本発明に係る電気再生式脱塩装置の
システム構成例を示す図である。脱塩室5には原水(R
O処理水等)が配管20を通って供給され、濃縮室6、
陽極室2及び陰極室7の極室には配管22を通して濃縮
水が供給される。極室から出る極室出口水は配管13を
通って、気液分離器14に導入され、該極室出口水に含
まれる水素H2や酸素O2の気体は分離され、排出され
る。該気液分離器14で気体の除去された極室出口水は
ポンプ18で真空ポンプ19aを具備する真空脱気膜装
置19に導入され、ここで極室出口水に溶存する溶存酸
素O2等の溶存気体が除去される。
FIG. 3 is a diagram showing an example of a system configuration of an electric regeneration type desalination apparatus according to the present invention. Raw water (R
O treated water, etc.) is supplied through the pipe 20 and the concentration chamber 6,
Concentrated water is supplied to the pole chambers of the anode chamber 2 and the cathode chamber 7 through a pipe 22. The exit water of the pole chamber from the pole chamber passes through the pipe 13 and is introduced into the gas-liquid separator 14, where the gas of hydrogen H 2 and oxygen O 2 contained in the exit water of the pole chamber is separated and discharged. The water from the pole chamber from which gas has been removed by the gas-liquid separator 14 is introduced by a pump 18 into a vacuum degassing membrane device 19 equipped with a vacuum pump 19a, where dissolved oxygen O 2 and the like dissolved in the pole chamber outlet water Dissolved gas is removed.

【0022】濃縮室6からの濃縮室出口水は配管16を
通って導かれ一部は配管15を通って排出され(RO原
水タンクに戻す)、残りは希釈水として配管20を通し
て導入される原水と混合され、更に上記真空脱気膜装置
19を出た極室出口水と混合され、ポンプ21により配
管22を通って陽極室2、濃縮室6及び陰極室7に供給
されている。即ち、極室出口水と濃縮室出口水の一部は
濃縮水として再循環する。また、脱塩室5からの脱塩室
出口水は超純水として配管23を通して回収される。
The outlet water of the enrichment chamber from the enrichment chamber 6 is led through the pipe 16 and a part of the water is discharged through the pipe 15 (returned to the RO raw water tank), and the rest is the raw water introduced through the pipe 20 as dilution water. , And further mixed with the outlet water of the electrode chamber that has exited the vacuum degassing membrane device 19, and supplied to the anode chamber 2, the enrichment chamber 6, and the cathode chamber 7 through a pipe 22 by a pump 21. That is, part of the outlet water of the pole chamber and the outlet water of the concentration chamber are recirculated as concentrated water. Further, the outlet water of the desalting chamber from the desalting chamber 5 is recovered as ultrapure water through the pipe 23.

【0023】上記のように陽極室2及び陰極室7の極室
を脱塩構成とすることにより、極室内でのイオンの過濃
縮を避けることができる。従って、イオン交換膜の膜焼
けを防止できると共に、水解による水素H2及び酸素O2
の発生量を抑えることができる。更に気液分側面離器1
4で水素H2及び酸素O2等の気体を分離した後、真空脱
気膜装置19で溶存酸素等の溶存気体を除去するので、
脱塩室5の溶存酸素の増加を抑えることができる。(図
示していないが、水素H2と酸素O2とを別々の分離器で
分離し、真空脱気装置を経由するのは酸素O2側とし、
水素H2側はバイパスして循環しても、脱塩室5の溶存
酸素の増加は抑えることができる。)
As described above, the pole chambers of the anode chamber 2 and the cathode chamber 7 are desalted, so that overconcentration of ions in the pole chamber can be avoided. Therefore, it is possible to prevent burning of the ion exchange membrane and to reduce hydrogen H 2 and oxygen O 2 due to hydrolysis.
Can be suppressed. Gas-liquid separation side separator 1
After separating gases such as hydrogen H 2 and oxygen O 2 in 4, the dissolved gas such as dissolved oxygen is removed by the vacuum degassing membrane device 19.
An increase in dissolved oxygen in the desalting chamber 5 can be suppressed. (Although not shown, hydrogen H 2 and oxygen O 2 are separated by separate separators, and those passing through a vacuum deaerator are on the oxygen O 2 side,
Even if the hydrogen H 2 side is bypassed and circulated, an increase in dissolved oxygen in the desalting chamber 5 can be suppressed. )

【0024】また、このように極室を脱塩構成とするこ
とにより、極室出口水のイオン量は極室入口水のイオン
量より少なくなり、濃縮室出口水よりはるかに良い水質
になる。従って、極室出口水を排出してしまうことは上
記のように無駄であるばかりでなく、イオンのバランス
からいって、より多くの濃縮室出口水を排出する必要が
あるから、希釈水としての原水量を多量に必要とし、純
水回収率が著しく低下する。そこでここでは、極室出口
水の一部を優先的に濃縮水として濃縮室6及び極室(陽
極室2及び陰極室7)に導入し、循環させることによ
り、従来の電気再生式脱塩装置と略同じ純水回収率を維
持できるようにしている。
[0024] Further, by employing the desalting configuration of the pole room, the ion amount of the pole room outlet water is smaller than the ion amount of the pole room inlet water, and the water quality is much better than the concentration room outlet water. Therefore, it is not only wasteful to discharge the outlet water from the pole chamber as described above, but also from the balance of ions, it is necessary to discharge more outlet water from the enrichment chamber. A large amount of raw water is required, and the pure water recovery rate is significantly reduced. Therefore, here, a part of the outlet water of the pole chamber is preferentially introduced as concentrated water into the concentrating chamber 6 and the pole chamber (the anode chamber 2 and the cathode chamber 7) and circulated, whereby the conventional electric regeneration type desalination apparatus is used. It is possible to maintain the same pure water recovery rate as that of.

【0025】図4は本発明に係る電気再生式脱塩装置の
システム構成例を示す図である。本電気再生式脱塩装置
は複数個(図では3個)の電気再生式脱塩ユニット10
0−1〜100−3を具備し、各電気再生式脱塩ユニッ
ト100−1〜100−3の極室(陽極室2又は陰極室
7)からの極室出口水は配管13に集められ気液分離器
14に導入され、気体は分離排出される。該気体の分離
排出された極室出口水はポンプ18により真空脱気膜装
置19に送られ、溶存酸素等の溶存気体が除去される。
FIG. 4 is a diagram showing an example of a system configuration of an electric regeneration type desalination apparatus according to the present invention. The electric regenerative desalination apparatus includes a plurality (three in the figure) of electric regenerative desalination units 10.
0-1 to 100-3, and the pole chamber outlet water from the pole chamber (the anode chamber 2 or the cathode chamber 7) of each of the electric regeneration type desalination units 100-1 to 100-3 is collected by the pipe 13 and The gas is introduced into the liquid separator 14, and the gas is separated and discharged. The electrode chamber outlet water from which the gas has been separated and discharged is sent to a vacuum degassing membrane device 19 by a pump 18 to remove dissolved gases such as dissolved oxygen.

【0026】各電気再生式脱塩ユニット100−1〜1
00−3の濃縮室6からの濃縮室出口水は配管16に集
められ、一部は配管15を通って排出され(RO原水タ
ンクに戻す)、残りは希釈水として配管20を通して導
入される原水と混合され、更に上記真空脱気膜装置19
を出た極室出口水と混合され、ポンプ21により配管2
2を通って陽極室2、濃縮室6及び陰極室7に供給して
いる。
Each of the electric regeneration type desalination units 100-1 to 100-1
The condensing chamber outlet water from the concentrating chamber 6 of 00-3 is collected in the pipe 16, a part of which is discharged through the pipe 15 (returned to the RO raw water tank), and the rest is raw water introduced through the pipe 20 as dilution water. And further mixed with the above vacuum degassing membrane device 19
Is mixed with the water at the outlet of the electrode chamber,
2 to the anode chamber 2, the concentration chamber 6 and the cathode chamber 7.

【0027】上記真空脱気膜装置19は、多数の中空糸
膜にて、水と液とを内外に分けておき、気体側を真空に
することで、水中の溶存酸素等の溶存気体を除去するも
のである。
The vacuum degassing membrane device 19 removes dissolved gas such as dissolved oxygen in water by dividing water and liquid inside and outside with a large number of hollow fiber membranes and evacuating the gas side. Is what you do.

【0028】図5は本発明に係る電気再生式脱塩装置の
概略構成を示す分解斜視図である。本電気再生式脱塩装
置は、陽極1−陽極室2−陽イオン交換膜4−{濃縮室
6−陰イオン交換膜3−脱塩室5−陽イオン交換膜4}
・・・・・・{濃縮室6−陰イオン交換膜3−脱塩室5
−陽イオン交換膜4}−濃縮室6−陰イオン交換膜3−
陰極室7−陰極8の順に配列構成し、両極室にはイオン
を除去する脱塩室の機能をもたせている脱塩構成である
点は図2の場合と同一である。
FIG. 5 is an exploded perspective view showing a schematic configuration of an electric regeneration type desalination apparatus according to the present invention. This electric regeneration type desalination apparatus has an anode 1-an anode chamber 2-a cation exchange membrane 4- {a concentration chamber 6-an anion exchange membrane 3-a desalination chamber 5-a cation exchange membrane 4}.
・ ・ ・ ・ ・ ・ {Concentration room 6-anion exchange membrane 3-desalination room 5
-Cation exchange membrane 4}-Concentration chamber 6-Anion exchange membrane 3-
It is the same as the case of FIG. 2 in that the cathode chamber 7 and the cathode 8 are arranged in this order, and the both pole chambers have a desalination chamber function of removing ions.

【0029】電気再生式脱塩装置では、極液24がセル
抑え板11に設けられた孔11a、陽極室2の室枠2−
1に設けられた孔2−1aを通してイオン交換体(図示
せず)が充填された陽極室部2−1bに導入され、該陽
極室部2−1bを出た極液24は室枠2−1に設けられ
た孔2−1c及びセル抑え板11に設けられた孔11b
を通って循環する極液循環系(図示せず)が設けられて
いる。また、極液24がセル抑え板12に設けられた孔
12a、陰極室7の室枠7−1に設けられた孔7−1a
を通してイオン交換体(図示せず)が充填された陰極室
部7−1bに導入され、該陰極室部7−1bを出た極液
24は室枠7−1に設けられた孔7−1c及びセル抑え
板12に設けられた孔12bを通って循環する極液循環
系(図示せず)が設けられている。
In the electric regeneration type desalination apparatus, the electrode solution 24 is provided with the hole 11 a provided in the cell holding plate 11 and the chamber frame 2 of the anode chamber 2.
The ion-exchanger (not shown) is introduced into the filled anode chamber 2-1b through the hole 2-1a provided in the first chamber 1, and the polar liquid 24 that has exited the anode chamber 2-1b is supplied to the chamber frame 2-a. 2-1c provided in cell 1 and hole 11b provided in cell holding plate 11
There is provided an anolyte circulation system (not shown) which circulates through. Also, the hole 12a provided in the cell holding plate 12 for the electrode solution 24 and the hole 7-1a provided in the chamber frame 7-1 of the cathode chamber 7 are provided.
Is introduced into the cathode compartment 7-1b filled with an ion exchanger (not shown), and exits the cathode compartment 7-1b. The anolyte 24 passes through the hole 7-1c provided in the chamber frame 7-1. Further, there is provided an extreme liquid circulation system (not shown) which circulates through a hole 12b provided in the cell suppressing plate 12.

【0030】陽極室2(陽極室部2−1b)及び陰極室
7(陰極室部7−1b)には極液24として腐食性イオ
ンの無い或いは除去された純水を満たし(循環させ)て
おいて、運転する。陽極室2及び陰極室7の極室には脱
塩室としての機能をもたせることにより、原水からイオ
ンが入ってくることはない。従って、陽極1や陰極8の
電極が腐食することはない。基本的には極液を追加して
いく必要はないが、補給水として脱塩室出口水を導入す
る配管を設けておけば便利である。
The anode chamber 2 (anode chamber section 2-1b) and the cathode chamber 7 (cathode chamber section 7-1b) are filled (circulated) with pure water having no or no corrosive ions as the anolyte 24. Then, drive. By providing the anode compartment 2 and the cathode compartment 7 with a function as a desalination compartment, ions do not enter from the raw water. Therefore, the electrodes of the anode 1 and the cathode 8 do not corrode. Basically, it is not necessary to add the polar liquid, but it is convenient if a pipe for introducing the outlet water of the desalination chamber as makeup water is provided.

【0031】図6は本発明に係る電気再生式脱塩装置の
システム構成例を示す図である。本電気再生式脱塩装置
では陽極室2及び陰極室7の極室からの極室出口水は、
気液分離器14を通って気体が分離排出される。該気体
の分離排出された極室出口水はポンプ18で真空脱気膜
装置19に送られ、溶存酸素等の溶存気体が除去され、
配管28を通って極室に導入される。即ち、極室出口水
は極液循環系を通って循環するようになっている。
FIG. 6 is a diagram showing an example of a system configuration of an electric regeneration type desalination apparatus according to the present invention. In this electric regeneration type desalination apparatus, the outlet water from the anode compartments of the anode compartment 2 and the cathode compartment 7 is:
The gas is separated and discharged through the gas-liquid separator 14. The water discharged from the electrode chamber, which has been separated and discharged, is sent to a vacuum degassing membrane device 19 by a pump 18 to remove dissolved gases such as dissolved oxygen.
It is introduced into the pole room through a pipe 28. That is, the outlet water of the polar chamber is circulated through the polar liquid circulation system.

【0032】また、気液分離器14には液面レベルを検
出する液面検出器25が設けられており、該液面検出器
25は液面が所定レベル以下になったら、電磁弁26を
開放し、脱塩室5から配管23を通って得られる脱塩処
理水(超純水)を気液分離器14に導入する。従って極
液量が不足した場合には脱塩処理した超純水が補充さ
れ、所定量に維持することが可能となる。極液循環系に
真空脱気膜装置19を設けることにより、極液中の溶存
酸素等の溶存気体が除去できるから、脱塩室の溶存酸素
の増加を抑えることが可能となる。
The gas-liquid separator 14 is provided with a liquid level detector 25 for detecting a liquid level. When the liquid level falls below a predetermined level, the electromagnetic valve 26 is activated. After opening, the desalted water (ultra pure water) obtained from the desalting chamber 5 through the pipe 23 is introduced into the gas-liquid separator 14. Therefore, when the amount of the polar solution is insufficient, the desalted ultrapure water is replenished and can be maintained at a predetermined amount. By providing the vacuum degassing membrane device 19 in the polar liquid circulation system, it is possible to remove dissolved gas such as dissolved oxygen in the polar liquid, and thus it is possible to suppress an increase in dissolved oxygen in the desalting chamber.

【0033】図7は本発明に係る電気再生式脱塩装置の
システム構成例を示す図である。本電気再生式脱塩装置
では、脱塩室出口水が集められる配管23から分岐し、
陽極室2及び陰極室7からの極室出口水が配管13を通
って循環する極液循環系に脱塩処理水(超純水)を導入
する脱塩処理水導入流路29を設けている。これによ
り、常時少量の脱塩処理水を極液循環系に導入し、気液
分離器14から溢れた極液は分離された気体と共に、配
管を通ってRO原水タンク31に戻されるようになって
いる。RO原水タンク31には活性炭濾過装置やプレフ
ィルタ装置で井水や市水を濾過した濾過水が配管30を
通して導入されている。該濾過水はRO装置32により
1ミクロン以上の微粒子を除去したRO処理原水として
配管20を通して希釈水として電気再生式脱塩装置に導
入される。
FIG. 7 is a diagram showing an example of a system configuration of an electric regeneration type desalination apparatus according to the present invention. In the present electric regeneration type desalination apparatus, the water is branched from a pipe 23 in which water from a desalination chamber outlet is collected,
A desalinated water introduction flow path 29 for introducing desalinated water (ultra pure water) is provided in the polar liquid circulation system in which the outlet water from the anode chamber 2 and the cathode chamber 7 circulates through the pipe 13. . As a result, a small amount of desalinated water is always introduced into the polar liquid circulation system, and the polar liquid overflowing from the gas-liquid separator 14 is returned to the RO raw water tank 31 through the pipe together with the separated gas. ing. Filtration water obtained by filtering well water or city water with an activated carbon filtration device or a pre-filter device is introduced into the RO raw water tank 31 through a pipe 30. The filtered water is introduced as an RO-treated raw water from which fine particles of 1 μm or more has been removed by an RO device 32 as dilution water through a pipe 20 into an electric regeneration type desalination device.

【0034】上記のように脱塩処理水導入流路29を通
して少量の脱塩処理水を極液循環系に補給することによ
り、極液の減少分を常に補充できる。これにより図6に
示すように、液面検出器25や電磁弁26を設けること
なく、脱塩処理水の補給ができるから補給系が極めて簡
単となる。この極液循環系に導入される補給脱塩処理水
の量は全脱塩室5から得られる脱塩処理水量の1%以下
なら問題なく運転可能であり、殆ど無視できる程度の量
である。また、流量制御、調整の点から、増量しても運
転上は差し支えない。
As described above, by supplying a small amount of the desalinated water to the polar liquid circulation system through the desalinated water introduction passage 29, the reduced amount of the polar liquid can be always replenished. As a result, as shown in FIG. 6, the replenishment system can be remarkably simplified because replenishment of the desalted water can be performed without providing the liquid level detector 25 and the electromagnetic valve 26. If the amount of replenishment treated water introduced into the polar liquid circulation system is 1% or less of the amount of desalted treated water obtained from the entire desalination chamber 5, it can be operated without any problem and is almost negligible. From the viewpoint of flow rate control and adjustment, even if the amount is increased, there is no problem in operation.

【0035】なお、本発明に係る電気再生式脱塩装置
は、脱塩室5と濃縮室6の間に配置されるイオン交換膜
が全体に渡って陽イオン交換膜(カチオン交換膜)4と
陰イオン交換膜(アニオン交換膜)3が交互に配置され
た構成に限定されるものではなく、少なくとも一部の脱
塩室5と濃縮室6の間に陽イオン交換膜4或いは陰イオ
ン交換膜3が交互に配置されている構成であれば、他の
部分の室間では陽イオン交換膜4或いは陰イオン交換膜
3が連続して配置されていてもよい。
In the electric regeneration type desalination apparatus according to the present invention, the ion exchange membrane disposed between the desalting chamber 5 and the concentration chamber 6 has a cation exchange membrane (cation exchange membrane) 4 The configuration is not limited to the configuration in which the anion exchange membranes (anion exchange membranes) 3 are alternately arranged, and the cation exchange membrane 4 or the anion exchange membrane is provided between at least a part of the desalination chamber 5 and the concentration chamber 6. As long as the three are alternately arranged, the cation exchange membrane 4 or the anion exchange membrane 3 may be arranged continuously between the chambers in other parts.

【0036】[0036]

【発明の効果】以上説明したように、請求項1に記載の
発明によれば下記のような優れた効果が期待できる。
As described above, according to the first aspect of the invention, the following excellent effects can be expected.

【0037】(1)極室を脱塩構成とするので、極室内
でのイオンの過濃縮を避けることができ、イオン交換膜
の膜焼けを防止できると共に、水解による水素及び酸素
の発生量を抑えることができる。
(1) Since the electrode room is desalted, it is possible to avoid overconcentration of ions in the electrode room, prevent burning of the ion exchange membrane, and reduce the amount of hydrogen and oxygen generated by hydrolysis. Can be suppressed.

【0038】(2)また、極室出口水を真空脱気膜装置
を経由して濃縮水として濃縮室及び極室に導入し、循環
させることにより、従来の電気再生式脱塩装置と略同じ
純水回収率を維持できると共に、該濃縮水中の溶存酸素
を真空脱気膜装置で除去するので、脱塩室の溶存酸素の
増加を抑えることが可能になる。
(2) In addition, the outlet water of the pole chamber is introduced into the concentrating chamber and the pole chamber as concentrated water via the vacuum degassing membrane device and circulated, thereby being substantially the same as the conventional electric regeneration type desalination device. Since the pure water recovery rate can be maintained and the dissolved oxygen in the concentrated water is removed by the vacuum degassing membrane device, it is possible to suppress an increase in the dissolved oxygen in the desalting chamber.

【0039】請求項2に記載の発明によれば、極室を脱
塩構成とするので、請求項1に記載の発明と同様、上記
(1)の効果が期待できるのに加え、更に下記のような
効果が期待できる。
According to the second aspect of the present invention, since the electrode chamber is desalted, the effect of the above (1) can be expected as in the first aspect of the invention. Such effects can be expected.

【0040】(3)極室出口水を真空脱気膜装置を経由
して極室に導入し、循環させることにより、希釈液とし
て導入する原水の量を減らすことができるから、従来の
電気再生式脱塩装置と略同じ純水回収率を維持できると
共に、循環する極室出口水中の溶存酸素を真空脱気膜装
置で除去するので、脱塩室の溶存酸素の増加を抑えるこ
とが可能になる。
(3) The amount of raw water to be introduced as a diluent can be reduced by introducing and circulating the water at the outlet of the electrode chamber through the vacuum degassing membrane device into the electrode chamber. It is possible to maintain almost the same pure water recovery rate as that of the desalination system, and remove the dissolved oxygen in the circulating pole room outlet water with a vacuum degassing membrane device, thereby suppressing the increase in the dissolved oxygen in the desalination room. Become.

【0041】(4)極室内の液を循環させる極液循環系
を設けることにより、該極液に腐食性イオンの無いか或
いは除去された純水を用いることにより、極室は脱塩構
成であるから、原水からイオンが入り込むことが無く、
電極が腐食することはない。
(4) By providing an anolyte circulating system for circulating the liquid in the anodic chamber, using pure water free of corrosive ions or depleted water in the anolyte, the electrode chamber has a desalination structure. Because there is no ion from the raw water,
The electrodes do not corrode.

【0042】請求項3に記載の発明によれば、請求項2
に記載の発明の効果に加え下記の効果が期待できる。
According to the invention of claim 3, according to claim 2,
The following effects can be expected in addition to the effects of the invention described in (1).

【0043】(5)極液循環系の極室出口部に気液分離
器を設けることにより、極室で発生した水素及び酸素等
の気体を極室出口水から分離排出することが可能とな
る。
(5) By providing a gas-liquid separator at the outlet of the polar chamber of the polar liquid circulation system, it is possible to separate and discharge gases such as hydrogen and oxygen generated in the polar chamber from the outlet water of the polar chamber. .

【0044】(6)気液分離器に液面検出器を設け、液
面が所定レベル以下になったら脱塩室で脱塩処理した処
理水を該気液分離器に導入するので、極液量が不足した
場合に脱塩処理した超純水を補充して、極液量を常に所
定量に維持することが可能となる。
(6) A liquid level detector is provided in the gas-liquid separator, and when the liquid level falls below a predetermined level, treated water desalted in the desalting chamber is introduced into the gas-liquid separator. When the amount is insufficient, the ultrapure water subjected to the desalination treatment is replenished, and the amount of the polar solution can be constantly maintained at a predetermined amount.

【0045】また、請求項4に記載の発明によれば、請
求項2に記載の発明の効果に加え下記の効果が期待でき
る。
According to the fourth aspect of the invention, the following effects can be expected in addition to the effects of the second aspect of the invention.

【0046】(7)脱塩室で脱塩処理した脱塩処理水を
該極液循環系に導入する脱塩処理水導入流路を設けたこ
とにより、該脱塩処理水導入流路を通して極液の減少分
を常に脱塩処理水(超純水)で補充できると共に、脱塩
処理水の補給系を簡単に構成できる。
(7) By providing a desalinated water introduction channel for introducing desalinated water desalinated in the desalination chamber into the polar liquid circulation system, the electrode can be passed through the desalinated water introduction channel. The reduced amount of the liquid can always be replenished with the desalinated water (ultra pure water), and the replenishment system for the desalinated water can be easily configured.

【0047】また、請求項5に記載の発明によれば、請
求項4に記載の発明の効果に加え下記の効果が期待でき
る。
According to the fifth aspect of the invention, the following effects can be expected in addition to the effects of the fourth aspect of the invention.

【0048】(8)気液分離器に排出流路を設けたこと
により、脱塩水流路を通して極液循環系に導入する脱塩
処理水が多く気液分離器の上部から溢れた場合、この溢
れる極液を排出することができる。
(8) By providing the gas-liquid separator with a discharge channel, if a large amount of desalinated water introduced into the polar liquid circulation system through the desalinated water channel overflows from the upper part of the gas-liquid separator, The overflowing electrolyte can be discharged.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の電気再生式脱塩装置の概略構成を示す分
解斜視図である。
FIG. 1 is an exploded perspective view showing a schematic configuration of a conventional electric regeneration type desalination apparatus.

【図2】本発明に係る電気再生式脱塩装置の概略構成を
示す分解斜視図である。
FIG. 2 is an exploded perspective view showing a schematic configuration of an electric regeneration type desalination apparatus according to the present invention.

【図3】本発明に係る電気再生式脱塩装置のシステム構
成例を示す図である。
FIG. 3 is a diagram showing a system configuration example of an electric regeneration type desalination apparatus according to the present invention.

【図4】本発明に係る電気再生式脱塩装置のシステム構
成例を示す図である。
FIG. 4 is a diagram showing an example of a system configuration of an electric regeneration type desalination apparatus according to the present invention.

【図5】本発明に係る電気再生式脱塩装置の概略構成を
示す分解斜視図である。
FIG. 5 is an exploded perspective view showing a schematic configuration of an electric regeneration type desalination apparatus according to the present invention.

【図6】本発明に係る電気再生式脱塩装置のシステム構
成例を示す図である。
FIG. 6 is a diagram showing a system configuration example of an electric regeneration type desalination apparatus according to the present invention.

【図7】本発明に係る電気再生式脱塩装置のシステム構
成例を示す図である。
FIG. 7 is a diagram showing an example of a system configuration of an electric regeneration type desalination apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 陽極 2 陽極室 3 陰イオン交換膜(アニオン交換膜) 4 陽イオン交換膜(カチオン交換膜) 5 脱塩室 6 濃縮室 7 陰極室 8 陰極 9 濃縮水 10 脱塩水(超純水) 11 セル抑え板 12 セル抑え板 14 気液分離器 18 ポンプ 19 真空脱気膜装置 21 ポンプ 24 極液 25 液面検出器 26 電磁弁 29 脱塩処理水導入流路 31 RO原水タンク 32 RO装置 DESCRIPTION OF SYMBOLS 1 Anode 2 Anode chamber 3 Anion exchange membrane (anion exchange membrane) 4 Cation exchange membrane (cation exchange membrane) 5 Demineralization chamber 6 Concentration chamber 7 Cathode chamber 8 Cathode 9 Concentrated water 10 Demineralized water (ultra pure water) 11 cells Suppression plate 12 Cell suppression plate 14 Gas-liquid separator 18 Pump 19 Vacuum degassing membrane device 21 Pump 24 Extreme liquid 25 Liquid level detector 26 Solenoid valve 29 Desalination treatment water introduction flow passage 31 RO raw water tank 32 RO device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/44 C02F 1/46 103 (72)発明者 川本 孝善 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D006 GA17 HA47 JA30A JA43A JA44A JA56A JA70A KA31 KB11 KB17 KE21P KE21Q MA01 MA03 MA13 MA14 PB06 PC02 4D011 AA16 AA17 AD03 4D037 AA03 BA23 CA04 4D061 DA03 DB13 EA09 EB01 EB13 EB18 EB19 EB22 FA03 FA09 FA13 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/44 C02F 1/46 103 (72) Inventor Takayoshi Kawamoto 11-1 Haneda Asahimachi, Ota-ku, Tokyo Ebara in the F-term, Ltd. (reference) 4D006 GA17 HA47 JA30A JA43A JA44A JA56A JA70A KA31 KB11 KB17 KE21P KE21Q MA01 MA03 MA13 MA14 PB06 PC02 4D011 AA16 AA17 AD03 4D037 AA03 BA23 CA04 4D061 DA03 DB13 EA09 EB01 EB13 EB18 EB19 EB22 FA03 FA09 FA13

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 極室間に脱塩室及び濃縮室を配列し、各
室にイオン交換体を充填し、少なくとも一部の各室間に
陽イオン交換膜或いは陰イオン交換膜を交互に配置した
電気再生式脱塩装置において、 前記極室をイオンが除去される脱塩構成とし、前記濃縮
室及び該極室に濃縮水を導入すると共に、該極室出口水
を真空脱気膜装置を経由して前記濃縮水として前記濃縮
室及び極室に導入することを特徴とする電気再生式脱塩
装置。
1. A desalting chamber and a concentrating chamber are arranged between pole chambers, each chamber is filled with an ion exchanger, and cation exchange membranes or anion exchange membranes are alternately arranged between at least some of the chambers. In the electric regeneration type desalination apparatus, the electrode chamber is desalted to remove ions, concentrated water is introduced into the concentration chamber and the electrode chamber, and the electrode chamber outlet water is supplied to a vacuum deaeration membrane device. An electric regeneration type desalination apparatus, wherein the concentrated water is introduced into the concentrating chamber and the pole chamber via the condensed water.
【請求項2】 極室間に脱塩室及び濃縮室を配列し、各
室にイオン交換体を充填し、少なくとも一部の各室間に
陽イオン交換膜或いは陰イオン交換膜を交互に配置した
電気再生式脱塩装置において、 前記極室をイオンが除去される脱塩構成とし、該極室内
の液を循環させる極液循環系を設けると共に、該極液循
環系に真空脱気膜装置を設けたことを特徴とする電気再
生式脱塩装置。
2. A desalting chamber and a concentrating chamber are arranged between the pole chambers, each chamber is filled with an ion exchanger, and a cation exchange membrane or an anion exchange membrane is alternately arranged between at least some of the chambers. In the electric regeneration type desalination apparatus, the electrode chamber has a desalination configuration for removing ions, an electrode liquid circulation system for circulating a liquid in the electrode chamber is provided, and a vacuum degassing membrane device is provided in the electrode liquid circulation system. An electric regeneration type desalination apparatus characterized by comprising:
【請求項3】 請求項2に記載の電気再生式脱塩装置に
おいて、 前記極液循環系の極室出口部に気液分離器を設けると共
に、該気液分離器に液面レベルを検出する液面検出器を
設け、液面が所定レベル以下になったら前記脱塩室で脱
塩処理した処理水を該気液分離器に導入することを特徴
とする電気再生式脱塩装置。
3. The desalination apparatus according to claim 2, wherein a gas-liquid separator is provided at an outlet of the polar chamber of the polar liquid circulation system, and a liquid level is detected by the gas-liquid separator. An electric regeneration type desalination apparatus comprising a liquid level detector, wherein when the liquid level falls below a predetermined level, treated water desalinated in the desalting chamber is introduced into the gas-liquid separator.
【請求項4】 請求項2に記載の電気再生式脱塩装置に
おいて、 前記極液循環系の極室出口部に気液分離器を設けると共
に、前記脱塩室で脱塩処理した脱塩処理水を該極液循環
系に導入する脱塩処理水導入流路を設けたことを特徴と
する電気再生式脱塩装置。
4. The desalination apparatus according to claim 2, wherein a gas-liquid separator is provided at an outlet of the pole chamber of the pole liquid circulation system, and desalination is performed in the desalination chamber. An electric regeneration type desalination apparatus comprising a desalination treatment water introduction flow path for introducing water into the polar liquid circulation system.
【請求項5】 請求項4に記載の電気再生式脱塩装置に
おいて、 前記気液分離器に上部から溢れる極液を排出する排出流
路を設けたことを特徴とする電気再生式脱塩装置。
5. The electric regeneration type desalination apparatus according to claim 4, wherein the gas-liquid separator is provided with a discharge flow path for discharging the polar liquid overflowing from the upper part. .
JP2000022675A 2000-01-31 2000-01-31 Electric regeneration type desalting apparatus Pending JP2001212567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000022675A JP2001212567A (en) 2000-01-31 2000-01-31 Electric regeneration type desalting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000022675A JP2001212567A (en) 2000-01-31 2000-01-31 Electric regeneration type desalting apparatus

Publications (1)

Publication Number Publication Date
JP2001212567A true JP2001212567A (en) 2001-08-07

Family

ID=18548949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000022675A Pending JP2001212567A (en) 2000-01-31 2000-01-31 Electric regeneration type desalting apparatus

Country Status (1)

Country Link
JP (1) JP2001212567A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066345A1 (en) * 2004-12-23 2006-06-29 The Australian National University Increased conductivity and enhanced electrolytic and electrochemical processes
JP2012239966A (en) * 2011-05-18 2012-12-10 Japan Organo Co Ltd Electric deionized water producing apparatus
WO2014043322A1 (en) * 2012-09-17 2014-03-20 Severn Trent Water Purification, Inc. Method and system for treating produced water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066345A1 (en) * 2004-12-23 2006-06-29 The Australian National University Increased conductivity and enhanced electrolytic and electrochemical processes
JP2012239966A (en) * 2011-05-18 2012-12-10 Japan Organo Co Ltd Electric deionized water producing apparatus
WO2014043322A1 (en) * 2012-09-17 2014-03-20 Severn Trent Water Purification, Inc. Method and system for treating produced water
US9403698B2 (en) 2012-09-17 2016-08-02 De Nora Water Technologies, Inc. Method and system for treating produced water

Similar Documents

Publication Publication Date Title
US20070056847A1 (en) Electrochemical liquid treatment equipments
JP2002205069A (en) Electrodeionization apparatus and operating method thereof
US20060027457A1 (en) Apparatus for electrodeionization and method for operating the same
JP6863510B1 (en) Control method of ultrapure water production equipment
JP3969221B2 (en) Method and apparatus for producing deionized water
CN1774403B (en) Apparatus for electrodeionization and method for operating the same
JP2001340863A (en) Bathtub water circulating and softening apparatus and bathtub water circulating soft water bath
JP5145305B2 (en) Electric deionized water production equipment
JP2001198577A (en) Electric deionizing device
JP2003001259A (en) Ultrapure water producing apparatus
JP3952127B2 (en) Electrodeionization treatment method
JP2001212567A (en) Electric regeneration type desalting apparatus
JP6752932B2 (en) Water treatment equipment and water treatment method
JP5379025B2 (en) Electric deionized water production equipment
JP3773178B2 (en) Electric deionized water production apparatus and production method
JP2006051423A (en) Electric deionization system, electric deionization method, and pure water production device
JP2001523566A (en) Method and apparatus for partial desalination of water
JP2007063617A (en) Apparatus for regenerating plating solution containing sulfate ion and method for removing sulfate ion
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP3700244B2 (en) Pure water production equipment
JP2004261648A (en) Electrodeionization apparatus, and operating method thereof
JPH0824868A (en) Water treatment apparatus
JP2002011476A (en) Method of operating electric deionization device
JP3717147B2 (en) Electric regenerative desalination equipment
JP2003326269A (en) Electric regenerative demineralizer