JP2001177146A - Triangular shape semiconductor element and manufacturing method therefor - Google Patents

Triangular shape semiconductor element and manufacturing method therefor

Info

Publication number
JP2001177146A
JP2001177146A JP36337499A JP36337499A JP2001177146A JP 2001177146 A JP2001177146 A JP 2001177146A JP 36337499 A JP36337499 A JP 36337499A JP 36337499 A JP36337499 A JP 36337499A JP 2001177146 A JP2001177146 A JP 2001177146A
Authority
JP
Japan
Prior art keywords
semiconductor
triangular
substrate
layer
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36337499A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tadatomo
一行 只友
Hiroaki Okagawa
広明 岡川
Masahiro Koto
雅弘 湖東
Yoichiro Ouchi
洋一郎 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP36337499A priority Critical patent/JP2001177146A/en
Publication of JP2001177146A publication Critical patent/JP2001177146A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor element capable of easily isolating an element from an epitaxial wafer in high yield and having no maldistribution of a injected carrier amount as fast as possible. SOLUTION: The triangular shape semiconductor element comprises a laminated structure for sequentially growing an Si-doped n-type GaN layer 2 through a GaN or AlN buffer layer 1 on a sapphire (c) surface substrate 1, an n-type AlGaN clad layer 31, an InGaN MQW light emitting layer 4, an Mg-doped p-type AlGaN clad layer 32, and a p-type GaN contact layer 5. In this case, the profile shape of the element becomes a triangular shape surrounded at its sidewall by and equivalent M surface ( 1-100} surface). Since such an element structure has an equivalent surface of the sidewall surface, hence has entirely equal crackableness and a sectional shape. Thus, the isolation of the element can be facilitated at a high quality level. As a result, the yield of the product can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、六方晶系化合物半
導体層を備える三角形状の半導体素子、例えば半導体発
光素子及び受光素子に関するものである。
The present invention relates to a triangular semiconductor device having a hexagonal compound semiconductor layer, for example, a semiconductor light emitting device and a light receiving device.

【0002】[0002]

【従来の技術】近年、GaN系化合物半導体からなる発
光素子や受光素子の開発が盛んに行われている。一般的
に素子形状としては立方体の形状で作られ、素子の上か
ら見た形状は正方形又は長方形の矩形形状とされてい
る。ところで、GaN系化合物半導体は、サファイア基
板上に結晶成長される場合が多いが、サファイアもGa
Nも硬い材料であるので、ダイシングのみで素子を完全
に切り出すことは難しい。このため、部分的なダイシン
グ又はスクライブにより傷を与え、この傷を始点として
割ることによって素子を分離するのが一般的である。
2. Description of the Related Art In recent years, light emitting elements and light receiving elements made of GaN-based compound semiconductors have been actively developed. Generally, the element is formed in a cubic shape, and the shape of the element viewed from above is a square or a rectangular shape. Incidentally, GaN-based compound semiconductors are often crystal-grown on a sapphire substrate, but sapphire is also Ga
Since N is also a hard material, it is difficult to completely cut out the element only by dicing. For this reason, it is common to make a scratch by partial dicing or scribing, and to separate the elements by dividing the scratch as a starting point.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、GaN
などの六方晶系の化合物半導体は、その結晶の基本構造
からして互いに直交する面の両方、即ち矩形の素子の全
ての面を高品位に割り出すことは困難である。例えば、
サファイア基板ではM面({1−100}面)が割れやす
いが、直行するA面({11−20}面)は割れにくいと
いう特性があり、M面でならば容易に且つ高品位に分割
できるが、A面であるとスクライビングでは奇麗に分割
できないという問題がある。従って、六方晶系の化合物
半導体にて矩形の半導体素子を作製しようとする場合、
高品位分割ができない面を不可避的に具備せねばなら
ず、エピタキシャル成長基板から素子をスクライブして
分離する際に不良品が発生する可能性が大きくなるとい
う問題があった。
SUMMARY OF THE INVENTION However, GaN
In a hexagonal compound semiconductor such as that described above, it is difficult to determine both surfaces orthogonal to each other, that is, all surfaces of a rectangular element, with high quality from the basic structure of the crystal. For example,
The sapphire substrate has the property that the M plane ({1-100} plane) is easily cracked, but the orthogonal A plane ({11-20} plane) is hard to crack. However, there is a problem that scribing cannot be neatly divided on the A side. Therefore, when manufacturing a rectangular semiconductor element using a hexagonal compound semiconductor,
A surface where high-quality division cannot be performed must be provided inevitably, and there is a problem that the possibility of occurrence of defective products increases when the element is scribed and separated from the epitaxial growth substrate.

【0004】また、例えばサファイア等の絶縁性基板上
に半導体層を成長させた矩形の半導体発光素子の場合、
その電極としては、矩形素子の対向する角の部分にボン
ディング用の電極をそれぞれ形成するのが一般的である
(実用新案登録3027676号公報)。しかし、このよ
うな素子構造並びに電極構造であると、ボンディング電
極が配置されていない残りの角付近の領域に注入される
キャリヤ量が少なくなるといった問題がある。
In the case of a rectangular semiconductor light emitting device in which a semiconductor layer is grown on an insulating substrate such as sapphire,
As the electrodes, bonding electrodes are generally formed at opposing corners of the rectangular element.
(Japanese Utility Model Registration 3027676). However, with such an element structure and an electrode structure, there is a problem that the amount of carriers injected into a region near the remaining corner where the bonding electrode is not disposed is small.

【0005】従って本発明は、エピタキシャルウェハか
らの素子分離を容易に且つ歩留まりよく行うことがで
き、さらにはキャリア注入量の偏在が可及的に生ずるこ
とがない半導体素子を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor device which can easily perform device isolation from an epitaxial wafer with a high yield, and furthermore does not cause uneven distribution of a carrier injection amount as much as possible. I do.

【0006】[0006]

【課題を解決するための手段】本発明の半導体素子は、
六方晶系結晶の基板と、その上に形成された六方晶系化
合物半導体とからなる三角形状の半導体素子であって、
前記六方晶系化合物半導体の側周囲の面が{1−10
0}面で構成されている、若しくは、前記六方晶系結晶
基板の側周囲の面が{1−100}面で構成されている
ことを特徴とするものである。
According to the present invention, there is provided a semiconductor device comprising:
A hexagonal crystal substrate, a triangular semiconductor element comprising a hexagonal compound semiconductor formed thereon,
The surface around the side of the hexagonal compound semiconductor is {1-10}
The hexagonal crystal substrate may be constituted by a {1-100} plane.

【0007】上記半導体が、GaNを主な構成材料とし
ている場合に本発明は特に好適である。具体的には、<
1−100>方向と等価な3方向の切断面を備える厚肉
のサファイア基板に、薄肉のGaN系化合物半導体層が
成長されてなる三角形状の半導体素子が好適である。
The present invention is particularly suitable when the above-mentioned semiconductor is mainly composed of GaN. Specifically, <
A triangular semiconductor element obtained by growing a thin GaN-based compound semiconductor layer on a thick sapphire substrate having cut surfaces in three directions equivalent to the 1-100> direction is preferable.

【0008】より具体的な本発明の半導体素子は、六方
晶系化合物半導体層が少なくとも導電型の異なる2層以
上の半導体層を有し、該三角形状の半導体素子に付与す
る電極パターンを、第1導電型の半導体層の表面に形成
される透明電極と、この透明電極上であって三角形の一
つの頂点近傍に配置される第1のボンディング電極と、
第1導電型の半導体層の一部切り欠きにより表出された
第2導電型の半導体層の表面であって、前記第1のボン
ディング電極が配置された頂点と対向する三角形の辺に
近接させて配置された第2のボンディング電極とから構
成することを特徴とするものである。
In a more specific semiconductor device of the present invention, the hexagonal compound semiconductor layer has at least two or more semiconductor layers having different conductivity types, and an electrode pattern to be provided to the triangular semiconductor device is formed by the following method. A transparent electrode formed on the surface of the one conductivity type semiconductor layer, a first bonding electrode disposed on the transparent electrode and near one vertex of a triangle,
The surface of the semiconductor layer of the second conductivity type, which is exposed by a partial cutout of the semiconductor layer of the first conductivity type, is brought close to the side of a triangle facing the vertex on which the first bonding electrode is arranged. And a second bonding electrode arranged in the same direction.

【0009】上記構成において、三角形状の半導体素子
の各コーナー部に、曲面が施与するようにすることをが
望ましい。
In the above structure, it is desirable that a curved surface be provided at each corner of the triangular semiconductor element.

【0010】また、本発明にかかる半導体素子の製法
は、六方晶系結晶の基板上に六方晶系化合物半導体を成
長させて積層体を形成し、該積層体の前記基板側表面に
おいて基板結晶の<11−20>方向にあたる三方向に
スクライブ傷を入れ、若しくは半導体側表面において半
導体結晶の<11−20>方向にあたる三方向にスクラ
イブ傷を入れ、該スクライブ傷に沿って分割することで
前記積層体から三角形状の半導体素子を得ることを特徴
とするものである。
Further, in the method of manufacturing a semiconductor device according to the present invention, a laminate is formed by growing a hexagonal compound semiconductor on a hexagonal crystal substrate and forming a laminate on the substrate side surface of the laminate. The lamination is performed by making scribe flaws in three directions corresponding to the <11-20> direction, or making scribe flaws in three directions corresponding to the <11-20> direction of the semiconductor crystal on the semiconductor side surface, and dividing along the scribe flaws. It is characterized by obtaining a triangular semiconductor element from a body.

【0011】[0011]

【作用】上記本発明の構成によれば、割れやすい面(例
えばサファイアのM面)で周囲が形成された、三角形の
形状の素子構造であるので、素子の側壁が高品位に形成
された素子を提供することができる。即ち、エピタキシ
ャル成長基板からの素子分離の際に、スクライブの傷を
入れるだけで簡単に且つ側壁の品質が良好な状態で分割
することができる。この結果、光取り出し効率も向上す
るという付随的作用も奏する。
According to the structure of the present invention, the triangular element structure in which the periphery is formed by a fragile surface (for example, the M surface of sapphire), so that the element side wall is formed with high quality. Can be provided. That is, when the element is separated from the epitaxial growth substrate, the division can be performed simply and with good quality of the side wall only by making a scribe flaw. As a result, an additional effect that the light extraction efficiency is improved is also exhibited.

【0012】また、請求項5に示す態様でボンディング
電極を配置することによって、三角形の一つの頂点から
対向する辺へ電流が流れる様にできるので、チップ全面
にキャリヤ注入が可能になり、矩形素子の場合に問題と
なるキャリア注入の偏在の問題を解消できる。
Further, by arranging the bonding electrodes according to the fifth aspect, a current can flow from one vertex of the triangle to the opposite side, so that carrier injection can be performed on the entire chip, and the rectangular element can be formed. In this case, the problem of uneven distribution of carrier injection which is a problem in the case of (1) can be solved.

【0013】さらに本発明の半導体素子の製法によれ
ば、六方晶系結晶基板若しくは化合物半導体は120°
互いにずれた三方向の<11−20>方向線を有する
が、これに沿ってスクライブ傷を入れて割ることで、若
干の面乱れが発生する可能性はあるものの、割られてで
きた面をほぼ{1−100}面とすることができ、高品
質な面で囲まれた三角形状の半導体素子を製造すること
ができる。
Further, according to the method of manufacturing a semiconductor device of the present invention, the hexagonal crystal substrate or the compound semiconductor is kept at 120 °.
Although there are three <11-20> direction lines that are shifted from each other, it is possible to cause some surface disorder by scribing and breaking along these lines. The surface can be substantially {1-100} plane, and a triangular semiconductor element surrounded by a high-quality plane can be manufactured.

【0014】[0014]

【発明の実施の態様】以下発明の実施態様につき詳細に
説明する。図1は一般的なGaN系LED構造の一例を
示した図である。図にしたがって説明すると、サファイ
アc面基板1上に、低温成長したGaNまたはAlNバ
ッファ層10を介してSiドープのn型GaN層2、n
型AlGaNクラッド層31、InGaN系のMQW発
光層4、Mgドープのp型AlGaNクラッド層32、
p型GaNコンタクト層5を順次成長して素子構造のエ
ピタキシャル成長基板(エピ基板)が形成される。この
時、サファイア基板1の面方位とGaN系デバイス構造
部Dの面方位は30度ずれることが知られている。すな
わち、サファイア基板1のM面、A面がGaN系デバイ
ス構造部DのA面、M面となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail. FIG. 1 is a diagram showing an example of a general GaN-based LED structure. Referring to the figure, on a sapphire c-plane substrate 1, a Si-doped n-type GaN layer 2, n is interposed via a GaN or AlN buffer layer 10 grown at a low temperature.
-Type AlGaN cladding layer 31, InGaN-based MQW light-emitting layer 4, Mg-doped p-type AlGaN cladding layer 32,
The p-type GaN contact layer 5 is sequentially grown to form an epitaxial growth substrate (epi substrate) having an element structure. At this time, it is known that the plane direction of the sapphire substrate 1 and the plane direction of the GaN-based device structure D are shifted by 30 degrees. That is, the M and A planes of the sapphire substrate 1 are the A and M planes of the GaN-based device structure D.

【0015】通常のフォトリソグラフィー技術、RIE
技術、電極形成技術を使って素子化したあと、サファイ
ア面側からダイヤモンドのポイントでスクライブ(けが
く)し、機械的に曲げ応力を加えてブレーク(破断)し
て素子分離する。この時、サファイア基板の方が圧倒的
に厚いために、サファイア基板の割れ方に素子分離の仕
上がりが殆ど左右される。図1の様に方形状にチップを
切り出す場合、サファイアA面({11−20}面)と
M面({1−100}面)で側面が囲まれた形状とな
る。この時、M面の方が比較的平たんな面となり、A面
はがたがたした荒れた面となる。一方、M面はサファイ
アのへき開面であるR面({1−102}面)が発生し
やすい性質も合わせ持ち、特段の注意が必要となる。
Normal photolithography technology, RIE
After the element is formed using the technology and the electrode formation technique, the element is scribed at the diamond point from the sapphire surface side, and then subjected to mechanical bending stress to break (break) to separate the element. At this time, since the sapphire substrate is overwhelmingly thick, the finish of element isolation is largely influenced by the way the sapphire substrate is broken. When a chip is cut out in a rectangular shape as shown in FIG. 1, the side surface is surrounded by a sapphire A plane ({11-20} plane) and an M plane ({1-100} plane). At this time, the M surface becomes a relatively flat surface, and the A surface becomes a rattled rough surface. On the other hand, the M plane also has a property that an R plane ({1-102} plane), which is a cleavage plane of sapphire, is likely to be generated, and special attention is required.

【0016】すなわち、直交する面の性質が大きく異な
るために、素子分離工程に特別な注意が必要であり、得
られたチップの形状も異方性が強い。このため、異常な
割れ方をする場合が多発し、製品の歩留まりを低下させ
る要因となっている。
That is, since the properties of the planes orthogonal to each other are greatly different, special attention must be paid to the element separation step, and the shape of the obtained chip is strongly anisotropic. For this reason, abnormal cracking frequently occurs, which is a factor that lowers the product yield.

【0017】これに対し、図2は本発明にかかるGaN
系LED構造の一例を示し、サファイアc面基板1上
に、低温成長したGaNまたはAlNバッファ層10を
介してSiドープのn型GaN層2、n型AlGaNク
ラッド層31、InGaN系のMQW発光層4、Mgド
ープのp型AlGaNクラッド層32、p型GaNコン
タクト層5を順次成長した積層構造を備えている点は上
記と同様であるが、素子の外形形状が、その側壁が等価
なM面({1−100}面)で囲まれた三角形をしてい
る点で相違している。このような素子構造であれば、側
壁面が等価な面であるから、全く同一の割れやすさ、断
面形状をしており、容易に且つ高品位に素子分離が行え
る結果、製品の歩留まりの向上を達成できる。なお、本
発明において{1−100}面という場合、その面が完
全無欠に{1−100}面であることのみを指すのでは
なく、スクライブの際や素子分割の際等に不可避的に生
じてしまうような若干の誤差を許容するものである。
On the other hand, FIG. 2 shows GaN according to the present invention.
1 shows an example of a system LED structure, in which an n-type GaN layer 2 doped with Si, an n-type AlGaN cladding layer 31, an InGaN-based MQW light emitting layer is formed on a sapphire c-plane substrate 1 via a GaN or AlN buffer layer 10 grown at a low temperature. 4, a stacked structure in which a Mg-doped p-type AlGaN cladding layer 32 and a p-type GaN contact layer 5 are sequentially grown is the same as described above. It is different in that it has a triangle surrounded by ({1-100} plane). With such an element structure, since the side wall surfaces are equivalent surfaces, they have exactly the same fragility and cross-sectional shape, and element isolation can be performed easily and with high quality, thereby improving the product yield. Can be achieved. In the present invention, the {1-100} plane does not only indicate that the plane is a {1-100} plane without fail, but also inevitably occurs when scribed or divided into elements. This allows a slight error that would otherwise occur.

【0018】上記三角形状のGaN系LEDに付与する
電極パターンは、図示するように、p型GaNコンタク
ト層5の表面に形成される透明電極71と、この透明電
極71上であって三角形の一つの頂点近傍に配置される
第1のボンディング電極61と、p型半導体層の一部切
り欠きにより表出されたn型GaN層2の表面であっ
て、前記第1のボンディング電極61が配置された頂点
と対向する三角形の辺に近接させて配置された第2のボ
ンディング電極62と、第2のボンディング電極62か
ら延伸される帯状電極72とから構成している。
As shown in the figure, the electrode pattern provided to the triangular GaN-based LED includes a transparent electrode 71 formed on the surface of the p-type GaN contact layer 5 and a triangular one on the transparent electrode 71. A first bonding electrode 61 disposed near two vertices and the surface of the n-type GaN layer 2 exposed by a partial cutout of the p-type semiconductor layer, wherein the first bonding electrode 61 is disposed. The second bonding electrode 62 is arranged close to the side of the triangle facing the apex, and a strip electrode 72 extending from the second bonding electrode 62.

【0019】取出電極の位置関係をこのように配置する
ことにより、三角形に頂点に形成された第1のボンディ
ング電極61から、第2のボンデング電極62が形成さ
れた辺までの距離が略等しくなり、この結果均一な電流
注入を可能とすることができる。発光素子の場合、外部
量子効率を方形の場合と比較すると、約15%向上する
ことが可能である。
By arranging the positional relationship of the extraction electrodes in this manner, the distance from the first bonding electrode 61 formed at the apex of the triangle to the side on which the second bonding electrode 62 is formed becomes substantially equal. As a result, uniform current injection can be achieved. In the case of a light emitting device, the external quantum efficiency can be improved by about 15% as compared with the case of a square.

【0020】本発明で用いる六方晶系化合物半導体とし
ては、例えばGaN、AlGaN、InGaAlN、I
nGaNなどが例示できる。目的とする半導体素子が発
光素子である場合、基板側からGaNバッファ層、Si
ドープn−GaN層、Siドープn−AlGaN層、I
nGaN系多層量子井戸構造層、Mgドープp−AlG
aN層、Mgドープp−GaN層からなる多層構造が例
示できる。
The hexagonal compound semiconductor used in the present invention includes, for example, GaN, AlGaN, InGaAlN,
nGaN and the like can be exemplified. When the target semiconductor device is a light emitting device, a GaN buffer layer, a Si
Doped n-GaN layer, Si-doped n-AlGaN layer, I
nGaN-based multilayer quantum well structure layer, Mg-doped p-AlG
A multilayer structure including an aN layer and a Mg-doped p-GaN layer can be exemplified.

【0021】また本発明で用いる六方晶系の結晶基板と
しては、サファイア基板、SiC基板、GaN基板、Z
nOなどの各種六方晶系の結晶基板を用いることが出来
るが、この基板の上に成長させる六方晶系化合物半導体
の品質を向上させるためには、サファイア基板、SiC
基板、GaN基板を用いることが好ましい。
The hexagonal crystal substrate used in the present invention includes a sapphire substrate, a SiC substrate, a GaN substrate, a Z
Various hexagonal crystal substrates such as nO can be used, but in order to improve the quality of the hexagonal compound semiconductor grown on this substrate, a sapphire substrate, SiC
It is preferable to use a substrate and a GaN substrate.

【0022】本発明の代表的な実施例として、上述した
ように、サファイア基板上にGaN系化合物半導体から
なる発光層を成長させたLEDが挙げられる。この場
合、サファイア基板の面方位とGaN系化合物半導体の
面方位は30度ずれることになるが、一般的にLED等
のデバイスは、発光部等を構成するGaN系化合物半導
体層は10μm以下程度の薄肉であり、これに対しサフ
ァイア基板は50〜500μm程度の厚肉である。従っ
てこのような場合にあっては、厚肉のサファイア基板の
切断面を、ほぼ<1−100>方向と等価な3方向の切
断面を備えるように素子分離すれば、容易且つ高品位な
素子分離が行い得る。
As a typical embodiment of the present invention, as described above, there is an LED in which a light emitting layer made of a GaN-based compound semiconductor is grown on a sapphire substrate. In this case, the plane direction of the sapphire substrate and the plane direction of the GaN-based compound semiconductor are shifted by 30 degrees. However, in general, devices such as LEDs generally have a GaN-based compound semiconductor layer constituting a light-emitting portion or the like of about 10 μm or less. The sapphire substrate has a thickness of about 50 to 500 μm. Therefore, in such a case, if the cut surface of the thick sapphire substrate is separated so as to have cut surfaces in three directions substantially equivalent to the <1-100> direction, an easy and high-quality device can be obtained. Separation can take place.

【0023】本発明の三角形状の半導体素子は、エピタ
キシャル成長基板から各素子が三角形状を呈するよう
に、しかもその分離面がほぼ{1−100}面となるよ
うに素子分離をすることで得られる。このような分離の
方法としては、エピタキシャル成長基板の前記基板側表
面において基板結晶の<11−20>方向にあたる三方
向にスクライブ傷を入れ、該スクライブ傷に沿ってナイ
フエッジで機械的な力をかける等して分割する方法が挙
げられる。
The triangular semiconductor element of the present invention can be obtained by separating elements from an epitaxial growth substrate such that each element has a triangular shape and the separation plane is substantially {1-100} plane. . As a method of such separation, scribed scratches are made in three directions corresponding to <11-20> directions of the substrate crystal on the substrate side surface of the epitaxial growth substrate, and a mechanical force is applied along the scribed scratches with a knife edge. For example, and a method of dividing.

【0024】基板が半導体層より充分厚い通常の場合は
上記の方法で良い。例えば、GaN系半導体発光素子の
場合は80μm程度の厚さのサファイア基板に数μm厚
さのGaN系化合物半導体層が積層された態様となる
が、この場合サファイア基板の裏面にスクライブ傷を入
れて割れば、サファイアの{1−100}面とGaNの
{1−100}面との間には30°のズレが存在してい
るものの、厚さによる優位性により全体がサファイアの
{1−100}面で分割されることになる。一方、サフ
ァイア基板が40μm程度の厚さで、GaN系化合物半
導体層の厚さが20μm程度の特殊な素子にあっては、
サファイア基板の裏面側から割るとGaN層が機械強度
的に優勢となって奇麗な分割面が得られない可能性があ
るので、このような場合は、半導体側表面において半導
体結晶の<11−20>方向にあたる三方向にスクライ
ブ傷を入れて割るようにしてもよい。なお、サファイア
に代えてSiC基板やGaN基板を用いる場合は、上記
の{1−100}面のズレは生じないため、基板側、半
導体側のいずれから割っても良い。
In a normal case where the substrate is sufficiently thicker than the semiconductor layer, the above method may be used. For example, in the case of a GaN-based semiconductor light emitting device, a mode in which a GaN-based compound semiconductor layer having a thickness of several μm is laminated on a sapphire substrate having a thickness of about 80 μm is used. In this case, scribe marks are formed on the back surface of the sapphire substrate. If broken, there is a 30 ° deviation between the {1-100} plane of sapphire and the {1-100} plane of GaN, but due to the superiority due to thickness, the entire {1-100} plane of sapphire } Will be divided on the surface. On the other hand, in a special device in which the sapphire substrate has a thickness of about 40 μm and the GaN-based compound semiconductor layer has a thickness of about 20 μm,
If the GaN layer is divided from the back surface side of the sapphire substrate, the GaN layer may be superior in mechanical strength and a clean divided surface may not be obtained. The scribe scratches may be made in three directions, i.e., three directions. In the case where a SiC substrate or a GaN substrate is used instead of sapphire, the above-described deviation of the {1-100} plane does not occur, and thus the substrate may be divided from either the substrate side or the semiconductor side.

【0025】ボンディング電極61,62の配置位置
は、一方が三角形の頂点に位置し、他方が当該頂点と対
向する辺に沿った任意の位置にあれば良い。例えば図2
においては、第2のボンディング電極62を対向辺の中
央に配置しているが、これを第1のボンディング電極6
1が配置されていない残りの2つの頂点のいずれか近傍
に配置するようにしても良い。また、第2のボンディン
グ電極62を頂点に配置し、第1のボンディング電極6
1をその対向辺の中央付近に配置してもよい。
The arrangement positions of the bonding electrodes 61 and 62 may be such that one is located at the vertex of the triangle and the other is at an arbitrary position along the side facing the vertex. For example, FIG.
In the above, the second bonding electrode 62 is arranged at the center of the opposing side.
1 may be arranged near any of the remaining two vertices where no 1 is arranged. Further, the second bonding electrode 62 is disposed at the top, and the first bonding electrode 6
1 may be arranged near the center of the opposite side.

【0026】透明電極71は実質的に透明な導電性薄膜
で構成された電極が用いられるが、この他に不透明では
あるが櫛型に電極パターンを設けることで実質的に透明
性を担保した電極であっても良い。また、帯状電極72
は電流注入効率をより向上させたい場合に必要に応じて
設ければ良い。
As the transparent electrode 71, an electrode composed of a substantially transparent conductive thin film is used. In addition, an electrode which is opaque but has substantially transparent by providing an electrode pattern in a comb shape is used. It may be. In addition, the strip electrode 72
May be provided as needed to further improve the current injection efficiency.

【0027】なお、GaN基板上にGaN系のデバイス
構造を形成した場合、基板とデバイス構造部の結晶方位
が一致しているので、素子断面全部が等価なM面({1
−100}面)で三方が囲まれることになりより好まし
い。また、導電性の基板であるので、第一のボンディン
グ電極61は三角形の頂点の隅、あるいは中央付近とど
こにでも設けることができる。
When a GaN-based device structure is formed on a GaN substrate, the substrate and the device structure have the same crystallographic orientation.
(−100 ° plane) is more preferable because three sides are enclosed. Further, since the substrate is a conductive substrate, the first bonding electrode 61 can be provided at any corner of the vertex of the triangle or near the center.

【0028】ところで、本発明にあっては半導体素子を
三角形状とするため、そのコーナー部は自ずと矩形素子
に比べて鋭利となり機械的破損を受け易くなりがちであ
る。そこで、コーナー部には面取り的な曲面を施与する
ことが望ましい。この曲面の形成方法としては、エッチ
ング加工用のマスク形状を曲面に施与する等の方法を採
用することができる。
In the present invention, since the semiconductor element has a triangular shape, its corners tend to be sharper than a rectangular element and tend to be susceptible to mechanical damage. Therefore, it is desirable to apply a chamfered curved surface to the corner portion. As a method of forming the curved surface, a method of applying a mask shape for etching to the curved surface or the like can be adopted.

【0029】[0029]

【実施例】以下具体的な実施例につき説明する。本実施
例では図2に示した構造のサファイア基板上にデバイス
構造を形成した例を示す。使用した結晶成長装置は通常
のMOVPE装置である。まず、サファイアc面基板を
MOVPE装置の反応管内の所定の場所に装填し、10
50℃の水素雰囲気中で5分間サーマルクリーニングを
行った。次に、350℃まで基板温度を下げてからAl
Nのバッファ層を20nm成長し、1000℃まで昇温
してから3μmのn−GaNを成長した。ドーパントは
Siである。更に、50nm厚みのn−AlGaNを成
長し、700℃に基板温度を下げてInGaN系の層
(MQW構造、Well層は3層)を成長した。再度、
1000℃に昇温してからMgドープのp−AlGaN
層を30nm成長し、引き続きp−GaN層を成長し
た。反応管内雰囲気を窒素ガスに切り替えて室温まで冷
却した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments will be described below. This embodiment shows an example in which a device structure is formed on a sapphire substrate having the structure shown in FIG. The crystal growth apparatus used is a normal MOVPE apparatus. First, a sapphire c-plane substrate is loaded into a predetermined place in a reaction tube of a MOVPE apparatus, and
Thermal cleaning was performed in a hydrogen atmosphere at 50 ° C. for 5 minutes. Next, lower the substrate temperature to 350 ° C.
A buffer layer of N was grown to a thickness of 20 nm, and after raising the temperature to 1000 ° C., n-GaN of 3 μm was grown. The dopant is Si. Further, n-AlGaN having a thickness of 50 nm was grown, and the substrate temperature was lowered to 700 ° C. to grow an InGaN-based layer (MQW structure, three well layers). again,
After raising the temperature to 1000 ° C., Mg-doped p-AlGaN
A layer was grown to 30 nm, followed by a p-GaN layer. The atmosphere in the reaction tube was switched to nitrogen gas and cooled to room temperature.

【0030】通常のフォトリソグラフィー技術、反応性
イオンエッチング技術(RIE)、真空蒸着技術を使っ
てエピタキシャル基板を素子加工した。サファイア基板
は350μmの厚みがあるので、全体を80μmになる
ように研磨を行った。その後、サファイア基板側からダ
イヤモンド刃の付いたポイントで<11−20>方向と
等価な3方向にスクライブした。スクライブの傷に沿っ
てナイフエッジで機械的な力をかけて素子分離を行っ
た。その結果、等価な{1−100}面で囲まれたLE
Dチップが作製された。
The device was processed on the epitaxial substrate using ordinary photolithography technology, reactive ion etching technology (RIE), and vacuum deposition technology. Since the sapphire substrate has a thickness of 350 μm, the whole was polished to 80 μm. Thereafter, scribing was performed from the sapphire substrate side in three directions equivalent to the <11-20> direction at a point with a diamond blade. Element separation was performed by applying mechanical force with a knife edge along the scribed scratch. As a result, the LE surrounded by the equivalent {1-100} plane
A D chip was produced.

【0031】[0031]

【発明の効果】以上説明した通りの本発明の三角形状の
半導体素子によれば、側周囲を構成する面が{1−10
0}面で構成されているので、エピタキシャル成長基板
からの素子分割の際、デバイスチップの各端面が均質な
形状でブレーキングされる。従って、極めて高品位な側
周囲を備える半導体素子を得ることができ、製品の歩留
まりを向上させることができる。また、三角形状とする
ことで、キャリヤ注入も全面に均等に起こるために、量
子効率も格段に向上させることができる。
As described above, according to the triangular semiconductor device of the present invention, the surface forming the side periphery is {1-10}.
Because of the 0 ° plane, each end face of the device chip is braked in a uniform shape during element division from the epitaxial growth substrate. Therefore, it is possible to obtain a semiconductor element having an extremely high-quality side periphery and to improve the product yield. Further, the triangular shape allows carrier injection to occur evenly over the entire surface, so that quantum efficiency can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の矩形型GaN系LED構造を示す斜視図
である。
FIG. 1 is a perspective view showing a conventional rectangular GaN-based LED structure.

【図2】本発明の三角形状のGaN系LED構造を示す
斜視図である。
FIG. 2 is a perspective view showing a triangular GaN-based LED structure of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 31,32 クラッド層 4 発光層 61,62 ボンディング電極 D GaN系デバイス構造部 DESCRIPTION OF SYMBOLS 1 Substrate 31, 32 Cladding layer 4 Light emitting layer 61, 62 Bonding electrode D GaN device structure

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大内 洋一郎 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 Fターム(参考) 5F041 AA03 AA41 CA05 CA23 CA34 CA40 CA46 CA65 CA74 CA76 CA77 CA88  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoichiro Ouchi 4-3 Ikejiri, Itami-shi, Hyogo Mitsubishi Cable Industries, Ltd. Itami Works F-term (reference) 5F041 AA03 AA41 CA05 CA23 CA34 CA40 CA46 CA65 CA74 CA76 CA77 CA88

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 六方晶系結晶の基板と、その上に形成さ
れた六方晶系化合物半導体とからなる三角形状の半導体
素子であって、前記六方晶系化合物半導体の側周囲の面
が{1−100}面で構成されていることを特徴とする
三角形状の半導体素子。
1. A triangular semiconductor element comprising a hexagonal crystal substrate and a hexagonal compound semiconductor formed thereon, wherein the surface around the side of the hexagonal compound semiconductor is Δ1. A triangular semiconductor element characterized by having a -100 ° plane.
【請求項2】 六方晶系結晶の基板と、その上に形成さ
れた六方晶系化合物半導体とからなる三角形状の半導体
素子であって、前記六方晶系結晶基板の側周囲の面が
{1−100}面で構成されていることを特徴とする三
角形状の半導体素子。
2. A triangular semiconductor device comprising a hexagonal crystal substrate and a hexagonal compound semiconductor formed thereon, wherein a surface around a side of the hexagonal crystal substrate is Δ1. A triangular semiconductor element characterized by having a -100 ° plane.
【請求項3】 上記六方晶系化合物半導体が、GaNを
主な構成材料としていることを特徴とする請求項1また
は2記載の半導体素子。
3. The semiconductor device according to claim 1, wherein the hexagonal compound semiconductor is mainly composed of GaN.
【請求項4】 側周囲の面が{1−100}面で構成さ
れている三角形状で厚肉のサファイア基板に、薄肉のG
aN系化合物半導体層が成長されてなる請求項2記載の
三角形状の半導体素子。
4. A triangular thick sapphire substrate having a {1-100} plane around the side, and a thin G
3. The triangular semiconductor device according to claim 2, wherein an aN-based compound semiconductor layer is grown.
【請求項5】 六方晶系化合物半導体層が少なくとも導
電型の異なる2層以上の半導体層を有し、該三角形状の
半導体素子に付与する電極パターンを、第1導電型の半
導体層の表面に形成される透明電極と、この透明電極上
であって三角形の一つの頂点近傍に配置される第1のボ
ンディング電極と、第1導電型の半導体層の一部切り欠
きにより表出された第2導電型の半導体層の表面であっ
て、前記第1のボンディング電極が配置された頂点と対
向する三角形の辺に近接させて配置された第2のボンデ
ィング電極とから構成することを特徴とする請求項1ま
たは2に記載の半導体素子。
5. The hexagonal compound semiconductor layer has at least two or more semiconductor layers having different conductivity types, and an electrode pattern to be applied to the triangular semiconductor element is formed on a surface of the first conductivity type semiconductor layer. A transparent electrode to be formed, a first bonding electrode disposed on the transparent electrode near one vertex of a triangle, and a second bonding electrode exposed by a partial cutout of a semiconductor layer of the first conductivity type. A second bonding electrode disposed on the surface of the conductive semiconductor layer, the second bonding electrode being disposed in close proximity to a triangular side opposed to the vertex on which the first bonding electrode is disposed. Item 3. The semiconductor element according to item 1 or 2.
【請求項6】 上記三角形状の半導体素子の各コーナー
部に、曲面が施与されていることを特徴とする請求項1
〜5いずれかに記載の半導体素子。
6. A curved surface is provided at each corner of the triangular semiconductor element.
6. The semiconductor device according to any one of items 1 to 5,
【請求項7】 六方晶系結晶の基板上に六方晶系化合物
半導体を成長させて積層体を形成し、該積層体の前記基
板側表面において基板結晶の<11−20>方向にあた
る三方向にスクライブ傷を入れ、若しくは半導体側表面
において半導体結晶の<11−20>方向にあたる三方
向にスクライブ傷を入れ、該スクライブ傷に沿って分割
することで前記積層体から三角形状の半導体素子を得る
ことを特徴とする半導体素子の製法。
7. A laminate is formed by growing a hexagonal compound semiconductor on a hexagonal crystal substrate, and a laminate is formed on the substrate-side surface of the laminate in three directions corresponding to <11-20> directions of the substrate crystal. Obtaining a triangular semiconductor element from the laminate by scribing or scribing in three directions corresponding to the <11-20> direction of the semiconductor crystal on the semiconductor side surface and dividing along the scribing. A method for manufacturing a semiconductor device, comprising:
JP36337499A 1999-12-21 1999-12-21 Triangular shape semiconductor element and manufacturing method therefor Pending JP2001177146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36337499A JP2001177146A (en) 1999-12-21 1999-12-21 Triangular shape semiconductor element and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36337499A JP2001177146A (en) 1999-12-21 1999-12-21 Triangular shape semiconductor element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2001177146A true JP2001177146A (en) 2001-06-29

Family

ID=18479158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36337499A Pending JP2001177146A (en) 1999-12-21 1999-12-21 Triangular shape semiconductor element and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2001177146A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713374B2 (en) 1999-07-30 2004-03-30 Formfactor, Inc. Interconnect assemblies and methods
JP2009182358A (en) * 2002-04-12 2009-08-13 Seoul Semiconductor Co Ltd Light-emitting device
JP2009193953A (en) * 2008-12-19 2009-08-27 Stanley Electric Co Ltd Light source device for vehicular headlamp
US7645062B2 (en) 2003-08-20 2010-01-12 Stanley Electric Co., Ltd. Light source and vehicle lamp
JP2010098068A (en) * 2008-10-15 2010-04-30 Showa Denko Kk Light emitting diode, manufacturing method thereof, and lamp
CN101807660A (en) * 2010-04-02 2010-08-18 中国科学院苏州纳米技术与纳米仿生研究所 Chip for flip type opto-electronic device
US7897982B2 (en) 2002-08-29 2011-03-01 Seoul Semiconductor Co., Ltd. Light emitting device having common N-electrode
JP2012023249A (en) * 2009-07-15 2012-02-02 Mitsubishi Chemicals Corp Semiconductor light-emitting element, semiconductor light-emitting device, semiconductor light-emitting element manufacturing method and semiconductor light-emitting device manufacturing method
JP2013535109A (en) * 2010-06-18 2013-09-09 ソラア インコーポレーテッド Gallium and nitrogen containing triangle or rhombus configuration for optical devices
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
US8802471B1 (en) 2012-12-21 2014-08-12 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
US8994033B2 (en) 2013-07-09 2015-03-31 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US9076926B2 (en) 2011-08-22 2015-07-07 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
US9105806B2 (en) 2009-03-09 2015-08-11 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
JP2015149470A (en) * 2014-01-10 2015-08-20 パナソニックIpマネジメント株式会社 Method for fabricating triangular prismatic m-plane nitride semiconductor light emitting diode
US9269876B2 (en) 2012-03-06 2016-02-23 Soraa, Inc. Light emitting diodes with low refractive index material layers to reduce light guiding effects
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US9825011B2 (en) 2013-11-15 2017-11-21 Nichia Corporation Light emitting element and light emitting element array
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
CN109786217A (en) * 2018-12-27 2019-05-21 华灿光电(浙江)有限公司 A kind of manufacturing method of LED epitaxial slice
US11355672B2 (en) 2016-01-05 2022-06-07 Suzhou Lekin Semiconductor Co., Ltd. Semiconductor device

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713374B2 (en) 1999-07-30 2004-03-30 Formfactor, Inc. Interconnect assemblies and methods
JP4585028B2 (en) * 2002-04-12 2010-11-24 ソウル セミコンダクター カンパニー リミテッド Light emitting device
JP2009182358A (en) * 2002-04-12 2009-08-13 Seoul Semiconductor Co Ltd Light-emitting device
JP2009296013A (en) * 2002-04-12 2009-12-17 Seoul Semiconductor Co Ltd Light emitting device
US8735911B2 (en) 2002-08-29 2014-05-27 Seoul Semiconductor Co., Ltd. Light emitting device having shared electrodes
US8129729B2 (en) 2002-08-29 2012-03-06 Seoul Semiconductor Co., Ltd. Light emitting device having light emitting elements and an air bridge line
US9947717B2 (en) 2002-08-29 2018-04-17 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting elements and electrode spaced apart from the light emitting element
US8735918B2 (en) 2002-08-29 2014-05-27 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting elements with polygonal shape
US8680533B2 (en) 2002-08-29 2014-03-25 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting elements with a shared electrode
US7897982B2 (en) 2002-08-29 2011-03-01 Seoul Semiconductor Co., Ltd. Light emitting device having common N-electrode
US7956367B2 (en) 2002-08-29 2011-06-07 Seoul Semiconductor Co., Ltd. Light-emitting device having light-emitting elements connected in series
US8084774B2 (en) 2002-08-29 2011-12-27 Seoul Semiconductor Co., Ltd. Light emitting device having light emitting elements
US8097889B2 (en) 2002-08-29 2012-01-17 Seoul Semiconductor Co., Ltd. Light emitting device having light emitting elements with a shared electrode
US8506147B2 (en) 2003-08-20 2013-08-13 Stanley Electric Co., Ltd. Light source and vehicle lamp
US7645062B2 (en) 2003-08-20 2010-01-12 Stanley Electric Co., Ltd. Light source and vehicle lamp
JP2010098068A (en) * 2008-10-15 2010-04-30 Showa Denko Kk Light emitting diode, manufacturing method thereof, and lamp
JP2009193953A (en) * 2008-12-19 2009-08-27 Stanley Electric Co Ltd Light source device for vehicular headlamp
JP4618571B2 (en) * 2008-12-19 2011-01-26 スタンレー電気株式会社 Light source device for vehicle headlamp
US9105806B2 (en) 2009-03-09 2015-08-11 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
JP2012023249A (en) * 2009-07-15 2012-02-02 Mitsubishi Chemicals Corp Semiconductor light-emitting element, semiconductor light-emitting device, semiconductor light-emitting element manufacturing method and semiconductor light-emitting device manufacturing method
US10693041B2 (en) 2009-09-18 2020-06-23 Soraa, Inc. High-performance LED fabrication
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
CN101807660A (en) * 2010-04-02 2010-08-18 中国科学院苏州纳米技术与纳米仿生研究所 Chip for flip type opto-electronic device
JP2013535109A (en) * 2010-06-18 2013-09-09 ソラア インコーポレーテッド Gallium and nitrogen containing triangle or rhombus configuration for optical devices
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
US8946865B2 (en) 2011-01-24 2015-02-03 Soraa, Inc. Gallium—nitride-on-handle substrate materials and devices and method of manufacture
US9076926B2 (en) 2011-08-22 2015-07-07 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
US9269876B2 (en) 2012-03-06 2016-02-23 Soraa, Inc. Light emitting diodes with low refractive index material layers to reduce light guiding effects
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
US8802471B1 (en) 2012-12-21 2014-08-12 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US8994033B2 (en) 2013-07-09 2015-03-31 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
US10529902B2 (en) 2013-11-04 2020-01-07 Soraa, Inc. Small LED source with high brightness and high efficiency
US9825011B2 (en) 2013-11-15 2017-11-21 Nichia Corporation Light emitting element and light emitting element array
US10325886B2 (en) 2013-11-15 2019-06-18 Nichia Corporation Light emitting element and light emitting element array
JP2015149470A (en) * 2014-01-10 2015-08-20 パナソニックIpマネジメント株式会社 Method for fabricating triangular prismatic m-plane nitride semiconductor light emitting diode
US9209350B2 (en) 2014-01-10 2015-12-08 Panasonic Intellectual Property Management Co., Ltd. Method for fabricating triangular prismatic m-plane nitride semiconductor light-emitting diode
US11355672B2 (en) 2016-01-05 2022-06-07 Suzhou Lekin Semiconductor Co., Ltd. Semiconductor device
CN109786217A (en) * 2018-12-27 2019-05-21 华灿光电(浙江)有限公司 A kind of manufacturing method of LED epitaxial slice

Similar Documents

Publication Publication Date Title
JP2001177146A (en) Triangular shape semiconductor element and manufacturing method therefor
JP4880456B2 (en) Nitrogen compound semiconductor device and manufacturing method thereof
JP2009081374A (en) Semiconductor light-emitting device
JP2003063897A (en) Nitride-based iii-v group compound semiconductor substrate and method for producing the same, method for producing light emitting device of semiconductor and method for producing semiconductor device
US8093685B2 (en) Nitride compound semiconductor element
JP2001085736A (en) Method for manufacturing nitride semiconductor chip
JP2001176823A (en) Method for manufacturing nitride semiconductor chip
JP2953326B2 (en) Method of manufacturing gallium nitride based compound semiconductor laser device
CN112154533A (en) Method for dividing one or more strips of devices
JP2003055097A (en) Unit substrate comprising nitride semiconductor and method of producing the same
JP4959184B2 (en) Method for manufacturing nitride-based semiconductor light-emitting device
JPH11274560A (en) Semiconductor element and manufacture thereof
US7183585B2 (en) Semiconductor device and a method for the manufacture thereof
CN101926012A (en) Method for manufacturing light emitting device
JP5346171B2 (en) Manufacturing method of ZnO-based semiconductor device and ZnO-based semiconductor device
JP2008226865A (en) Semiconductor laser diode
WO2013054917A1 (en) Semiconductor element and manufacturing method thereof
JP4043193B2 (en) Nitride semiconductor substrate and manufacturing method thereof
JPWO2004086580A1 (en) Semiconductor laser and manufacturing method thereof
JP2008034862A (en) Growing method for nitride semiconductor
JP4637503B2 (en) Manufacturing method of nitride semiconductor laser device
JP2002261370A (en) Method of preparing nitride-based semiconductor element
JPH10229218A (en) Manufacture of nitride semiconductor substrate and nitride semiconductor substrate
JP4075398B2 (en) Support substrate peeling method
JP4869179B2 (en) Semiconductor substrate and manufacturing method thereof