JP3275974B2 - Polyester-based low-shrink heat-bonded fiber - Google Patents

Polyester-based low-shrink heat-bonded fiber

Info

Publication number
JP3275974B2
JP3275974B2 JP11702693A JP11702693A JP3275974B2 JP 3275974 B2 JP3275974 B2 JP 3275974B2 JP 11702693 A JP11702693 A JP 11702693A JP 11702693 A JP11702693 A JP 11702693A JP 3275974 B2 JP3275974 B2 JP 3275974B2
Authority
JP
Japan
Prior art keywords
fiber
heat
component
bonding
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11702693A
Other languages
Japanese (ja)
Other versions
JPH06330410A (en
Inventor
靖司 山田
英夫 磯田
光浩 作田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP11702693A priority Critical patent/JP3275974B2/en
Publication of JPH06330410A publication Critical patent/JPH06330410A/en
Application granted granted Critical
Publication of JP3275974B2 publication Critical patent/JP3275974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】繊維構造体の接着に使う低収縮な
熱接着繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-shrink heat-bonded fiber used for bonding a fiber structure.

【0002】[0002]

【従来の技術】熱接着繊維は公知である。しかして、接
着成分の融点が低いため高温で延伸、熱セットすると融
着を生じるため、160℃以上での収縮率を下げること
が困難であった。このため、母材繊維と熱接着繊維を混
繊後開繊積層してウェッブとした後、加熱接着する際、
熱接着繊維が収縮して接着繊維が局在化し、接着点が減
少し、接着強力が低下したり、厚みのある繊維構造体に
するときは層間剥離を生じる問題があった。
BACKGROUND OF THE INVENTION Thermal bonding fibers are known. However, since the melting point of the adhesive component is low, when the film is stretched and heat-set at a high temperature, fusion occurs, so that it is difficult to reduce the shrinkage at 160 ° C. or more. For this reason, when the base fiber and the heat bonding fiber are mixed and spread and laminated to form a web, and then heat-bonded,
The heat bonding fibers shrink and the bonding fibers are localized, the bonding points are reduced, the bonding strength is reduced, and there is a problem that delamination occurs when a thick fiber structure is formed.

【0003】[0003]

【発明が解決しようとする課題】上記従来の問題点を解
決し、熱接着繊維の収縮による接着点の減少や層間剥離
をしない繊維構造体を容易に製造できる熱接着繊維を提
供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned conventional problems and to provide a heat bonding fiber which can easily produce a fibrous structure which does not decrease the number of bonding points due to shrinkage of the heat bonding fiber and does not cause delamination. .

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意検討を行った結果、配向結晶化に
より芯部の収縮率を下げることで目的を達成できること
を知見し、本発明に到達した。すなわち、本発明は熱接
着成分が酸成分としてテレフタル酸を90モル%以上含
有し、グリコール成分として1,4−ブタンジオール及
びポリアルキレンジオールがブロック共重合され、か
つ、ポリアルキレンジオールの共重合量が30重量%以
上、80重量%以下であるポリエステルエラストマーを
鞘成分とし、芯成分として非エラストマーポリエステル
を用い、3000m/分以上5000m/分以下で引き
取り、配向結晶化させた芯鞘複合繊維であり、芯部と鞘
部の融点差が40℃以上、複合繊維の160℃での乾熱
収縮率が10%以下であることを特徴とする低収縮熱接
着繊維である。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, have found that the object can be achieved by reducing the shrinkage of the core by oriented crystallization. The present invention has been reached. That is, in the present invention, the heat bonding component contains terephthalic acid as an acid component in an amount of 90 mol% or more, 1,4 -butanediol and a polyalkylene diol are block copolymerized as a glycol component, and the copolymerization amount of the polyalkylene diol is increased. Is a polyester component having a sheath component of 30% by weight or more and 80% by weight or less and a non-elastomer polyester as a core component, and is drawn at a rate of 3000m / min to 5000m / min.
A core-sheath composite fiber obtained by orientation and crystallizing, wherein the difference in melting point between the core and the sheath is 40 ° C. or more, and the dry heat shrinkage at 160 ° C. of the composite fiber is 10% or less. It is a shrinkable heat bonding fiber.

【0005】本発明の繊維は熱接着繊維とするため鞘成
分を熱接着成分とするポリエステルエラストマーで構成
される断面を実質的に芯鞘構造とするでマトリックス繊
維との接触点の大部分を熱接着成分を溶融させて接着点
とすることができる。断面が実質的に芯鞘構造でない場
合は、マトリックス繊維との接触点の大部分を接着点と
出来ないので繊維構造体の強力が低下して好ましくな
い。
Since the fiber of the present invention has a substantially core-in-sheath cross section made of a polyester elastomer having a sheath component as a heat bonding component in order to form a heat bonding fiber, most of the points of contact with the matrix fiber are thermally bonded. The adhesive component can be melted to an adhesive point. If the cross section is not substantially a core-in-sheath structure, most of the contact points with the matrix fibers cannot be used as adhesion points, so that the strength of the fiber structure is undesirably reduced.

【0006】本発明繊維の芯成分は熱可塑性ポリマーで
熱接着成分のみを溶融流動させて接着点を形成し、芯成
分は溶融させずマトリックス繊維を繋ぐネットワーク構
造をつくる必要から鞘成分のポリエステルエラストマー
より少なくとも40℃高い融点とすることで目的を達成
できる。熱接着させるための加熱温度は、通常、熱接着
成分の融点より少なくとも20℃以上高い温度で溶融流
動させて接着点を形成させるため、芯成分の融点と熱接
着成分の融点との差が40℃未満では、熱接着時に芯成
分も軟化変形してマトリックス繊維を繋ぐネットワーク
構造を形成できなくなるので好ましくない。本発明の好
ましい芯成分の融点は60℃以上に芯成分の融点を高く
することで、短時間に高温で熱成形できる。しかし、融
点が高すぎると、溶融紡糸温度を高くする必要から、熱
接着成分の熱分解を生じ劣化したものとなり、接着点の
耐久性が低下するので、より好ましくは80℃以上16
0℃以下である。
[0006] The core component of the fiber of the present invention is a thermoplastic polymer, which melts and flows only the heat-adhesive component to form an adhesive point. The core component is not melted, and it is necessary to form a network structure connecting the matrix fibers. The purpose can be achieved by setting the melting point higher by at least 40 ° C. The heating temperature for the heat bonding is usually at least 20 ° C. higher than the melting point of the heat bonding component, so that the bonding point is formed by melting and flowing, so that the difference between the melting point of the core component and the melting point of the heat bonding component is 40. If the temperature is lower than 0 ° C., the core component is also softened and deformed at the time of thermal bonding, so that a network structure connecting the matrix fibers cannot be formed. The preferred melting point of the core component of the present invention can be thermoformed in a short time at a high temperature by increasing the melting point of the core component to 60 ° C. or higher. However, if the melting point is too high, the melt spinning temperature must be increased, resulting in thermal decomposition of the heat-adhesive component, resulting in degradation, and lowering the durability of the bonding point.
0 ° C. or less.

【0007】本発明繊維の160℃での乾熱収縮率は1
0%以下である。乾熱収縮率が10%以下では、マトリ
ックス繊維と熱接着繊維を混繊後開繊積層してウェッブ
とした後、加熱接着時にも収縮が少ないので、混繊状態
を保ち3次元的なネットワーク構造を形成できる。更に
は、一度成形した繊維構造体を更に積層して接着成形す
る際も繊維構造体の表面に熱接着成分が存在するのでそ
のまま熱接着成形が可能となる。乾熱収縮率が10%を
越えるとマトリックス繊維と熱接着繊維を混繊後開繊積
層してウェッブとした後、加熱接着する際、熱接着繊維
が収縮して接着繊維が局在化し、接着点が減少し、接着
強力が低下したり、厚みのある繊維構造体にするときは
層間剥離を生じる問題を生じて好ましくない。本発明の
好ましい乾熱収縮率は6%以下、より好ましくは4%以
下である。
The fiber of the present invention has a dry heat shrinkage at 160 ° C. of 1
0% or less. When the dry heat shrinkage is 10% or less, the matrix fiber and the heat bonding fiber are mixed and then spread and laminated to form a web. Since the shrinkage is small even during heating and bonding, the mixed state is maintained and the three-dimensional network structure is maintained. Can be formed. Further, when the fiber structure once formed is further laminated and bonded and formed, the heat bonding component is present on the surface of the fiber structure, so that the heat bonding can be performed as it is. When the dry heat shrinkage exceeds 10%, the matrix fibers and the heat bonding fibers are mixed and then spread and laminated to form a web. When the fibers are heated and bonded, the heat bonding fibers shrink and the bonding fibers are localized and bonded. When the number of spots is reduced, the adhesive strength is reduced, or when a fibrous structure having a large thickness is formed, it is not preferable because a problem of delamination occurs. The preferred dry heat shrinkage of the present invention is 6% or less, more preferably 4% or less.

【0008】本発明繊維の芯成分は熱可塑性ポリマーで
形成することにより、高速で溶融紡糸することで、芯成
分を配向結晶化させて繊維の収縮率を低下させる。この
点で結晶性の良いポリマーの使用が好ましい。熱接着繊
維を熱収縮により低収縮化するには、熱接着成分が軟化
して接着しない温度で処理する必要があり、160℃の
様な高い温度で充分に配向度を保持させて収縮率を低下
させるのは困難である。配向度を充分保持しないと力学
特性が低下し、マトリックス繊維と熱接着繊維を混繊後
積層開繊してウェッブとする際、熱接着繊維が伸長され
て収縮率が高くなり、加熱接着時、熱接着繊維が収縮し
て接着繊維が局在化し、接着点が減少し、接着強力が低
下したり、厚みのある繊維構造体にするときは層間剥離
を生じる問題を生じて好ましくない。本発明では、配向
結晶化により配向度を充分保持して力学特性が良いた
め、開繊時も熱接着繊維が伸長しにくいので収縮率が高
くならない。かくして形成された3次元的なネットワー
ク構造は力学特性が良好なため、繊維構造体の形態保持
性も良好なものとなる。本発明繊維の好ましい力学特性
としては、乾熱110℃でフリー処理後の初期引張抵抗
度が15g/デニール以上、より好ましくは20g/デ
ニール以上である。
The core component of the fiber of the present invention is formed of a thermoplastic polymer, and is melt-spun at a high speed to orient and crystallize the core component to reduce the fiber shrinkage. In this regard, it is preferable to use a polymer having good crystallinity. In order to reduce the heat-shrinkable fiber by heat shrinkage, it is necessary to perform treatment at a temperature at which the heat-adhesive component softens and does not adhere. The shrinkage ratio is maintained by sufficiently maintaining the degree of orientation at a high temperature such as 160 ° C. It is difficult to lower. If the degree of orientation is not sufficiently maintained, the mechanical properties decrease, and when the matrix fiber and the heat bonding fiber are mixed and then spread and laminated to form a web, the heat bonding fiber is stretched and the shrinkage rate increases, When the heat-bonding fiber shrinks, the bonding fiber is localized, the bonding point is reduced, the bonding strength is reduced, and when a thick fiber structure is formed, it is not preferable because a problem of delamination occurs. In the present invention, the degree of orientation is sufficiently maintained by oriented crystallization and the mechanical properties are good, so that even when the fiber is opened, the heat-bonded fiber does not easily elongate, so that the shrinkage does not increase. Since the three-dimensional network structure thus formed has good mechanical properties, the fibrous structure also has good shape retention. As preferred mechanical properties of the fiber of the present invention, the initial tensile resistance after free treatment at 110 ° C. in dry heat is 15 g / denier or more, more preferably 20 g / denier or more.

【0009】本発明の熱接着繊維を構成する熱接着成分
は、グリコール成分として1,4−ブタンジオールの共
重合量が30重量%以上、80重量%以下である。エラ
ストマーとするには、ポリアルキレンジオールがブロッ
ク共重合される必要がある。そのことで熱接着部分が変
形しても、ゴム弾性が発現して変形力が解除されると回
復する。このゴム弾性に由来する回復性はポリアルキレ
ンジオールの共重合量に比例する。同時に融点と耐熱性
が低下していく。ポリアルキレンジオールの共重合量が
30重量%以下ではゴム弾性による回復性が劣るので好
ましくない。一方80重量%以上では融点が低下して耐
熱性が劣ること、及び粘着性が発現し加工時の障害とな
るので好ましくない。本発明の好ましいポリアルキレン
ジオールの共重合量は40重量%以上70重量%以下、
より好ましくは50重量%以上60重量%以下である。
本発明に用いるポリアルキレンジオールは公知のものを
使えるがポリテトラメチレングリコールが特に好まし
い。好ましい平均分子量は500以上5000以下、特
に好ましくは1000以上3000以下である。
The thermal adhesive component constituting the thermal adhesive fiber of the present invention has a copolymerization amount of 1,4-butanediol as a glycol component of 30% by weight or more and 80% by weight or less. In order to obtain an elastomer, it is necessary that a polyalkylene diol be block-copolymerized. As a result, even if the thermally bonded portion is deformed, it recovers when the elasticity is developed and the deformation force is released. The recoverability derived from the rubber elasticity is proportional to the copolymerization amount of the polyalkylene diol. At the same time, the melting point and heat resistance decrease. If the copolymerization amount of the polyalkylene diol is 30% by weight or less, the recoverability due to rubber elasticity is inferior. On the other hand, if the content is 80% by weight or more, the melting point is lowered and the heat resistance is deteriorated. Preferred copolymerization amount of the polyalkylene diol of the present invention is 40% by weight or more and 70% by weight or less,
More preferably, the content is 50% by weight or more and 60% by weight or less.
As the polyalkylene diol used in the present invention, known ones can be used, but polytetramethylene glycol is particularly preferable. The preferred average molecular weight is from 500 to 5,000, particularly preferably from 1,000 to 3,000.

【0010】本発明の熱接着繊維を構成する芯成分の非
エラストマーとしては少なくとも160℃以上の融点を
もち、高速紡糸で配向結晶化できる、例えば、ポリブチ
レンテレフタレート、ポリエチレンテレフタレート、ポ
リエチレンナフタレート、ポリシクロヘキシレンジメチ
ルテレフタレートなどの結晶性の良いポリエステルであ
る。特に好ましくはポリエチレンテレフタレートがあ
る。結晶性の良いものは塑性変形しにくいので加工性が
向上する。
[0010] The non-elastomer of the core component constituting the heat-bonding fiber of the present invention has a melting point of at least 160 ° C and can be oriented and crystallized by high-speed spinning. For example, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polyethylene It is a polyester with good crystallinity such as cyclohexylene dimethyl terephthalate. Particularly preferred is polyethylene terephthalate. Good crystallinity is less likely to be plastically deformed, so that workability is improved.

【0011】芯成分と鞘成分は公知の複合紡糸により、
芯鞘型に複合化し、ついで、3000m/分以上500
0m/分以下で引き取り、配向結晶化させる。紡糸での
配向結晶化は、繊維表面が細化冷却時に紡糸張力をうけ
て分子鎖が配向し、ガラス転移点温度付近までに結晶化
が促進されるので、繊維の芯部はランダム非晶となり、
芯部を配向結晶化させるのは通常困難である。しかし、
本発明繊維では、鞘成分がポリエステルエラストマーで
あるため、紡糸張力の大半が芯部に掛かるため、通常の
芯成分のみの紡糸時よりも低い引き取り速度で配向結晶
化させることができる。
[0011] The core component and the sheath component are formed by known composite spinning.
Composite into a core-in-sheath type, and then 3000 m / min or more 500
It is taken at a speed of 0 m / min or less, and oriented and crystallized. In the orientation crystallization by spinning, the fiber surface is subjected to spinning tension during cooling, the molecular chains are oriented, and crystallization is promoted to near the glass transition temperature, so the fiber core becomes random amorphous. ,
Oriented crystallization of the core is usually difficult. But,
In the fiber of the present invention, since the sheath component is a polyester elastomer, most of the spinning tension is applied to the core, so that the orientation crystallization can be performed at a lower take-off speed than when spinning only the core component alone.

【0012】かくして得られた低収縮化した配向結晶化
熱接着繊維は、所望により巻縮を付与し、切断してステ
ープルとする。または、このまま開繊開拡して不織布状
に成形することもできる。さらには、必要に応じ熱接着
成分の流動軟化点以下で芯部が結晶化する温度で熱処理
するのが好ましい。これは、通常の延伸糸では熱処理に
より収縮し力学特性は低下するが、本発明の繊維を得る
に好ましい紡糸方法で得た繊維は配向結晶化しているの
で、熱処理することでさらに初期引張抵抗度を高くでき
るので力学特性が向上し、加工工程通過時も向上する。
さらには、偏芯芯鞘断面の場合には、熱成形時立体巻縮
が発現し、繊維構造体の3次元ネットワーク構造が螺旋
コイルで形成でき、極めて良好な耐へたり、耐久性、ク
ッション性を付与できる。本発明繊維のみから形成した
繊維構造体でもソフトで嵩高さと耐久性を付与できる。
The thus obtained low-shrinkage oriented crystallized heat-bonded fiber is crimped, if necessary, and cut into staples. Alternatively, the fiber can be opened and expanded as it is to form a nonwoven fabric. Further, if necessary, it is preferable to perform a heat treatment at a temperature at which the core crystallizes below the fluid softening point of the thermal adhesive component. This is because, in a normal drawn yarn, the mechanical properties are reduced due to shrinkage due to heat treatment, but the fiber obtained by the preferred spinning method for obtaining the fiber of the present invention is oriented and crystallized. Can be increased, so that the mechanical properties are improved, and also during the processing step.
Furthermore, in the case of the eccentric core-sheath cross section, three-dimensional crimping occurs during thermoforming, and a three-dimensional network structure of a fiber structure can be formed by a helical coil. Can be given. Even a fibrous structure formed solely of the fiber of the present invention can provide softness and bulkiness and durability.

【0013】本発明の熱接着繊維のデニールは特に限定
されないが、マトリックス繊維との混繊しやすい範囲、
例えば1〜30デニールが好ましい。本発明の熱接着繊
維ステープルの巻縮は特に限定されないが、マトリック
ス繊維との混繊−開繊が良い機械巻縮とするのが好まし
い。断面は、丸断面、異形断面、中空断面、異形中空断
面などが使えるが、本発明繊維のみから繊維構造体を形
成する場合は中空断面、異形断面や異形中空断面とする
と嵩高で抗圧縮性を付与できるので好ましい。本発明の
好ましい使用形態としてマトリックス繊維をポリエステ
ルとする場合、熱接着繊維もポリエステルのものを使用
するとリサイクル時に分離せず再生も可能とできる。
The denier of the heat-bonded fiber of the present invention is not particularly limited.
For example, 1 to 30 denier is preferable. Although the crimping of the heat-bonded fiber staple of the present invention is not particularly limited, it is preferable to use mechanical crimping which is excellent in blending and opening with matrix fibers. The cross section can be a round cross section, a deformed cross section, a hollow cross section, a deformed hollow cross section, or the like. It is preferable because it can be provided. When polyester is used as the matrix fiber as a preferred mode of use of the present invention, if the heat-bonding fiber is made of polyester, it can be regenerated without separation during recycling.

【0014】[0014]

【実施例】以下に実施例で本発明を具体的に詳述する。The present invention will be described in detail below with reference to examples.

【0015】実施例1 酸成分としてジメチルテレフタレート453部とグリコ
ール成分として1−4ブタンジオールおよびポリテトラ
メチレングリコール1556部を少量の触媒と安定剤と
ともに仕込み、公知の方法にてエステル交換反応後昇温
減圧しつつ重縮合して融点158℃のポリエステルエー
テルブロック共重合エラストマーを生成した。得られた
ポリエステルエーテルブロック共重合エラストマーを鞘
成分に、融点265℃のポリエチレンテレフタレートを
芯成分にし、鞘/芯の重量比を50/50となるように
常法により複合化させ、紡糸温度280℃にて、引き取
り速度4000m/分にて紡糸し未延伸糸を得た。尚、
偏芯はさせていない。次いで、引き揃えクリンパーにて
機械巻縮を付与し、機械巻縮が伸びない張力でカッター
に供給し51mmに切断して4デニールの芯成分が配向
結晶化して160℃での乾熱収縮率が4%、乾熱110
℃処理後の初期引張り抵抗度が28g/デニールの熱接
着繊維を作成した。得られた機械巻縮を持つ熱接着繊維
を30重量%と常法にて作成したガラス転移点温度69
℃の13デニールの中空で外側に3個の突起を有する断
面で立体巻縮を有するPET短繊維を70重量%とをカ
ードにて良好な混繊−開繊状態にて得たウェッブを、密
度0.03g/ccとなるように圧縮し、180℃の熱
風を強制貫通させて、5分間熱処理して熱接着成分が溶
融流動し、交差部が接着したアメーバー状接着点で接合
され、接着点が均一に分散した3次元ネットワーク構造
を形成し、層間剥離をしにくい密度0.03g/ccの
平板状の繊維構造体を得た。得られた繊維構造体の特性
は、70℃圧縮残留歪が22%、繰返し残留圧縮歪が5
%と耐へたり性が良く、反発弾性が69%、25%圧縮
硬さが28Kgと適度に硬い反発力を示しクッション材
として適当な特性を示した。なお、70℃圧縮残留歪、
常温の繰返し圧縮残留歪及び反発弾性はJIS−K−6
401の方法による。
Example 1 453 parts of dimethyl terephthalate as an acid component and 1556 parts of 1-4 butanediol and polytetramethylene glycol as a glycol component were charged together with a small amount of a catalyst and a stabilizer. Polycondensation was performed under reduced pressure to produce a polyester ether block copolymer elastomer having a melting point of 158 ° C. The obtained polyester ether block copolymer elastomer was used as a sheath component, and polyethylene terephthalate having a melting point of 265 ° C. was used as a core component. The composite was compounded by a conventional method so that the sheath / core weight ratio was 50/50, and the spinning temperature was 280 ° C. , And spun at a take-up speed of 4000 m / min to obtain an undrawn yarn. still,
No eccentricity. Next, mechanical crimping is applied by a drawing crimper, and the mechanical crimp is supplied to a cutter with a tension that does not elongate, cut into 51 mm, and a 4-denier core component is oriented and crystallized, and the dry heat shrinkage at 160 ° C. is reduced. 4%, dry heat 110
A heat-bonded fiber having an initial tensile resistance of 28 g / denier after the treatment at ° C was prepared. The obtained heat-bonded fiber having mechanical crimp was 30% by weight and the glass transition temperature was 69 prepared by a conventional method.
A web obtained by obtaining 70% by weight of a PET short fiber having a three-dimensional crimp in a cross section having 13 denier hollow and three projections on the outside at a temperature of 100 ° C. in a good mixed-spreading state by using a card has a density of Compressed to 0.03 g / cc, forcibly penetrated by hot air at 180 ° C., heat-treated for 5 minutes, melted and flowed the thermal adhesive component, and joined at the amoeboid adhesive point where the intersection was bonded, and the adhesive point Formed a three-dimensional network structure uniformly dispersed therein, thereby obtaining a flat fiber structure having a density of 0.03 g / cc, in which delamination was difficult. The properties of the obtained fiber structure are as follows: 70 ° C. compression set is 22%;
%, The rebound resilience was 69%, and the 25% compression hardness was 28 Kg, showing a moderately high repulsion force, and suitable properties as a cushion material. In addition, 70 ° C compression residual strain,
Repeated compression set and rebound resilience at room temperature are JIS-K-6
401.

【0016】比較例1 紡糸時の紡糸温度を280℃、引き取り速度を1300
m/分とし、50℃温浴にて、3.4倍に延伸した以外
実施例1と同様にして得た熱接着繊維は160℃での乾
熱収縮率は24%、初期引張り抵抗度は32g/デニー
ルであったが、乾熱110℃処理後17g/デニールと
なった。得られた熱接着繊維を用い、実施例1と同様に
して繊維構造体を成形した。しかして、熱接着繊維が熱
成形時に著しく収縮して接着点が不均一に分散し、且
つ、層間剥離し易い繊維構造体であった。得られた繊維
構造体の特性は、70℃圧縮残留歪が30%、繰返し圧
縮残留歪が10%と耐へたり性が悪くクッション材とし
ては使用しがたい繊維構造体である。なお、反発弾性は
63%、25%圧縮硬さは23Kgであった。
Comparative Example 1 The spinning temperature during spinning was 280 ° C., and the take-off speed was 1300.
m / min, and the heat-bonded fiber obtained in the same manner as in Example 1 except that it was stretched 3.4 times in a 50 ° C warm bath, had a dry heat shrinkage at 160 ° C of 24% and an initial tensile resistance of 32 g. / Denier, but became 17 g / denier after the dry heat treatment at 110 ° C. Using the obtained heat-bonded fiber, a fibrous structure was formed in the same manner as in Example 1. Thus, the heat-bonded fibers were significantly shrunk during thermoforming, the bonding points were unevenly dispersed, and the fiber structure was easily delaminated. The properties of the obtained fibrous structure are such that the compression set at 70 ° C. is 30% and the residual set at repeated compression is 10%. The rebound resilience was 63% and the 25% compression hardness was 23 kg.

【0017】比較例2 切断後90℃にて熱処理した以外、比較例1と同様にし
て得た熱接着繊維は、160℃での乾熱収縮率が12
%、初期引張り抵抗度は当初20g/デニールであった
が、乾熱110℃処理後16g/デニールとなった。得
られた熱接着繊維を用い、実施例1と同様にして繊維構
造体を成形した。しかして、熱接着繊維の初期引張り抵
抗度が低いため開繊時に伸長され、熱成形時に著しく収
縮して接着点が不均一に分散し、且つ、層間剥離し易い
繊維構造体であった。得られた繊維構造体の特性は、7
0℃圧縮残留歪が34%、繰返し圧縮残留歪が11%と
耐へたり性が悪くクッション材としては使用しがたい繊
維構造体である。
Comparative Example 2 A heat-bonded fiber obtained in the same manner as in Comparative Example 1 except that heat treatment was performed at 90 ° C. after cutting, the dry heat shrinkage at 160 ° C. was 12%.
%, The initial tensile resistance was 20 g / denier at the beginning, but became 16 g / denier after the dry heat treatment at 110 ° C. Using the obtained heat-bonded fiber, a fibrous structure was formed in the same manner as in Example 1. Thus, the heat-bonded fiber had a low initial tensile resistance, so that the fiber structure was elongated at the time of fiber opening, significantly contracted at the time of thermoforming, the bonding points were unevenly dispersed, and the fiber structure was easily delaminated. The properties of the obtained fiber structure are 7
It is a fibrous structure that has poor compression set with a residual compression set of 0% at 34% and a residual compression set of 11%, and is difficult to use as a cushioning material.

【0018】比較例3 熱接着成分の比率を30重量%としてサイドバイサイド
型に複合させ、繊維表面に占める熱接着成分の比率を1
5%とした以外は実施例1と同様にして得た4デニール
の熱接着繊維の特性は、160℃での乾熱収縮率が6
%、乾熱110℃処理後の初期引張り抵抗度が30g/
デニールであった。得られた熱接着繊維を用い、実施例
1と同様にして繊維構造体を作成した。熱成形時、熱接
着繊維が巻縮を発現し、マトリックス繊維に一部が巻き
付いた3次元ネットワーク構造を形成していたが、接触
部は大部分が熱接着されてはおらず、70℃圧縮残留歪
は42%、繰返し圧縮残留歪は10%と耐へたり性が劣
り、反発弾性は49%、25%圧縮硬さは9Kgと柔ら
かい反発力しか示さないクッション材としては不適当な
繊維構造体が得られた。
Comparative Example 3 A side-by-side composite was prepared by setting the ratio of the heat bonding component to 30% by weight, and the ratio of the heat bonding component to the fiber surface was 1
The properties of the 4-denier heat-bonded fiber obtained in the same manner as in Example 1 except that it was set to 5% were as follows.
%, The initial tensile resistance after dry heat treatment at 110 ° C. is 30 g /
It was denier. A fibrous structure was prepared in the same manner as in Example 1 using the obtained heat-bonded fibers. At the time of thermoforming, the heat-bonded fiber exhibited crimping and formed a three-dimensional network structure in which a part was wound around the matrix fiber. However, most of the contact portions were not heat-bonded and remained at 70 ° C under compression. Fiber structure unsuitable as a cushioning material showing inferior settling resistance of 42%, repeated compression residual strain of 10%, rebound resilience of 49%, and 25% compression hardness of 9Kg showing only soft repulsion. was gotten.

【0019】実施例2 繊維の中心から芯部の中心までの距離Lと繊維の半径R
を加えた値(L+R)をRで除した値{(L+R)/
R}で示す偏芯度を1.2となるように複合化した以外
は実施例1と同様にして作成した4デニールの熱接着繊
維は160℃での乾熱収縮率が4%、乾熱110℃処理
後の初期引張り抵抗度が27g/デニールであった。得
られた熱接着繊維を用い、実施例1と同様にして繊維構
造体を作成した。熱成形時、熱接着繊維が巻縮を発現
し、マトリックス繊維に巻き付いた3次元ネットワーク
構造を形成しており、接触部は大部分が熱接着され熱接
着点が均一に分散された形態を持ち、層間剥離もしにく
く、70℃圧縮残留歪が24%、繰返し圧縮残留歪が5
%と耐へたり性に優れ、反発弾性が64%、25%圧縮
硬さが20Kgと少し柔らかい反発力を示すクッション
材に適した繊維構造体が得られた。
Example 2 Distance L from center of fiber to center of core and radius R of fiber
(L + R) divided by RR (L + R) /
A 4-denier heat-bonded fiber prepared in the same manner as in Example 1 except that the eccentricity represented by R} was made to be 1.2, the dry heat shrinkage at 160 ° C. was 4%, and the dry heat The initial tensile resistance after the treatment at 110 ° C. was 27 g / denier. A fibrous structure was prepared in the same manner as in Example 1 using the obtained heat-bonded fibers. At the time of thermoforming, the heat-bonding fiber develops crimp and forms a three-dimensional network structure wound around the matrix fiber, and the contact portion has a form in which most of the heat-bonding is performed and the heat-bonding points are uniformly dispersed. Hard to delaminate, 24% compression set at 70 ° C, 5% compression set
%, Excellent in sag resistance, a rebound resilience of 64%, a 25% compression hardness of 20 kg, and a fiber structure suitable for a cushioning material exhibiting a slightly soft repulsion force.

【0020】[0020]

【発明の効果】本発明の熱接着繊維は芯成分を配向結晶
化により、低収縮化と同時に高モジュラス化しているた
め、加工時の繊維が受けるダメージが少なく、且つ加工
性良く、マトリックス繊維と混繊−開繊して繊維構造体
を成形した場合は、熱接着点が均一に分散し、且つ、熱
接着繊維芯部が熱処理により更に高モジュラス化した3
次元ネットワーク構造を形成して、層間剥離しにくく、
極めて優れた耐久性とクッション性を有する繊維構造体
を容易に得ることを可能とした。更には、本発明繊維の
好ましい実施形態として潜在巻縮能を付与した場合、本
発明繊維のみから形成してもソフトで嵩高さと耐久性を
付与した繊維構造体を容易に得ることを可能とした。用
途としては、特に、自動車、鉄道、船舶等の座席に適し
ている。更には、ベッド、家具にも適したものになる。
クッション材用途以外に、巻縮発現が著しく良好な特性
が伸縮性を付与できるので、低目付け、高目付けを問わ
ず伸縮可能な不織布用途、例えば、衛材基布、肩パット
やブラジャーカップ、合成皮革基布や立毛布帛用基布、
衛材用パッド類、座席用伸縮可能で通気性良好な接着ワ
ディング層や内装材の接着不織布等にも広く適用でき
る。更には、紡績が可能であり、紡績糸や飾り糸等衣料
用用途にも適用できる。
The heat-bonding fiber of the present invention has a low modulus and a high modulus at the same time as the shrinkage due to the orientational crystallization of the core component. In the case where the fiber structure was formed by blending and opening, the heat bonding points were uniformly dispersed, and the heat bonding fiber core had a higher modulus by heat treatment.
By forming a three-dimensional network structure, delamination is difficult,
A fiber structure having extremely excellent durability and cushioning properties can be easily obtained. Furthermore, when a latent crimping property is imparted as a preferred embodiment of the fiber of the present invention, it becomes possible to easily obtain a fiber structure imparted with softness and bulk and durability even when formed only from the fiber of the present invention. . It is particularly suitable for use in seats of automobiles, railways, ships, and the like. Furthermore, it becomes suitable for beds and furniture.
In addition to cushioning material applications, remarkably good crimping characteristics can impart elasticity, so it can be used for nonwoven fabrics that can be stretched regardless of low or high weighting, such as base fabrics, shoulder pads and bra cups, synthetic Leather base cloth or base cloth for napping cloth,
It can be widely applied to padding for safety materials, stretchable and breathable adhesive wadding layers for seats and adhesive nonwoven fabrics for interior materials. Furthermore, spinning is possible, and the present invention can be applied to uses for clothing such as spun yarn and decorative yarn.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−184119(JP,A) 特開 昭63−12746(JP,A) 特開 平5−98516(JP,A) (58)調査した分野(Int.Cl.7,DB名) D01F 8/14 D04H 1/54 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-184119 (JP, A) JP-A-63-12746 (JP, A) JP-A-5-98516 (JP, A) (58) Investigation Field (Int.Cl. 7 , DB name) D01F 8/14 D04H 1/54

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱接着成分が酸成分としてテレフタル酸
を90モル%以上含有し、グリコール成分として1,4
ブタンジオール及びポリアルキレンジオールがブロッ
ク共重合され、かつ、ポリアルキレンジオールの共重合
量が30重量%以上、80重量%以下であるポリエステ
ルエラストマーを鞘成分とし、芯成分として非エラスト
マーポリエステルを用い、3000m/分以上5000
m/分以下で引き取り、配向結晶化させた芯鞘複合繊維
であり、芯部と鞘部の融点差が40℃以上、複合繊維の
160℃での乾熱収縮率が10%以下であることを特徴
とするポリエステル系低収縮熱接着繊維。
1. A heat-bonding component contains terephthalic acid 90 mol% or more as the acid component, 1,4 as glycol component
- butanediol and polyalkylene diol is a block copolymer, and a copolymer of polyalkylene diol is 30 wt% or more, a polyester elastomer is 80 wt% or less as the sheath component, the non-elastomeric polyester used as the core component, 3000m / min or more 5000
A core-sheath composite fiber that has been drawn and oriented and crystallized at a rate of not more than m / min , and has a melting point difference between the core and the sheath of 40 ° C or more, and a dry heat shrinkage at 160 ° C of the composite fiber of 10% or less. A polyester-based low-shrink heat bonding fiber characterized by the following characteristics.
JP11702693A 1993-05-19 1993-05-19 Polyester-based low-shrink heat-bonded fiber Expired - Lifetime JP3275974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11702693A JP3275974B2 (en) 1993-05-19 1993-05-19 Polyester-based low-shrink heat-bonded fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11702693A JP3275974B2 (en) 1993-05-19 1993-05-19 Polyester-based low-shrink heat-bonded fiber

Publications (2)

Publication Number Publication Date
JPH06330410A JPH06330410A (en) 1994-11-29
JP3275974B2 true JP3275974B2 (en) 2002-04-22

Family

ID=14701611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11702693A Expired - Lifetime JP3275974B2 (en) 1993-05-19 1993-05-19 Polyester-based low-shrink heat-bonded fiber

Country Status (1)

Country Link
JP (1) JP3275974B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247128A (en) * 2013-04-08 2016-01-13 乐金华奥斯有限公司 Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1908574A1 (en) * 2006-10-05 2008-04-09 Novameer B.V. Method for producing self-reinforced polymeric three-dimensional products
JP6252435B2 (en) * 2014-03-03 2017-12-27 王子ホールディングス株式会社 Wallpaper backing paper
JP7323888B2 (en) * 2019-05-29 2023-08-09 ユニチカ株式会社 Manufacturing method for construction work sheet, civil engineering work sheet or fishing net

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247128A (en) * 2013-04-08 2016-01-13 乐金华奥斯有限公司 Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same

Also Published As

Publication number Publication date
JPH06330410A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
US5593525A (en) Process of making structured fiber material
JP3275974B2 (en) Polyester-based low-shrink heat-bonded fiber
JPH1181120A (en) Fiber structure
JPH073534A (en) Thermally bondable yarn having low shrinkage
JPH10310965A (en) Polyester short fiber nonwoven fabric
JP3233227B2 (en) Cushion material and its manufacturing method
JP3204344B2 (en) Elastomer-based heat-bonded conjugate fiber and method for producing the same
JP3092679B2 (en) Cushioning material
JP3157393B2 (en) Fiber molded high elastic cushioning material
JP3130622B2 (en) Pad material and manufacturing method thereof
JP3879289B2 (en) Method for producing polyester short fiber for cushion material and method for producing cushion material
JPH08851A (en) Fibrous wadding material and its production
JP2705440B2 (en) Thermal bonding fiber
JP3164169B2 (en) Crimped fiber
JPH0931751A (en) Heat seal type conjugated staple fiber
JP3454363B2 (en) Fiber structure and manufacturing method thereof
JP3496724B2 (en) Fiber structure and manufacturing method thereof
JP2001061605A (en) Seat for vehicle
JPH0551853A (en) Copolyester fiber laminate having shape memorizing ability
JP2001207360A (en) Ball-like wadding and fiber structure
JP3275973B2 (en) Elastomer-based heat-bonded fiber and method for producing the same
JP3468341B2 (en) Thermal adhesive polyester fiber
JP4628808B2 (en) Low shrinkable thermal adhesive fiber
JP2002030555A (en) Ball-like staple fiber comprising thermally adhesive fiber and fiber structure
JP4269387B2 (en) Thermal bonding fiber and cushioning material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090208

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120208

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 12

EXPY Cancellation because of completion of term