JPH1181120A - Fiber structure - Google Patents

Fiber structure

Info

Publication number
JPH1181120A
JPH1181120A JP9239503A JP23950397A JPH1181120A JP H1181120 A JPH1181120 A JP H1181120A JP 9239503 A JP9239503 A JP 9239503A JP 23950397 A JP23950397 A JP 23950397A JP H1181120 A JPH1181120 A JP H1181120A
Authority
JP
Japan
Prior art keywords
fiber
heat
hollow
adhesive
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9239503A
Other languages
Japanese (ja)
Other versions
JP4001983B2 (en
Inventor
Hironori Aida
裕憲 合田
Yoshiyuki Matoba
善行 的場
Mikio Tashiro
幹雄 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP23950397A priority Critical patent/JP4001983B2/en
Publication of JPH1181120A publication Critical patent/JPH1181120A/en
Application granted granted Critical
Publication of JP4001983B2 publication Critical patent/JP4001983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a fiber structure, excellent in processability in its production line, and showing excellent properties, e.g. down-like bulkiness, softness and resistance to settling. SOLUTION: This fiber structure is obtained by dispersing and mixing (A) 50 to 95 wt.% of highly hollow polyester fibers having a single fiber fineness of 0.1 to 17.0 deniers, hollowness of 40 to 85% in the cross section, number of crimps of 5 to 300/25m, crimping rate of 8 to 50%, silk factor of 15 to 25, crystallinity of 20% or more, and crystallite size of 4 nm or more in the (010) plane, and (B) 50 to 5 wt.% of heat-fusible fibers, and fusing the heat-fusible fibers to join these fibers A and B, at least partly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高中空ポリエステ
ル繊維と熱接着性繊維とからなる、嵩高性、柔軟性、耐
へたり性等の優れた特性を有する繊維構造体に関する。
The present invention relates to a fibrous structure comprising high-hollow polyester fiber and heat-adhesive fiber and having excellent properties such as bulkiness, flexibility and sag resistance.

【0002】[0002]

【従来の技術】従来、防寒用キルティング衣料や布団、
枕などの寝具類には、軽量、嵩高で柔軟性があり、ソフ
トで体によくフィットして暖かいことから、水鳥の羽毛
が珍重されてきた。しかし、近年環境保護、動物愛護の
観点から、羽毛の供給は減少する傾向にあり、これに代
る素材の開発が要望されている。
2. Description of the Related Art Conventionally, quilting clothing and futons for cold weather,
Bedding such as pillows has been prized for its waterfowl feathers because it is lightweight, bulky, flexible, soft, fits well and is warm. However, in recent years, from the viewpoint of environmental protection and animal welfare, the supply of feathers tends to decrease, and development of alternative materials has been demanded.

【0003】このような要望に答えるべく、例えば特公
昭52−28426号公報、特公昭52−50308号
公報には、繊維表面にシリコーン系処理剤を付与する方
法が提案されている。確かにこれらの方法によれば、柔
軟性は若干向上するものの、嵩高性は未だ不十分で、風
合も羽毛とは全く異なり、圧縮回復性も極めて不十分な
ものであった。
In order to respond to such a demand, for example, Japanese Patent Publication No. 52-28426 and Japanese Patent Publication No. 52-50308 propose a method of applying a silicone-based treating agent to the fiber surface. Certainly, according to these methods, although the flexibility is slightly improved, the bulkiness is still insufficient, the feeling is completely different from that of feathers, and the compression recovery is extremely insufficient.

【0004】また特公平1−20625号公報には、異
型断面を有する細繊度繊維を高速紡糸により製糸し、そ
の際繊維表面に低摩擦係数の処理剤を付与する方法が提
案されている。確かのこの方法によれば、極めてソフト
な風合を呈し、柔軟性も良好で羽毛に近い特性を示すも
のが得られる。しかしながら、このような極細繊維はロ
ーラカードでウエブを形成する際のカード通過性が悪く
て十分に開繊することができず、また仮に開繊ができた
としても、その繊維間摩擦係数が低いために繊維絡合処
理を十分施すことができず、特別の製綿機を必要とす
る。しかも、得られるウエブは斑やネップが多く、嵩性
も不十分で長期間使用すると著しく嵩が低下して重い感
じのするものになるという問題がある。
Japanese Patent Publication No. 1-20625 proposes a method of spinning fine fibers having an irregular cross section by high-speed spinning, and applying a treating agent having a low friction coefficient to the fiber surface. Certainly, according to this method, it is possible to obtain a material having an extremely soft feel, good flexibility, and characteristics similar to feathers. However, such microfibers have a poor card passage property when forming a web with a roller card and cannot be spread sufficiently, and even if the fiber can be spread, the coefficient of friction between the fibers is low. Therefore, the fiber entanglement treatment cannot be sufficiently performed, and a special cotton-making machine is required. In addition, the obtained web has many spots and neps, and has insufficient bulkiness, and has a problem that the bulk is significantly reduced and heavy when used for a long time.

【0005】一方、低嵩性や重量感を解消する方法とし
ては、従来中空繊維を用いる方法が多数提案されてい
る。確かに中空率を高めていけば嵩性は向上していくも
のと考えられるが、実際には、中空率が40%以上で
は、原綿製造時での加圧工程、例えば加圧ローラでの圧
縮時、押込み捲縮機での捲縮加工時、原綿をベール梱包
して圧縮保持した場合等によって、中空部が潰れて偏平
化し、中空化の効果がなくなるという問題がある。
[0005] On the other hand, as a method for eliminating low bulkiness and a feeling of weight, many methods using hollow fibers have been conventionally proposed. Certainly, it is considered that the bulkiness is improved by increasing the hollow ratio. However, in actuality, when the hollow ratio is 40% or more, the pressing step in the production of raw cotton, for example, the compression by a pressing roller At the time, there is a problem that the hollow portion is crushed and flattened due to the case where the raw cotton is bale-packed and compressed and held during the crimping process by the indentation crimping machine, and the hollowing effect is lost.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来技
術を背景になされたもので、その目的は、原綿から繊維
構造体への加工性に優れ、しかも羽毛様の優れた嵩高
性、柔軟性、耐へたり性等を兼備する繊維構造体を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made on the background of the above-mentioned prior art, and has as its object to provide excellent workability from raw cotton to a fibrous structure, as well as excellent bulkiness and softness like feathers. An object of the present invention is to provide a fiber structure having both properties and sag resistance.

【0007】[0007]

【課題を解決するための手段】本発明者らの研究によれ
ば、高中空ポリエステル繊維であっても、その繊維微細
構造が特定のものにあっては、中空部の潰れが発生し難
く、また仮に中空部の潰れが発生しても容易に元の形状
に戻すことができること、さらに、かかる繊維中に熱接
着性繊維を分散混合して熱接着処理すれば上記本発明の
目的が達成できることを見出だし、本発明に到達した。
According to the study of the present inventors, even in the case of high hollow polyester fiber, if the fiber microstructure is specific, the hollow portion is hardly crushed. Further, even if the hollow portion is crushed, it can be easily returned to the original shape.Furthermore, the object of the present invention can be achieved by dispersing and mixing a heat-adhesive fiber in such a fiber and performing a heat bonding treatment. And arrived at the present invention.

【0008】すなわち、本発明によれば、「単繊維繊度
が0.1〜8.0デニール、繊維横断面中空率が40〜
85%、捲縮数が5〜30個/25mm、捲縮率が8〜
50%、シルクファクターが15〜25、結晶化度が2
0%以上、(010)面の結晶サイズが4nm以上であ
る高中空ポリエステル繊維(A)50〜95重量%と、
熱接着性繊維(B)50〜5重量%とが分散混合された
繊維構造体であって、該熱接着性繊維の融着により構成
繊維の少なくとも一部が接合されていることを特徴とす
る繊維構造体。」が提供される。
[0008] That is, according to the present invention, "the single fiber fineness is 0.1 to 8.0 denier, the fiber cross section hollowness is 40 to
85%, number of crimps 5 to 30/25 mm, crimp rate 8 to
50%, silk factor 15-25, crystallinity 2
0% or more, 50-95% by weight of a high hollow polyester fiber (A) having a (010) plane crystal size of 4 nm or more;
A fibrous structure in which 50 to 5% by weight of a heat-adhesive fiber (B) is dispersed and mixed, wherein at least a part of the constituent fibers is joined by fusing the heat-adhesive fiber. Fiber structure. Is provided.

【0009】[0009]

【発明の実施の形態】以下、本発明について詳細に述べ
る。本発明で用いられる高中空ポリエステル繊維を構成
するポリエステルは、エチレンテレフタレートを主たる
繰返し単位とするエチレンテレフタレート系のホモポリ
エステル、コポリエステル又はこれらのポリエステルに
第3成分を混合したポリエステルであり、特に繰返し単
位の90モル%以上がエチレンテレフタレート単位であ
るポリエステルが好ましく、ホモポリエチレンテレフタ
レートが最も好ましい。10モル以下で共重合し得る共
重合成分としては、酸成分としてイソフタル酸、5−ナ
トリウムスルホイソフタル酸、ジフェニルジカルボン
酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸、
しゅう酸、アジピン酸、サバチン酸、ドデカン二酸等の
脂肪族ジカルボン酸、P−オキシ安息香酸、P−βーヒ
ドロキシエトキシ安息香酸等のオキシカルボン酸があげ
られ、またジオール成分としては、1,3−プロパンジ
オール、1,6−へキサンジオール、ネオペンチルグリ
コール等の脂肪族ジオール、1,4−ビス(β−ヒドロ
キシエトキシ)ベンゼン等の芳香族ジオール、ポリエチ
レチングリコール、ポリブチレングリコール等のポリア
ルキレングリコール等があげられる。なおこれら第3成
分は、単独で共重合させても2種以上を同時に共重合さ
せてもよい。ポリエステルの重合度(固有粘度)は特に
限定する必要はないが、大きくなりすぎると紡糸時の工
程安定性が低下して細繊度のものが得難くなる傾向にあ
り、一方小さくなりすぎると高中空のものが得難くなる
傾向があるので、オルトクロロフェノール中35℃で測
定した固有粘度IVは0.45〜1.00、好ましくは
0.6〜0.7の範囲が適当である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The polyester constituting the high hollow polyester fiber used in the present invention is an ethylene terephthalate-based homopolyester having ethylene terephthalate as a main repeating unit, a copolyester or a polyester obtained by mixing a third component with these polyesters. Are preferably polyesters in which 90 mol% or more of the units are ethylene terephthalate units, and homopolyethylene terephthalate is most preferable. As a copolymerizable component which can be copolymerized in 10 mol or less, an aromatic dicarboxylic acid such as isophthalic acid, 5-sodium sulfoisophthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid as an acid component;
Examples thereof include aliphatic dicarboxylic acids such as oxalic acid, adipic acid, sabacic acid, and dodecane diacid, and oxycarboxylic acids such as P-oxybenzoic acid and P-β-hydroxyethoxybenzoic acid. Aliphatic diols such as 3-propanediol, 1,6-hexanediol and neopentyl glycol, aromatic diols such as 1,4-bis (β-hydroxyethoxy) benzene, and polys such as polyethylen glycol and polybutylene glycol Alkylene glycol and the like can be mentioned. These third components may be copolymerized singly or two or more thereof may be simultaneously copolymerized. The polymerization degree (intrinsic viscosity) of the polyester does not need to be particularly limited, but if it is too large, the process stability during spinning tends to be low, and it tends to be difficult to obtain fineness. The intrinsic viscosity IV measured at 35 ° C. in orthochlorophenol is in the range of 0.45 to 1.00, preferably 0.6 to 0.7.

【0010】また、上記ポリエステルには各種添加剤を
混合してもよく、例えば抗菌剤、親水剤、防ダニ剤、消
臭剤、遠赤外線放射剤等の各種機能性付与剤、二酸化チ
タン、酸化ケイ素、酸化亜鉛、硫酸バリウム、酸化ジル
コニウム、酸化アルミニュウム、酸化マグネシウム、酸
化カルシュウム、トルマリン等の無機微粒子をあげるこ
とができ、目的に応じて適宜選択使用すればよい。ただ
し、無機微粒子を配合する際には、ポリエステル中への
分散性の点から、その平均粒径は1.0μm以下、好ま
しくは、0.1〜0.7μmが適当であり、また、その
混合量は1〜10重量%、特に2〜7重量%の範囲が適
当である。
The polyester may be mixed with various additives, for example, various function-imparting agents such as an antibacterial agent, a hydrophilic agent, an anti-mite agent, a deodorant, a far-infrared radiating agent, titanium dioxide, an oxidizing agent. Examples include inorganic fine particles such as silicon, zinc oxide, barium sulfate, zirconium oxide, aluminum oxide, magnesium oxide, calcium oxide, and tourmaline, which may be appropriately selected and used according to the purpose. However, when compounding the inorganic fine particles, the average particle size is 1.0 μm or less, preferably 0.1 to 0.7 μm, from the viewpoint of dispersibility in the polyester. The amount is suitably in the range from 1 to 10% by weight, especially from 2 to 7% by weight.

【0011】上記のポリエステルからなる高中空繊維
は、その単繊維繊度が0.1〜17.0デニール、好ま
しくは0.2〜3.0デニール、特に好ましくは0.5
〜1.5デニールの範囲にあることが必要である。単繊
維繊度が0.1デニール未満の場合には、安定に生産す
ることができなくなり、また得られる繊維の中空率も小
さくなりやすく低嵩となって重量感がでてくるので好ま
しくない。一方17.0デニールを越える場合には、カ
ード通過性は良好であるが、ドレープ性、保温性、コン
パクト収納性等が低下するので好ましくない。
The high hollow fiber made of the above polyester has a single fiber fineness of 0.1 to 17.0 denier, preferably 0.2 to 3.0 denier, particularly preferably 0.5 denier.
It must be in the range of ~ 1.5 denier. If the single fiber fineness is less than 0.1 denier, it cannot be produced stably, and the hollow fiber of the obtained fiber tends to be small, so that the bulk of the fiber is low, which is not preferable. On the other hand, when it exceeds 17.0 denier, the card passing property is good, but the drape property, the heat retention property, the compact storage property and the like are undesirably reduced.

【0012】次に繊維横断面における中空率は40〜8
5%、好ましくは50〜70%の範囲であることが必要
である。中空率が40%未満では、繊維を中空化するこ
とにより得られる優れた風合(ドレープ、柔軟性)と嵩
高性の改善効果が不十分となり、一方85%を越える場
合には、中空壁面の厚さが薄くなりすぎて中空破断が発
生しやすくなったり、圧縮応力に対する抵抗性が低下し
て形態保持性が悪化するので好ましくない。ここで中空
率とは、繊維横断面において該横断面の外周部で囲まれ
た図形Aの面積に対する、中空部の総面積の割合(%)
をいう。
Next, the hollow ratio in the fiber cross section is 40 to 8
It needs to be in the range of 5%, preferably 50-70%. If the hollow ratio is less than 40%, the excellent feeling (drape, flexibility) and the effect of improving the bulkiness obtained by hollowing the fibers become insufficient. It is not preferable because the thickness becomes too thin, so that the hollow break easily occurs, and the resistance to the compressive stress is reduced to deteriorate the shape retention. Here, the hollow ratio is a ratio (%) of the total area of the hollow portion to the area of the figure A surrounded by the outer peripheral portion of the fiber cross section.
Say.

【0013】繊維横断面における中空部の数は一つであ
っても複数であってもよいが、複数の場合には、高中空
率でありながら単繊維繊度が小さいものを得ることが困
難となるものの、中空潰れが発生し難くなって耐へたり
性や嵩回復性が向上する。図1〜5は、本発明で用いら
れる高中空ポリエステル繊維の横断面形状を一例を示す
図で、図中Eは中空部である。中空部の形状は任意であ
るが、真円である場合には高中空率のものが得やすく、
また中空形状の回復特性も良好で、生産性もしやすいの
で好ましい。
The number of hollow portions in the cross section of the fiber may be one or more. However, in the case of a plurality of hollow portions, it is difficult to obtain a fiber having a high hollowness and a small single fiber fineness. However, hollow crushing is unlikely to occur, and sag resistance and bulk recovery are improved. 1 to 5 are views showing an example of the cross-sectional shape of the high hollow polyester fiber used in the present invention, in which E is a hollow portion. The shape of the hollow part is arbitrary, but if it is a perfect circle, it is easy to obtain one with a high hollow ratio,
It is also preferable because the recovery characteristics of the hollow shape are good and the productivity is easy.

【0014】繊維横断面の形状は、丸、三角、多葉断
面、十字等任意であり、使用目的に応じて適宜選択すれ
ばよいが、繊維横断面の外周部で囲まれた図形の最小外
接円半径Raと最大内接円半径Rbとの比Rb/Raが
0.65〜0.80の範囲内にあると、弾力性が向上す
るので望ましい。
The shape of the fiber cross section is arbitrary, such as a circle, a triangle, a multi-leaf cross section, or a cross, and may be appropriately selected according to the purpose of use. It is desirable that the ratio Rb / Ra of the circle radius Ra to the maximum inscribed circle radius Rb be in the range of 0.65 to 0.80, since the elasticity is improved.

【0015】また本発明の高中空ポリエステル繊維は、
そのシルクファクター(破断強度(g/d)×破断伸度
(%)1/2 )が15〜25の範囲にあることが大切で、
15未満では強力・タフネスが低くなりすぎて、用途に
よっては使用できなくなり、一方25を越える場合には
中空率40%以上の高中空率繊維は得難くなる。
Further, the high hollow polyester fiber of the present invention comprises:
It is important that the silk factor (rupture strength (g / d) × elongation at break (%) 1/2 ) be in the range of 15 to 25,
If it is less than 15, the strength and toughness are too low, and it cannot be used depending on the application. On the other hand, if it exceeds 25, it becomes difficult to obtain a high hollow fiber having a hollow ratio of 40% or more.

【0016】また高中空繊維の捲縮数は5〜35個/2
5mm好ましくは8〜25個/25mm、捲縮率は8〜
50%の範囲とする必要がある。捲縮数が5個/25m
m未満では、カードにかけた時ウエブ切れが発生しやす
く、また嵩性も低下するため好ましくない。一方30個
/25mmを越える場合には、カードにかけた時にウエ
ブ斑やネップが多発するので好ましくない。また捲縮率
が8%未満の場合にはカード通過性が悪化し、一方50
%を越えるとウエブ斑やネップが発生しやすくなるので
好ましくない。捲縮の形態は、ジグザグ状の機械捲縮で
あっても、螺旋状又はオメガ型の立体捲縮であってもよ
いが、後者の場合、より嵩性に優れた繊維構造体が得ら
れるので好ましい。なお繊維長は20〜100mm程度
が、カード工程の安定性及び得られるウエブの品位の点
から適当である。
The number of crimps of the high hollow fiber is 5 to 35/2.
5 mm, preferably 8 to 25 pieces / 25 mm, and a crimp ratio of 8 to
It must be in the range of 50%. 5 crimps / 25m
If it is less than m, the web is liable to be cut when it is applied to a card, and the bulkiness is undesirably reduced. On the other hand, if it exceeds 30 pieces / 25 mm, web spots and neps frequently occur when the card is placed on a card, which is not preferable. When the crimp rate is less than 8%, the card passing property is deteriorated.
%, It is not preferable because web unevenness and nep tend to occur. The form of the crimp may be a zigzag mechanical crimp, a spiral or an omega three-dimensional crimp, but in the latter case, a more bulky fiber structure is obtained. preferable. The fiber length is preferably about 20 to 100 mm from the viewpoint of the stability of the carding process and the quality of the obtained web.

【0017】さらに高中空ポリエステル繊維は、上記の
特性に加えて、広角X線回折写真から計算される結晶化
度が20%以上、特に22〜33%の範囲にあること、
及び広角X線回折写真の(010)面回折ピークの半値
幅から計算される結晶サイズが4.0nm以上、好まし
くは4.0〜9.0nmの範囲にあることが、中空潰れ
し難く、且つ一旦潰れても良好な中空形状の回復性能を
示すために肝要である。結晶化度が20%未満の場合に
は、分子鎖間をつなぎ止める点が少なくなりすぎるため
物理的な外力で永久変形を起こしやすくなり、中空形状
の回復特性が低下するので好ましくない。また、(01
0)面の結晶サイズが4.0nm未満の場合には、分子
鎖間をつなぎ止める力が小さくなって外力に対する抵抗
性が低下し、さらに同一結晶化度の下では結晶の数が多
くなって、繊維微細構造的には微結晶を結節点とする網
目構造の網目が小さくなるため、歪みが小さい段階で永
久歪みが発生しやすくなる。その結果、中空潰れした場
合の形状回復性能が低下するので好ましくない。
Further, in addition to the above-mentioned properties, the high hollow polyester fiber has a crystallinity calculated from a wide-angle X-ray diffraction photograph of not less than 20%, especially in a range of 22 to 33%.
And that the crystal size calculated from the half width of the (010) plane diffraction peak in the wide-angle X-ray diffraction photograph is 4.0 nm or more, preferably in the range of 4.0 to 9.0 nm, so that the hollow is hardly collapsed, and Once collapsed, it is essential to exhibit good hollow shape recovery performance. When the degree of crystallinity is less than 20%, the number of points at which the molecular chains are interlocked is too small, so that permanent deformation is likely to occur due to a physical external force, and the recovery characteristics of the hollow shape are unfavorably reduced. Also, (01
When the crystal size of the 0) plane is less than 4.0 nm, the force for anchoring between molecular chains is reduced to decrease the resistance to external force, and the number of crystals increases under the same crystallinity. In terms of the fiber microstructure, since the network of the network structure having microcrystals as nodes is reduced, permanent distortion is likely to occur at a stage where the distortion is small. As a result, the shape recovery performance when the hollow is crushed is undesirably reduced.

【0018】以上に述べた高中空ポリエステル繊維は、
例えば前記のごときポリエステルを、以下に述べるよう
な特殊な溶融紡糸方法によって製造することができる。
すなわち、溶融ポリエステルを中空糸製造用紡糸孔を具
備する紡糸口金から吐出し、該吐出糸条を口金直下で一
旦急冷し次いで徐冷すると共に、紡糸ドラフトが150
以上、好ましくは150〜500、特に好ましくは20
0〜400で、且つ引取速度が500〜2000m/
分、好ましくは1000〜1800m/分で引取ること
が、中空率が40%以上と、前記のような結晶化度及び
結晶サイズを有する繊維微細構造を同時に達成するため
に大切である。吐出糸条を一旦急冷せずに徐冷すると、
中空率40%以上の高中空化が達成できないだけでなく
繊維微細構造における(010)面の結晶サイズも小さ
くなる。また、紡糸ドラフトが150未満になると紡糸
安定性が低下すると同時に、繊維微細構造における(0
10)面の結晶サイズも小さくなるため好ましくない。
さらに引取速度が2000m/分を越えると、繊維微細
構造における(010)面の結晶サイズは大きくなる
が、中空率40%以上でかつ結晶サイズ及び結晶化度を
同時に満足するものは得られなくなり、一方500m/
分未満では(010)面の結晶サイズが小さくなるので
好ましくない。なお、紡糸ドラフトがあまりに大きくな
りすぎると、引続いて延伸する場合の延伸性が低下する
傾向にあるので前記のように500以下にするのが望ま
しい。
The high hollow polyester fibers described above are:
For example, the polyester as described above can be produced by a special melt spinning method as described below.
That is, the molten polyester is discharged from a spinneret provided with a spinning hole for hollow fiber production, and the discharged yarn is rapidly cooled immediately below the die and then gradually cooled, and the spinning draft is adjusted to 150 mm.
Above, preferably 150 to 500, particularly preferably 20
0 to 400 and the take-up speed is 500 to 2000 m /
It is important to draw at a rate of preferably 1000 to 1800 m / min in order to simultaneously achieve a fiber microstructure having a porosity of 40% or more and the above-mentioned crystallinity and crystal size. If the discharge yarn is gradually cooled without quenching once,
Not only can a high hollowness of 40% or more be achieved, but also the crystal size of the (010) plane in the fiber microstructure becomes small. Further, when the spinning draft is less than 150, the spinning stability is reduced, and at the same time, the (0) in the fiber microstructure is reduced.
10) The crystal size of the plane is also small, which is not preferable.
Further, when the take-off speed exceeds 2000 m / min, the crystal size of the (010) plane in the fiber microstructure increases, but it is not possible to obtain a fiber having a hollow ratio of 40% or more and simultaneously satisfying the crystal size and crystallinity, On the other hand, 500m /
If it is less than minute, the crystal size of the (010) plane is undesirably small. If the spinning draft is too large, the stretchability in the subsequent stretching tends to decrease. Therefore, it is preferable that the draft is 500 or less as described above.

【0019】吐出された糸条を急冷するには、紡糸口金
の直下、糸条の急冷開始位置までの距離を5〜50m
m、好ましくは10〜30mmとし、温度が20〜35
℃の冷却風を風速0.2〜4.0m/秒で吹き付ければ
よい。かかる条件内で急冷することにより、安定に高中
空繊維を紡糸することができ、紡糸口金の直下、糸条の
急冷距離が5mm未満になると、口金が冷却されて断糸
原因となり、一方50mmを越えると冷却速度が不充分
となって高い中空率を達成することが困難となる。ま
た、冷却風の風速及び温度に関しても、両者のバランス
によって適正な効果が発揮されるが、送風温度は20〜
35℃であって風速は0.2〜4.0m/秒の範囲が適
当であり、これらのバランスが崩れて、例えば冷却が強
過ぎると口金温度が低下しすぎると共に、ポリマー溶融
粘度が上がりすぎて、口金からのポリマー吐出が困難に
なり、中空破断や断糸の原因となりやすい。また、風速
が速くなりすぎると、糸揺れが激しくなって密着糸が発
生しやすくなるので望ましくない。
In order to rapidly cool the discharged yarn, the distance from the position immediately below the spinneret to the position where the yarn is rapidly cooled is 5 to 50 m.
m, preferably 10 to 30 mm, and the temperature is 20 to 35
C. cooling air may be blown at a wind speed of 0.2 to 4.0 m / sec. By quenching under such conditions, the high hollow fiber can be spun stably. When the quenching distance of the yarn immediately below the spinneret is less than 5 mm, the spinneret is cooled and causes a thread break. If it exceeds, the cooling rate becomes insufficient and it becomes difficult to achieve a high hollow ratio. Also, with respect to the wind speed and temperature of the cooling air, an appropriate effect is exhibited by the balance between the two, but the blowing temperature is 20 to
The temperature is 35 ° C. and the wind speed is suitably in the range of 0.2 to 4.0 m / sec, and these balances are lost. For example, when cooling is too strong, the die temperature is too low and the polymer melt viscosity is too high. As a result, it becomes difficult to discharge the polymer from the mouthpiece, which is likely to cause hollow breakage and thread breakage. On the other hand, if the wind speed is too high, the yarn sway becomes intense and a cohesive yarn is easily generated, which is not desirable.

【0020】また、一旦急冷後次いで徐冷するために
は、上記口金直下における糸条の急冷範囲が大切で50
〜150mm、好ましくは80〜120mmとすること
が、高い中空率を達成すると同時に、前述の繊維構造を
得るために大切である。すなわち、糸条の急冷範囲が5
0mm未満では冷却が不足するため、中空率40%以上
を達成することが困難となり、また繊維微細構造も異な
るものになる。一方150mmを越えると中空率は満足
し得るものの、糸条は急冷されて徐冷領域がなくなるた
め得られる未延伸糸の延伸性が著しく低下し、これまた
繊維微細構造が異なるものとなる。さらに急冷に引き続
いて施す徐冷の範囲は、100〜400mm好ましくは
150〜350mmとすることが大切であり、徐冷範囲
がこの範囲を外れる場合には繊維微細構造の形成が異な
るものとなりやすい。
In order to cool once and then gradually cool, the rapid cooling range of the yarn immediately below the above-mentioned base is important.
It is important that the thickness is from 150 to 150 mm, preferably from 80 to 120 mm, in order to achieve a high hollowness and at the same time obtain the above-mentioned fiber structure. That is, the quenching range of the yarn is 5
If it is less than 0 mm, cooling is insufficient, so that it is difficult to achieve a hollow ratio of 40% or more, and the fiber microstructure is different. On the other hand, if it exceeds 150 mm, although the hollow ratio can be satisfied, the yarn is rapidly cooled and the slow cooling region disappears, so that the stretchability of the obtained undrawn yarn is remarkably reduced, and the fiber fine structure is different. Further, it is important that the range of the slow cooling performed after the rapid cooling is 100 to 400 mm, preferably 150 to 350 mm. If the slow cooling range is out of this range, the formation of the fiber microstructure tends to be different.

【0021】この徐冷範囲では、温度が20〜35℃の
冷却風を急冷領域の風速の1/2から1/10となるよ
うに吹き付ける。かかる条件内で徐冷することにより、
安定に高中空繊維を紡糸することができ、しかも前述の
繊維微細構造を達成することが可能となる。すなわち、
上述の製造方法においては、吐出糸条を一旦急冷した後
に徐冷することが大切で、したがって冷却風の吹出し領
域長、風速、温度などのバランスによって適正な効果が
発揮されるのである。例えば冷却風温度が20〜35℃
の場合にあっては、風速は前記範囲が適当であり、冷却
風温度が低すぎると糸条が過冷却になりやすく、高い中
空率は達成しやすいが、得られる繊維の微細構造が異な
るものになりやすい。一方冷却風温度が高すぎると糸条
の冷却が不足して高中空率のものが得られなくなり、さ
らに繊維微細構造も異なるものになってしまう。
In the slow cooling range, a cooling air having a temperature of 20 to 35 ° C. is blown so as to be か ら to 1/10 of the wind speed in the quenching region. By slow cooling under such conditions,
High hollow fibers can be stably spun, and the above-mentioned fiber microstructure can be achieved. That is,
In the above-described manufacturing method, it is important that the discharged yarn is once cooled rapidly and then gradually cooled. Therefore, an appropriate effect is exerted by the balance of the blowing region length of the cooling air, the wind speed, the temperature, and the like. For example, the cooling air temperature is 20-35 ° C
In the case of the above, the wind speed is appropriate in the above range, and if the cooling air temperature is too low, the yarn tends to be overcooled, and a high hollow ratio is easily achieved, but the microstructure of the obtained fiber is different. Easy to be. On the other hand, if the cooling air temperature is too high, the cooling of the yarn is insufficient, so that a fiber having a high hollow ratio cannot be obtained, and the fiber fine structure is also different.

【0022】この様にして引取られた未延伸糸は、最終
的な用途に応じて適宜延伸熱処理される。例えば、温度
50〜70℃の温水中で、1.8〜5.5倍の延伸倍率
で延伸し、これを熱セットしない場合には高収縮タイプ
の中空繊維が得られ、加熱ローラーや熱プレート等で緊
張熱処理すれば低収縮タイプの中空繊維が得られ、また
一旦延伸処理した後、温水中等でオーバーフィドしなが
ら熱処理すれば自己伸長タイプの中空繊維が得られる。
The thus drawn undrawn yarn is subjected to a drawing heat treatment according to the final use. For example, in hot water at a temperature of 50 to 70 ° C., drawing is performed at a draw ratio of 1.8 to 5.5 times, and when this is not heat-set, a high-shrink type hollow fiber is obtained. If the strain heat treatment is carried out, a low shrinkage type hollow fiber can be obtained. If the heat treatment is carried out once after the drawing treatment while overfilling in warm water or the like, a self-extending type hollow fiber can be obtained.

【0023】以上に説明した高中空ポリエステル繊維
は、繊維表面の摩擦係数を下げてカード通過性を向上さ
せる、あるいは得られる繊維構造体の羽毛様風合や耐へ
たり性を向上させる目的で、ジメチルポリシロキサン、
ハイドロジェンメチルポリシロキサン、アミノポリシロ
キサン、エポキシポリシロキサンなどの架橋シリコーン
樹脂を付着させてもよい。架橋シリコーン樹脂の付着量
は、繊維重量を基準として0.05〜5.0重量%が適
切で、付着量が0.05重量%未満の場合には摩擦係数
低下の効果が不十分となり、一方5重量%を越えると摩
擦係数低下効果は飽和してコスト的に不利となる。
The high hollow polyester fiber described above is used for the purpose of lowering the coefficient of friction of the fiber surface to improve the card passing property, or to improve the feather-like feeling and the set resistance of the obtained fiber structure. Dimethylpolysiloxane,
A cross-linked silicone resin such as hydrogen methyl polysiloxane, amino polysiloxane, or epoxy polysiloxane may be attached. The amount of the crosslinked silicone resin to be applied is suitably 0.05 to 5.0% by weight based on the weight of the fiber. When the amount of the crosslinked silicone resin is less than 0.05% by weight, the effect of lowering the friction coefficient becomes insufficient. If it exceeds 5% by weight, the effect of lowering the friction coefficient is saturated, which is disadvantageous in cost.

【0024】架橋シリコーン樹脂を繊維表面に付着させ
る方法は任意であり、前記高中空繊維の製造において、
未延伸糸を反応性シリコーン樹脂を含有する処理剤中に
浸漬した後延伸熱処理する方法、延伸糸に過剰の反応性
シリコーン樹脂を含有する処理剤を付与した後、過剰分
を適当な手段で除去する方法、同じく捲縮後の糸に付与
する方法、同じく短繊維の切断した後に付与する方法な
どがある。いずれの方法にしても、反応性シリコーン樹
脂含有処理剤を均一に付着させ、適度に架橋させるため
に十分熱処理を施す必要がある。反応性シリコーン樹脂
としては、ジメチルポリシロキサン、ハイドロジェンメ
チルポリシロキサン、アミノポリシロキサン、エポキシ
ポリシロキサンなどを単独又は混合使用することが好ま
しいが、これに限定されるものではない。さらに繊維に
均一に付着させるために適当量の分散剤、架橋反応を迅
速に行うために触媒を併用してもよい。
The method of attaching the crosslinked silicone resin to the fiber surface is optional, and in the production of the high hollow fiber,
A method in which an undrawn yarn is immersed in a treatment agent containing a reactive silicone resin and then subjected to a drawing heat treatment. After applying a treatment agent containing an excess of the reactive silicone resin to the drawn yarn, the excess is removed by an appropriate means. And a method of applying the same to a crimped yarn, and a method of applying the same after cutting a short fiber. In either method, it is necessary to perform a sufficient heat treatment to uniformly adhere the reactive silicone resin-containing treating agent and to appropriately crosslink. As the reactive silicone resin, dimethylpolysiloxane, hydrogenmethylpolysiloxane, aminopolysiloxane, epoxypolysiloxane, or the like is preferably used alone or in combination, but is not limited thereto. Further, an appropriate amount of a dispersant may be used in order to uniformly adhere to the fiber, and a catalyst may be used in combination to rapidly perform the crosslinking reaction.

【0025】本発明の繊維構造体を構成するもう一方の
成分である熱接着性繊維は、前記高中空繊維のポリエス
テルの融点よりも30℃以上低い温度で軟化又は融解す
る重合体を熱接着性成分とするものであれば、該熱接着
性成分単独からなる繊維であっても、他の繊維形成性成
分とからなる複合繊維であってもよいが、なかでも熱接
着性成分を少なくとも繊維表面に有し、該熱接着性成分
の軟化又は融解する温度よりも高い融点を有する繊維形
成性成分との熱接着性複合繊維、特にサイドバイサイド
型又は芯鞘型複合繊維が好ましい。
The thermoadhesive fiber, which is the other component of the fibrous structure of the present invention, is a polymer which softens or melts at a temperature lower than the melting point of the high hollow fiber polyester by 30 ° C. or more. As long as it is a component, it may be a fiber composed of the heat-adhesive component alone or a conjugate fiber composed of another fiber-forming component. And a heat-adhesive conjugate fiber with a fiber-forming component having a melting point higher than the temperature at which the heat-adhesive component softens or melts, particularly a side-by-side or core-sheath conjugate fiber.

【0026】熱接着性成分としては、例えばポリオレフ
ィン、ポリエステル、ポリアミド等のほか、ポリウレタ
ン系若しくはポリエステル系の熱可塑性エラストマーを
用いることができ、後者のエラストマーの場合、ソフト
でドレープ性があり、耐へたり性、コンパクト性等にも
優れているので好ましい。
As the heat-adhesive component, for example, a polyurethane-based or polyester-based thermoplastic elastomer can be used in addition to polyolefin, polyester, polyamide, and the like. In the case of the latter elastomer, it is soft, drapable, and heat-resistant. It is preferable because it has excellent durability and compactness.

【0027】好ましく用いられるポリエステル系熱接着
成分としては、例えば融点又は軟化点が100〜220
℃で、テレフタル酸、イソフタル酸等を酸成分とし、ヘ
キサメチレングリコール、テトラメチレングリコール、
エチレングリコール等をグリコール成分とする(コ)ポ
リエステルをあげることができ、なかでも全酸成分の5
0モル%以上をテレフタル酸成分、40モル%以下をイ
ソフタル酸成分とし、そのジオール成分の80モル%以
上をヘキサメチレングリコール成分又はテトラメチレン
グリコール成分とする結晶性共重合ポリエステルは、熱
接着点がソフトになり、得られる繊維構造体は羽毛様の
風合い及び優れたドレープ性を呈するので好ましい。
The polyester-based heat-adhesive component preferably used is, for example, a resin having a melting point or softening point of 100 to 220.
At ℃, terephthalic acid, isophthalic acid and the like as an acid component, hexamethylene glycol, tetramethylene glycol,
(Co) polyesters having ethylene glycol or the like as a glycol component;
The crystalline copolyester containing 0 mol% or more as a terephthalic acid component, 40 mol% or less as an isophthalic acid component, and 80 mol% or more of the diol component as a hexamethylene glycol component or a tetramethylene glycol component has a heat bonding point of It is preferred because it becomes soft and the resulting fibrous structure exhibits a feathery feel and excellent drape.

【0028】また好ましく用いられるポリウレタン系熱
可塑性エラストマーの熱接着成分としては、分子量が5
00〜6000程度のポリエーテルジオール、ポリカー
ボネイトジオール、ポリエステルジオール等の低融点ジ
オールと、p,p´−ジフェニルメタンジイソシアネー
ト、トルエンジイソシアネート、ヘキサメチレンジイソ
シアネート等の有機ジイソシアネートと、グリコール、
アミノアルコール、ジアミン等の鎖伸長剤とからなるポ
リウレタン系エラストマーを例示することができ、なか
でもポリテトラメチレングリコール又はポリ−ε−カプ
ロラクトンを低融点ジオール、p,p´−ジフェニルメ
タンジイソシアネートを有機ジイソシアネート、テトラ
メチレングリコールを鎖伸長剤とするものが好適であ
る。
[0028] The thermoadhesive component of the polyurethane thermoplastic elastomer preferably used has a molecular weight of 5
A low melting point diol such as polyether diol, polycarbonate diol and polyester diol of about 00 to 6000, an organic diisocyanate such as p, p'-diphenylmethane diisocyanate, toluene diisocyanate, hexamethylene diisocyanate, and glycol,
Polyurethane-based elastomers comprising a chain extender such as amino alcohol and diamine can be exemplified. Among them, polytetramethylene glycol or poly-ε-caprolactone is a low melting point diol, p, p′-diphenylmethane diisocyanate is an organic diisocyanate, Those using tetramethylene glycol as a chain extender are preferred.

【0029】一方、ポリエステル系熱可塑性エラストマ
ーの熱接着成分としては、ポリエステルをハードセグメ
ントとし、ポリオキシアルキレングリコールをソフトセ
グメントとして共重合体してなるポリエーテルエステル
ブロック共重合体をあげることができ、なかでもポリブ
チレンテレフタレート系ポリエステルをハードセグメン
トとし、ポリオキシテトラメチレングリコールをソフト
セグメントとするポリエーテルエステルブロック共重合
体が特に好ましい。この場合、ハードセグメントを構成
する酸成分には、イソフタル酸を10〜35モル%共重
合すると、融点を高めることなく弾力性や耐久性を向上
させることができるので好ましい。一方ポリオキシアル
キレングリコールの平均分子量は800〜4000、共
重合量は30〜70重量%の範囲が、得られる繊維構造
体の弾性や耐久性等が向上するので好ましい。
On the other hand, examples of the thermal adhesive component of the polyester-based thermoplastic elastomer include a polyetherester block copolymer obtained by copolymerizing polyester as a hard segment and polyoxyalkylene glycol as a soft segment. Among them, a polyetherester block copolymer having a polybutylene terephthalate polyester as a hard segment and polyoxytetramethylene glycol as a soft segment is particularly preferred. In this case, it is preferable that isophthalic acid is copolymerized with the acid component constituting the hard segment in an amount of 10 to 35 mol%, since the elasticity and durability can be improved without increasing the melting point. On the other hand, it is preferable that the average molecular weight of the polyoxyalkylene glycol is in the range of 800 to 4000 and the copolymerization amount is in the range of 30 to 70% by weight because the elasticity and durability of the obtained fiber structure are improved.

【0030】また上記熱接着性成分と複合される繊維形
成性成分は、該熱接着性成分の軟化又は融解する温度よ
りも高い融点を有するものであれば任意の重合体が用い
られ、ポリプロピレン、ポリアミド、ポリエステルを例
示することができ、なかでもポリエステル、特にポリエ
チレンテレフタレート若しくはポリブチレンテレフタレ
ート、又はこれらに少量の第3成分、例えばイソフタル
酸、アジピン酸、セバシン酸、5−ナトリウムスルホイ
ソフタル酸等が共重合された共重合ポリエステルが、得
られる繊維構造体の嵩高性、耐へたり性等の観点から好
ましい。
As the fiber-forming component to be combined with the heat-adhesive component, any polymer may be used as long as it has a melting point higher than the temperature at which the heat-adhesive component softens or melts. Examples thereof include polyamides and polyesters. Among them, polyesters, in particular, polyethylene terephthalate or polybutylene terephthalate, or a small amount of a third component such as isophthalic acid, adipic acid, sebacic acid, 5-sodium sulfoisophthalic acid, etc. The polymerized copolymerized polyester is preferable from the viewpoint of the bulkiness and sag resistance of the obtained fiber structure.

【0031】なお、熱可塑性エラストマーを熱接着成分
とする場合には、製糸時に膠着しやすいので、その繊維
表面に非晶性のポリエーテルエステルブロック共重合体
を含有する紡糸油剤を付与して製糸することが好まし
い。また、かくすることにより、繊維の平滑性が向上し
てカード通過性が向上すると同時に、熱接着時の溶融ポ
リマーの濡れ特性も向上して、接着強力、弾力性、耐久
性等の大幅に向上した繊維構造体が得られる。この非晶
性ポリエーテルエステルブロック共重合体の付着量は、
繊維重量を基準として0.02〜5.0重量%の範囲が
適当である。
When a thermoplastic elastomer is used as a heat-adhesive component, sticking is likely to occur during spinning. Therefore, a spinning oil containing an amorphous polyetherester block copolymer is applied to the surface of the fiber to form a spinning oil. Is preferred. In addition, this improves the smoothness of the fiber and improves the card passing property, and at the same time, improves the wettability of the molten polymer during thermal bonding, greatly improving the adhesive strength, elasticity, durability, etc. The resulting fibrous structure is obtained. The attached amount of the amorphous polyetherester block copolymer is
A range of 0.02 to 5.0% by weight based on the fiber weight is suitable.

【0032】好ましく用いられるポリエーテルエステル
ブロック共重合体としては、テレフタル酸、イソフタル
酸及び5−ナトリウムスルホイソフタル酸を酸成分、エ
チレングリコールをグリコール成分とし、ポリオキシア
ルキレングリコール(片末端封鎖されていてもよい)を
共重合したものが例示できる。
The polyetherester block copolymer preferably used includes terephthalic acid, isophthalic acid and 5-sodium sulfoisophthalic acid as an acid component, ethylene glycol as a glycol component, and polyoxyalkylene glycol (one end blocked). ) May be exemplified.

【0033】熱接着性繊維の繊度は、0.5〜10デニ
ール、好ましくは1〜5デニールの範囲が適当である。
この範囲未満の場合には、接着強力が不足して十分な弾
力性や耐久性を得ることが難しくなる傾向があり、一方
10デニールを越えると得られる繊維構造体のドレープ
性やコンパクト性が不十分なものとなりやすい。
The fineness of the heat-bondable fiber is suitably in the range of 0.5 to 10 denier, preferably 1 to 5 denier.
If it is less than this range, the adhesive strength tends to be insufficient, and it tends to be difficult to obtain sufficient elasticity and durability, while if it exceeds 10 denier, the drapability and compactness of the obtained fiber structure are poor. Easy to get enough.

【0034】熱接着性繊維の捲縮数は5〜25個/25
mm、好ましくは8〜20個/25mm、捲縮度は5〜
30%、好ましくは6〜18%程度が適当である。捲縮
数や捲縮度が上記範囲未満の場合には、カード時にウエ
ブ切れが発生しやすく、また得られる繊維構造体の嵩性
が低下する傾向にあり、逆に上記範囲を越える場合には
カード通過性が悪化してウエブ斑やネップが多発しやす
くなる。捲縮の形態は、ジグザグ状の機械捲縮であって
も、螺旋状又はオメガ型の立体捲縮であってもよいが、
後者の立体捲縮の場合、より嵩性に優れた繊維構造体が
得られるので好ましい。なお繊維長は、10〜100m
m、好ましくは15〜95mm程度が、カード工程の安
定性及び得られるウエブの品位の点から適当である。
The number of crimps of the heat-adhesive fiber is 5 to 25/25.
mm, preferably 8 to 20 pieces / 25 mm, and the degree of crimp is 5
30%, preferably about 6 to 18% is appropriate. When the number of crimps and the degree of crimp are less than the above range, web breakage tends to occur at the time of carding, and the bulkiness of the obtained fiber structure tends to decrease. The card passing property deteriorates, and web spots and neps tend to occur frequently. The form of the crimp may be a zigzag mechanical crimp, a spiral or an omega type three-dimensional crimp,
The latter three-dimensional crimping is preferable because a fiber structure having more excellent bulkiness can be obtained. The fiber length is 10 to 100 m
m, preferably about 15 to 95 mm, is appropriate in terms of the stability of the carding process and the quality of the obtained web.

【0035】本発明の繊維構造体は、以上に説明した高
中空ポリエステル繊維(A)50〜95重量%と、熱接
着性繊維(B)50〜5重量%とを混合分散させてウエ
ブを形成し、該熱接着性成分の融点又は軟化点よりも高
く且つ高中空ポリエステル繊維の融点よりも低い温度で
熱処理して、該熱接着性繊維の融着により構成繊維の少
なくとも一部が接合されたものである。繊維(A)の混
合割合が50%未満の場合には、嵩高性、柔軟性、耐へ
たり性などが不十分となる。一方95重量%を越える
と、熱接着性繊維の割合が5重量%未満になるため、得
られる繊維構造体の形態保持性が低下して好ましくな
い。
The fiber structure of the present invention forms a web by mixing and dispersing 50 to 95% by weight of the high hollow polyester fiber (A) described above and 50 to 5% by weight of the heat-adhesive fiber (B). Then, a heat treatment was performed at a temperature higher than the melting point or softening point of the thermoadhesive component and lower than the melting point of the high hollow polyester fiber, and at least a part of the constituent fibers was joined by fusion of the thermoadhesive fiber. Things. When the mixing ratio of the fiber (A) is less than 50%, the bulkiness, flexibility, sag resistance and the like become insufficient. On the other hand, if it exceeds 95% by weight, the proportion of the heat-adhesive fibers is less than 5% by weight, and the shape retention of the resulting fiber structure is undesirably reduced.

【0036】本発明の繊維構造体の形態は特に限定され
ず任意であるが、繊維球状体、特に径2〜30mmの球
状体は嵩高性、高弾性、日光回復性等に優れた詰め物材
料として好適である。この場合、高中空ポリエステル繊
維(A)としては、前記のシリコーン樹脂のような低摩
擦化剤が付着しているものが、得られる繊維球状体がソ
フトで羽毛やフェザータッチの風合が得やすいので好ま
しい。また、熱接着性繊維(B)としては、ポリエステ
ル系エラストマーを熱接着成分とする前記複合繊維が、
得られる繊維球状体の耐へたり性、ソフトな風合、ドレ
ープ性、コンパクト性等の観点から好ましい。
The form of the fibrous structure of the present invention is not particularly limited, and is arbitrary. However, fibrous spheres, particularly spheres having a diameter of 2 to 30 mm, can be used as a filling material having excellent bulkiness, high elasticity, sunlight recovery and the like. It is suitable. In this case, as the high hollow polyester fiber (A), a fiber to which a low friction agent such as the above-mentioned silicone resin is adhered, the obtained fiber spherical body is soft, and the feeling of feather and feather touch is easily obtained. It is preferred. Further, as the heat-adhesive fiber (B), the conjugate fiber having a polyester-based elastomer as a heat-adhesive component is
It is preferable from the viewpoints of sag resistance, soft feeling, drape property, compactness and the like of the obtained fiber spherical body.

【0037】なお、繊維球状体の表面には、高中空ポリ
エステル繊維(A)や該繊維の毛羽が多く存在すること
が好ましく、これらが繊維球状体の平滑性を向上させ、
該繊維球状体の吹き込み性や該繊維球状体が吹き込まれ
た製品の風合を良好なものにする。
It is preferable that a lot of high hollow polyester fiber (A) and fluff of the fiber exist on the surface of the fiber sphere, and these improve the smoothness of the fiber sphere,
The blowability of the fibrous body and the feeling of the product into which the fibrous body is blown are improved.

【0038】繊維球状体に成形するには、まず高中空ポ
リエステル繊維(A)と熱接着性繊維(B)とを所定の
割合となるように配合し、均一に混綿されるように、ガ
ーネットワイヤーが表面に張られた複数のローラが配設
されたカードなどで、開繊と混綿とを十分に行い、嵩高
混綿塊を得る。次いで、ブロワーの中に該混綿塊を吹き
込み、所定時間乱流撹拌処理を行って、個々の短繊維を
分繊・開繊しつつ、これらを空気の渦流の中で滞留させ
て球状体化する。引き続いて、熱接着性成分の融点又は
軟化点以上でポリエステル繊維(A)の融点以下の温度
で熱処理し、繊維球状体中に熱固着点を形成すればよ
い。かくすることにより、弾力性、耐久性に優れ、かつ
良好な風合を呈する繊維球状体が得られる。なお、高中
空ポリエステル繊維(A)や熱接着性繊維(B)が立体
捲縮発現性を有するものである場合には、球状体化する
際に熱処理を行うとさらに球状化が進行しやすくなり好
ましい。
In order to form a fibrous spherical body, first, the high hollow polyester fiber (A) and the thermoadhesive fiber (B) are blended in a predetermined ratio, and the garnet wire is mixed so as to be uniformly mixed. With a card or the like having a plurality of rollers arranged on the surface thereof, spreading and blending are sufficiently performed to obtain a bulky cotton blend. Next, the mixed cotton mass is blown into a blower, and a turbulent agitation process is performed for a predetermined time to separate and open individual short fibers, while retaining them in a vortex of air to form spheroids. . Subsequently, heat treatment may be performed at a temperature equal to or higher than the melting point or softening point of the heat-adhesive component and equal to or lower than the melting point of the polyester fiber (A) to form a heat fixation point in the fiber sphere. By doing so, a fibrous body having excellent elasticity and durability and exhibiting a good feeling can be obtained. In addition, when the high hollow polyester fiber (A) or the heat-adhesive fiber (B) has a three-dimensional crimping property, the spheroidization is further facilitated by performing a heat treatment at the time of spheroidization. preferable.

【0039】もちろん、球状体化処理の初期から熱風に
より、繊維球状体化と捲縮発現と熱接着性成分を融着さ
せることの3者を同時に進める方法や、まず球状化の初
期は常温で処理し、球状化の核が発生しはじめた時点で
熱風を吹き込み、捲縮発現と融着とを起こすようにした
り、完全に球状化した後で捲縮発現と融着処理を行う方
法など所望に応じて任意の方法を採ることができる。
Of course, from the beginning of the spheroidizing treatment, a method of simultaneously promoting the three steps of spheroidizing the fiber, manifesting the crimp, and fusing the heat-adhesive component with hot air, When processing is performed, hot air is blown at the time when spheroidizing nuclei begin to be generated, so that crimping and fusion occur, or crimping and fusion after complete spheroidization are desired. Any method can be adopted according to

【0040】特に、高中空ポリエステル繊維(A)の立
体捲縮発現性が熱接着性繊維(B)の立体捲縮発現性よ
りも小さい場合には、該繊維Aの方が繊維球状体の表面
に出てき、また該繊維Aの表面にシリコーン樹脂等の平
滑成分が付与されている場合には、繊維球状体が全体に
優れた平滑性を呈するようになって吹き込みやすく、得
られる繊維球状体吹込み製品の風合もソフトなものとな
るので好ましい。
In particular, when the three-dimensional crimping property of the high hollow polyester fiber (A) is smaller than the three-dimensional crimping property of the heat-adhesive fiber (B), the fiber A is more suitable for the surface of the fibrous spherical body. When a smooth component such as a silicone resin is applied to the surface of the fiber A, the fiber sphere has excellent smoothness as a whole and is easily blown, and the resulting fiber sphere is obtained. The feeling of the blown product is also soft, which is preferable.

【0041】[0041]

【実施例】以下、実施例をあげて本発明をさらに詳細に
説明する。なお、実施例中の各評価項目は、下記の方法
により測定した。 <固有粘度>オルトクロロフェノールを溶媒とし、温度
35℃で測定した。 <融点>DuPont社製、示差走査熱量計1090型
を使用し、昇温速度20℃/分で測定し、融解ピーク温
度を求めた。なお、この融解ピークが明確に測定できな
い場合には、微量融点測定装置(柳元製作所製)を用
い、約3gのサンプルを2枚のカバーグラスの間に挟み
込み、ピンセットで軽く押えながら、昇温速度20℃/
分で昇温し、ポリマーの熱変化を観測した。その際、ポ
リマーが軟化して流動を始めた温度(軟化点)をここで
は融点と表した。
The present invention will be described in more detail with reference to the following examples. In addition, each evaluation item in an Example was measured by the following method. <Intrinsic viscosity> It was measured at a temperature of 35 ° C using orthochlorophenol as a solvent. <Melting Point> The melting peak temperature was determined by using a Differential Scanning Calorimeter Model 1090 manufactured by DuPont at a heating rate of 20 ° C./min. If this melting peak cannot be clearly measured, a sample of about 3 g is sandwiched between two cover glasses using a trace melting point measuring device (manufactured by Yanagimoto Seisakusho), and the temperature is raised while gently pressing with tweezers. Speed 20 ℃ /
The temperature was raised in minutes and the thermal change of the polymer was observed. At that time, the temperature at which the polymer softened and began to flow (softening point) was expressed as the melting point here.

【0042】<繊度>JIS−L1015 7−5−1
A法により測定した。 <中空率>500倍断面画像から単繊維の断面積(中空
部を含む)と中空部面積を測定し、その面積比を求め
た。 <シルクファクター>JIS L1074法にしたがっ
て得られた繊維の切断強度S(g/de)と切断伸度L
(%)とから下記式により算出した。 シルクファクター=S×L1/2 <結晶化度>広角X線回折像から定法にしたがって求め
た。 <(010)面結晶サイズ>広角X線回折像の(01
0)面回折ピーク半価幅から、定法にしたがって求め
た。
<Fineness> JIS-L1015 7-5-1
It was measured by Method A. <Hollow ratio> The cross-sectional area of the single fiber (including the hollow portion) and the area of the hollow portion were measured from the 500-fold cross-sectional image, and the area ratio was determined. <Silk factor> Cutting strength S (g / de) and cutting elongation L of fiber obtained according to JIS L1074 method
(%) Was calculated from the following equation. Silk factor = S × L 1/2 <Crystallinity> Determined from a wide-angle X-ray diffraction image according to a standard method. <(010) plane crystal size> (01) of the wide-angle X-ray diffraction image
0) It was determined from the half value width of the plane diffraction peak according to a standard method.

【0043】<捲縮数・捲縮率>JIS L1074法
にしたがって測定した。 <目付>JIS L1018法にしたがって測定した。 <厚み>JIS L1085法にしたがって測定した。 <剛軟度>JIS L1085法に記載のカンチレバー
法にしたがって測定した。 <圧縮歪み>熱接着により得られた接着ウェブ(厚みL
0 mm)に100g/cm2 の荷重をかけ、24時間放
置した後荷重を取り除き、その後、24時間後に接着ウ
ェブの厚み(L1 mm)を測定し、下記式より算出し
た。 圧縮歪み(%)=(L0 −L1 )/L0 ×100
<Number of Crimps / Crimp Ratio> Measured according to JIS L1074 method. <Density> Measured according to JIS L1018 method. <Thickness> Measured according to JIS L1085 method. <Btiffness> Measured according to the cantilever method described in JIS L1085. <Compression strain> Adhesive web (thickness L) obtained by thermal bonding
0 mm), a load of 100 g / cm 2 was applied thereto, left standing for 24 hours, and then the load was removed. After 24 hours, the thickness (L 1 mm) of the adhesive web was measured and calculated by the following formula. Compression strain (%) = (L 0 −L 1 ) / L 0 × 100

【0044】[実施例1〜12、比較例1〜3] 高中空ポリエステル繊維(A)の製造 酸化チタンを0.07重量%含有する固有粘度が0.6
4のポリエチレンテレフタレートを、中空型ノズルを2
000ホール有する紡糸口金から、ポリマー温度268
℃で押出し、紡糸速度1800m/分で引取って中空未
延伸糸を得た。この時の口金中空型ノズル直下の急冷条
件は、冷却風吹出し位置15mm、冷却風吹出し長10
0mm、冷却風温度25℃、冷却風速度3.0m/秒と
し、また紡糸ドラフトは400倍とした。また急冷に続
く徐冷条件は、冷却風吹出し長250mm、冷却風温度
25℃、冷却風速度0.5m/秒とした。
Examples 1 to 12 and Comparative Examples 1 to 3 Production of High Hollow Polyester Fiber (A) Titanium oxide containing 0.07% by weight and having an intrinsic viscosity of 0.6
4 polyethylene terephthalate and 2 hollow nozzles
From a spinneret having 2,000 holes, a polymer temperature of 268
C. and extruded at a spinning speed of 1800 m / min to obtain a hollow undrawn yarn. At this time, the quenching condition immediately below the mouthpiece hollow die was such that the cooling air blowing position was 15 mm and the cooling air blowing length was 10 mm.
0 mm, the cooling air temperature was 25 ° C., the cooling air velocity was 3.0 m / sec, and the spinning draft was 400 times. The slow cooling conditions following the rapid cooling were a cooling air blowing length of 250 mm, a cooling air temperature of 25 ° C., and a cooling air velocity of 0.5 m / sec.

【0045】得られた中空未延伸糸を、温度65℃、延
伸倍率3.5倍で温水1段延伸し、180℃の加熱ロー
ラーで緊張熱処理して高中空ポリエステル繊維を得、こ
れに表1に記載の機械捲縮を付与してから120℃の熱
風で熱セットし、繊維長51mmに切断して短繊維とな
した。なお、吐出量および紡糸口金の形状を変更するこ
とにより、単繊維繊度及び中空率を表1に記載のとおり
に変更した。
The obtained hollow undrawn yarn was drawn at a temperature of 65 ° C. and a draw ratio of 3.5 times with hot water in one step, and subjected to a tension heat treatment with a heating roller at 180 ° C. to obtain a high hollow polyester fiber. And then heat-set with hot air at 120 ° C., and cut to a fiber length of 51 mm to obtain short fibers. The single fiber fineness and the hollow ratio were changed as shown in Table 1 by changing the discharge amount and the shape of the spinneret.

【0046】熱接着性繊維(B)の製造 テレフタル酸/イソフタル酸(モル比85/15)・テ
トラメチレングリコール・ポリオキシテトラメチレング
リコール(分子量2000:共重合量55重量%)から
なる固有粘度1.3、融点172℃の熱可塑性エラスト
マーとポリブチレンテレフタレートとを、前者が鞘成分
となるように面積比で50/50になるように孔数26
0ホールの複合紡糸口金から押し出し、引取速度100
0m/分で引き取って未延伸糸を得た。この未延伸糸を
90℃の温水中で2.8倍に延伸し、押し込み捲縮機で
捲縮数9個/25mm、捲縮率17%の機械捲縮を付与
した後、温度60℃で乾燥して単繊維繊度2.0デニー
ル、繊維長51mmの熱接着性繊維1を得た。
Production of heat-adhesive fiber (B) Intrinsic viscosity 1 consisting of terephthalic acid / isophthalic acid (molar ratio 85/15) / tetramethylene glycol / polyoxytetramethylene glycol (molecular weight 2000: copolymerization amount 55% by weight) .3, a thermoplastic elastomer having a melting point of 172 ° C. and polybutylene terephthalate were mixed with 26 holes so that the former became a sheath component, and the area ratio became 50/50.
Extrude from the 0-hole composite spinneret, take-off speed 100
It was pulled at 0 m / min to obtain an undrawn yarn. This undrawn yarn is stretched 2.8 times in warm water at 90 ° C., and a mechanical crimp having a number of crimps of 9 pieces / 25 mm and a crimp rate of 17% is applied by a press crimping machine. After drying, a heat-bondable fiber 1 having a single fiber fineness of 2.0 denier and a fiber length of 51 mm was obtained.

【0047】製糸条件(引取速度、延伸温度等)を若干
変更する以外は同様にして、ポリエチレン(融点120
〜130℃、密度0.95g/cm3 、メルトフローレ
ート20)/ポリエチレンテレフタレート(融点260
℃、固有粘度0.64)からなる熱接着性繊維2、及び
共重合ポリエステル(テレフタル酸・ジエチレングリコ
ール/テトラメチレングリコール(重量比85/1
5):固有粘度0.56、融点135℃)/ポリエチレ
ンテレフタレートからなる熱接着性繊維3を得た。これ
らはいずれもその複合面積比は50/50とし、単繊維
繊度は2.0デニール、繊維長は51mm、捲縮数は熱
接着性繊維2で15個/25mm、熱接着性繊維3で1
3個/25mm、捲縮率は熱接着性繊維2で13%、熱
接着性繊維3で13%とした。
Polyethylene (melting point: 120) was prepared in the same manner except that the spinning conditions (drawing speed, drawing temperature, etc.) were slightly changed.
~ 130 ° C, density 0.95 g / cm 3 , melt flow rate 20) / polyethylene terephthalate (melting point 260
° C, intrinsic viscosity 0.64), and a copolyester (terephthalic acid / diethylene glycol / tetramethylene glycol (weight ratio 85/1)
5): Thermal adhesive fiber 3 composed of 0.56 intrinsic viscosity, 135 ° C. melting point / polyethylene terephthalate was obtained. Each of them has a composite area ratio of 50/50, a single fiber fineness of 2.0 denier, a fiber length of 51 mm, a number of crimps of 15/25 mm for the heat-adhesive fiber 2 and a 1 for the heat-adhesive fiber 3.
3 pieces / 25 mm, the crimp rate was 13% for the heat-adhesive fiber 2 and 13% for the heat-adhesive fiber 3.

【0048】上記で製造した高中空ポリエステル繊維と
熱接着性繊維1−3とを、混合重量比70/30で混綿
し、これをローラーカードで開繊してウエブとなし、こ
れを積層して目付約30g/m2 の不織布を得た。次い
でこの不織布を150℃の熱風循環式ドライヤー中で2
分間処理し、熱接着性繊維を高中空ポリエステル繊維に
一部融着させて繊維構造体を得た。結果を表1に示す。
The high-hollow polyester fiber produced above and the heat-adhesive fiber 1-3 are mixed at a mixing weight ratio of 70/30, which is opened with a roller card to form a web, which is laminated. A nonwoven fabric having a basis weight of about 30 g / m 2 was obtained. Next, the nonwoven fabric is placed in a hot air circulating drier at 150 ° C. for 2 hours.
After that, the heat-bondable fiber was partially fused to the high hollow polyester fiber to obtain a fibrous structure. Table 1 shows the results.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【発明の効果】以上に述べた本発明の繊維構造体は、中
空率が40〜85%と極めて高い中空率を有している繊
維を使用しているにも拘らず、中空潰れが発生し難く且
つ仮に中空潰れが発生しても容易に回復させることがで
きるので、優れた嵩高性、柔軟性、耐へたり性等を有す
る。また高中空による優れた軽量保温断熱効果も発揮す
る。また単繊維繊度が小さくてもカード通過性等に優れ
ている高中空ポリエステル繊維を用いているので、さら
に繊維表面を平滑処理することと組合わせることによっ
て、天然の羽毛に優るとも劣らない特性を有する繊維構
造体を得ることができる。
As described above, the fiber structure of the present invention has a hollow ratio of 40 to 85%. Since it is difficult and can be easily recovered even if hollow crushing occurs, it has excellent bulkiness, flexibility, sag resistance and the like. In addition, the high hollowness provides an excellent lightweight heat insulation effect. In addition, even if the single fiber fineness is small, it uses high hollow polyester fiber which is excellent in card permeability, etc., and by combining it with smoothing the fiber surface, it has the same characteristics as natural feathers. A fibrous structure having the same can be obtained.

【0051】本発明の繊維構造体は、これらの特性を生
かして、防寒用キルティング衣料、掛け布団、枕などの
寝具類の詰め綿として好適に用いることができ、また衛
生材料や医療用の不織布繊維構造体としても有用であ
る。さらに繊維構造体が球状体である場合には、吹き込
み特性に優れているので、嵩高性に優れ、弾力性に富
み、風合もソフトで、しかも圧縮耐久性にも優れた枕、
布団等の中綿詰め物体として特に有用である。
The fiber structure of the present invention can be suitably used as a wadding for beddings such as quilted clothing for winterization, comforters and pillows by taking advantage of these properties. It is also useful as a structure. Furthermore, when the fiber structure is a spherical body, it has excellent blowing characteristics, so it has excellent bulkiness, rich elasticity, soft feeling, and excellent compression durability,
It is particularly useful as a batting object such as a futon.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いられる高中空ポリエステル繊維
(A)の横断面形状の1例を示す図である。
FIG. 1 is a view showing an example of a cross-sectional shape of a high hollow polyester fiber (A) used in the present invention.

【図2】本発明で用いられる高中空ポリエステル繊維
(A)の横断面形状の他の1例を示す図である。
FIG. 2 is a view showing another example of the cross-sectional shape of the high hollow polyester fiber (A) used in the present invention.

【図3】本発明で用いられる高中空ポリエステル繊維
(A)の横断面形状の他の1例を示す図である。
FIG. 3 is a view showing another example of the cross-sectional shape of the high hollow polyester fiber (A) used in the present invention.

【図4】本発明で用いられる高中空ポリエステル繊維
(A)の横断面形状の他の1例を示す図である。
FIG. 4 is a view showing another example of the cross-sectional shape of the high hollow polyester fiber (A) used in the present invention.

【図5】本発明で用いられる高中空ポリエステル繊維
(A)の横断面形状の他の1例を示す図である。
FIG. 5 is a view showing another example of the cross-sectional shape of the high hollow polyester fiber (A) used in the present invention.

【符号の説明】[Explanation of symbols]

E 中空部 E hollow part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 単繊維繊度が0.1〜17.0デニー
ル、繊維横断面中空率が40〜85%、捲縮数が5〜3
0個/25mm、捲縮率が8〜50%、シルクファクタ
ーが15〜25、結晶化度が20%以上、(010)面
の結晶サイズが4nm以上である高中空ポリエステル繊
維(A)50〜95重量%と、熱接着性繊維(B)50
〜5重量%とが分散混合された繊維構造体であって、該
熱接着性繊維の融着により構成繊維の少なくとも一部が
接合されていることを特徴とする繊維構造体。
1. A single fiber fineness of 0.1 to 17.0 denier, a hollow fiber cross section of 40 to 85%, and a number of crimps of 5 to 3
0/25 mm, high hollow polyester fiber (A) having a crimp rate of 8 to 50%, a silk factor of 15 to 25, a crystallinity of 20% or more, and a (010) plane crystal size of 4 nm or more. 95% by weight and heat-bondable fiber (B) 50
-5% by weight of the fiber structure, wherein at least a part of the constituent fibers is joined by fusion of the heat-adhesive fibers.
【請求項2】 高中空ポリエステル繊維(A)が、繊維
横断面に複数の中空部を有する請求項1記載の繊維構造
体。
2. The fiber structure according to claim 1, wherein the high hollow polyester fiber (A) has a plurality of hollow portions in a cross section of the fiber.
【請求項3】 熱接着性繊維が、高中空ポリエステル繊
維を構成するポリエステルの融点より30℃以上低い温
度で軟化又は融解する熱接着性成分を少なくとも繊維表
面に有し、該熱接着性成分の軟化又は融解する温度より
も高い融点を有する繊維形成性成分との複合繊維である
請求項1記載の繊維構造体。
3. The heat-adhesive fiber has at least a heat-adhesive component which softens or melts at a temperature lower by 30 ° C. or more than the melting point of the polyester constituting the high hollow polyester fiber. The fibrous structure according to claim 1, wherein the fibrous structure is a conjugate fiber with a fiber-forming component having a melting point higher than a softening or melting temperature.
【請求項4】 熱接着性成分が熱可塑性エラストマーで
あり、繊維形成性成分がポリエチレンテレフタレート又
はポリブチレンテレフタレートである請求項3記載の繊
維構造体。
4. The fiber structure according to claim 3, wherein the heat-adhesive component is a thermoplastic elastomer, and the fiber-forming component is polyethylene terephthalate or polybutylene terephthalate.
JP23950397A 1997-09-04 1997-09-04 Fiber structure Expired - Fee Related JP4001983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23950397A JP4001983B2 (en) 1997-09-04 1997-09-04 Fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23950397A JP4001983B2 (en) 1997-09-04 1997-09-04 Fiber structure

Publications (2)

Publication Number Publication Date
JPH1181120A true JPH1181120A (en) 1999-03-26
JP4001983B2 JP4001983B2 (en) 2007-10-31

Family

ID=17045766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23950397A Expired - Fee Related JP4001983B2 (en) 1997-09-04 1997-09-04 Fiber structure

Country Status (1)

Country Link
JP (1) JP4001983B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310106A (en) * 2000-02-24 2001-11-06 Kanai Hiroaki Non-halogen fire retardant filter medium and filter
JP2002173824A (en) * 2000-12-05 2002-06-21 Kuraray Co Ltd Porous hollow fiber and method for manufacturing the same
JP2003055838A (en) * 2001-08-16 2003-02-26 Teijin Ltd Polyester-based hollow crimped fiber and method for producing the same
JP2003089958A (en) * 2001-09-19 2003-03-28 Teijin Ltd Heat-bondable polyester short fiber
JP2007125153A (en) * 2005-11-02 2007-05-24 Teijin Fibers Ltd Inner cotton and textile product
JP2007224475A (en) * 2006-02-27 2007-09-06 Unitica Fibers Ltd Stretchable staple fiber nonwoven fabric
JP5801984B2 (en) * 2013-05-28 2015-10-28 内野株式会社 Towel products
JP2017534005A (en) * 2014-11-05 2017-11-16 チャン ゴー,キュン Ball-shaped light heating filler
WO2020012843A1 (en) * 2018-07-11 2020-01-16 株式会社カネカ Polyester-based fiber and pile fabric cloth using same, and methods respectively for producing these products
JP2020070530A (en) * 2018-11-02 2020-05-07 帝人フロンティア株式会社 Modified cross-section crimped hollow filament
JP2020172726A (en) * 2019-04-12 2020-10-22 帝人フロンティア株式会社 Filling material for clothing
US11441246B2 (en) 2013-05-28 2022-09-13 Uchino Co., Ltd. Towel product

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04153349A (en) * 1990-10-12 1992-05-26 Teijin Ltd Highly elastic nonwoven fabric
JPH06294060A (en) * 1991-09-30 1994-10-21 Fiberweb North America Inc Bonded composite non-woven web and preparation thereof
JPH06322611A (en) * 1993-05-12 1994-11-22 Teijin Ltd Antistatic polyester fiber and its production
JPH0849152A (en) * 1994-08-03 1996-02-20 Teijin Ltd Fiber formed highly elastic cushion material
JPH08188944A (en) * 1995-01-06 1996-07-23 Toray Ind Inc Fiber mixture, formed article of fiber and production of the formed article of fiber
JPH08226009A (en) * 1995-02-22 1996-09-03 Toray Ind Inc Porous hollow fiber and its production
JPH0995848A (en) * 1995-10-03 1997-04-08 Unitika Ltd Biodegradable filament nonwoven fabric for forming and its production
JPH10292222A (en) * 1997-02-20 1998-11-04 Teijin Ltd Highly hollow polyester fiber, and knitted fabric, pile textile product and nonwoven fabric structure each using the polyester fiber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04153349A (en) * 1990-10-12 1992-05-26 Teijin Ltd Highly elastic nonwoven fabric
JPH06294060A (en) * 1991-09-30 1994-10-21 Fiberweb North America Inc Bonded composite non-woven web and preparation thereof
JPH06322611A (en) * 1993-05-12 1994-11-22 Teijin Ltd Antistatic polyester fiber and its production
JPH0849152A (en) * 1994-08-03 1996-02-20 Teijin Ltd Fiber formed highly elastic cushion material
JPH08188944A (en) * 1995-01-06 1996-07-23 Toray Ind Inc Fiber mixture, formed article of fiber and production of the formed article of fiber
JPH08226009A (en) * 1995-02-22 1996-09-03 Toray Ind Inc Porous hollow fiber and its production
JPH0995848A (en) * 1995-10-03 1997-04-08 Unitika Ltd Biodegradable filament nonwoven fabric for forming and its production
JPH10292222A (en) * 1997-02-20 1998-11-04 Teijin Ltd Highly hollow polyester fiber, and knitted fabric, pile textile product and nonwoven fabric structure each using the polyester fiber

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310106A (en) * 2000-02-24 2001-11-06 Kanai Hiroaki Non-halogen fire retardant filter medium and filter
JP2002173824A (en) * 2000-12-05 2002-06-21 Kuraray Co Ltd Porous hollow fiber and method for manufacturing the same
JP2003055838A (en) * 2001-08-16 2003-02-26 Teijin Ltd Polyester-based hollow crimped fiber and method for producing the same
JP4574911B2 (en) * 2001-08-16 2010-11-04 帝人ファイバー株式会社 Polyester-based hollow crimped fiber and method for producing the same
JP2003089958A (en) * 2001-09-19 2003-03-28 Teijin Ltd Heat-bondable polyester short fiber
JP2007125153A (en) * 2005-11-02 2007-05-24 Teijin Fibers Ltd Inner cotton and textile product
JP2007224475A (en) * 2006-02-27 2007-09-06 Unitica Fibers Ltd Stretchable staple fiber nonwoven fabric
CN105283107A (en) * 2013-05-28 2016-01-27 内野株式会社 Towel product
JP5801984B2 (en) * 2013-05-28 2015-10-28 内野株式会社 Towel products
US11441246B2 (en) 2013-05-28 2022-09-13 Uchino Co., Ltd. Towel product
JP2017534005A (en) * 2014-11-05 2017-11-16 チャン ゴー,キュン Ball-shaped light heating filler
WO2020012843A1 (en) * 2018-07-11 2020-01-16 株式会社カネカ Polyester-based fiber and pile fabric cloth using same, and methods respectively for producing these products
JPWO2020012843A1 (en) * 2018-07-11 2021-07-08 株式会社カネカ Polyester fibers, pile fabrics using them, and methods for manufacturing them
CN114575007A (en) * 2018-07-11 2022-06-03 株式会社钟化 Polyester fiber, pile fabric using same, and method for producing same
JP2020070530A (en) * 2018-11-02 2020-05-07 帝人フロンティア株式会社 Modified cross-section crimped hollow filament
JP2020172726A (en) * 2019-04-12 2020-10-22 帝人フロンティア株式会社 Filling material for clothing

Also Published As

Publication number Publication date
JP4001983B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP4065592B2 (en) High hollow polyester fiber, woven / knitted fabric, pile fiber product and nonwoven fabric structure using the same, and method for producing hollow polyester fiber
EP0855461B1 (en) Non-impregnated base material useful as a base fabric for artificial leather, artificial leather thereof and process for their production
TW200304968A (en) Machine-crimped synthetic fibers having latent three-dimensional crimping property and process for producing same
JP4001983B2 (en) Fiber structure
WO1997023670A1 (en) Heat-bondable conjugated fiber and high-modulus fiber globoid made thereof
US5462793A (en) Structured fiber material comprised of composite fibers coiled around crimped short fibers
JP2015190080A (en) Polyester composite fiber for fiber spheroid and fiber spheroid
JP3588635B2 (en) Thermally bonded conjugate fiber and spherical body of high elastic fiber comprising the same
JPH10310965A (en) Polyester short fiber nonwoven fabric
JP3701765B2 (en) Molded article with improved stress diffusivity made of highly elastic spheres
JP3275974B2 (en) Polyester-based low-shrink heat-bonded fiber
JP2000345457A (en) Production of fiber ball
JP3879289B2 (en) Method for producing polyester short fiber for cushion material and method for producing cushion material
JP3924360B2 (en) Artificial leather made of high-hollow polyester fiber
JP4628808B2 (en) Low shrinkable thermal adhesive fiber
JP3845267B2 (en) Polyester fiber for hot press nonwoven fabric
JP3201688B2 (en) Polyester ball
JP3188054B2 (en) Mixed fiber long-fiber nonwoven fabric and method for producing the same
JP2001207360A (en) Ball-like wadding and fiber structure
JP2002030555A (en) Ball-like staple fiber comprising thermally adhesive fiber and fiber structure
JPH09228215A (en) Polyester fiber ball and assembly thereof
JPH11241261A (en) Polyesterfiber structure having shape-memory ability
JPH08294586A (en) Production of polyester-base elastic heat resistant solid cotton
JP2020133019A (en) Thermally adhesive conjugate fiber
JP2003027339A (en) Polyester-based conjugate fiber and fiber structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees