JP2001203104A - METHOD OF MANUFACTURING RARE-EARTH-Fe-N PERMANENT MAGNET - Google Patents
METHOD OF MANUFACTURING RARE-EARTH-Fe-N PERMANENT MAGNETInfo
- Publication number
- JP2001203104A JP2001203104A JP2000351094A JP2000351094A JP2001203104A JP 2001203104 A JP2001203104 A JP 2001203104A JP 2000351094 A JP2000351094 A JP 2000351094A JP 2000351094 A JP2000351094 A JP 2000351094A JP 2001203104 A JP2001203104 A JP 2001203104A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- metal
- rare earth
- permanent magnet
- molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/059—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、希土類−鉄−窒素系永
久磁石の製造方法に係り、さらに詳しくは粗粉末を用い
ることにより、製造性と性能的な長期安定性を改良した
永久磁石の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth-iron-nitrogen permanent magnet, and more particularly to a permanent magnet having improved productivity and long-term stability in performance by using coarse powder. It relates to a manufacturing method.
【0002】[0002]
【従来の技術】近年、各種電子機器の小型化に伴って高
性能なNd −Fe −B系永久磁石が広く使用されてい
る。しかしこの磁石はキュリー点が 310℃と低いために
温度特性が悪く、 150℃以上での使用が困難であった。2. Description of the Related Art In recent years, with the miniaturization of various electronic devices, high-performance Nd-Fe-B permanent magnets have been widely used. However, since this magnet has a low Curie point of 310 ° C, its temperature characteristics are poor, and it has been difficult to use it at 150 ° C or higher.
【0003】一方、希土類金属と鉄との合金に窒素を侵
入させることにより、例えばTh2Zn17型の結晶構造
の化合物を主相とするSm −Fe −N−H系合金が、優
れた磁気特性と約 470℃のキュリー点をもつことが報告
されている。また、ThMn 12型の結晶構造の化合物を
主相とするNd −Fe −Ti −N系合金も同様な磁性を
もつことが報告されている。[0003] On the other hand, nitrogen invades an alloy of a rare earth metal and iron.
By entering, for example, ThTwoZn17Type crystal structure
Sm-Fe-NH-based alloys having a main phase of
With improved magnetic properties and Curie point of about 470 ℃
Have been. Also, ThMn 12Type of crystal structure compound
The Nd-Fe-Ti-N alloy used as the main phase has similar magnetism.
Have been reported.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記希
土類−鉄−窒素系合金は、数μmの粒径に微粉砕しなけ
れば永久磁石にとって必要な保磁力が得られず、この微
粉末を用いる分、成形性が悪化して高圧成形が必要とな
り、金型寿命の低下が避けられないという問題があっ
た。またこの種の合金粉末は高温・高湿下で酸化し易
く、微粉末を用いる分、その酸化が促進され、長期的に
安定した性能を有する永久磁石を得ることが困難である
という問題もあった。However, the above rare earth-iron-nitrogen alloy cannot obtain the coercive force required for a permanent magnet unless it is finely ground to a particle size of several μm. However, there has been a problem that the moldability is deteriorated and high-pressure molding is required, and a reduction in the mold life is inevitable. Further, this kind of alloy powder is easily oxidized under high temperature and high humidity, and the use of fine powder promotes the oxidation, so that it is difficult to obtain a permanent magnet having stable performance over a long period of time. Was.
【0005】本発明は、上記従来の問題に鑑みてなされ
たもので、粗粉末を用いても充分なる保磁力を確保で
き、もって製造性の改善と性能の長期安定化に大きく寄
与する希土類−鉄−窒素系永久磁石の製造方法を提供す
ることを目的とする。The present invention has been made in view of the above-mentioned conventional problems, and a sufficient coercive force can be ensured even when coarse powder is used, so that rare earth elements greatly contribute to improvement in manufacturability and long-term stability of performance. An object of the present invention is to provide a method for producing an iron-nitrogen permanent magnet.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するた
め、本発明における希土類磁石の製造方法は、希土類金
属(R),Fe およびNを主成分とし、かつThMn12
型結晶構造の化合物を主相とする平均粒径20〜 150μm
の合金粉末表面に、Sn ,Zn ,Pb ,In ,Al ,M
g の少なくとも一種から成る金属皮膜を形成し、これに
100〜 600℃の温度範囲で熱処理を施した後、成形を行
なうように構成したことを特徴とする。In order to solve the above-mentioned problems, a method of manufacturing a rare earth magnet according to the present invention comprises a rare earth metal (R), Fe and N as main components and ThMn 12
Average particle size 20-150μm with compound of main type crystal structure as main phase
Sn, Zn, Pb, In, Al, M
g) to form a metal film consisting of at least one of
It is characterized in that the heat treatment is performed in a temperature range of 100 to 600 ° C., and then the molding is performed.
【0007】本発明における希土類−鉄−窒素系合金と
しては、ThMn12型結晶構造の化合物を主相とするN
d(Fe ,M)12Nx 組成やPr(Fe ,M)12Nx
組成が代表として挙げられる(ここでMは遷移元素を指
す)。この場合、Nの含有量としては数〜20数原子%が
選択される。これらの合金は、窒素の含有により飽和磁
束密度、結晶磁気異方性およびキュリー点が大幅に向上
し、永久磁石素材として優れたものになる。またこれら
の合金は、鉄の一部をCo やTi など他の遷移金属で置
換したり、希土類金属として2種以上の希土類金属を用
いることができる。Co は、特にキュリー点の上昇と耐
食性の向上に効果がある。また上記Nの一部をCで置き
換えることによっても、良好な磁気特性を得ることがで
きる。In the present invention, the rare earth-iron-nitrogen based alloy is an N-type alloy containing a compound having a ThMn 12 type crystal structure as a main phase.
d (Fe, M) 12 Nx composition and Pr (Fe, M) 12 Nx
The composition is exemplified as a representative (where M indicates a transition element). In this case, the content of N is selected from several to several tens of atomic%. In these alloys, the saturation magnetic flux density, the magnetocrystalline anisotropy and the Curie point are greatly improved by the inclusion of nitrogen, and are excellent as permanent magnet materials. In these alloys, a part of iron can be replaced by another transition metal such as Co or Ti, or two or more rare earth metals can be used as a rare earth metal. Co is particularly effective in increasing the Curie point and improving corrosion resistance. Good magnetic properties can also be obtained by replacing part of the above N with C.
【0008】本発明において上記合金粉末を得る方法は
任意であり、例えば、希土類金属、鉄(および所望によ
りその他の金属)との母合金粉末を得て、これにNを侵
入させる方法を用いることができる。この場合、母合金
粉末を得る方法としては希土類金属とFe とを所定比率
で配合した原料を高周波溶解し、その合金溶湯を鋳型に
注湯して一旦合金インゴットとなし、高温で均質化処理
を行った後、ジョークラッシャーやスタンプミル、ボー
ルミル等を用いて所望の粉末とする方法、あるいは合金
溶湯を直接急冷して粉末とする急冷法を用いることがで
きる。またこの母合金粉末へのNの侵入については、こ
の母合金粉末を高温で窒素、アンモニア、あるいは窒素
と水素の混合ガス等の窒化性ガスと接触させることによ
って行うことができる。この場合、窒化温度としては、
200℃未満ではNの侵入が不充分であり、 600℃を超え
ると化合物相が分解し易くなるので、200 〜600 ℃の範
囲を選択するのが望ましい。また、この窒化処理を数十
気圧の高圧力下で行うことにより、母合金粉末への窒素
の侵入を効率的に行うことができる。さらに、この窒化
処理の後に再度粉砕を行って粉末粒径の調整を行うこと
は差し支えない。In the present invention, the method of obtaining the above alloy powder is optional. For example, a method of obtaining a mother alloy powder with a rare earth metal and iron (and other metals as desired) and injecting N into the powder is used. Can be. In this case, as a method for obtaining the mother alloy powder, a raw material in which a rare earth metal and Fe are mixed at a predetermined ratio is subjected to high frequency melting, and the molten alloy is poured into a mold to form an alloy ingot, which is then homogenized at a high temperature. After performing the method, a method of forming a desired powder using a jaw crusher, a stamp mill, a ball mill, or the like, or a quenching method of directly quenching a molten alloy directly to obtain a powder can be used. The entry of N into the mother alloy powder can be performed by bringing the mother alloy powder into contact with a nitriding gas such as nitrogen, ammonia, or a mixed gas of nitrogen and hydrogen at a high temperature. In this case, the nitriding temperature is
If the temperature is lower than 200 ° C., the penetration of N is insufficient, and if the temperature exceeds 600 ° C., the compound phase is easily decomposed. Therefore, it is desirable to select the range of 200 to 600 ° C. Further, by performing this nitriding treatment under a high pressure of several tens of atmospheres, nitrogen can be efficiently introduced into the mother alloy powder. Further, after the nitriding treatment, it is possible to carry out pulverization again to adjust the powder particle size.
【0009】本発明において、合金粉末の粒径は、20μ
m未満ではボンド磁石化するに際して高圧成形を必要と
するために量産上好ましくないばかりか、製造工程中で
酸化し易くなり、一方、 150μmを越える粒径ではNの
侵入が充分に行われないため、これを20〜 150μmの範
囲とした。In the present invention, the particle size of the alloy powder is 20 μm.
If it is less than m, it is not preferable for mass production because high pressure molding is required when forming a bonded magnet, and it is easy to oxidize during the manufacturing process. On the other hand, if the particle size exceeds 150 μm, N does not penetrate sufficiently. This was in the range of 20 to 150 μm.
【0010】本発明において、上記したように合金粉末
の表面に低融点金属であるSn ,Zn ,Pb ,In ,A
l ,Mg の少なくとも一種からなる皮膜を形成すること
を特徴とするが、これら低融点金属を選択したのは、こ
れらの金属類は、ボンド磁石用のバインダーとして機能
する他に、後述の熱処理により合金粉末と一部反応して
保磁力を増加させる働きがあるためである。合金粉末の
表面に金属皮膜を形成する方法としてはメッキ処理法ま
たは機械的結合処理法を用いることができる。メッキ処
理法としては薬品を用いる化学的方法、あるいは蒸着、
スパッタリング等の物理的方法があり、一方、機械的結
合処理法としては、振動ミルにより強い機械力を加える
方法がある。In the present invention, as described above, Sn, Zn, Pb, In, A, which are low melting point metals, are formed on the surface of the alloy powder.
It is characterized by forming a film composed of at least one of l and Mg. The reason for selecting these low melting metals is that these metals not only function as binders for bonded magnets but also are subjected to heat treatment described later. This is because it has a function of increasing the coercive force by partially reacting with the alloy powder. As a method for forming a metal film on the surface of the alloy powder, a plating method or a mechanical bonding method can be used. As a plating method, a chemical method using chemicals, or vapor deposition,
There are physical methods such as sputtering, and on the other hand, as a mechanical bonding treatment method, there is a method in which a strong mechanical force is applied by a vibrating mill.
【0011】本発明において、上記熱処理は、不活性ガ
ス雰囲気中あるいは真空中で加熱することによって行わ
れる。この熱処理によって磁気特性特に保磁力が向上す
るが、その理由は、合金粉末に少量含まれている軟磁性
の鉄成分が皮膜金属と反応を起こして消滅するためと推
察される。この熱処理の加熱温度としては、 100℃未満
では前述の向上がみられず、 600℃を越えると化合物の
分解を引き起こして磁気特性が低下する傾向にあるた
め、これを 100〜 600℃の範囲とした。In the present invention, the heat treatment is performed by heating in an inert gas atmosphere or in a vacuum. This heat treatment improves the magnetic properties, especially the coercive force, presumably because the soft magnetic iron component contained in the alloy powder in a small amount reacts with the coating metal and disappears. If the heating temperature of this heat treatment is less than 100 ° C, the above-mentioned improvement is not observed.If it exceeds 600 ° C, the compound tends to be decomposed and the magnetic properties tend to be reduced. did.
【0012】上記熱処理を施した粉末の成形において
は、加圧により低融点金属皮膜が粉末相互を固着し、数
Ton/cm2 の加圧成形によって硬い成形体を得ることが
できる。この場合、粉末に皮膜金属と同種の金属バイン
ダーを数重量%添加して加圧成形することにより、一層
優れた強度を有する成形体を得ることができる。さらに
は、バインダーを加えることなく成形後に、エポキシ樹
脂やワニスなどの有機物を成形体に含浸させることによ
っても、優れた強度の成形体を得ることができる。また
この成形は圧縮、射出、押し出し等の各種方法を用いる
ことができる。In the molding of the heat-treated powder, the low-melting metal film fixes the powder to each other by pressurization.
A hard molded body can be obtained by pressure molding of Ton / cm 2 . In this case, a powder having the same kind of metal binder as the coating metal is added to the powder by several weight%, and the powder is subjected to pressure molding, whereby a molded article having more excellent strength can be obtained. Furthermore, a molded article having excellent strength can also be obtained by impregnating the molded article with an organic substance such as an epoxy resin or a varnish after molding without adding a binder. For this molding, various methods such as compression, injection, and extrusion can be used.
【0013】[0013]
【作用】上述の希土類−鉄−窒素系永久磁石の製造方法
においては、合金粉末への低融点金属皮膜の形成とその
後の熱処理により、磁気特性特に保磁力が増大し、その
分、粗粉末の使用が可能になる。In the above-described method for producing a rare earth-iron-nitrogen permanent magnet, the formation of a low-melting metal film on the alloy powder and the subsequent heat treatment increase the magnetic properties, especially the coercive force, and the coarse powder Can be used.
【0014】[0014]
【実施例】以下、本発明の実施例を図面も参照して説明
する。Embodiments of the present invention will be described below with reference to the drawings.
【0015】実施例1 純度99.9%のサマリウムおよび電解鉄を所定の比率で配
合し、高周波溶解して、ThMn12型結晶構造の化合物
と類似の磁気特性を有するTh2Zn17型結晶構造の化
合物を主相とするSm2Fe17 組成の合金インゴットを製
作した。これを1200℃、12時間、Ar ガス雰囲気下で均
質化処理を行った後、スタンプミルとボールミルによっ
て平均粒径3〜 200μmの各種母合金粉末を得た。次
に、この母合金粉末を5気圧のNガス中で、 450℃、2
〜36時間保持してNを侵入させて窒化粉末(合金粉末)
を得た。続いて、これらの窒化粉末を、触媒を用いた亜
鉛の化学めっき浴に浸して粉末表面に亜鉛皮膜を形成し
た。なお重量法により求めた窒化粉末への亜鉛の付着量
は、膜厚平均で 1.8μmであった。次に、この金属被覆
粉末を電気炉に装入して、アルゴンガス雰囲気中、 420
℃で6時間熱処理を行った。その後、得られた粉末を成
形金型に供給して、15KOe の磁界を印加しながら5 T
on/cm2 の圧力で圧縮成形して成形体試料(磁石体試
料)を製作し、これらをB−Hトレーサーによる磁気特
性の測定試験に供し、併せてX線回折法によって結晶構
造を確認した。EXAMPLE 1 A samarium having a purity of 99.9% and an electrolytic iron are blended in a predetermined ratio, and are melted by high frequency to obtain a compound having a Th 2 Zn 17 type crystal structure having magnetic properties similar to those of a ThMn 12 type crystal structure. An alloy ingot having a composition of Sm 2 Fe 17 and having a main phase of was produced. This was homogenized at 1200 ° C. for 12 hours in an Ar gas atmosphere, and various mother alloy powders having an average particle size of 3 to 200 μm were obtained by a stamp mill and a ball mill. Next, this master alloy powder was placed in a 5 atm N gas atmosphere at 450 ° C. for 2 hours.
Nitrogen powder (alloy powder) by holding N for 36 hours and allowing N to enter
I got Subsequently, these nitrided powders were immersed in a zinc chemical plating bath using a catalyst to form a zinc film on the surfaces of the powders. The amount of zinc deposited on the nitrided powder determined by the gravimetric method was 1.8 μm in average on the film thickness. Next, this metal-coated powder was charged into an electric furnace, and the
Heat treatment was performed at 6 ° C. for 6 hours. Thereafter, the obtained powder is supplied to a molding die, and 5 T
A compact sample (magnet sample) was produced by compression molding at a pressure of on / cm 2 , and these were subjected to a test for measuring magnetic properties using a BH tracer, and the crystal structure was confirmed by X-ray diffraction. .
【0016】図1は、成形体試料の最大磁気エネルギー
積BHmax 、保磁力 iHc および残留磁束密度Br に及
ぼす窒化粉末の平均粉末粒径の影響を見たものである。
図1より、最大磁気エネルギー積BHmax と保磁力 iH
c は、平均粉末粒径が約25μmでピークとなるものの、
20〜150 μmの範囲において高値となっている。一方、
保磁力 iHc は、単磁区粒子理論に従って窒化粉末粒径
が小さくなるにつれて増大している。したがって本実施
例における実用的な成形圧力の元で良好な磁気特性を得
るには、平均粉末粒径が20〜150 μmの範囲にあること
が必要であることが分かった。なお、X線回折の結果、
ここで用いた窒化粉末はいずれも所望のTh2Zn17型
結晶構造の主相を有していることが確認できた。FIG. 1 shows the effect of the average powder particle size of the nitrided powder on the maximum magnetic energy product BHmax, coercive force iHc and residual magnetic flux density Br of the compact sample.
From FIG. 1, the maximum magnetic energy product BHmax and the coercive force iH
c is a peak at an average powder particle size of about 25 μm,
It has a high value in the range of 20 to 150 μm. on the other hand,
The coercive force iHc increases as the nitride powder particle diameter decreases according to the single domain particle theory. Therefore, in order to obtain good magnetic properties under practical molding pressure in this example, it was found that the average powder particle size needs to be in the range of 20 to 150 μm. In addition, as a result of X-ray diffraction,
It was confirmed that each of the nitrided powders used here had a desired main phase having a desired Th 2 Zn 17 type crystal structure.
【0017】実施例2 実施例1と同様にしてサマリウムと電解鉄とを原料にし
てSm2Fe17 組成の合金インゴットを製作し、均質化処
理を行った後、粉砕し平均粉末粒径25μmの母合金粉末
を得た。次にこの母合金粉末を5気圧のNガス中で 450
℃、12時間保持して窒化粉末を得た。その後、この窒化
粉末に物理的めっき処理法の1種である蒸着法を採用
し、これを真空蒸着機の回転小皿にセットし、真空度1
×10-5torr下でZn ,Sn ,Pb ,In ,Al ,Mg の
それぞれを抵抗加熱により蒸着せしめた。なお蒸着金属
量は、被覆膜厚として 1.5〜2μmになるように製作条
件を調整した。次に、これら金属被覆粉末を電気炉に装
入して、100 〜700 ℃、1時間の熱処理を行い、その
後、実施例1と同様に成形を行って磁石試料1〜7を
得、これらを実施例1と同様の磁気特性の測定試験に供
した。また比較のため、Cu を蒸着した試料8および金
属蒸着を全く行わない試料9を得、これらも同様の測定
試験に供した。結果を表1に示す。Example 2 An alloy ingot having a composition of Sm 2 Fe 17 was produced using samarium and electrolytic iron as raw materials in the same manner as in Example 1, and was homogenized. A mother alloy powder was obtained. Next, this mother alloy powder was placed in a 5 atm N gas atmosphere for 450 minutes.
The temperature was kept at 12 ° C. for 12 hours to obtain a nitrided powder. Then, a vapor deposition method, which is one of physical plating methods, was adopted for the nitrided powder, and the powder was set on a rotating small plate of a vacuum vapor deposition machine, and a vacuum degree of 1
Each of Zn, Sn, Pb, In, Al, and Mg was deposited by resistance heating under × 10 -5 torr. The production conditions were adjusted so that the amount of the metal deposited was 1.5 to 2 μm as the coating film thickness. Next, these metal-coated powders were charged into an electric furnace and heat-treated at 100 to 700 ° C. for 1 hour. Thereafter, molding was performed in the same manner as in Example 1 to obtain magnet samples 1 to 7. The same magnetic property measurement test as in Example 1 was performed. For comparison, a sample 8 on which Cu was vapor-deposited and a sample 9 on which no metal was vapor-deposited were obtained, and these were subjected to the same measurement test. Table 1 shows the results.
【0018】[0018]
【表1】 [Table 1]
【0019】表1より明らかなように、低融点金属皮膜
を形成した粉末を用いた本発明にかかる試料1〜7は、
いずれも高い残留磁束密度Br と保磁力 iHc が得られ
ている。これに対して、Cu を蒸着した試料8は保磁力
iHc の向上がほとんど認められず、また蒸着を実施し
なかった試料9は保磁力 iHc が著しく小さくなってい
る。したがって本発明で規定した低融点金属類が、優れ
た磁気特性を得るために必要であることが明らかになっ
た。また窒化粉末への金属皮膜形成に蒸着法を適用して
も問題ないことが確認された。As is clear from Table 1, the samples 1 to 7 according to the present invention using the powder on which the low-melting point metal film was formed,
In each case, a high residual magnetic flux density Br and a coercive force iHc are obtained. On the other hand, the sample 8 on which Cu was deposited had a coercive force.
Sample 9 in which no improvement in iHc was observed and in which no vapor deposition was performed has a remarkably small coercive force iHc. Therefore, it has been clarified that the low melting point metals specified in the present invention are necessary for obtaining excellent magnetic properties. In addition, it was confirmed that there was no problem even when the vapor deposition method was applied to the formation of the metal film on the nitrided powder.
【0020】実施例3 実施例2において製作した窒化粉末を、亜鉛を内張りし
たステンレス鋼製のボールミル容器に装入し、容器内を
Nガスで置換した後、乾式にて24時間運転して、粉末表
面に機械的に亜鉛皮膜を形成した。次にこの金属被覆粉
末を真空炉に装入して、Nガス中、 100〜 700℃で1時
間の熱処理を行った。その後、実施例1と同様の手順に
より成形を行って得られた成形体試料の磁気特性を測定
した。Example 3 The nitrided powder produced in Example 2 was charged into a stainless steel ball mill container lined with zinc, the inside of the container was replaced with N gas, and the dry operation was performed for 24 hours. A zinc film was mechanically formed on the powder surface. Next, this metal-coated powder was placed in a vacuum furnace and heat-treated at 100 to 700 ° C. for 1 hour in N gas. Thereafter, the magnetic properties of a molded sample obtained by molding in the same procedure as in Example 1 were measured.
【0021】図2は、成形体試料の保磁力 iHc に及ぼ
す熱処理温度の影響を見たものである。同図より、保磁
力 iHc は 400〜500 ℃付近でピークとなるが、 100〜
600℃の温度範囲であれば、2000Oe 以上の優れた値と
なることが明らかとなった。また窒化粉末への金属皮膜
形成に機械的結合処理法を適用しても問題ないことが確
認できた。FIG. 2 shows the effect of the heat treatment temperature on the coercive force iHc of the compact sample. From the figure, the coercive force iHc peaks around 400 to 500 ° C,
It became clear that the temperature range of 600 ° C. was an excellent value of 2000 Oe or more. In addition, it was confirmed that there was no problem even if a mechanical bonding method was applied to the formation of the metal film on the nitrided powder.
【0022】実施例4 純度99.9%のサマリウム、コバルト、および電解鉄を所
定の比率で配合し、高周波溶解して、ThMn12型結晶
構造の化合物と類似の磁気特性を有するTh2Zn17型
結晶構造の化合物を主相とするSm2(Fe0.8Co0.2)17
組成の合金インゴットを製作した。これを1150℃、12時
間、Ar ガス雰囲気下で均質化処理を行った後急冷し、
スタンプミルとボールミルによって平均粒径50μmおよ
び3μmの母合金粉末を得た。次に、この母合金粉末を
電気炉に装入して、5気圧のNガス中、 500℃で8時間
保持してNを侵入させ、続いてこれらの窒化粉末を、実
施例1と同様に触媒を用いた亜鉛の化学めっき浴に浸し
て粉末表面に 0.7μmの亜鉛皮膜を形成した。次に、こ
れらの金属被覆粉末を電気炉に装入して、アルゴンガス
雰囲気中、 450℃で8時間または2時間熱処理を行っ
た。その後、得られた粉末に3重量%のエポキシ樹脂を
混合し、15KOe の磁界を印加しながら4〜10Ton/cm2
の圧力で圧縮成形し、 150℃でキュア処理を行って成
形体試料を製作し、これを最大エネルギー積BH maxと
成形体密度との測定試験に供し、併せて長期安定性を知
るために、上述の窒化粉末を 125℃の恒温槽に 500時間
保持して、粉末の重量変化を測定した。[0022] Example 4 99.9% pure samarium, cobalt, and electrolytic iron were blended at a predetermined ratio, and high frequency melting, Th 2 Zn 17 type crystal with magnetic properties similar to the compounds of ThMn 12 type crystal structure Sm 2 (Fe 0.8 Co 0.2 ) 17 whose main phase is a compound having a structure
An alloy ingot of the composition was produced. This was homogenized in an Ar gas atmosphere at 1150 ° C for 12 hours, then quenched,
A master alloy powder having an average particle size of 50 μm and 3 μm was obtained by a stamp mill and a ball mill. Next, this mother alloy powder was charged into an electric furnace, and was held at 500 ° C. for 8 hours in N gas at 5 atm to infiltrate N. Subsequently, these nitride powders were removed in the same manner as in Example 1. It was immersed in a chemical zinc plating bath using a catalyst to form a 0.7 μm zinc film on the powder surface. Next, these metal-coated powders were placed in an electric furnace and heat-treated at 450 ° C. for 8 hours or 2 hours in an argon gas atmosphere. Thereafter, 3% by weight of an epoxy resin was mixed with the obtained powder, and 4 to 10 Ton / cm 2 while applying a magnetic field of 15 KOe.
Compression molding at a pressure of 150 ° C., and a curing treatment at 150 ° C. to produce a molded body sample, which is subjected to a measurement test of the maximum energy product BH max and the molded body density, and to know the long-term stability, The above-mentioned nitrided powder was kept in a thermostat at 125 ° C. for 500 hours, and the weight change of the powder was measured.
【0023】図3は、成形体試料の最大エネルギー積B
H maxと成形体密度に及ぼす平均粉末粒径と成形圧力の
影響を見たものである。同図より、平均粒径50μmの粗
粉末を使用した成形体試料は、成形圧力4 Ton/cm2 以
上で最大エネルギー積(BHmax)10MGOe 以上の優
れた磁気特性を有し、また比較的低圧成形においても高
密度化することが可能であることが明らかとなった。FIG. 3 shows the maximum energy product B of the compact sample.
It is a view of the influence of the average powder particle size and the molding pressure on Hmax and the compact density. As shown in the figure, the molded body sample using the coarse powder having an average particle diameter of 50 μm has excellent magnetic properties with a maximum energy product (BHmax) of 10 MGOe or more at a molding pressure of 4 Ton / cm 2 or more, and has a relatively low pressure. It has been clarified that it is possible to increase the density also in the above.
【0024】図4は重量増加率に及ぼす保持時間の影響
を見たものである。同図より、平均粒径50μmの粗粉末
は、平均粒径3μmの微粉末に比して酸化による重量増
加率が著しく小さく、長期安定性に優れた磁石の製造に
好適となることが明らかである。FIG. 4 shows the effect of the holding time on the weight increase rate. From the figure, it is apparent that the coarse powder having an average particle size of 50 μm has a significantly smaller weight increase rate due to oxidation than the fine powder having an average particle size of 3 μm, and is suitable for manufacturing a magnet having excellent long-term stability. is there.
【0025】実施例5 実施例4において用いた50μmの窒化粉末を、ニッケル
触媒を用いたSn の化学メッキ浴に浸漬して粉末表面に
約 0.4μmのSn 皮膜を形成した。続いて、この金属被
覆粉末を電気炉に装入して、アルゴンガス中 300℃、30
分間の熱処理を行った。次に、この粉末に10重量%のS
n 粉末を混合し、印加磁界15KOe 中で7 Ton/cm2 圧
力で圧縮成形して、成形体試料を製作した。得られた試
料密度は6.5g/cm3 であり、また磁気特性としては、
BH max=13.7MGOe 、Br =8647G、 iHc =7655
0eの優れた値が得られた。Example 5 The nitrided powder of 50 μm used in Example 4 was immersed in a Sn plating bath using a nickel catalyst to form an approximately 0.4 μm Sn film on the surface of the powder. Subsequently, this metal-coated powder was charged into an electric furnace, and was placed in an argon gas at 300 ° C. for 30 minutes.
Heat treatment for a minute. Next, 10% by weight of S was added to this powder.
n powder was mixed and compression molded at a pressure of 7 Ton / cm 2 in an applied magnetic field of 15 KOe to produce a molded sample. The sample density obtained was 6.5 g / cm 3 , and the magnetic properties were:
BHmax = 13.7MGOe, Br = 8647G, iHc = 7655
An excellent value of 0e was obtained.
【0026】実施例6 純度99%以上のネオジウム、電解鉄、コバルト、および
フェロチタンを所定の比率で配合し、高周波溶解してT
hMn12型結晶構造の化合物を主相とするNdFe8Co3
Ti 組成の合金インゴットを製作し、これをアルゴンガ
ス雰囲気中で1100℃、24時間保持して均質化処理を行っ
た後、スタンプミルとボールミルによってこの合金イン
ゴットを粉砕し、粒径3〜180μmの母合金粉末を得
た。次に、この母合金粉末を5気圧のNガス中で 350
℃、1〜24時間保持してNを侵入させて窒化粉末を得、
続いてこれを触媒を用いた亜鉛の化学めっき浴に浸して
粉末表面に約 0.7μmの亜鉛皮膜を形成し、その後、こ
れらの金属被覆粉末を電気炉に装入して、アルゴンガス
雰囲気中、 350℃で8時間の熱処理を行った。次に、得
られた粉末に3重量%のフェノール樹脂を添加混合し、
15KOe の磁界中で5 Ton/cm2 の圧力で圧縮成形し、
150℃のキュア処理を行って成形体試料を製作した。得
られた試料の磁気特性はB−Hトレーサーによって測定
した。Example 6 Neodymium, electrolytic iron, cobalt, and ferro-titanium having a purity of 99% or more were blended at a predetermined ratio, melted by high frequency, and
NdFe 8 Co 3 having a main phase of a compound having an hMn 12 type crystal structure
An alloy ingot having a Ti composition was manufactured and homogenized by holding it at 1100 ° C. for 24 hours in an argon gas atmosphere. Then, the alloy ingot was pulverized by a stamp mill and a ball mill to obtain a particle size of 3 to 180 μm. A mother alloy powder was obtained. Next, this mother alloy powder was placed in a 5 atm N gas atmosphere for 350 minutes.
° C., for 1 to 24 hours, to infiltrate N to obtain nitrided powder,
Subsequently, this was immersed in a zinc electroplating bath using a catalyst to form a zinc film of about 0.7 μm on the surface of the powder. Thereafter, these metal-coated powders were charged into an electric furnace, and were placed in an argon gas atmosphere. Heat treatment was performed at 350 ° C. for 8 hours. Next, 3% by weight of a phenol resin was added to and mixed with the obtained powder,
Compression molding at a pressure of 5 Ton / cm 2 in a magnetic field of 15 KOe
A cured product sample was manufactured by performing a curing process at 150 ° C. The magnetic properties of the obtained sample were measured with a BH tracer.
【0027】図5は、成形体試料の最大磁気エネルギー
積BHmax 、保磁力 iHc および残留磁束密度Br に及
ぼす窒化粉末の平均粉末粒径の影響を見たものである。
図5より、最大磁気エネルギー積BHmax と保磁力 iH
c は、実施例1と同様に平均粉末粒径が約25μmでピー
クとなるものの、20〜150 μmの範囲において高値とな
っており、また保磁力 iHc は、単磁区粒子理論に従っ
て窒化粉末粒径が小さくなるにつれて増大している。FIG. 5 shows the effect of the average powder particle size of the nitrided powder on the maximum magnetic energy product BHmax, coercive force iHc and residual magnetic flux density Br of the compact sample.
From FIG. 5, the maximum magnetic energy product BHmax and the coercive force iH
c is a peak at an average powder particle size of about 25 μm as in Example 1, but has a high value in the range of 20 to 150 μm, and the coercive force iHc is the nitride powder particle size according to the single domain particle theory. Are increasing as the value of is smaller.
【0028】実施例7 実施例1における粒径25μmの窒化粉末を用いて製作さ
れた成形体試料を、粘度 150CPSのエポキシ樹脂に浸
漬し、約10Torrの減圧下で1時間保持して成形体にエポ
キシ樹脂を含浸し、 120℃で2時間キュア処理を行っ
た。得られた試料の磁気特性は、含浸しないものと同じ
く最大磁気エネルギー積BHmax は12MGOe であった
が、試料の圧縮強度は含浸しないものに比べ、 1.8倍に
あたる60 kgf/mm2 となり、成形体の強度向上に大きく
寄与することが分かった。Example 7 A sample of a molded article manufactured by using the nitrided powder having a particle size of 25 μm in Example 1 was immersed in an epoxy resin having a viscosity of 150 CPS, and held at a reduced pressure of about 10 Torr for 1 hour to obtain a molded article. It was impregnated with an epoxy resin and cured at 120 ° C. for 2 hours. The magnetic properties of the obtained sample were the same as those without impregnation, and the maximum magnetic energy product BHmax was 12 MGOe, but the compressive strength of the sample was 60 kgf / mm 2 , which is 1.8 times that of the sample without impregnation. It was found that it greatly contributed to strength improvement.
【0029】[0029]
【発明の効果】以上詳細に説明したように、本発明にか
かる希土類−鉄−窒素系永久磁石の製造方法によれば、
平均粉末粒径20〜 150μmという粗粉末を用いても磁気
特性に優れた磁石を製造することができ、この粗粉末を
用いる分、高圧力で成形する必要がなくなって型寿命が
延長し、製造性が大幅に改善される。また粗粉末を用い
ることにより、製造過程において粉末の酸化が抑制さ
れ、得られた磁石の性能が長期的に安定する。As described above in detail, according to the method for manufacturing a rare earth-iron-nitrogen permanent magnet according to the present invention,
Magnets with excellent magnetic properties can be manufactured even with coarse powder having an average powder particle size of 20 to 150 μm, and the use of this coarse powder eliminates the need for molding under high pressure, extending the life of the mold. The performance is greatly improved. Further, by using the coarse powder, the oxidation of the powder is suppressed in the production process, and the performance of the obtained magnet is stabilized for a long time.
【図1】本発明の方法で得た希土類−鉄−窒素系磁石体
試料の磁気特性に及ぼす合金粉末の平均粉末粒径の影響
を示すグラフである。FIG. 1 is a graph showing the influence of the average powder particle size of an alloy powder on the magnetic properties of a rare earth-iron-nitrogen magnet sample obtained by the method of the present invention.
【図2】本発明の方法で得た磁石体試料の磁気特性に及
ぼす熱処理温度の影響を示すグラフである。FIG. 2 is a graph showing the influence of a heat treatment temperature on the magnetic properties of a magnet body sample obtained by the method of the present invention.
【図3】本発明の方法で得た磁石体試料の磁気特性およ
び密度に及ぼす平均粉末粒径と成形圧力の影響を示すグ
ラフである。FIG. 3 is a graph showing the influence of the average powder particle size and the molding pressure on the magnetic properties and density of the magnet body sample obtained by the method of the present invention.
【図4】本発明で用いる粉末の酸化重量増加に及ぼす平
均粉末粒径と保持時間の影響を示すグラフである。FIG. 4 is a graph showing the influence of the average powder particle size and the retention time on the increase in oxidized weight of the powder used in the present invention.
【図5】本発明の方法で得た希土類−鉄−コバルト−窒
素系磁石体試料の磁気特性に及ぼす合金粉末の平均粉末
粒径の影響を示すグラフである。FIG. 5 is a graph showing the influence of the average powder particle size of the alloy powder on the magnetic properties of the rare earth-iron-cobalt-nitrogen-based magnet sample obtained by the method of the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C21D 6/00 H01F 1/04 A (72)発明者 鈴木 俊治 静岡県磐田郡浅羽町浅名1743番地1 ミネ ベア株式会社浜松製作所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C21D 6/00 H01F 1/04 A (72) Inventor Shunki Suzuki 1743 Asana, Asaba-cho, Iwata-gun, Shizuoka Prefecture Address 1 Inside the Minebea Hamamatsu Factory
Claims (3)
分とし、かつThMn12型結晶構造の化合物を主相とす
る平均粒径20〜 150μmの合金粉末表面に、Sn ,Zn
,Pb ,In ,Al ,Mg の少なくとも一種から成る
金属皮膜を形成し、これに 100〜 600℃の温度範囲で熱
処理を施した後、成形を行なうことを特徴とする希土類
−鉄−窒素系永久磁石の製造方法。1. An alloy powder comprising a rare earth metal (R), Fe and N as main components and a compound having a ThMn 12 type crystal structure as a main phase and having an average particle diameter of 20 to 150 μm, is coated with Sn, Zn.
, Pb, In, Al, Mg, a rare earth-iron-nitrogen-based permanent metal film formed by subjecting the metal film to a heat treatment in a temperature range of 100 to 600 ° C. Manufacturing method of magnet.
は有機物系バインダーを加えて成形を行うことを特徴と
する請求項1に記載の希土類−鉄−窒素系永久磁石の製
造方法。2. The method for producing a rare earth-iron-nitrogen permanent magnet according to claim 1, wherein after the heat treatment is performed, a metal binder or an organic binder is added to carry out molding.
ンダーを含浸させることを特徴とする請求項1に記載の
希土類−鉄−窒素系永久磁石の製造方法。3. The method for producing a rare earth-iron-nitrogen permanent magnet according to claim 1, wherein the molded body is impregnated with an organic binder after the molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000351094A JP3248077B2 (en) | 2000-11-17 | 2000-11-17 | Manufacturing method of rare earth-iron-nitrogen permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000351094A JP3248077B2 (en) | 2000-11-17 | 2000-11-17 | Manufacturing method of rare earth-iron-nitrogen permanent magnet |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24881292A Division JP3168484B2 (en) | 1992-08-25 | 1992-08-25 | Method for manufacturing rare earth-iron-nitrogen permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001203104A true JP2001203104A (en) | 2001-07-27 |
JP3248077B2 JP3248077B2 (en) | 2002-01-21 |
Family
ID=18824209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000351094A Expired - Fee Related JP3248077B2 (en) | 2000-11-17 | 2000-11-17 | Manufacturing method of rare earth-iron-nitrogen permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3248077B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005076044A (en) * | 2003-08-28 | 2005-03-24 | Tdk Corp | Method for manufacturing hard magnetic composition |
JP2017228656A (en) * | 2016-06-22 | 2017-12-28 | Tdk株式会社 | Iron nitride magnet |
CN110942881A (en) * | 2018-09-21 | 2020-03-31 | 丰田自动车株式会社 | Rare earth magnet and method for producing same |
CN113314288A (en) * | 2020-02-27 | 2021-08-27 | 丰田自动车株式会社 | Method for manufacturing rare earth magnet |
JP7494570B2 (en) | 2019-06-06 | 2024-06-04 | 株式会社プロテリアル | Manufacturing method of bonded magnets, manufacturing method of shaft-integrated bonded magnets |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS599101A (en) * | 1982-07-06 | 1984-01-18 | Dainippon Ink & Chem Inc | Rare earth magnetic powder applied with surface treatment and its production |
JPS62177146A (en) * | 1986-01-29 | 1987-08-04 | Daido Steel Co Ltd | Manufacture of permanent magnet material |
JPH04359405A (en) * | 1991-06-05 | 1992-12-11 | Tdk Corp | Magnet powder, and manufacture thereof and resin bonded magnet |
-
2000
- 2000-11-17 JP JP2000351094A patent/JP3248077B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS599101A (en) * | 1982-07-06 | 1984-01-18 | Dainippon Ink & Chem Inc | Rare earth magnetic powder applied with surface treatment and its production |
JPS62177146A (en) * | 1986-01-29 | 1987-08-04 | Daido Steel Co Ltd | Manufacture of permanent magnet material |
JPH04359405A (en) * | 1991-06-05 | 1992-12-11 | Tdk Corp | Magnet powder, and manufacture thereof and resin bonded magnet |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005076044A (en) * | 2003-08-28 | 2005-03-24 | Tdk Corp | Method for manufacturing hard magnetic composition |
JP2017228656A (en) * | 2016-06-22 | 2017-12-28 | Tdk株式会社 | Iron nitride magnet |
CN110942881A (en) * | 2018-09-21 | 2020-03-31 | 丰田自动车株式会社 | Rare earth magnet and method for producing same |
JP7494570B2 (en) | 2019-06-06 | 2024-06-04 | 株式会社プロテリアル | Manufacturing method of bonded magnets, manufacturing method of shaft-integrated bonded magnets |
CN113314288A (en) * | 2020-02-27 | 2021-08-27 | 丰田自动车株式会社 | Method for manufacturing rare earth magnet |
CN113314288B (en) * | 2020-02-27 | 2024-04-05 | 丰田自动车株式会社 | Method for producing rare earth magnet |
Also Published As
Publication number | Publication date |
---|---|
JP3248077B2 (en) | 2002-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150187494A1 (en) | Process for preparing rare earth magnets | |
WO1988006797A1 (en) | Rare earth element-iron base permanent magnet and process for its production | |
EP0249973B1 (en) | Permanent magnetic material and method for producing the same | |
JP2005325450A (en) | Method for producing magnetic material, and magnetic material powder with rust preventive layer thereon and bonded magnet using it | |
JP2002105503A (en) | Method for manufacturing magnetic material, and magnetic material powder with rust preventive layer thereon and bonded magnet using it | |
JP3248077B2 (en) | Manufacturing method of rare earth-iron-nitrogen permanent magnet | |
JP2791659B2 (en) | Manufacturing method of corrosion resistant permanent magnet | |
JP3168484B2 (en) | Method for manufacturing rare earth-iron-nitrogen permanent magnet | |
JPS62120002A (en) | Permanent magnet with excellent corrosion resistance | |
JPH06279915A (en) | Rare earth magnet material and rare earth bonded magnet | |
JPH0677026A (en) | Manufacture of rare earth element-fe-n base permanent magnet | |
JPH0677025A (en) | Manufacture of rare earth element-iron-nitrogen permanent magnet | |
JPH05230501A (en) | Alloy powder for rare-earth element-iron magnet and bond magnet using the powder | |
JPS6377103A (en) | Rare-earth magnet excellent in corrosion resistance and manufacture thereof | |
JPH04354104A (en) | Manufacture of rare earth bond magnet | |
JP2720039B2 (en) | Rare earth magnet material with excellent corrosion resistance | |
JP4539288B2 (en) | Rare earth sintered magnet | |
JPH0620815A (en) | Manufacture of rare earth bonded magnet | |
JPH04354105A (en) | Manufacture of rare earth bond magnet | |
JPH0646603B2 (en) | Permanent magnet having excellent corrosion resistance and method of manufacturing the same | |
KR950003859B1 (en) | Nd-fe-b magnet making method | |
JPH0521217A (en) | Production of rare-earth bond magnet | |
JPH05315114A (en) | Manufacture of rare earth magnet material | |
JPH04365840A (en) | Rare earth magnet material | |
JPH0752685B2 (en) | Corrosion resistant permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071109 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111109 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |