JP2001200428A - Polyester-based staple fiber and fiber structure - Google Patents

Polyester-based staple fiber and fiber structure

Info

Publication number
JP2001200428A
JP2001200428A JP2000006588A JP2000006588A JP2001200428A JP 2001200428 A JP2001200428 A JP 2001200428A JP 2000006588 A JP2000006588 A JP 2000006588A JP 2000006588 A JP2000006588 A JP 2000006588A JP 2001200428 A JP2001200428 A JP 2001200428A
Authority
JP
Japan
Prior art keywords
fiber
polyester
heat
heat treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000006588A
Other languages
Japanese (ja)
Inventor
Wataru Watanabe
渡 渡辺
Junji Ikeda
純二 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2000006588A priority Critical patent/JP2001200428A/en
Publication of JP2001200428A publication Critical patent/JP2001200428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyester-based staple fiber capable of giving a fiber structure difficult to be deformed by heat under a high temperature environment such as about 70 deg.C, having a high compression stress and excellent in resistance to setting and provide the fiber structure. SOLUTION: This polyester-based staple fiber comprises a polyester having >=80 deg.C glass transition temperature and >=85% retention rate of crimp before and after the heat treatment at 210 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱接着性繊維と混
合し、熱処理して熱接着されることにより、自動車シー
トや天井材、床材、吸音材あるいはトランクルーム内装
材に用いることができ、長期間あるいは高温雰囲気下で
も変形しにくい繊維構造体(不織布、固綿等)を形成す
ることができるポリエステル系短繊維及び繊維構造体に
関するものである。
TECHNICAL FIELD The present invention can be used for automobile seats, ceiling materials, floor materials, sound absorbing materials or trunk room interior materials by mixing with heat-bondable fibers, heat-treating and heat bonding. The present invention relates to a polyester-based short fiber and a fibrous structure capable of forming a fibrous structure (nonwoven fabric, solid cotton, or the like) that is not easily deformed even in a long-term or high-temperature atmosphere.

【0002】[0002]

【従来の技術】従来、ソファーや椅子の背もたれ、クッ
ション等の家具用詰め物や、ベッド、自動車シートのク
ッション材、あるいは自動車の天井材、床材、吸音材、
トランクルーム内装材等には、主としてポリウレタンフ
ォームが使用されてきた。しかしながら、ポリウレタン
フォームは、燃焼時に含窒素系の毒性ガスが発生するこ
と、あるいは製造時に使用するフロンガスが大気上層の
オゾン層を破壊すること等の安全性やリサイクル性、環
境保護の立場から問題点が指摘されている。
2. Description of the Related Art Conventionally, furniture stuffing such as sofas and chair backrests, cushions and the like, beds and car seat cushioning materials, or car ceiling materials, flooring materials, sound absorbing materials,
Polyurethane foam has been mainly used for interior materials of trunk rooms and the like. However, polyurethane foam has problems from the standpoint of safety, recyclability, and environmental protection, such as the generation of nitrogen-containing toxic gas during combustion, or the destruction of the ozone layer in the upper atmosphere by Freon gas used during production. Has been pointed out.

【0003】そこで、ポリウレタンフォームに代わる材
料として、ポリエステル繊維とポリエステル系熱接着性
繊維からなる繊維構造体が、特開昭58−31150号
公報、特開平2−154050号公報、特開平3−22
0354号公報等で提案されている。
[0003] Therefore, as a material replacing the polyurethane foam, a fibrous structure composed of polyester fiber and polyester-based heat-adhesive fiber is disclosed in JP-A-58-31150, JP-A-2-154050, and JP-A-3-22.
No. 0354 has been proposed.

【0004】一般的に、自動車のクッション材として
は、夏場の車内温度を想定し、70℃程度の雰囲気下で
もへたらないことが要求されるが、これらの繊維構造体
では主体繊維であるポリエステル繊維のガラス転移点温
度(以下、Tgと略する)が約70℃であるため、70
℃程度の雰囲気下での圧縮に対して反発応力が乏しく、
また極めてへたりやすいものであった。
[0004] In general, as a cushion material for an automobile, it is required that the interior of the car in summer is assumed, and that it does not sag even in an atmosphere of about 70 ° C. Since the glass transition temperature (hereinafter abbreviated as Tg) of the fiber is about 70 ° C.,
Poor resilience to compression in an atmosphere of about ℃
It was also very easy to settle.

【0005】さらに、主体繊維を接着する熱接着性繊維
の接着成分が非晶性ポリエステルであり、高温雰囲気に
おける接着強力に劣るため、やはり70℃程度の雰囲気
下において繊維構造体がへたりやすく、クッション性が
低下する原因となっていた。
Further, since the adhesive component of the heat-adhesive fiber for adhering the main fiber is amorphous polyester, the adhesive strength in a high-temperature atmosphere is inferior. This causes the cushioning property to decrease.

【0006】これらの問題を解決するものとして、特開
平6−165884号公報には、ポリエチレンナフタレ
ート(以下、PENと略する)繊維と、接着成分に融点
(以下、Tmと略する)が80℃以上の結晶性を有する
ポリマーを用いた熱接着性繊維とからなる繊維構造体が
提案されている。
To solve these problems, Japanese Patent Laid-Open Publication No. Hei 6-165888 discloses that a polyethylene naphthalate (hereinafter abbreviated as PEN) fiber and an adhesive component have a melting point (hereinafter abbreviated as Tm) of 80. There has been proposed a fibrous structure composed of a thermo-adhesive fiber using a polymer having a crystallinity of not less than ° C.

【0007】この繊維構造体は、主体繊維がPENから
なり、Tgが120℃であるため、圧縮に対する反発応
力が大きく、また、熱接着性繊維の接着成分に結晶性ポ
リマーを用いることにより、接着部分が強固なものとな
り、得られる繊維構造体は、高温雰囲気下におけるのへ
たりが多少改善されたものであった。
In this fiber structure, since the main fiber is made of PEN and the Tg is 120 ° C., the repulsive stress against compression is large. The part became strong, and the resulting fiber structure had a somewhat improved set in a high-temperature atmosphere.

【0008】しかしながら、この繊維構造体に用いられ
ているPEN繊維は、繊維構造体を作成する際の熱処理
により捲縮率が低下しやすく、得られる繊維構造体の圧
縮応力や70℃程度の高温雰囲気下での耐へたり性は十
分満足できるものではなかった。
[0008] However, the PEN fiber used in this fiber structure tends to have a reduced crimp ratio due to the heat treatment at the time of producing the fiber structure, and the compression stress and the high temperature of about 70 ° C. The sag resistance under the atmosphere was not sufficiently satisfactory.

【0009】[0009]

【発明が解決しようとする課題】本発明は、このような
従来のポリエステル系繊維からなる繊維構造物のへたり
やすさを解消し、70℃程度の高温雰囲気下でも熱変形
しにくく、圧縮応力が高く、耐へたり性にも優れた繊維
構造体を得ることができるポリエステル系短繊維及び繊
維構造体を提供することを技術的な課題とするものであ
る。
DISCLOSURE OF THE INVENTION The present invention eliminates the sag of such a conventional fiber structure made of polyester-based fiber, and is less likely to be thermally deformed even in a high-temperature atmosphere of about 70 ° C. It is an object of the present invention to provide a polyester-based short fiber and a fiber structure capable of obtaining a fiber structure having high heat resistance and excellent sag resistance.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記課題
を解決し、熱変形しにくい繊維構造物を開発するため
に、短繊維のポリマー物性や捲縮性能に着目し、鋭意検
討を重ねた結果、本発明に到達した。すなわち、本発明
は、次の(1)、(2)を要旨とするものである。 (1)Tgが80℃以上のポリエステルからなり、かつ
210℃での熱処理前後における捲縮率の保持率が85
%以上であることを特徴とするポリエステル系短繊維。 (2)ガラス転移点温度が20〜80℃、融点が130
〜180℃の結晶性共重合ポリエステルで繊維表面が覆
われているポリエステル系熱接着性繊維10〜50重量
%と、(1)記載のポリエステル系短繊維90〜50重
量%とからなることを特徴とする繊維構造体。
Means for Solving the Problems In order to solve the above-mentioned problems and to develop a fiber structure which is hardly thermally deformed, the present inventors have paid close attention to the polymer physical properties and crimping performance of short fibers, and have studied diligently. As a result, the present invention has been achieved. That is, the present invention provides the following (1) and (2). (1) It is made of a polyester having a Tg of 80 ° C. or more, and has a crimp retention ratio of 85 before and after heat treatment at 210 ° C.
% Of polyester-based short fibers. (2) a glass transition temperature of 20 to 80 ° C. and a melting point of 130
It is characterized by comprising 10 to 50% by weight of a polyester-based thermo-adhesive fiber whose fiber surface is covered with a crystalline copolymerized polyester at 180 to 180 ° C, and 90 to 50% by weight of a polyester-based short fiber described in (1). Fiber structure.

【0011】[0011]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明のポリエステル系短繊維に用いるポリマー
は、Tgが80℃以上のポリエステルであることが必要
である。これにより、本発明のポリエステル系短繊維を
構成繊維として含む繊維構造物は、従来のPETのTg
(約70℃)より高く、70℃の雰囲気下では分子構造
的に安定であり、荷重を受けても永久変形しにくく、ま
た熱変形しにくいものとなる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The polymer used for the polyester short fiber of the present invention must be a polyester having a Tg of 80 ° C. or higher. As a result, the fiber structure containing the polyester staple fiber of the present invention as a constituent fiber is made of the conventional PET Tg.
(About 70 ° C.), the molecular structure is stable under an atmosphere of 70 ° C., the permanent deformation hardly occurs even under a load, and the heat deformation hardly occurs.

【0012】ポリマーのTgが80℃未満の場合、70
℃程度の雰囲気下において非晶部分のミクロブラウン運
動により分子構造的に不安定となり、このポリマーから
なる繊維は荷重を受けたときに変形しやすく、得られる
繊維構造体も熱変形しやすいものとなる。
When the Tg of the polymer is less than 80 ° C.,
Under the atmosphere of about ℃, the molecular structure becomes unstable due to the micro-Brownian motion of the amorphous part, and the fiber made of this polymer is easily deformed under load, and the resulting fiber structure is also easily deformed by heat. Become.

【0013】本発明のポリエステル系短繊維を構成する
Tgが80℃以上のポリエステルポリマーとしては、ポ
リエチレン−2,6−ナフタレートやポリエチレン−
2,7−ナフタレート、ポリ1,4−シクロヘキシレン
ジメチレンテレフタレート等が挙げられ、必要に応じて
本発明の効果を損なわない範囲であれば、テレフタル
酸、イソフタル酸、シクロヘキサンジカルボン酸、アジ
ピン酸、セバシン酸、ビスフェノールSまたはビスフェ
ノールAのエチレンオキシド付加体、シクロヘキサンジ
メタノール、1,4−ブタンジオール、1,6−ヘキサン
ジオール、ジエチレングリコール、ポリエチレングリコ
ール等の他の副原料が共重合されていてもよいし、種々
の添加剤等が含まれていてもよい。
The polyester polymer having a Tg of 80 ° C. or higher constituting the polyester short fiber of the present invention includes polyethylene-2,6-naphthalate and polyethylene-
2,7-naphthalate, poly-1,4-cyclohexylene dimethylene terephthalate, and the like. If necessary, terephthalic acid, isophthalic acid, cyclohexanedicarboxylic acid, adipic acid, as long as the effects of the present invention are not impaired. Other auxiliary raw materials such as sebacic acid, ethylene oxide adduct of bisphenol S or bisphenol A, cyclohexanedimethanol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, polyethylene glycol and the like may be copolymerized. And various additives may be included.

【0014】しかしながら、これらの共重合成分を有す
る場合は、共重合量が多くなると非晶性が高くなり、T
mが低下し耐熱性が悪くなり、得られる繊維構造物の熱
変形を招く恐れがあるため、共重合量の上限は30モル
%程度とすることが好ましい。
However, when these copolymer components are contained, the amorphousness increases as the copolymerization amount increases, and the T
Since m may decrease, heat resistance may deteriorate, and the resulting fiber structure may be thermally deformed, the upper limit of the copolymerization amount is preferably about 30 mol%.

【0015】また、これらのポリエステルポリマーの極
限粘度は、0.40〜0.64が好ましく、さらに好ま
しくは0.45〜0.60である。
The intrinsic viscosity of these polyester polymers is preferably from 0.40 to 0.64, more preferably from 0.45 to 0.60.

【0016】本発明のポリエステル系短繊維は熱接着性
繊維と混合し、熱処理することにより熱接着され、繊維
構造物を形成するものである。繊維構造物を作成する際
に行う熱処理は、通常、熱接着性繊維の接着成分のTm
以上の温度で行われ、最も高い場合で熱接着性繊維の接
着成分のTmより50℃高い温度で行われる。そこで、
本発明の短繊維においては、温度210℃での熱処理前
後における捲縮率の保持率が85%以上であることが必
要である。
The polyester short fiber of the present invention is mixed with a heat-adhesive fiber and heat-bonded by heat treatment to form a fibrous structure. The heat treatment to be performed at the time of producing the fibrous structure is usually performed by the Tm of the adhesive component of the heat-adhesive fiber.
It is carried out at the above temperature, and at a temperature 50 ° C. higher than the Tm of the adhesive component of the thermoadhesive fiber in the highest case. Therefore,
In the short fiber of the present invention, it is necessary that the retention of the crimp ratio before and after the heat treatment at a temperature of 210 ° C. is 85% or more.

【0017】ポリエステル系短繊維の捲縮率の保持率を
85%以上とすることによって、捲縮形態が2次元ある
いは3次元構造のものとなり、得られる繊維構造体は嵩
高性に優れ、熱変形しにくいものとなる。
By setting the retention rate of the crimp rate of the polyester-based short fiber to 85% or more, the crimped form becomes a two-dimensional or three-dimensional structure, and the resulting fiber structure has excellent bulkiness and thermal deformation. It is difficult to do.

【0018】210℃での熱処理前後におけるポリエス
テル系短繊維の捲縮率の保持率が85%未満であると、
熱処理後に捲縮形態が失われ、繊維が直線的なものとな
り、得られる繊維構造体の構造が単次元的になりやすく
嵩が低下する。また高温雰囲気下で繊維構造物を使用し
た場合に熱変形しやすいものとなる。
When the retention rate of the crimp rate of the polyester short fiber before and after the heat treatment at 210 ° C. is less than 85%,
The crimped form is lost after the heat treatment, the fiber becomes linear, and the structure of the obtained fiber structure tends to be one-dimensional, and the bulk is reduced. Further, when the fiber structure is used in a high-temperature atmosphere, the fiber structure is easily deformed by heat.

【0019】なお、捲縮数及び捲縮率については、捲縮
数は5〜20個/25mm、捲縮率は10〜30%とす
ることが好ましい。
The number of crimps and the rate of crimp are preferably 5 to 20 crimps / 25 mm, and the crimp rate is preferably 10 to 30%.

【0020】ここで、本発明の短繊維の性能として、2
10℃での熱処理前後における捲縮率の保持率を85%
以上とするには次のような方法で製造することが好まし
い。まず、Tgが80℃以上のポリエステルを溶融紡糸
し、これを3.0〜5.0倍に延伸した後、温度100
〜150℃で緊張熱処理を行い、押し込み式捲縮付与機
で捲縮を付与し、その後160〜240℃にて弛緩熱処
理する。この方法により捲縮率の保持率が高くなる理由
は明らかではないが、緊張熱処理を行い、捲縮を付与し
た後に行う弛緩熱処理を、緊張熱処理温度より高温で行
うことにより、捲縮形態を固持した状態で結晶化が進
み、強固な捲縮が付与されると推測される。
Here, the performance of the short fiber of the present invention is 2
85% retention of crimp rate before and after heat treatment at 10 ° C
In order to achieve the above, it is preferable to manufacture by the following method. First, a polyester having a Tg of 80 ° C. or higher was melt-spun and stretched 3.0 to 5.0 times.
A tension heat treatment is performed at ~ 150 ° C, a crimp is applied by a press-in type crimping machine, and then a relaxation heat treatment is applied at 160 ~ 240 ° C. It is not clear why the retention rate of the crimp rate is increased by this method, but the relaxation heat treatment performed after performing the tension heat treatment and applying the crimp is performed at a temperature higher than the tension heat treatment temperature, thereby maintaining the crimped form. It is presumed that crystallization proceeds in a state of being crimped, and a strong crimp is provided.

【0021】延伸、緊張熱処理、捲縮付与、弛緩熱処理
工程は、連続してあるいは別工程で行ってもよく、そし
て、カットすることによって短繊維とする。
The steps of drawing, tension heat treatment, crimping and relaxation heat treatment may be performed continuously or in separate steps, and cut into short fibers.

【0022】ポリエステル系短繊維の繊度は、特に限定
されるものでなく、用途により決めればよいが、一般に
は2〜40デニール、好ましくは4〜30デニールであ
る。
The fineness of the polyester short fibers is not particularly limited and may be determined according to the intended use, but is generally 2 to 40 denier, preferably 4 to 30 denier.

【0023】繊維の形態としては、本発明の目的を損な
わない範囲であれば特に限定されるものではなく、ポリ
エステル単独からなる繊維でもよく、またポリエステル
と他成分を共重合した共重合ポリエステルとのサイドバ
イサイド型でもよい。
The form of the fiber is not particularly limited as long as the object of the present invention is not impaired. The fiber may be a fiber consisting of polyester alone, or a copolymer of polyester and another component. It may be a side-by-side type.

【0024】繊維の断面形状は、丸断面をはじめ、偏
平、六葉、W型、H型、三角断面等の異形断面、あるい
は中空断面でもよい。また、中空断面とする場合は中空
率を5〜30%とすることが好ましい。
The cross-sectional shape of the fiber may be a round cross-section, a flat cross-section, a six-leaf, W-shaped, H-shaped, triangular cross-section or other irregular cross-section, or a hollow cross-section. In the case of a hollow cross section, the hollow ratio is preferably set to 5 to 30%.

【0025】次に、本発明の繊維構造体について説明す
る。本発明の繊維構造体は、ポリエステル系熱接着性繊
維と、前記した本発明のポリエステル系短繊維とからな
るものであり、ポリエステル系熱接着性繊維は、Tgが
20〜80℃、Tmが130〜180℃の結晶性共重合
ポリエステルで繊維表面が覆われているものである。
Next, the fiber structure of the present invention will be described. The fibrous structure of the present invention is composed of the polyester-based thermo-adhesive fiber and the above-mentioned polyester staple fiber of the present invention. The polyester-based thermo-adhesive fiber has a Tg of 20 to 80 ° C and a Tm of 130. The fiber surface is covered with a crystalline copolyester at -180 ° C.

【0026】共重合ポリエステルが非晶性では、雰囲気
温度が共重合ポリエステルのTgを超えると、分子構造
的に不安定となるため、接着部分が強固なものとはなら
ず、得られる繊維構造体は短時間の使用や高温雰囲気下
の使用でへたりやすく、クッション材としての機能を果
たさないものとなる。したがって、接着成分には、結晶
性を有する共重合ポリエステルを用いることが必要であ
る。
When the copolyester is amorphous, if the ambient temperature exceeds the Tg of the copolyester, the molecular structure becomes unstable, so that the bonded portion does not become strong and the resulting fiber structure Is easy to set when used for a short time or in a high temperature atmosphere, and does not function as a cushion material. Therefore, it is necessary to use a copolyester having crystallinity for the adhesive component.

【0027】また、結晶性共重合ポリエステルのTgが
20℃未満であると、溶融紡糸時に単糸密着が発生する
など、製糸性が悪く、また、繊維構造体にした場合に、
70℃程度の雰囲気下でへたりやすいものとなるため好
ましくない。一方、Tgが80℃を超えると、繊維構造
体の耐へたり性に対しては有効なものの、製糸工程にお
いて高温で延伸することが必要になり、延伸による塑性
変形と同時に部分的な結晶化が始まり、糸切れが発生す
る等、延伸性が低下するため好ましくない。
If the crystalline copolymerized polyester has a Tg of less than 20 ° C., the yarn-forming properties are poor, such as the occurrence of single yarn adhesion during melt spinning.
It is not preferable because it becomes easy to set under an atmosphere of about 70 ° C. On the other hand, if the Tg exceeds 80 ° C., although it is effective for sag resistance of the fibrous structure, it is necessary to perform stretching at a high temperature in the yarn-making process, and the plastic crystallization due to stretching and partial crystallization occur simultaneously. Starts, and the stretchability decreases, such as the occurrence of yarn breakage, which is not preferable.

【0028】また、Tmが130℃未満では耐熱性がな
いことから、繊維構造体にした場合に高温雰囲気下でへ
たりやすいものとなる。一方、180℃を超えると、高
温での融着熱処理が必要となり、高温熱処理による重合
体の分解が起こりやすくなり、また、経済的にも好まし
くない等の問題がある。
If the Tm is less than 130 ° C., there is no heat resistance, so that when the fiber structure is used, the fiber structure is easily depressed in a high-temperature atmosphere. On the other hand, when the temperature exceeds 180 ° C., a fusion heat treatment at a high temperature is required, and the polymer is likely to be decomposed by the high temperature heat treatment.

【0029】上記の物性となるような結晶性の共重合ポ
リエステルは、例えば共重合成分としてテレフタル酸成
分、脂肪族ラクトン成分、エチレングリコ−ル成分、
1,4ブタンジオ−ル成分を用いることにより得ること
ができる。
The crystalline copolyester having the above-mentioned physical properties includes, for example, a terephthalic acid component, an aliphatic lactone component, an ethylene glycol component,
It can be obtained by using 1,4 butanediol component.

【0030】ここで、脂肪族ラクトン成分を用いる場
合、その割合は、酸成分(テレフタル酸成分及び脂肪族
ラクトン成分の合計)の10〜20モル%となるように
することが好ましい。10モル%未満では結晶性はよく
なるが、Tmが180℃を超え、熱接着処理を高温で行
うことが必要となり、20モル%を超えると、紡糸時に
密着が発生し、製糸性が悪くなる。また、脂肪族ラクト
ン成分としては、炭素数4〜11のラクトンが好まし
く、中でも好適なラクトンとして、ε−カプロラクトン
やδ−バレロラクトン等が挙げられる。
Here, when an aliphatic lactone component is used, its ratio is preferably set to 10 to 20 mol% of the acid component (total of the terephthalic acid component and the aliphatic lactone component). If the content is less than 10 mol%, the crystallinity is improved, but the Tm exceeds 180 ° C., and it is necessary to perform the thermal bonding treatment at a high temperature. If the content exceeds 20 mol%, adhesion occurs at the time of spinning, and the spinnability deteriorates. As the aliphatic lactone component, a lactone having 4 to 11 carbon atoms is preferable. Among them, ε-caprolactone and δ-valerolactone are preferable.

【0031】なお、ポリエステル系熱接着性繊維の表面
を覆う結晶性共重合ポリエステルには、本発明の効果を
損なわない範囲で、イソフタル酸、フタル酸、アジピン
酸、セバシン酸、ジエチレングリコ−ル、トリエチレン
グリコ−ル等の共重合成分を含有していてもよい。
The crystalline copolyester covering the surface of the polyester-based heat-bondable fiber may be any of isophthalic acid, phthalic acid, adipic acid, sebacic acid, diethylene glycol, triethylene, or the like as long as the effects of the present invention are not impaired. It may contain a copolymer component such as ethylene glycol.

【0032】ポリエステル系熱接着性繊維の形態として
は、上記の結晶性共重合ポリエステルで繊維表面が覆わ
れていれば、結晶性共重合ポリエステルのみからなる全
溶融タイプの繊維であってもよく、また芯成分としてポ
リエチレンテレフタレートを配し、鞘成分として上記の
結晶性共重合ポリエステルを配した芯鞘型の複合繊維で
あってもよい。
As the form of the polyester-based heat-bondable fiber, as long as the fiber surface is covered with the above-mentioned crystalline copolyester, it may be an all-melt type fiber composed of only the crystalline copolyester, Further, a core-sheath type composite fiber in which polyethylene terephthalate is disposed as a core component and the above-mentioned crystalline copolymerized polyester is disposed as a sheath component may be used.

【0033】そして、ポリエステル系熱接着性繊維の繊
度は限定しないが、クッション性を考慮すると2〜60
デニールが適当である。
The fineness of the polyester-based heat-adhesive fiber is not limited, but is 2 to 60 in consideration of the cushioning property.
Denier is appropriate.

【0034】さらに、本発明の繊維構造体を構成するポ
リエステル系短繊維とポリエステル系熱接着性繊維の混
合比率は、ポリエステル系短繊維が90〜50重量%、
ポリエステル系熱接着性繊維が10〜50重量%である
ことが必要であり、より好ましくは、ポリエステル系短
繊維が80〜60重量%、ポリエステル系熱接着性繊維
が20〜40重量%である。
Further, the mixing ratio of the polyester staple fiber and the polyester thermoadhesive fiber constituting the fiber structure of the present invention is such that the polyester staple fiber is 90 to 50% by weight,
It is necessary that the content of the polyester-based heat-adhesive fiber is 10 to 50% by weight, and more preferably, the content of the polyester-based short fiber is 80 to 60% by weight, and the content of the polyester-based heat-adhesive fiber is 20 to 40% by weight.

【0035】ポリエステル系熱接着性繊維が10重量%
未満では、繊維間の接着点が少なくなるため、繊維構造
体の型崩れが生じ、圧縮残留歪み率が高くなり、さらに
は繊維構造体の弾性回復率が悪くなるため好ましくな
い。一方、ポリエステル系熱接着性繊維が50重量%よ
り多いと、繊維同士の接着点が多くなるが嵩が低くな
り、また、ポリエステル系短繊維が少なくなるため、圧
縮残留歪み率が高くなりクッション材として不適なもの
となり、好ましくない。
10% by weight of polyester-based heat-adhesive fiber
If it is less than 1, the number of bonding points between the fibers becomes small, so that the fiber structure loses its shape, the compressive residual strain rate increases, and the elastic recovery rate of the fiber structure deteriorates. On the other hand, if the amount of the polyester-based thermoadhesive fiber is more than 50% by weight, the number of bonding points between the fibers increases, but the bulk decreases, and the amount of the polyester-based short fiber decreases. And it is not preferable.

【0036】そして、本発明の繊維構造体の具体的な形
態としては、不織布、固綿等が挙げられる。中でも固綿
としては、自動車シート用途でのクッション性や軽量化
等を考慮すると、密度が20〜40kg/m3であるこ
とが好ましい。
[0036] Specific examples of the fiber structure of the present invention include non-woven fabric and solid cotton. Above all, the solid cotton preferably has a density of 20 to 40 kg / m 3 in consideration of cushioning properties and weight reduction in automotive seat applications.

【0037】さらに、本発明の繊維構造体は、密度が2
0〜40kg/m3のときの25%圧縮応力が8kgf
以上であることが好ましい。25%圧縮応力が8kgf
未満では、底突き感が発生し、座り心地が悪く、長時間
の使用により腰の疲れやお尻の痛みが生じ、快適性が損
なわれたり、また繊維構造体がへたりやすいものとなる
ため好ましくない。
Further, the fiber structure of the present invention has a density of 2
25% compressive stress at 0 to 40 kg / m 3 is 8 kgf
It is preferable that it is above. 25% compressive stress is 8kgf
If it is less than 30, a feeling of bottom contact occurs, the sitting comfort is poor, and long-term use causes tiredness of the hips and pain in the buttocks, which impairs comfort and makes the fiber structure easily slip off Not preferred.

【0038】また、繊維構造体の70℃における圧縮残
留歪み率は、20%以下であることが好ましい。20%
を超えるものは、70℃程度の雰囲気下で使用した場合
のへたりが大きく、底突き感が発生し、座り心地が悪
く、好ましくない。
Further, it is preferable that the compression set at 70 ° C. of the fibrous structure is 20% or less. 20%
If the temperature exceeds 70 ° C., use of the film in an atmosphere of about 70 ° C. causes a large set, which gives a feeling of bottoming out, which is unfavorable because of poor sitting comfort.

【0039】ここで、本発明の繊維構造体の製造方法を
一例を挙げて説明する。本発明のポリエステル系短繊維
90〜50重量%と、ポリエステル系熱接着性繊維10
〜50重量%の割合で混綿し、カ−ド機にかけウエブを
作成する。このウエブをポリエステル系熱接着性繊維の
熱接着成分のTm以上、熱接着成分のTm+50℃以下
の温度にした熱処理装置により、熱接着成分を溶融さ
せ、繊維相互を点接着させた後、所定の密度となるよう
に厚みを規制する。一旦室温まで冷却した後、熱接着成
分の結晶開始温度(以下、Tcと略する)以上、熱接着
成分のTc+30℃以下の温度で結晶化熱処理を行い、
ポリエステル系熱接着性繊維を接着部分の結晶性を促進
させ、繊維構造体を得る。この場合、熱処理の前にニー
ドリング加工を行なってもよい。熱処理装置としては熱
風ドライヤ−、回転ドラム乾燥機等が用いられる。
Here, the method for producing the fibrous structure of the present invention will be described by way of an example. 90 to 50% by weight of the polyester staple fiber of the present invention and the polyester thermoadhesive fiber 10
Approximately 50% by weight of cotton wool is mixed, and a card machine is used to prepare a web. The heat-bonding component is melted by a heat treatment apparatus in which the web is heated to a temperature not lower than Tm of the heat-bonding component of the polyester-based heat-bondable fiber and not higher than Tm of the heat-bonding component + 50 ° C. The thickness is regulated so as to obtain the density. Once cooled to room temperature, a crystallization heat treatment is performed at a temperature equal to or higher than the crystallization start temperature (hereinafter, abbreviated as Tc) of the thermal bonding component and Tc + 30 ° C. or lower of the thermal bonding component.
The polyester-based heat-adhesive fiber promotes the crystallinity of the bonded portion to obtain a fibrous structure. In this case, needling may be performed before the heat treatment. As the heat treatment apparatus, a hot air dryer, a rotary drum dryer, or the like is used.

【0040】[0040]

【実施例】次に、実施例により本発明を具体的に説明す
る。なお、実施例中の各種の物性値の側定は次のように
行った。 (1)Tg及びTm パーキンエルマ−社製の示差走査熱量計DSC−7型を
使用し、昇温速度20℃/分で測定した。 (2)繊度 JIS L−1015−7−5−1の方法により測定し
た。 (3)捲縮率 JIS L−1015−7−12−12の方法により測
定した。 (4)捲縮率の保持率 得られた短繊維を温度210℃の熱風乾燥機中で20分
間放置した後、JISL−1015−7−12−12の
方法により熱処理後の捲縮率を測定した。このとき、熱
処理後の捲縮率と熱処理前の捲縮率を前記(3)の方法
で求め、下記の式を用いて捲縮率の保持率を求めた。 捲縮率の保持率(%)=(B/A)×100 A:熱処理前の捲縮率(%) B:熱処理後の捲縮率(%) (5)圧縮残留歪み率 試験片として厚さ20mm、 10cm×10cmの正
方形の繊維構造物を作成し、JIS K−6401の方
法(70℃×22時間)により測定した。 (6)25%圧縮応力 試験片として密度25kg/m3、厚さ35mmの繊維
構造体を作成し、JIS K−6401の方法により、
初期嵩に対して25%圧縮時の圧縮力を測定した。
Next, the present invention will be described specifically with reference to examples. The determination of various physical properties in the examples was performed as follows. (1) Tg and Tm Measurement was performed at a heating rate of 20 ° C./min using a differential scanning calorimeter DSC-7 manufactured by PerkinElmer. (2) Fineness It was measured by the method of JIS L-1015-7-5-1. (3) Crimp ratio Measured according to the method of JIS L-1015-7-12-12. (4) Retention rate of crimp rate After leaving the obtained short fibers in a hot air drier at a temperature of 210 ° C for 20 minutes, the crimp rate after heat treatment was measured by the method of JISL-1015-7-12-12. did. At this time, the crimp rate after the heat treatment and the crimp rate before the heat treatment were determined by the method (3), and the retention rate of the crimp rate was determined using the following equation. Retention of crimp rate (%) = (B / A) × 100 A: Crimp rate before heat treatment (%) B: Crimp rate after heat treatment (%) (5) Residual compressive strain Thickness as test specimen A square fiber structure having a length of 20 mm and a size of 10 cm × 10 cm was prepared and measured by a method of JIS K-6401 (70 ° C. × 22 hours). (6) 25% compressive stress A fibrous structure having a density of 25 kg / m 3 and a thickness of 35 mm was prepared as a test piece, and was subjected to the method of JIS K-6401.
The compression force at the time of 25% compression with respect to the initial bulk was measured.

【0041】実施例1 Tg120℃、Tm267℃のPENポリマーを、定法
により減圧乾燥した後、溶融紡糸設備を用い、紡糸温度
300℃、吐出量400g/分で紡糸し、速度500m
/分で引き取り、未延伸繊維を得た。次いで、この未延
伸繊維を10万デニ−ルに集束し、延伸ロ−ラ95℃、
湿式浴95℃、延伸倍率4.5倍の条件で延伸した後、
ヒ−トドラムにて、温度110℃の緊張熱処理を行い、
押し込み式捲縮付与機で捲縮を付与し、さらに170℃
で5分間弛緩熱処理し、室温に冷却後、51mmに切断
して、繊度15デニ−ルのPEN短繊維(主体繊維)を
得た。次に、熱接着性繊維として、芯成分にTm256
℃のPET、鞘成分にTg32℃、Tm160℃の結晶
性共重合ポリエステルを用い、溶融紡糸設備を用いて紡
糸した。紡糸温度270℃、吐出量642g/分、速度
700m/分で引き取り、芯鞘型の未延伸繊維を得た。
次にこの未延伸繊維を、延伸温度60℃、延伸倍率3.
8倍で延伸した後、押し込み式捲縮付与機で捲縮を付与
し、51mmに切断して、繊度4デニールのポリエステ
ル系熱接着性繊維を得た。このようにして得たPEN短
繊維と、ポリエステル系熱接着性繊維を80:20の割
合で混合し、カ−ドにてウエブを作成した後、積層し
た。この積層ウエブに210℃×10分間の熱接着処理
を施した後、60℃で厚さ35mmに規制した。その
後、110℃×20分の結晶化熱処理を行い、繊維構造
体を得た。
Example 1 A PEN polymer having a Tg of 120 ° C. and a Tm of 267 ° C. was dried under reduced pressure by a conventional method, and then spun at a spinning temperature of 300 ° C. and a discharge rate of 400 g / min using a melt spinning apparatus.
/ Min to obtain an undrawn fiber. Next, this undrawn fiber was bundled to 100,000 denier, and drawn at 95 ° C.
After stretching in a wet bath at 95 ° C. and a stretching ratio of 4.5 times,
In a heat drum, a tension heat treatment at a temperature of 110 ° C is performed.
The crimp is applied by a press-in type crimp applying machine, and further 170 ° C.
For 5 minutes, cooled to room temperature, and cut into 51 mm pieces to obtain PEN short fibers (main fibers) having a fineness of 15 denier. Next, Tm256 was added to the core component as a heat-adhesive fiber.
The melt-spinning apparatus was used for spinning using PET at 0 ° C. and a crystalline copolyester having Tg of 32 ° C. and Tm of 160 ° C. as the sheath component. The fiber was drawn at a spinning temperature of 270 ° C., a discharge rate of 642 g / min, and a speed of 700 m / min to obtain a core-sheath type undrawn fiber.
Next, the undrawn fiber is subjected to a drawing temperature of 60 ° C. and a draw ratio of 3.
After drawing at 8 times, crimping was performed with a press-in type crimping machine and cut to 51 mm to obtain a polyester-based heat-bondable fiber having a fineness of 4 denier. The PEN staple fiber thus obtained and the polyester-based heat-adhesive fiber were mixed at a ratio of 80:20, a web was formed with a card, and then laminated. After subjecting this laminated web to a thermal bonding treatment at 210 ° C. for 10 minutes, the thickness was regulated at 60 ° C. to a thickness of 35 mm. Then, crystallization heat treatment was performed at 110 ° C. for 20 minutes to obtain a fibrous structure.

【0042】実施例2 PENにイソフタル酸を共重合したTg103℃の共重
合ポリエステルを用いた以外は、実施例1と同様にして
PEN短繊維及び繊維構造体を得た。
Example 2 PEN short fibers and a fibrous structure were obtained in the same manner as in Example 1 except that a copolymerized polyester having a Tg of 103 ° C. obtained by copolymerizing isophthalic acid with PEN was used.

【0043】実施例3〜7 PEN短繊維の製造工程において、緊張熱処理温度と弛
緩熱処理温度を表1に示すように変更した以外は、実施
例1と同様にしてPEN短繊維及び繊維構造体を得た。
Examples 3 to 7 PEN short fibers and fibrous structures were produced in the same manner as in Example 1 except that the tension heat treatment temperature and the relaxation heat treatment temperature were changed as shown in Table 1 in the process of producing PEN short fibers. Obtained.

【0044】比較例1 PENポリマーに代えて、Tg69℃のPETポリマー
を用いた以外は、実施例1と同様にして主体繊維及び繊
維構造体を得た。
Comparative Example 1 A main fiber and a fiber structure were obtained in the same manner as in Example 1 except that a PET polymer having a Tg of 69 ° C. was used instead of the PEN polymer.

【0045】比較例2 PENにイソフタル酸を共重合したTg73℃の共重合
ポリエステルを用いた以外は、実施例1と同様にしてP
EN短繊維及び繊維構造体を得た。
Comparative Example 2 The procedure of Example 1 was repeated except that a copolymerized polyester having a Tg of 73 ° C. and copolymerized isophthalic acid with PEN was used.
EN short fibers and fiber structures were obtained.

【0046】比較例3〜4 PEN短繊維の製造工程において、緊張熱処理温度と弛
緩熱処理温度を表1に示すように変更した以外は、実施
例1と同様にしてPEN短繊維及び繊維構造体を得た。
Comparative Examples 3 and 4 PEN short fibers and fibrous structures were prepared in the same manner as in Example 1 except that the tension heat treatment temperature and the relaxation heat treatment temperature were changed as shown in Table 1 in the process of producing PEN short fibers. Obtained.

【0047】比較例5 熱接着性繊維の接着成分として、イソフタル酸を40モ
ル%共重合した非晶性ポリエステル(Tg62℃、軟化
点110℃)を用いた以外は、実施例1と同様にして熱
接着性繊維及び繊維構造体を得た。
Comparative Example 5 The procedure of Example 1 was repeated except that an amorphous polyester (Tg of 62 ° C., softening point of 110 ° C.) obtained by copolymerizing 40% by mole of isophthalic acid was used as an adhesive component of the heat-adhesive fiber. A heat-adhesive fiber and a fiber structure were obtained.

【0048】実施例8、比較例6〜7 PEN短繊維と熱接着性繊維の混合割合を表1に示すよ
うに変更した以外は、実施例1と同様にして繊維構造体
を得た。
Example 8, Comparative Examples 6 and 7 A fibrous structure was obtained in the same manner as in Example 1 except that the mixing ratio of the PEN short fiber and the heat-adhesive fiber was changed as shown in Table 1.

【0049】実施例1〜8、比較例1〜7で得られた主
体繊維及び繊維構造体の各種物性値を測定した結果を表
1に示す。
Table 1 shows the measurement results of various physical properties of the main fibers and the fiber structures obtained in Examples 1 to 8 and Comparative Examples 1 to 7.

【0050】[0050]

【表1】 [Table 1]

【0051】表1から明らかなように、実施例1〜8で
は、主体繊維の捲縮保持率が高く、得られた繊維構造物
は70℃における圧縮残留歪み率に優れており、高温雰
囲気下でも熱変形しにくいものであった。一方、比較例
1は主体繊維がPET短繊維であり、Tgが80℃未満
であるために、比較例2ではPENのTgが80℃未満
であるため、ともに捲縮保持率が低く、得られた繊維構
造体も圧縮残留歪み率が高く、熱変形しやすいものであ
った。比較例3及び比較例4においても、PEN短繊維
の捲縮保持率が低いために、得られた繊維構造物は圧縮
残留歪み率が高く、熱変形しやすいものであった。比較
例5は、熱接着繊維の接着成分が非晶性ポリエステルで
あったため、得られた繊維構造物は圧縮残留歪み率が高
く、クッション性に劣るものであった。比較例6は、熱
接着繊維の混合割合が小さいために、繊維構造体の性能
測定時に繊維構造体に型くずれが生じ、繊維構造体の性
能を測定することができなかった。比較例7は主体繊維
の混合割合が小さいために、得られた繊維構造物は圧縮
残留歪み率が高く、圧縮に対する反発力に乏しく、クッ
ション性に劣るものであった。
As is clear from Table 1, in Examples 1 to 8, the crimp retention of the main fiber was high, and the obtained fiber structure was excellent in the compression set at 70 ° C. However, it was difficult to be thermally deformed. On the other hand, in Comparative Example 1, the main fiber was PET short fiber, and the Tg was less than 80 ° C., and in Comparative Example 2, the Tg of PEN was less than 80 ° C., so that both crimp retentions were low and obtained. The resulting fibrous structure also had a high compressive residual strain rate and was easily deformed by heat. Also in Comparative Examples 3 and 4, since the crimp retention of the PEN short fiber was low, the obtained fiber structure had a high compression residual strain rate and was easily thermally deformed. In Comparative Example 5, since the adhesive component of the heat-bonding fiber was an amorphous polyester, the resulting fiber structure had a high compression set rate and was inferior in cushioning properties. In Comparative Example 6, since the mixing ratio of the heat bonding fibers was small, the fiber structure lost its shape when the performance of the fiber structure was measured, and the performance of the fiber structure could not be measured. In Comparative Example 7, since the mixing ratio of the main fibers was small, the obtained fibrous structure had a high compression residual strain rate, had poor resilience to compression, and had poor cushioning properties.

【0052】[0052]

【発明の効果】本発明のポリエステル系短繊維は、Tg
が80℃以上のポリエステルからなり、繊維構造物を作
成する際の高温に対する捲縮率の保持率が高いポリエス
テル系短繊維であるために、熱接着性繊維と混合し、熱
処理して得られた繊維構造物は、70℃程度の高温雰囲
気下で使用した場合でも熱変形しにくく、特に自動車シ
ートや天井材、床材、吸音材あるいはトランクルーム内
装材として好適である。
The polyester short fiber of the present invention has a Tg
Is made of polyester having a temperature of 80 ° C. or higher, and is a polyester short fiber having a high retention rate of a crimp rate at a high temperature when producing a fibrous structure. The fibrous structure is less likely to be thermally deformed even when used in a high temperature atmosphere of about 70 ° C., and is particularly suitable as an automobile seat, a ceiling material, a floor material, a sound absorbing material, or a trunk room interior material.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガラス転移点温度が80℃以上のポリエ
ステルからなり、かつ210℃での熱処理前後における
捲縮率の保持率が85%以上であることを特徴とするポ
リエステル系短繊維。
1. A polyester-based short fiber comprising a polyester having a glass transition temperature of 80 ° C. or higher, and having a retention rate of a crimp rate of 85% or higher before and after a heat treatment at 210 ° C.
【請求項2】 ガラス転移点温度が20〜80℃、融点
が130〜180℃の結晶性共重合ポリエステルで繊維
表面が覆われているポリエステル系熱接着性繊維10〜
50重量%と、請求項1記載のポリエステル系短繊維9
0〜50重量%とからなることを特徴とする繊維構造
体。
2. A polyester thermoadhesive fiber 10 whose fiber surface is covered with a crystalline copolymerized polyester having a glass transition temperature of 20 to 80 ° C. and a melting point of 130 to 180 ° C.
50% by weight of the polyester staple fiber 9 according to claim 1.
A fiber structure comprising 0 to 50% by weight.
【請求項3】 密度20〜40kg/m3時の25%圧
縮応力が8kgf以上であり、70℃における圧縮残留
歪み率が20%以下である請求項2記載の繊維構造体。
3. The fibrous structure according to claim 2, wherein a 25% compressive stress at a density of 20 to 40 kg / m 3 is 8 kgf or more, and a compressive residual strain at 70 ° C. is 20% or less.
JP2000006588A 2000-01-14 2000-01-14 Polyester-based staple fiber and fiber structure Pending JP2001200428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000006588A JP2001200428A (en) 2000-01-14 2000-01-14 Polyester-based staple fiber and fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000006588A JP2001200428A (en) 2000-01-14 2000-01-14 Polyester-based staple fiber and fiber structure

Publications (1)

Publication Number Publication Date
JP2001200428A true JP2001200428A (en) 2001-07-27

Family

ID=18535094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000006588A Pending JP2001200428A (en) 2000-01-14 2000-01-14 Polyester-based staple fiber and fiber structure

Country Status (1)

Country Link
JP (1) JP2001200428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209499A (en) * 2008-03-06 2009-09-17 Teijin Fibers Ltd Crimped polyethylene naphthalate fiber having low heat shrinkage and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209499A (en) * 2008-03-06 2009-09-17 Teijin Fibers Ltd Crimped polyethylene naphthalate fiber having low heat shrinkage and its manufacturing method

Similar Documents

Publication Publication Date Title
US5646077A (en) Binder fiber and nonwoven fabrics using the fiber
KR0125494B1 (en) Binder fiber and nonwoven fabric produced therefrom
JPH10310965A (en) Polyester short fiber nonwoven fabric
JPH04126856A (en) Polyester solid wadding
JP2001200428A (en) Polyester-based staple fiber and fiber structure
JP3654366B2 (en) Fibrous wadding material and method for producing the same
JP2001207360A (en) Ball-like wadding and fiber structure
JPH04240219A (en) Polyester-based heat bonding conjugate fiber
JP4237913B2 (en) Wadding material
JP2002030555A (en) Ball-like staple fiber comprising thermally adhesive fiber and fiber structure
JP3275974B2 (en) Polyester-based low-shrink heat-bonded fiber
JP3872203B2 (en) Binder fiber and non-woven fabric using this fiber
JP3352022B2 (en) Solid cotton with excellent sag resistance under high temperature atmosphere using binder fiber
JP4326083B2 (en) Polyester-based heat-adhesive composite staple fiber and nonwoven fabric
JP3454363B2 (en) Fiber structure and manufacturing method thereof
JP3610405B2 (en) Cushion chair
JP4628808B2 (en) Low shrinkable thermal adhesive fiber
JP2024130540A (en) Fiber Structure
JP3496724B2 (en) Fiber structure and manufacturing method thereof
JPH11200221A (en) Nonwoven fabric structure with improved shock-absorbing performance
JP2820321B2 (en) Binder fiber and non-woven fabric using this fiber
JPH08170256A (en) Yarn mixture, molded article of yarn and production of molded article of yarn
JPH07189101A (en) Soundproof material for automobile
JP2003027339A (en) Polyester-based conjugate fiber and fiber structure
JP2001262455A (en) Fibrous solid cotton and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

A131 Notification of reasons for refusal

Effective date: 20090113

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090519

Free format text: JAPANESE INTERMEDIATE CODE: A02