JP2001168529A - Multilayer printed wiring board and manufacturing method therefor - Google Patents

Multilayer printed wiring board and manufacturing method therefor

Info

Publication number
JP2001168529A
JP2001168529A JP35265999A JP35265999A JP2001168529A JP 2001168529 A JP2001168529 A JP 2001168529A JP 35265999 A JP35265999 A JP 35265999A JP 35265999 A JP35265999 A JP 35265999A JP 2001168529 A JP2001168529 A JP 2001168529A
Authority
JP
Japan
Prior art keywords
layer
wiring board
printed wiring
multilayer printed
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35265999A
Other languages
Japanese (ja)
Other versions
JP4278806B2 (en
Inventor
Motoo Asai
元雄 浅井
Touto O
東冬 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP35265999A priority Critical patent/JP4278806B2/en
Priority to EP09156837A priority patent/EP2086299A1/en
Priority to EP09156841A priority patent/EP2086300A1/en
Priority to EP00931571A priority patent/EP1194022B1/en
Priority to DE60031680T priority patent/DE60031680T2/en
Priority to US09/979,388 priority patent/US6828510B1/en
Priority to PCT/JP2000/003377 priority patent/WO2000076281A1/en
Priority to EP06123074A priority patent/EP1744609B1/en
Priority to MYPI20002406A priority patent/MY125537A/en
Priority to TW089110559A priority patent/TW471244B/en
Publication of JP2001168529A publication Critical patent/JP2001168529A/en
Priority to US10/921,525 priority patent/US7985930B2/en
Priority to US12/171,794 priority patent/US8288664B2/en
Application granted granted Critical
Publication of JP4278806B2 publication Critical patent/JP4278806B2/en
Priority to US12/694,322 priority patent/US8283573B2/en
Priority to US12/887,197 priority patent/US20110024164A1/en
Priority to US12/913,258 priority patent/US8288665B2/en
Priority to US13/089,378 priority patent/US8822828B2/en
Priority to US13/169,674 priority patent/US8745863B2/en
Priority to US13/169,736 priority patent/US8782882B2/en
Priority to US13/432,471 priority patent/US8822830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer printed wiring board together with its manufacturing method wherein the arrangement density of through holes is raised with less thickness. SOLUTION: A through hole 36 formed in a core substrate 30 comprises a first electrolytic plating layer 24, an electroless plating film 26, and a second electrolytic plating layer 28. The through hole 36 is formed by plate-filling, so the strength of the core substrate 30 is raised and warping is less easy to be generated. Thus, the core substrate can be thinner, and the heat-radiation characteristic of a multilayer printed wiring board is raised.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】ICチップなどの電子部品を
載置するパッケージ基板に用い得る多層プリント配線板
に関し、特にコア基板に層間樹脂絶縁層をビルドアップ
してなる多層プリント配線板及び多層プリント配線板の
製造方法に関するのもである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer printed wiring board which can be used for a package substrate on which electronic components such as IC chips are mounted, and more particularly to a multilayer printed wiring board and a multilayer printed wiring formed by building up an interlayer resin insulating layer on a core substrate. It also relates to a method for manufacturing a plate.

【0002】[0002]

【従来の技術】従来、ビルドアップ多層プリント配線板
は、例えば、特開平9−130050号に開示される方
法にて製造されている。すなわち、スルーホールを形成
したコア基板の上に層間樹脂絶縁層を積層し、該層間樹
脂絶縁層の上に回路パターンを形成する。これを繰り返
すことにより、ビルドアップ多層プリント配線板が得ら
れる。
2. Description of the Related Art Conventionally, build-up multilayer printed wiring boards have been manufactured, for example, by the method disclosed in Japanese Patent Application Laid-Open No. Hei 9-130050. That is, an interlayer resin insulating layer is laminated on a core substrate in which a through hole is formed, and a circuit pattern is formed on the interlayer resin insulating layer. By repeating this, a build-up multilayer printed wiring board is obtained.

【0003】[0003]

【発明が解決しようとする課題】現在、コア基板にスル
ーホールを形成する際に、ドリルにより通孔を穿設して
いる。このため、通孔の径として、300μmが最小限
界であり、スルーホールの密度をドリル径で決定される
値以上高めることができなかった。このため、コア基板
にレーザにより通孔を穿設する方法が検討されている
が、コア基板は1mm程度の厚みがあるため、微細な通孔
を形成することは難しかった。
At present, when a through hole is formed in a core substrate, a through hole is formed by a drill. For this reason, 300 μm is the minimum limit of the diameter of the through hole, and the density of the through hole cannot be increased beyond the value determined by the drill diameter. For this reason, a method of drilling through holes in the core substrate using a laser has been studied. However, since the core substrate has a thickness of about 1 mm, it was difficult to form fine through holes.

【0004】一方、パッケージ基板として用いられる多
層プリント配線板では、ICチップに発生する熱を効率
良く発散させれる必要がある。ここで、多層プリント配
線板は、1mm程度の積層樹脂板からなるコア基板に、数
10μmの層間樹脂絶縁層及び配線層を積層してなる。
このため、多層プリント配線板の厚みとしては、コア基
板が大半を占めることになる。即ち、コア基板が、多層
プリント配線板の厚みを厚くし、熱伝導性を下げさせる
原因となっていた。
On the other hand, in a multilayer printed wiring board used as a package substrate, it is necessary to efficiently radiate heat generated in an IC chip. Here, the multilayer printed wiring board is formed by laminating an interlayer resin insulating layer and a wiring layer of several tens of μm on a core substrate made of a laminated resin plate of about 1 mm.
Therefore, the core substrate occupies most of the thickness of the multilayer printed wiring board. That is, the core substrate increases the thickness of the multilayer printed wiring board and causes a decrease in thermal conductivity.

【0005】本発明は上述した課題を解決するためなさ
れたものであり、その目的とするところは、スルーホー
ルの配設密度を高め得ると共に、厚みを薄くできる多層
プリント配線板及び該多層プリント配線板の製造方法を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a multilayer printed wiring board capable of increasing the arrangement density of through holes and reducing the thickness thereof, and the multilayer printed wiring board. An object of the present invention is to provide a method for manufacturing a plate.

【0006】[0006]

【課題を解決するための手段】上述した課題を解決する
ため、請求項1は、スルーホールを設けたコア基板に層
間樹脂絶縁層をビルドアップしてなる多層プリント配線
板において、前記コア基板のスルーホールが、電解めっ
きによる第1金属層と、無電解めっき、スパッタ又は蒸
着による金属膜と、電解めっきによる第2金属層とを充
填してなることを技術的特徴とする。
In order to solve the above-mentioned problems, a first aspect of the present invention is a multilayer printed wiring board in which an interlayer resin insulating layer is built up on a core substrate provided with through holes. The technical feature is that the through holes are filled with a first metal layer formed by electrolytic plating, a metal film formed by electroless plating, sputtering or vapor deposition, and a second metal layer formed by electrolytic plating.

【0007】請求項1では、スルーホールをめっき充填
により形成するため、スルーホールの上に接続用のバイ
アホールが形成でき、バイアホールの配線密度を高める
ことができる。また、スルーホールを、電解めっきと、
無電解めっきと、電解めっきとを充填するため、スルー
ホール内の充填不足がなくなる。
According to the first aspect, since the through hole is formed by filling with plating, a via hole for connection can be formed on the through hole, and the wiring density of the via hole can be increased. In addition, through-holes, electrolytic plating,
Since the electroless plating and the electrolytic plating are filled, insufficient filling in the through holes is eliminated.

【0008】請求項2の発明は、少なくとも以下の
(A)〜(E)の工程を備えることを特徴とする多層プ
リント配線板の製造方法にある: (A)一方の面に金属層の形成された樹脂絶縁層に、レ
ーザで前記金属層へ至る非貫通孔を形成する工程; (B)前記樹脂絶縁層の非貫通孔に、前記金属層を介し
て電流を流し電解めっきにより第1金属層を充填する工
程; (C)前記樹脂絶縁層の金属層の反対面に、金属膜を形
成する工程: (D)前記樹脂絶縁層の非貫通孔に、前記金属膜を介し
て電流を流し電解めっきにより第2金属層を充填する工
程; (E)前記樹脂絶縁層の金属層と金属膜とエッチングし
て、スルーホールのランドを形成する工程。
A second aspect of the present invention is a method for manufacturing a multilayer printed wiring board, comprising at least the following steps (A) to (E): (A) Forming a metal layer on one surface Forming a non-through hole reaching the metal layer by a laser in the resin insulating layer thus formed; (B) flowing a current through the metal layer to the non-through hole of the resin insulating layer through the metal layer to form a first metal by electrolytic plating; Filling a layer; (C) forming a metal film on the surface of the resin insulating layer opposite to the metal layer: (D) passing a current through a non-through hole of the resin insulating layer via the metal film. Filling a second metal layer by electrolytic plating; (E) forming a land of a through hole by etching the metal layer and the metal film of the resin insulating layer.

【0009】請求項2では、スルーホールをレーザによ
り形成するため、50〜250μm径スルーホールが施
せるので、配線密度を向上させることができる。スルー
ホールをめっき充填により形成するため、コア基板の強
度が高まり、反りが発生し難くなる。このため、コア基
板を薄く形成でき、多層プリント配線板の放熱性を高め
ることが可能となる。スルーホールを電解めっきにより
充填するので、スルーホール内の充填不足がなくなる。
更に、スルーホールのランドとなる金属膜を形成してか
ら、スルーホール内に第2金属層を形成するため、ラン
ドが剥離することがなくなり、スルーホールの信頼性を
高めることができる。更に、接続信頼性が高いため、当
該ランドを薄く形成でき、上層の層間樹脂絶縁層の平滑
性を高めることが可能となり、層間樹脂絶縁層の剥離や
クラックの発生を防げる。
According to the second aspect, since the through holes are formed by laser, the through holes having a diameter of 50 to 250 μm can be formed, so that the wiring density can be improved. Since the through holes are formed by plating and filling, the strength of the core substrate is increased, and warpage is less likely to occur. For this reason, the core substrate can be formed thin, and the heat dissipation of the multilayer printed wiring board can be improved. Since the through holes are filled by electrolytic plating, insufficient filling in the through holes is eliminated.
Furthermore, since the second metal layer is formed in the through hole after the metal film serving as the land of the through hole is formed, the land does not peel off, and the reliability of the through hole can be improved. Further, since the connection reliability is high, the land can be formed thin, the smoothness of the upper interlayer resin insulating layer can be improved, and peeling and cracking of the interlayer resin insulating layer can be prevented.

【0010】請求項3では、請求項2において、前記樹
脂絶縁層に、無電解めっき、スパッタ又は蒸着により金
属層を形成する工程を更に有することを技術的特徴とす
る。
According to a third aspect of the present invention, in the second aspect, the method further comprises a step of forming a metal layer on the resin insulating layer by electroless plating, sputtering or vapor deposition.

【0011】請求項3では、無電解めっきで形成する
と、廉価に金属層を形成することができる。また、スパ
ッタで形成すると、高い密着性を有する金属層を薄く形
成できる。蒸着で形成すると金属層を薄く形成できる。
According to the third aspect, when the metal layer is formed by electroless plating, the metal layer can be formed at low cost. When formed by sputtering, a thin metal layer having high adhesion can be formed. When formed by vapor deposition, a thin metal layer can be formed.

【0012】請求項4では、請求項2又は3において、
前記樹脂絶縁層の金属層の反対面に、金属膜を形成する
工程において、無電解めっき、スパッタ又は蒸着を用い
ることを技術的特徴とする。
According to a fourth aspect, in the second or third aspect,
In the step of forming a metal film on the surface of the resin insulation layer opposite to the metal layer, a technical feature is that electroless plating, sputtering, or vapor deposition is used.

【0013】請求項4では、無電解めっきで形成する
と、廉価に金属膜を形成することができる。また、スパ
ッタで形成すると、高い密着性を有する金属膜を薄く形
成できる。蒸着で形成すると金属膜を薄く形成できる。
According to the fourth aspect, when the metal film is formed by electroless plating, the metal film can be formed at low cost. When formed by sputtering, a thin metal film having high adhesion can be formed. When formed by vapor deposition, a thin metal film can be formed.

【0014】[0014]

【発明の実施の形態】[第1実施形態]本発明の第1実施
形態に係る多層プリント配線板の構成について、断面図
を示す図7を参照して説明する。第1実施形態の多層プ
リント配線板は、コア基板30の上面及び下面に導体回
路34が形成され、該導体回路34の上には層間樹脂絶
縁層50、50が配設されている。該下層層間樹脂絶縁
層50には、バイアホール60及び導体回路58が配設
されている。上面側の下層層間樹脂絶縁層50の上に
は、バイアホール160が形成された上層層間樹脂絶縁
層150が配置されている。上面側の上層層間樹脂絶縁
層150の上、及び、下面側の下層層間樹脂絶縁層50
の表面には、ソルダーレジスト層70が配設されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] The structure of a multilayer printed wiring board according to a first embodiment of the present invention will be described with reference to FIG. In the multilayer printed wiring board of the first embodiment, a conductor circuit 34 is formed on the upper and lower surfaces of a core substrate 30, and interlayer resin insulation layers 50, 50 are provided on the conductor circuit 34. Via holes 60 and conductor circuits 58 are provided in the lower interlayer resin insulation layer 50. On the lower interlayer resin insulation layer 50 on the upper surface side, an upper interlayer resin insulation layer 150 in which a via hole 160 is formed is arranged. The upper interlayer resin insulation layer 150 on the upper surface side and the lower interlayer resin insulation layer 50 on the lower surface side
Is provided with a solder resist layer 70 on the surface thereof.

【0015】多層プリント配線板10の上面には、ソル
ダーレジスト層70の開口71UにICチップへの接続
用の半田バンプ76Uが配設される。一方、パッケージ
基板の底面には、ソルダーレジスト層70の開口71D
に、ドータボードへの接続用の半田バンプ76Dが配設
されている。
On the upper surface of the multilayer printed wiring board 10, a solder bump 76U for connection to an IC chip is provided in an opening 71U of the solder resist layer 70. On the other hand, the opening 71D of the solder resist layer 70 is formed on the bottom of the package substrate.
Are provided with solder bumps 76D for connection to the daughter board.

【0016】該半田バンプ76Uは、層間樹脂絶縁層1
50に形成されたバイアホール160及び層間樹脂絶縁
層50に形成されたバイアホール60を介してスルーホ
ール36へ接続されている。一方、該半田バンプ76D
は、層間樹脂絶縁層50に形成されたバイアホール60
を介してスルーホール36へ接続されている。
The solder bumps (76U) are formed on the interlayer resin insulation layer (1).
It is connected to the through-hole 36 via the via hole 160 formed in 50 and the via hole 60 formed in the interlayer resin insulating layer 50. On the other hand, the solder bump 76D
Are via holes 60 formed in interlayer resin insulation layer 50.
Is connected to the through-hole 36 via the.

【0017】コア基板30に形成されたスルーホール3
6は、第1電解めっき層24と、無電解めっき膜26
と、第2電解めっき層28とからなる。スルーホール3
6をめっき充填により形成するため、コア基板30の強
度が高まり、反りが発生し難くなる。このため、コア基
板を薄く形成でき、多層プリント配線板の放熱性を高め
ることが可能となる。また、スルーホール36を第1電
解めっき層24と、無電解めっき膜26と、第2電解め
っき層28とを充填して形成するため、スルーホール内
の充填不足がなくなる。
The through hole 3 formed in the core substrate 30
6 denotes a first electrolytic plating layer 24 and an electroless plating film 26
And the second electrolytic plating layer 28. Through hole 3
Since 6 is formed by filling with plating, the strength of the core substrate 30 is increased, and warpage hardly occurs. For this reason, the core substrate can be formed thin, and the heat dissipation of the multilayer printed wiring board can be improved. Further, since the through hole 36 is formed by filling the first electrolytic plating layer 24, the electroless plating film 26, and the second electrolytic plating layer 28, insufficient filling in the through hole is eliminated.

【0018】後述するように第1実施形態の多層プリン
ト配線板は、スルーホール36をレーザにより形成する
ため、微細径のスルーホール36を狭ピッチで配設する
ことができ、高集積化を達成している。
As will be described later, in the multilayer printed wiring board of the first embodiment, since the through holes 36 are formed by a laser, the through holes 36 having a fine diameter can be arranged at a narrow pitch, and high integration is achieved. are doing.

【0019】以下、図7に示す多層プリント配線板10
の製造方法について図を参照して説明する。
The multilayer printed wiring board 10 shown in FIG.
Will be described with reference to the drawings.

【0020】(1)ガラスクロス、アライミドクロスにエ
ポキシ樹脂、BT(ビスマレイミドトリアジン)樹脂、
ポリイミド樹脂、オレフィン樹脂、ポリフェノールエー
テル樹脂を含浸させてなる基板30を出発材料とする
(図1(A))。基板30の厚さは、20〜800μm
の範囲がよく、特に、100〜500μmが好適であ
る。これは、コア基板としての強度が保て、レーザによ
り容易に非貫通孔を形成できる厚さだからである。ここ
では、心材に樹脂を含浸させて用いるが、この代わり
に、心材を有さない樹脂、或いは、補強樹脂層をラミネ
ートした樹脂を用いることもできる。
(1) Epoxy resin, BT (bismaleimide triazine) resin on glass cloth and aramid cloth,
A substrate 30 impregnated with a polyimide resin, an olefin resin, and a polyphenol ether resin is used as a starting material (FIG. 1A). The thickness of the substrate 30 is 20 to 800 μm
Is good, and 100 to 500 μm is particularly preferable. This is because the thickness as a core substrate can be maintained and a non-through hole can be easily formed by laser. Here, the core material is used by impregnating the resin. Alternatively, a resin having no core material or a resin having a reinforcing resin layer laminated thereon may be used.

【0021】(2)該基板30の下面に、スパッタにより
厚さ6〜20μmの金属層22を形成する(図1
(B))。金属層22は、銅、ニッケル、クロム、コバ
ルト、アルミニウム等を用いることができ、特に、銅又
は銅を主としてなる合金が、廉価であると共に電気抵抗
が低く好ましい。ここでは、樹脂からなる基板30への
密着性に優れ薄く形成できるスパッタを用いるが、この
代わりに、廉価な無電解めっき、又は、廉価に薄く金属
層を形成できる蒸着を用いることができ、更に、無電解
めっき、スパッタ、蒸着後に電解めっきを行うことも、
更には、上記コア基板として銅箔のラミネートされた銅
張り積層板を用いることができる。ここで、金属層22
の厚さは、6〜20μmの範囲がよく、特に、8〜15
μmの範囲が好適である。この厚みであれば、強度を保
てるので反りもなく、また、後述するように基板30に
非貫通孔を明ける際に、レーザのエネルギーを吸収し得
るからである。
(2) A metal layer 22 having a thickness of 6 to 20 μm is formed on the lower surface of the substrate 30 by sputtering (FIG. 1).
(B)). For the metal layer 22, copper, nickel, chromium, cobalt, aluminum, or the like can be used. In particular, copper or an alloy mainly containing copper is preferable because it is inexpensive and has low electric resistance. Here, sputtering that has excellent adhesion to the resin substrate 30 and can be formed thinly is used. Instead, inexpensive electroless plating or vapor deposition that can form a thin metal layer at low cost can be used. Electroless plating, electroless plating, sputtering, and electrolytic plating can also be performed after evaporation.
Further, a copper-clad laminate in which a copper foil is laminated can be used as the core substrate. Here, the metal layer 22
Is preferably in the range of 6 to 20 μm, particularly 8 to 15 μm.
The range of μm is preferred. With this thickness, the strength can be maintained and there is no warpage, and the laser energy can be absorbed when forming a non-through hole in the substrate 30 as described later.

【0022】(3)次に、金属層22の非形成面から基板
30に炭酸レーザを照射し、金属層22に至る非貫通孔
32を穿設する(図1(C))。ここで、非貫通孔の径
は、50〜250μmが好ましく、特に、75〜150
μmの範囲で400〜600μmのピッチが好適であ
る。非貫通孔32は小径である方が、配線密度を上げる
上では望ましいが、半径に反比例して歩留まりが下がる
からである。ここで、非貫通孔32は、炭酸レーザで1
孔毎に穿設することも可能であり、また、通孔を備える
マスクを基板30に載置し、一括して非貫通孔を形成す
ることもできる。なお、ここでは、廉価で大出力の得ら
れる炭酸レーザを用いているが、この代わりに、エキシ
マ、UV、YAG等を用いることもでき、これらを混合
して使用することもできる。
(3) Next, the substrate 30 is irradiated with a carbon dioxide laser from the surface on which the metal layer 22 is not formed, and a non-through hole 32 reaching the metal layer 22 is formed (FIG. 1C). Here, the diameter of the non-through hole is preferably 50 to 250 μm, and particularly preferably 75 to 150 μm.
A pitch of 400 to 600 μm in the range of μm is preferred. The smaller diameter of the non-through hole 32 is desirable for increasing the wiring density, but the yield decreases in inverse proportion to the radius. Here, the non-through holes 32 are
It is also possible to form a hole for each hole, and a mask having a through hole can be placed on the substrate 30 to form a non-through hole collectively. Here, a carbon dioxide laser which is inexpensive and has a large output is used, but excimer, UV, YAG or the like can be used instead, or a mixture of these can be used.

【0023】その後、酸或いは酸化剤で、非貫通孔32
内のデスミヤ処理を行う。ここで、更に、酸素、4塩化
炭素、窒素などのプラズマ処理、コロナ処理、UV処理
などのドライ処理を施し、非貫通孔32の内壁を平滑に
することも可能である。
Thereafter, the non-through hole 32 is formed with an acid or an oxidizing agent.
Desmear processing inside. Here, the inner wall of the non-through hole 32 may be further smoothed by performing a plasma treatment such as oxygen, tetrachloride, or nitrogen, a corona treatment, or a dry treatment such as a UV treatment.

【0024】(4)次に、金属膜20にフィルム23を密
着させた後、基板30を電解銅めっき液に浸漬し、金属
層22を介して電流を流し、非貫通孔32内に第1めっ
き層24を形成する(図1(D))。第1電解めっき層
は、電気抵抗の低い銅めっきが望ましいが、ニッケル、
クロム、コバルト、アルミニウム等を用いることも可能
である。
(4) Next, after the film 23 is brought into close contact with the metal film 20, the substrate 30 is immersed in an electrolytic copper plating solution, a current is passed through the metal layer 22, and the first The plating layer 24 is formed (FIG. 1D). The first electrolytic plating layer is desirably copper plating having a low electric resistance.
It is also possible to use chromium, cobalt, aluminum and the like.

【0025】(5)該基板30の上面に、無電解めっきに
より厚さ0.1〜10μmの金属膜26を形成する(図
2(A))。金属層は、銅、ニッケル、クロム、コバル
ト、アルミニウム等を用いることができ、特に、銅又は
銅を主としてなる合金が、廉価であると共に電気抵抗が
低く好ましい。無電解めっきの代わりに、樹脂からなる
基板30への密着性に優れるスパッタ、蒸着を用いるこ
とができる。ここで、金属膜26の厚さは、0.1〜1
0μmの範囲がよく、この範囲であれば、エッチングし
ても回路が形成できる。特に、0.5〜5μmの範囲が
好適である。
(5) A metal film 26 having a thickness of 0.1 to 10 μm is formed on the upper surface of the substrate 30 by electroless plating (FIG. 2A). For the metal layer, copper, nickel, chromium, cobalt, aluminum, or the like can be used. In particular, copper or an alloy mainly containing copper is preferable because it is inexpensive and has low electric resistance. Instead of electroless plating, sputtering or vapor deposition having excellent adhesion to the substrate 30 made of resin can be used. Here, the thickness of the metal film 26 is 0.1 to 1
A range of 0 μm is preferable, and within this range, a circuit can be formed by etching. In particular, the range of 0.5 to 5 μm is preferable.

【0026】(6)基板30を電解銅めっき液に浸漬し、
金属膜26を介して電流を流し、非貫通孔32内に第2
めっき層28を充填してスルーホール36とする(図2
(B))。電解めっきは、第1めっき層を構成すると同
じ金属であることが望ましい。また、図7を参照して上
述したように、第1めっき層24の高さH1と、第2め
っき層28の高さH2とはほぼ同様であることが望まし
い。なお、第2めっき層28の表面を平滑化するため、
エッチング、バフ研磨、ベルトサンダー、砥粒を吹き付
けるジェットスクラブ研磨等を行うことも可能である。
(6) The substrate 30 is immersed in an electrolytic copper plating solution,
An electric current flows through the metal film 26 and the second
The plated layer 28 is filled to form a through hole 36 (FIG. 2).
(B)). Electroplating is desirably the same metal as the first plating layer. Further, as described above with reference to FIG. 7, it is desirable that the height H1 of the first plating layer 24 and the height H2 of the second plating layer 28 are substantially the same. Note that, in order to smooth the surface of the second plating layer 28,
It is also possible to perform etching, buffing, belt sander, jet scrub polishing for blowing abrasive grains, and the like.

【0027】(7)フィルム23を剥離した後、所定パタ
ーンのエッチンレジストを施し、パターニングを行い、
コア基板30の表面に導体回路34を形成すると共に、
スルーホール36にランド36aを形成する(図2
(C))。ランドの形状としては、円形、楕円形が望ま
しいが、正方形、長方形でもよい。ランド36aは、ス
ルーホール径の1.00〜1.25倍が望ましい。ラン
ド36a及び導体回路の厚みH3は、上層の層間樹脂絶
縁層の平滑化を達成するため、可能な限り薄い方が望ま
しい。
(7) After the film 23 is peeled off, a predetermined pattern of an etchant resist is applied and patterned.
While forming the conductor circuit 34 on the surface of the core substrate 30,
A land 36a is formed in the through hole 36 (FIG. 2).
(C)). The shape of the land is preferably circular or elliptical, but may be square or rectangular. The land 36a is desirably 1.00 to 1.25 times the through hole diameter. The thickness H3 of the land 36a and the conductor circuit is desirably as thin as possible in order to achieve smoothness of the upper interlayer resin insulation layer.

【0028】第1実施形態の多層プリント配線板では、
スルーホール36のランド36aとなる金属膜26を形
成してから、スルーホール内に第2めっき層28を形成
するため、金属膜26からなるランド36aが剥離する
ことがなくなり、スルーホール36の信頼性を高めるこ
とができる。更に、接続信頼性が高いため、当該ランド
を薄く形成でき、後述する工程で形成する上層の層間樹
脂絶縁層の平滑性を高めることが可能となり、当該層間
樹脂絶縁層の剥離やクラックの発生を防げる。
In the multilayer printed wiring board of the first embodiment,
Since the second plating layer 28 is formed in the through hole after the metal film 26 serving as the land 36a of the through hole 36 is formed, the land 36a formed of the metal film 26 does not peel off. Can be enhanced. Further, since the connection reliability is high, the land can be formed thin, and the smoothness of the upper interlayer resin insulating layer formed in a step described later can be improved, and peeling and cracking of the interlayer resin insulating layer can be prevented. Can be prevented.

【0029】(8)導体回路34及びランド36aを形成
した基板を水洗いし、乾燥した後、エッチング液を基板
の両面にスプレイで吹きつけて、下層導体回路34の表
面とスルーホール36のランド36a表面とをエッチン
グすることにより、導体回路34の全表面に粗化面34
βと、スルーホール36のランド36aに36βを形成
した(図2(D)参照)。エッチング液として、イミダ
ゾール銅(II)錯体10重量部、グリコール酸7重量
部、塩化カリウム5重量部およびイオン交換水78重量
部を混合したものを使用する。
(8) The substrate on which the conductor circuit 34 and the land 36a are formed is washed with water and dried, and then an etching solution is sprayed on both surfaces of the substrate by spraying, so that the surface of the lower conductor circuit 34 and the land 36a of the through hole 36 are formed. By etching the surface, the roughened surface 34
β and 36β were formed on the land 36a of the through hole 36 (see FIG. 2D). As an etching solution, a mixture of 10 parts by weight of an imidazole copper (II) complex, 7 parts by weight of glycolic acid, 5 parts by weight of potassium chloride, and 78 parts by weight of ion-exchanged water is used.

【0030】なお、本実施形態で、上記(1)の工程では
エッチングにより粗化面を形成しているが、この代わり
に、無電解めっきにより粗化層を形成することもでき
る。この場合には、導体回路34を形成した基板30に
アルカリ脱脂してソフトエッチングして、次いで、塩化
パラジウウムと有機酸からなる触媒溶液で処理して、P
d触媒を付与し、この触媒を活性化した後、硫酸銅3.
2×10−2mol/l、硫酸ニッケル3.9×10
−3mol/l、錯化剤5.4×10−2mol/l、
次亜りん酸ナトリウム3.3×10−1mol/l、ホ
ウ酸5.0×10 mol/l、界面活性剤(日信化
学工業製、サーフィール465)0.1g/l、PH=
9からなる無電解めっき液に浸積し、浸漬1分後に、4
秒当たり1回に割合で縦、および、横振動させて、導体
回路34及びスルーホール36のランド36a表面にC
u−Ni−Pからなる針状合金の被覆層と粗化層42を
設ける。粗化層の表面に、Sn、Pb、Niなどの金属
層を設けてもよい。
In this embodiment, the roughened surface is formed by etching in the step (1), but a roughened layer may be formed by electroless plating instead. In this case, the substrate 30 on which the conductor circuit 34 is formed is alkali-degreased and soft-etched, and then treated with a catalyst solution composed of palladium chloride and an organic acid to form P
After the catalyst was activated and the catalyst was activated, copper sulfate was added.
2 × 10 −2 mol / l, nickel sulfate 3.9 × 10
−3 mol / l, complexing agent 5.4 × 10 −2 mol / l,
Sodium hypophosphite 3.3 × 10 -1 mol / l, boric acid 5.0 × 10 - 1 mol / l , the surfactant (Nisshin Chemical Industry Co., Sir Feel 465) 0.1g / l, PH =
Immersion in an electroless plating solution consisting of
By vibrating vertically and horizontally at a rate of once per second, C is applied to the surface of the land 36a of the conductor circuit 34 and the through hole 36.
A coating layer of a needle-shaped alloy made of u-Ni-P and a roughened layer 42 are provided. A metal layer such as Sn, Pb, or Ni may be provided on the surface of the roughened layer.

【0031】(9)次に、上記工程を経た基板の両面に、
厚さ50μmの熱硬化型シクロオレフィン系樹脂シート
を温度50〜150℃まで昇温しながら圧力5kg/c
2 で真空圧着ラミネートし、シクロオレフィン系樹脂
からなる層間樹脂絶縁層50を設ける(図3(A)参
照)。なお、真空圧着時の真空度は、10mmHgに調
整する。
(9) Next, on both sides of the substrate having undergone the above steps,
A pressure of 5 kg / c while heating a thermosetting type cycloolefin resin sheet having a thickness of 50 μm to a temperature of 50 to 150 ° C.
Vacuum compression lamination is performed at m 2 to provide an interlayer resin insulating layer 50 made of a cycloolefin-based resin (see FIG. 3A). The degree of vacuum at the time of vacuum pressing is adjusted to 10 mmHg.

【0032】(10) 次に、波長10.4μmのCO2
スレーザにて、ビーム径5mm、トップハットモード、
パルス幅15μ秒、マスクの穴径0.5mm、3ショッ
トの条件でシクロオレフィン系樹脂からなる層間樹脂絶
縁層50に直径80μmのバイアホール用開口48を設
ける(図3(B)参照)。この後、酸素プラズマを用い
てデスミア処理を行う。
(10) Next, using a CO 2 gas laser having a wavelength of 10.4 μm, a beam diameter of 5 mm, a top hat mode,
Under the conditions of a pulse width of 15 μs, a mask hole diameter of 0.5 mm, and three shots, a via hole opening 48 having a diameter of 80 μm is provided in the interlayer resin insulating layer 50 made of cycloolefin resin (see FIG. 3B). Thereafter, desmear treatment is performed using oxygen plasma.

【0033】(11) 次に、日本真空技術株式会社製のS
V−4540を用いてプラズマ処理を行い、層間樹脂絶
縁層50の表面を粗化した(図3(C)参照)。この
際、不活性ガスとしてはアルゴンガスを使用し、電力2
00W、ガス圧0.6Pa、温度70℃の条件で、2分
間プラズマ処理を実施した。
(11) Next, S manufactured by Japan Vacuum Engineering Co., Ltd.
Plasma treatment was performed using V-4540 to roughen the surface of the interlayer resin insulating layer 50 (see FIG. 3C). At this time, argon gas was used as the inert gas, and electric power 2
Plasma treatment was performed for 2 minutes under the conditions of 00 W, a gas pressure of 0.6 Pa, and a temperature of 70 ° C.

【0034】(12) 次に、同じ装置を用い、内部のアル
ゴンガスを交換した後、Ni−Cu合金をターゲットに
したスパッタリングを、気圧0.6Pa、温度80℃、
電力200W、時間5分間の条件で行い、Ni−Cu合
金層52をポリオレフィン系層間樹脂絶縁層50の表面
に形成した。このとき、形成されたNi−Cu合金層5
2の厚さは0.2μmであった(図4(A)参照)。
(12) Next, after replacing the argon gas inside using the same apparatus, sputtering using a Ni—Cu alloy as a target was performed at a pressure of 0.6 Pa, a temperature of 80 ° C.
The operation was performed under the conditions of a power of 200 W and a time of 5 minutes to form a Ni—Cu alloy layer 52 on the surface of the polyolefin-based interlayer resin insulating layer 50. At this time, the formed Ni—Cu alloy layer 5
The thickness of Sample No. 2 was 0.2 μm (see FIG. 4A).

【0035】(13)上記処理を終えた基板の両面に、市販
の感光性ドライフィルムを貼り付け、フォトマスクフィ
ルムを載置して、100mJ/cm2 で露光した後、
0.8%炭酸ナトリウムで現像処理し、厚さ15μmの
めっきレジスト54のパターンを形成した(図4(B)
参照)。
(13) A commercially available photosensitive dry film is adhered to both surfaces of the substrate after the above treatment, a photomask film is placed, and after exposure at 100 mJ / cm 2 ,
Developing with 0.8% sodium carbonate, a pattern of a plating resist 54 having a thickness of 15 μm was formed (FIG. 4B).
reference).

【0036】(14)次に、以下の条件で電気めっきを施し
て、厚さ15μmの電気めっき膜56を形成した(図4
(C)参照)。なお、この電気めっき膜56により、後
述する工程で導体回路58となる部分の厚付けおよびバ
イアホール60となる部分のめっき充填等が行われたこ
とになる。なお、電気めっき水溶液中の添加剤は、アト
テックジャパン社製のカパラシドHLである。
(14) Next, electroplating was performed under the following conditions to form an electroplating film 56 having a thickness of 15 μm (FIG. 4).
(C)). This means that the electroplating film 56 has been used to thicken the portion that will become the conductor circuit 58 and fill the portion that will become the via hole 60 with plating in the steps described later. The additive in the electroplating aqueous solution is Capparaside HL manufactured by Atotech Japan.

【0037】〔電気めっき水溶液〕 硫酸 2.24 mol/l 硫酸銅 0.26 mol/l 添加剤 19.5 ml/l 〔電気めっき条件〕 電流密度 1 A/dm2 時間 65 分 温度 22±2 ℃[Electroplating aqueous solution] sulfuric acid 2.24 mol / l copper sulfate 0.26 mol / l additive 19.5 ml / l [electroplating conditions] current density 1 A / dm 2 hours 65 minutes temperature 22 ± 2 ° C

【0038】(15)ついで、めっきレジスト54を5%N
aOHで剥離除去した後、そのめっきレジスト54の下
に存在していたNi−Cu合金層52を硝酸および硫酸
と過酸化水素との混合液を用いるエッチングにて溶解除
去し、電気銅めっき膜56等からなる厚さ16μmの導
体回路58(バイアホール60を含む)を形成した(図
5(A)参照)。
(15) Then, the plating resist 54 is changed to 5% N
After stripping and removing with aOH, the Ni—Cu alloy layer 52 existing under the plating resist 54 is dissolved and removed by etching using a mixed solution of nitric acid, sulfuric acid and hydrogen peroxide, and the electrolytic copper plating film 56 is removed. A conductor circuit 58 (including the via hole 60) having a thickness of 16 μm and the like was formed (see FIG. 5A).

【0039】(16)続いて、上記(10) 〜(16)の工程を繰
り返すことにより、さらに上面側の層間樹脂絶縁層50
に、上層の層間樹脂絶縁層150、導体回路158及び
バイアホール160を形成した(図5(B)参照)。
(16) Subsequently, the above steps (10) to (16) are repeated to further increase the interlayer resin insulation layer 50 on the upper surface side.
Then, an upper interlayer resin insulation layer 150, a conductor circuit 158, and a via hole 160 were formed (see FIG. 5B).

【0040】(17)次に、ジエチレングリコールジメチル
エーテル(DMDG)に60重量%の濃度になるように
溶解させた、クレゾールノボラック型エポキシ樹脂(日
本化薬社製)のエポキシ基50%をアクリル化した感光
性付与のオリゴマー(分子量:4000)46.67重
量部、メチルエチルケトンに溶解させた80重量%のビ
スフェノールA型エポキシ樹脂(油化シェル社製、商品
名:エピコート1001)15重量部、イミダゾール硬
化剤(四国化成社製、商品名:2E4MZ−CN)1.
6重量部、感光性モノマーである多官能アクリルモノマ
ー(日本化薬社製、商品名:R604)3重量部、同じ
く多価アクリルモノマー(共栄化学社製、商品名:DP
E6A)1.5重量部、分散系消泡剤(サンノプコ社
製、商品名:S−65)0.71重量部を容器にとり、
攪拌、混合して混合組成物を調製し、この混合組成物に
対して光重合開始剤としてベンゾフェノン(関東化学社
製)2.0重量部、光増感剤としてのミヒラーケトン
(関東化学社製)0.2重量部を加えて、粘度を25℃
で2.0Pa・sに調整したソルダーレジスト組成物
(有機樹脂絶縁材料)を得た。なお、粘度測定は、B型
粘度計(東京計器社製、DVL−B型)で60rpmの
場合はローターNo.4、6rpmの場合はローターN
o.3によった。
(17) Next, a cresol novolak type epoxy resin (manufactured by Nippon Kayaku Co., Ltd.) dissolved in diethylene glycol dimethyl ether (DMDG) so as to have a concentration of 60% by weight was sensitized with 50% of epoxy groups being acrylated. 46.67 parts by weight of an oligomer for imparting property (molecular weight: 4000), 15 parts by weight of a bisphenol A type epoxy resin (trade name: Epicoat 1001 manufactured by Yuka Shell Co., Ltd.) dissolved in methyl ethyl ketone, and 15 parts by weight of an imidazole curing agent ( (Shikoku Chemicals, trade name: 2E4MZ-CN)
6 parts by weight, 3 parts by weight of polyfunctional acrylic monomer (trade name: R604, manufactured by Nippon Kayaku Co., Ltd.), which is a photosensitive monomer, and polyvalent acrylic monomer (trade name: DP, manufactured by Kyoei Chemical Co., Ltd.)
E6A) 1.5 parts by weight and 0.71 part by weight of a dispersion antifoaming agent (manufactured by San Nopco, trade name: S-65) in a container,
A mixed composition was prepared by stirring and mixing, and 2.0 parts by weight of benzophenone (manufactured by Kanto Kagaku) as a photopolymerization initiator and Michler's ketone (manufactured by Kanto Kagaku) as a photosensitizer were added to the mixed composition. Add 0.2 parts by weight and adjust viscosity to 25 ° C
To obtain a solder resist composition (organic resin insulating material) adjusted to 2.0 Pa · s. The viscosity was measured with a B-type viscometer (DVL-B type, manufactured by Tokyo Keiki Co., Ltd.) when the rotor No. was 60 rpm. Rotor N at 4,6 rpm
o. According to 3.

【0041】(18)次に、多層配線基板の両面に、上記ソ
ルダーレジスト組成物を20μmの厚さで塗布し、70
℃で20分間、70℃で30分間の条件で乾燥処理を行
った後、ソルダーレジスト開口部のパターンが描画され
た厚さ5mmのフォトマスクをソルダーレジスト層に密
着させて1000mJ/cm2 の紫外線で露光し、DM
TG溶液で現像処理し、上面に200μmの直径の開口
71Uを、下面に直径500μmの開口71Dを形成し
た。そして、さらに、80℃で1時間、100℃で1時
間、120℃で1時間、150℃で3時間の条件でそれ
ぞれ加熱処理を行ってソルダーレジスト層を硬化させ、
はんだパッド部分が開口した、その厚さが20μmのソ
ルダーレジスト層(有機樹脂絶縁層)70を形成した
(図6(A))。スルーホールの半硬化の樹脂フィルム
で圧着して、露光・現像或いはレーザで半田パットを設
けてもよい。
(18) Next, the above-mentioned solder resist composition is applied to both surfaces of the multilayer wiring board in a thickness of 20 μm,
After performing a drying process under the conditions of 20 ° C. for 20 minutes and 70 ° C. for 30 minutes, a 5 mm-thick photomask on which a pattern of the opening of the solder resist is drawn is brought into close contact with the solder resist layer, and an ultraviolet ray of 1000 mJ / cm 2 is applied. Exposure with DM
Development was performed with a TG solution to form an opening 71U having a diameter of 200 μm on the upper surface and an opening 71D having a diameter of 500 μm on the lower surface. Then, the solder resist layer is further heated at 80 ° C. for 1 hour, at 100 ° C. for 1 hour, at 120 ° C. for 1 hour, and at 150 ° C. for 3 hours to cure the solder resist layer.
A solder resist layer (organic resin insulating layer) 70 having a thickness of 20 μm and an opening in the solder pad portion was formed (FIG. 6A). The through-hole may be press-bonded with a semi-cured resin film, and a solder pad may be provided by exposure and development or laser.

【0042】(19)次に、ソルダーレジスト層(有機樹脂
絶縁層)70を形成した基板を、塩化ニッケル(2.3
×10-1mol/l)、次亜リン酸ナトリウム(2.8
×10 -1mol/l)、クエン酸ナトリウム(1.6×
10-1mol/l)を含むpH=4.5の無電解ニッケ
ルめっき液に20分間浸漬して、開口71に厚さ5μm
のニッケルめっき層72を形成した(図6(B))。さ
らに、その基板をシアン化金カリウム(7.6×10-3
mol/l)、塩化アンモニウム(1.9×10 -1mo
l/l)、クエン酸ナトリウム(1.2×10-1mol
/l)、次亜リン酸ナトリウム(1.7×10-1mol
/l)を含む無電解めっき液に80℃の条件で7.5分
間浸漬して、ニッケルめっき層72上に、厚さ0.03
μmの金めっき層74を形成した。
(19) Next, a solder resist layer (organic resin
The substrate on which the insulating layer (70) is formed is coated with nickel chloride (2.3).
× 10-1mol / l), sodium hypophosphite (2.8
× 10 -1mol / l), sodium citrate (1.6 ×
10-1mol / l) and pH = 4.5
Immersion in a plating solution for 20 minutes, and a thickness of 5 μm
Was formed (FIG. 6B). Sa
Furthermore, the substrate is made of potassium potassium cyanide (7.6 × 10-3
mol / l), ammonium chloride (1.9 × 10 -1mo
1 / l), sodium citrate (1.2 × 10-1mol
/ L), sodium hypophosphite (1.7 x 10-1mol
/ L) for 7.5 minutes at 80 ° C in an electroless plating solution containing
To a thickness of 0.03 on the nickel plating layer 72.
A gold plating layer 74 of μm was formed.

【0043】(20)この後、ソルダーレジスト層70の開
口71U、71Dにはんだペーストを印刷して、200
℃でリフローすることによりはんだバンプ(はんだ体)
76U、76Dを形成し、多層プリント配線板10を完
成する(図7参照)。
(20) Thereafter, solder paste is printed on the openings 71U and 71D of the solder resist layer 70,
Solder bump (solder body) by reflowing at ℃
76U and 76D are formed to complete the multilayer printed wiring board 10 (see FIG. 7).

【0044】[第2実施形態]引き続き、本発明の第2実
施形態に係る多層プリント配線板及びその製造方法につ
いて説明する。図12は、パッケージ基板に適用した第
2実施形態に係る多層プリント配線板の断面を示してい
る。この第2実施形態の多層プリント配線板は、図7を
参照して上述した第1実施形態と同様である。但し、第
1実施形態では、ドータボード側にはんだバンプ76D
が配設されたが、第2実施形態では、導電性接続ピン7
8が配設されている。
[Second Embodiment] Next, a multilayer printed wiring board according to a second embodiment of the present invention and a method for manufacturing the same will be described. FIG. 12 shows a cross section of a multilayer printed wiring board according to the second embodiment applied to a package substrate. The multilayer printed wiring board according to the second embodiment is similar to the first embodiment described above with reference to FIG. However, in the first embodiment, the solder bumps 76D
However, in the second embodiment, the conductive connection pins 7
8 are provided.

【0045】第2実施形態の多層プリント配線板の製造
方法について説明する。コア基板の形成方法は、図1及
び図2を参照して上述した第1実施形態の工程(1)〜(8)
と同様であるため、説明を省略する。
A method for manufacturing the multilayer printed wiring board according to the second embodiment will be described. The method of forming the core substrate includes the steps (1) to (8) of the first embodiment described above with reference to FIGS.
Therefore, the description is omitted.

【0046】まず、層間樹脂絶縁層用樹脂フィルムの作
製について説明する。ビスフェノールA型エポキシ樹脂
(エポキシ当量469、油化シェルエポキシ社製エピコ
ート1001)30重量部、クレゾールノボラック型エ
ポキシ樹脂(エポキシ当量215、大日本インキ化学工
業社製 エピクロンN−673)40重量部、トリアジ
ン構造含有フェノールノボラック樹脂(フェノール性水
酸基当量120、大日本インキ化学工業社製 フェノラ
イトKA−7052)30重量部をエチルジグリコール
アセテート20重量部、ソルベントナフサ20重量部に
攪拌しながら加熱溶解させ、そこへ末端エポキシ化ポリ
ブタジエンゴム(ナガセ化成工業社製 デナレックスR
−45EPT)15重量部と2−フェニル−4、5−ビ
ス(ヒドロキシメチル)イミダゾール粉砕品1.5重量
部、微粉砕シリカ2重量部、シリコン系消泡剤0.5重
量部を添加しエポキシ樹脂組成物を調製した。得られた
エポキシ樹脂組成物を厚さ38μmのPETフィルム上
に乾燥後の厚さが50μmとなるようにロールコーター
を用いて塗布した後、80〜120℃で10分間乾燥さ
せることにより、層間樹脂絶縁層用樹脂フィルムを作製
した。
First, the production of a resin film for an interlayer resin insulation layer will be described. 30 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 469, Epicoat 1001 manufactured by Yuka Shell Epoxy Co.), 40 parts by weight of cresol novolak type epoxy resin (epoxy equivalent: 215, epicron N-673 manufactured by Dainippon Ink & Chemicals, Inc.), triazine 30 parts by weight of a structure-containing phenol novolak resin (phenolic hydroxyl equivalent: 120, phenolite KA-7052 manufactured by Dainippon Ink and Chemicals, Inc.) was dissolved by heating in 20 parts by weight of ethyl diglycol acetate and 20 parts by weight of solvent naphtha while stirring, The terminal epoxidized polybutadiene rubber (Denalex R manufactured by Nagase Kasei Kogyo Co., Ltd.)
(45EPT), 1.5 parts by weight of a pulverized product of 2-phenyl-4,5-bis (hydroxymethyl) imidazole, 2 parts by weight of finely divided silica, and 0.5 part by weight of a silicon-based antifoaming agent, A resin composition was prepared. The resulting epoxy resin composition is applied on a 38 μm-thick PET film using a roll coater so that the thickness after drying becomes 50 μm, and then dried at 80 to 120 ° C. for 10 minutes to form an interlayer resin. A resin film for an insulating layer was produced.

【0047】(9)図2( D)に示す基板30の両面に、
基板より少し大きめの上記作製した層間樹脂絶縁層用樹
脂フィルムを載置し、圧力4kgf/cm2 、温度80
℃、圧着時間10秒の条件で仮圧着して裁断した後、さ
らに、以下の方法により真空ラミネーター装置を用いて
貼り付けることにより層間樹脂絶縁層50を形成した
(図8(A)参照)。すなわち、層間樹脂絶縁層用樹脂
フィルムを基板上に、真空度0.5Torr、圧力4k
gf/cm2 、温度80℃、圧着時間60秒の条件で本
圧着し、その後、170℃で30分間熱硬化させた。
(9) On both sides of the substrate 30 shown in FIG.
A resin film for an interlayer resin insulation layer, which was slightly larger than the substrate, was placed on the substrate, and a pressure of 4 kgf / cm 2 and a temperature of 80 were applied.
After temporarily compressing and cutting at 10 ° C. for 10 seconds, the interlayer resin insulating layer 50 was formed by pasting using a vacuum laminator apparatus by the following method (see FIG. 8A). That is, a resin film for an interlayer resin insulating layer is formed on a substrate by applying a vacuum of 0.5 Torr and a pressure of 4 k.
The final compression bonding was performed under the conditions of gf / cm 2 , a temperature of 80 ° C., and a compression bonding time of 60 seconds, followed by heat curing at 170 ° C. for 30 minutes.

【0048】(10) 層間樹脂絶縁層50上に、厚さ1.
2mmの貫通孔49aが形成されたマスク49を載置す
る。そして、波長10.4μmのCO2 ガスレーザに
て、ビーム径4.0mm、トップハットモード、パルス
幅5.0μ秒、マスクの貫通孔の径1.0mm、1ショ
ットの条件で、層間樹脂絶縁層50に直径80μmのバ
イアホール用開口48を形成した(図8(B)参照)。
(10) On the interlayer resin insulation layer 50, a thickness of 1.
A mask 49 having a through-hole 49a of 2 mm is placed. Then, using a CO 2 gas laser having a wavelength of 10.4 μm, under the conditions of a beam diameter of 4.0 mm, a top hat mode, a pulse width of 5.0 μsec, a diameter of a through hole of a mask of 1.0 mm, and one shot, an interlayer resin insulating layer was formed. A via hole opening 48 having a diameter of 80 μm was formed in 50 (see FIG. 8B).

【0049】(11) バイアホール用開口48を形成した
基板30を、60g/lの過マンガン酸を含む80℃の
溶液に10分間浸漬し、層間樹脂絶縁層50の表面に存
在するエポキシ樹脂粒子を溶解除去することにより、バ
イアホール用開口48の内壁を含む層間樹脂絶縁層50
の表面を粗面とした(図8(C)参照)。
(11) The substrate 30 having the via hole opening 48 formed therein is immersed in a solution containing 60 g / l of permanganic acid at 80 ° C. for 10 minutes, and the epoxy resin particles existing on the surface of the interlayer resin insulation layer 50 are immersed. Is dissolved and removed to form an interlayer resin insulating layer 50 including the inner wall of the via hole opening 48.
Was made rough (see FIG. 8C).

【0050】(12) 次に、上記処理を終えた基板を、中
和溶液(シプレイ社製)に浸漬してから水洗いした。さ
らに、粗面化処理(粗化深さ3μm)した該基板の表面
に、パラジウム触媒を付与することにより、層間樹脂絶
縁層50の表面およびバイアホール用開口48の内壁面
に触媒核を付着させた。
(12) Next, the substrate after the above treatment was immersed in a neutralizing solution (manufactured by Shipley) and washed with water. Further, by applying a palladium catalyst to the surface of the substrate which has been subjected to the surface roughening treatment (roughening depth: 3 μm), catalyst nuclei are attached to the surface of the interlayer resin insulating layer 50 and the inner wall surface of the via hole opening 48. Was.

【0051】(13)次に、以下の組成の無電解銅めっき水
溶液中に基板を浸漬して、粗面全体に厚さ0.6〜3.
0μmの無電解銅めっき膜51を形成した(図9(A)
参照)。 〔無電解めっき水溶液〕 NiSO4 0.003 mol/l 酒石酸 0.200 mol/l 硫酸銅 0.030 mol/l HCHO 0.050 mol/l NaOH 0.100 mol/l α、α′−ビピリジル 40 mg/l ポリエチレングリコール(PEG) 0.10 g/l 〔無電解めっき条件〕 35℃の液温度で40分
(13) Next, the substrate is immersed in an aqueous solution of electroless copper plating having the following composition, and has a thickness of 0.6 to 3.
An electroless copper plating film 51 of 0 μm was formed (FIG. 9A).
reference). [Electroless plating aqueous solution] NiSO 4 0.003 mol / l tartaric acid 0.200 mol / l copper sulfate 0.030 mol / l HCHO 0.050 mol / l NaOH 0.100 mol / l α, α'-bipyridyl 40 mg / l Polyethylene glycol (PEG) 0.10 g / l [Electroless plating conditions] 40 minutes at a liquid temperature of 35 ° C

【0052】(14)市販の感光性ドライフィルムを無電解
銅めっき膜51に貼り付け、マスクを載置して、100
mJ/cm2 で露光し、0.8%炭酸ナトリウム水溶液
で現像処理することにより、厚さ30μmのめっきレジ
スト54を設けた(図9(B)参照)。
(14) A commercially available photosensitive dry film is affixed to the electroless copper plating film 51, and a mask is placed thereon.
Exposure was performed at mJ / cm 2 , and a development treatment was performed with a 0.8% aqueous sodium carbonate solution to provide a plating resist 54 having a thickness of 30 μm (see FIG. 9B).

【0053】(15)ついで、基板を50℃の水で洗浄して
脱脂し、25℃の水で水洗後、さらに硫酸で洗浄してか
ら、以下の条件で電解銅めっきを施し、厚さ20μmの
電解銅めっき膜56を形成した(図9(C)参照)。 〔電解めっき水溶液〕 硫酸 2.24 mol/l 硫酸銅 0.26 mol/l 添加剤 19.5 ml/l (アトテックジャパン社製、カパラシドHL) 〔電解めっき条件〕 電流密度 1 A/dm2 時間 65 分 温度 22±2 ℃
(15) Next, the substrate was washed with water at 50 ° C., degreased, washed with water at 25 ° C., further washed with sulfuric acid, and then subjected to electrolytic copper plating under the following conditions to give a thickness of 20 μm. Was formed (see FIG. 9C). [Electroplating aqueous solution] sulfuric acid 2.24 mol / l copper sulfate 0.26 mol / l additive 19.5 ml / l (manufactured by Atotech Japan, Capparaside HL) [electroplating conditions] current density 1 A / dm 2 hours 65 minutes Temperature 22 ± 2 ℃

【0054】(16)めっきレジスト54を5%NaOHで
剥離除去した後、そのめっきレジスト54下の無電解め
っき膜51を硫酸と過酸化水素の混合液でエッチング処
理して溶解除去し、無電解銅めっき膜51と電解銅めっ
き膜56からなる厚さ18μmの導体回路(バイアホー
ル60を含む)58を形成した(図10(A)参照)。
(16) After the plating resist 54 is peeled and removed with 5% NaOH, the electroless plating film 51 under the plating resist 54 is dissolved and removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide. A conductor circuit (including the via hole 60) 58 having a thickness of 18 μm and including the copper plating film 51 and the electrolytic copper plating film 56 was formed (see FIG. 10A).

【0055】(17)第1実施形態の導体回路34粗化の
(8) と同様の処理を行い、第二銅錯体と有機酸とを含有
するエッチング液によって、粗化面62を形成した(図
10(B)参照)。
(17) The roughening of the conductor circuit 34 of the first embodiment
By performing the same treatment as in (8), a roughened surface 62 was formed with an etching solution containing a cupric complex and an organic acid (see FIG. 10B).

【0056】(18)上記 (9)〜(17)の工程を繰り返すこと
により、上面の層間樹脂絶縁層50の上層に層間樹脂絶
縁層160、導体回路158及びバイアホール160を
形成し、多層配線板を得た(図10(C)参照)。
(18) By repeating the above steps (9) to (17), an interlayer resin insulating layer 160, a conductor circuit 158 and a via hole 160 are formed above the interlayer resin insulating layer 50 on the upper surface to form a multilayer wiring. A plate was obtained (see FIG. 10 (C)).

【0057】(19)次に、多層配線基板の両面に、第1実
施形態と同様のソルダーレジスト組成物を20μmの厚
さで塗布し、70℃で20分間、70℃で30分間の条
件で乾燥処理を行った後、ソルダーレジスト開口部のパ
ターンが描画された厚さ5mmのフォトマスクをソルダ
ーレジスト層に密着させて1000mJ/cm2 の紫外
線で露光し、DMTG溶液で現像処理し開口71U、7
1Dを形成した。そしてさらに、80℃で1時間、10
0℃で1時間、120℃で1時間、150℃で3時間の
条件でそれぞれ加熱処理を行ってソルダーレジスト層を
硬化させ、開口を有し、その厚さが20μmのソルダー
レジストパターン層70を形成した(図11(A))。
上記ソルダーレジスト組成物としては、市販のソルダー
レジスト組成物を使用することもできる。
(19) Next, the same solder resist composition as that of the first embodiment is applied to both surfaces of the multilayer wiring board at a thickness of 20 μm, and the coating is performed at 70 ° C. for 20 minutes and at 70 ° C. for 30 minutes. After performing the drying process, a 5 mm-thick photomask on which the pattern of the solder resist opening is drawn is brought into close contact with the solder resist layer, exposed to ultraviolet light of 1000 mJ / cm 2 , developed with a DMTG solution, and developed with a 71 mg opening. 7
1D was formed. And further at 80 ° C. for 1 hour, 10
The solder resist layer is cured by performing heat treatment at 0 ° C. for 1 hour, 120 ° C. for 1 hour, and 150 ° C. for 3 hours to form a solder resist pattern layer 70 having an opening and a thickness of 20 μm. It was formed (FIG. 11A).
As the solder resist composition, a commercially available solder resist composition can be used.

【0058】(20)次に、第1実施形態と同様に開口71
U、71Dに厚さ5μmのニッケルめっき層72を形成
し、さらに、ニッケルめっき層72上に、厚さ0.03
μmの金めっき層74を形成した(図11(B))。
(20) Next, as in the first embodiment, the opening 71
A nickel plating layer 72 having a thickness of 5 μm is formed on each of the U and 71D.
A gold plating layer 74 of μm was formed (FIG. 11B).

【0059】(20)この後、基板のICチップを載置する
面のソルダーレジスト層70の開口71Uに、スズ−鉛
を含有するはんだペーストを印刷し、さらに他方の面の
ソルダーレジスト層70の開口71Dにスズ−アンチモ
ンを含有するはんだペーストを印刷した後、200℃で
リフローすることにより上面にはんだバンプ76Uを設
けた。そして、下面に導電性接続ピン78を配設し、プ
リント基板を製造した(図12参照)。
(20) Thereafter, a solder paste containing tin-lead is printed in the opening 71U of the solder resist layer 70 on the surface of the substrate on which the IC chip is to be mounted, and the solder resist layer 70 on the other surface is printed. After printing a solder paste containing tin-antimony in the opening 71D, the solder bump 76U was provided on the upper surface by performing reflow at 200 ° C. Then, the conductive connection pins 78 were provided on the lower surface, and a printed circuit board was manufactured (see FIG. 12).

【0060】[第3実施形態]第3実施形態の多層プリン
ト配線板の断面を図13に示す。この第3実施形態は、
第1実施形態と同様の構成である。但し、この第3実施
形態の多層プリント配線板は、層間樹脂絶縁層50及び
層間樹脂絶縁層150が、以下に示す組成の上層用接着
剤57と下層用接着剤55からなり、液体状態で塗布し
た後、露光・現像処理により開口を設けてある。 A.無電解めっき用接着剤調製用の原料組成物(上層用
接着剤) 〔樹脂組成物〕クレゾールノボラック型エポキシ樹脂
(日本化薬製、分子量2500)の25%アクリル化物を80wt
%の濃度でDMDGに溶解させた樹脂液を35重量部、感
光性モノマー(東亜合成製、アロニックスM315 )3.15
重量部、消泡剤(サンノプコ製、S−65)0.5 重量部、
NMP 3.6重量部を攪拌混合して得た。 〔樹脂組成物〕ポリエーテルスルフォン(PES)12
重量部、エポキシ樹脂粒子(三洋化成製、ポリマーポー
ル)の平均粒径 1.0μmのものを 7.2重量部、平均粒径
0.5μmのものを3.09重量部、を混合した後、さらにN
MP30重量部を添加し、ビーズミルで攪拌混合して得
た。 〔硬化剤組成物〕イミダゾール硬化剤(四国化成製、
2E4MZ-CN)2重量部、光開始剤(チバガイギー製、イル
ガキュア I−907 )2重量部、光増感剤(日本化薬
製、DETX-S)0.2 重量部、NMP 1.5重量部を攪拌混合
して得た。
Third Embodiment FIG. 13 shows a cross section of a multilayer printed wiring board according to a third embodiment. In the third embodiment,
The configuration is the same as that of the first embodiment. However, in the multilayer printed wiring board according to the third embodiment, the interlayer resin insulating layer 50 and the interlayer resin insulating layer 150 are composed of the upper adhesive 57 and the lower adhesive 55 having the following compositions, and are applied in a liquid state. After that, an opening is provided by exposure and development processing. A. Raw material composition for preparation of adhesive for electroless plating (adhesive for upper layer) [Resin composition] 80 wt% of 25% acrylate of cresol novolak type epoxy resin (Nippon Kayaku, molecular weight 2500)
35% by weight of a resin solution dissolved in DMDG at a concentration of 3.15% and a photosensitive monomer (Toa Gosei Co., Aronix M315) 3.15
Parts by weight, 0.5 parts by weight of an antifoaming agent (manufactured by San Nopco, S-65)
3.6 parts by weight of NMP were obtained by stirring and mixing. [Resin composition] Polyether sulfone (PES) 12
Parts by weight, epoxy resin particles (manufactured by Sanyo Chemical Industries, polymer pole) with an average particle size of 1.0 μm, 7.2 parts by weight, average particle size
After mixing 0.59 μm of 3.09 parts by weight,
30 parts by weight of MP was added, and the mixture was stirred and mixed with a bead mill to obtain. [Curing agent composition] Imidazole curing agent (Shikoku Chemicals,
2E4MZ-CN), 2 parts by weight of a photoinitiator (Circa Geigy, Irgacure I-907), 0.2 parts by weight of a photosensitizer (Nippon Kayaku, DETX-S), and 1.5 parts by weight of NMP are mixed with stirring. I got it.

【0061】B.層間樹脂絶縁剤調製用の原料組成物
(下層用接着剤) 〔樹脂組成物〕クレゾールノボラック型エポキシ樹脂
(日本化薬製、分子量2500)の25%アクリル化物を80wt
%の濃度でDMDGに溶解させた樹脂液を35重量部、感
光性モノマー(東亜合成製、アロニックスM315 )4重
量部、消泡剤(サンノプコ製、S−65)0.5 重量部、N
MP 3.6重量部を攪拌混合して得た。 〔樹脂組成物〕ポリエーテルスルフォン(PES)12
重量部、エポキシ樹脂粒子(三洋化成製、ポリマーポー
ル)の平均粒径 0.5μmのものを 14.49重量部、を混合
した後、さらにNMP30重量部を添加し、ビーズミルで
攪拌混合して得た。 〔硬化剤組成物〕イミダゾール硬化剤(四国化成製、
2E4MZ-CN)2重量部、光開始剤(チバガイギー製、イル
ガキュア I−907 )2重量部、光増感剤(日本化薬
製、DETX-S)0.2 重量部、NMP1.5 重量部を攪拌混合
して得た。
B. Raw material composition for preparing interlayer resin insulation agent (adhesive for lower layer) [Resin composition] 80 wt% of 25% acrylate of cresol novolak type epoxy resin (Nippon Kayaku, molecular weight 2500)
% Of a resin solution dissolved in DMDG at a concentration of 35%, 4 parts by weight of a photosensitive monomer (Alonix M315, manufactured by Toagosei Co., Ltd.), 0.5 parts by weight of an antifoaming agent (S-65, manufactured by San Nopco), N
3.6 parts by weight of MP were obtained by stirring and mixing. [Resin composition] Polyether sulfone (PES) 12
After mixing 14.49 parts by weight of an epoxy resin particle (manufactured by Sanyo Chemical Industries, polymer pole) having an average particle size of 0.5 μm, 30 parts by weight of NMP was further added, and the mixture was stirred and mixed with a bead mill. [Curing agent composition] Imidazole curing agent (Shikoku Chemicals,
2E4MZ-CN), 2 parts by weight of a photoinitiator (Circa Geigy, Irgacure I-907), 0.2 parts by weight of a photosensitizer (Nippon Kayaku, DETX-S), 1.5 parts by weight of NMP I got it.

【0062】[比較例1]比較例1の多層プリント配線板
は、第1実施形態と同様に構成してある。但し、第1実
施形態では、スルーホール36内にめっきを充填したの
に対して、比較例1では、樹脂充填材を充填してある。
[Comparative Example 1] The multilayer printed wiring board of Comparative Example 1 has the same configuration as that of the first embodiment. However, in the first embodiment, the plating is filled in the through holes 36, whereas in Comparative Example 1, a resin filler is filled.

【0063】第1〜第3実施形態と比較例1、比較例2
に対してヒートサイクル試験(−65℃/3分+130
℃/3分を1サイクルとし、1000サイクル実施)を
行った結果について、図14の図表中に示す。第1、第
2、第3実施形態では、ヒートサイクル後も反り及び断
線が発生しなかったが、比較例1では反りが発生した。
なお、反り量は、平坦な基台に基板を置いて、その端部
を測定器により高さを測ることにより測定した。
First to Third Embodiments, Comparative Example 1, Comparative Example 2
Heat cycle test (-65 ° C / 3 minutes +130
FIG. 14 shows the results obtained by performing 1000 cycles at a cycle of ° C./3 minutes. In the first, second, and third embodiments, warpage and disconnection did not occur even after the heat cycle, but in Comparative Example 1, warpage occurred.
The amount of warpage was measured by placing the substrate on a flat base and measuring the end of the substrate with a measuring instrument.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(A)、(B)、(C)、(D)は、本発
明の第1実施形態に係る多層プリント配線板の製造工程
図である。
FIGS. 1A, 1B, 1C, and 1D are manufacturing process diagrams of a multilayer printed wiring board according to a first embodiment of the present invention.

【図2】図2(A)、(B)、(C)、(D)は、本発
明の第1実施形態に係る多層プリント配線板の製造工程
図である。
FIGS. 2A, 2B, 2C, and 2D are manufacturing process diagrams of the multilayer printed wiring board according to the first embodiment of the present invention.

【図3】図3(A)、(B)、(C)は、本発明の第1
実施形態に係る多層プリント配線板の製造工程図であ
る。
FIGS. 3A, 3B and 3C show a first embodiment of the present invention.
It is a manufacturing process figure of the multilayer printed wiring board concerning an embodiment.

【図4】図4(A)、(B)、(C)は、本発明の第1
実施形態に係る多層プリント配線板の製造工程図であ
る。
FIGS. 4A, 4B and 4C show a first embodiment of the present invention.
It is a manufacturing process figure of the multilayer printed wiring board concerning an embodiment.

【図5】図5(A)、(B)は、本発明の第1実施形態
に係る多層プリント配線板の製造工程図である。
FIGS. 5A and 5B are manufacturing process diagrams of the multilayer printed wiring board according to the first embodiment of the present invention.

【図6】図6(A)、(B)は、本発明の第1実施形態
に係る多層プリント配線板の製造工程図である。
FIGS. 6A and 6B are manufacturing process diagrams of the multilayer printed wiring board according to the first embodiment of the present invention.

【図7】本発明の第1実施形態に係る多層プリント配線
板の断面図である。
FIG. 7 is a sectional view of the multilayer printed wiring board according to the first embodiment of the present invention.

【図8】図8(A)、(B)、(C)は、本発明の第2
実施形態に係る多層プリント配線板の製造工程図であ
る。
8 (A), 8 (B), and 8 (C) show a second embodiment of the present invention.
It is a manufacturing process figure of the multilayer printed wiring board concerning an embodiment.

【図9】図9(A)、(B)、(C)は、本発明の第2
実施形態に係る多層プリント配線板の製造工程図であ
る。
FIGS. 9A, 9B and 9C show a second embodiment of the present invention.
It is a manufacturing process figure of the multilayer printed wiring board concerning an embodiment.

【図10】図10(A)、(B)、(C)は、本発明の
第2実施形態に係る多層プリント配線板の製造工程図で
ある。
FIGS. 10A, 10B, and 10C are manufacturing process diagrams of the multilayer printed wiring board according to the second embodiment of the present invention.

【図11】図11(A)、(B)は、本発明の第2実施
形態に係る多層プリント配線板の製造工程図である。
FIGS. 11A and 11B are manufacturing process diagrams of a multilayer printed wiring board according to a second embodiment of the present invention.

【図12】本発明の第2実施形態に係る多層プリント配
線板の断面図である。
FIG. 12 is a sectional view of a multilayer printed wiring board according to a second embodiment of the present invention.

【図13】本発明の第3実施形態に係る多層プリント配
線板の断面図である。
FIG. 13 is a sectional view of a multilayer printed wiring board according to a third embodiment of the present invention.

【図14】ヒートサイクル試験の結果を示す図表であ
る。
FIG. 14 is a table showing the results of a heat cycle test.

【符号の説明】[Explanation of symbols]

22 金属層 24 第1電解めっき層 26 無電解めっき膜 28 第2電解めっき層 30 樹脂基板 32 通孔 34 導体回路 36 バイアホール 50 層間樹脂絶縁層 58 導体回路 60 バイアホール 70 ソルダーレジスト層 76U、76D 半田バンプ Reference Signs List 22 metal layer 24 first electrolytic plating layer 26 electroless plating film 28 second electrolytic plating layer 30 resin substrate 32 through hole 34 conductive circuit 36 via hole 50 interlayer resin insulating layer 58 conductive circuit 60 via hole 70 solder resist layer 76U, 76D Solder bump

フロントページの続き Fターム(参考) 4K024 AA09 AB03 AB04 AB08 AB15 AB17 BA12 BB11 BC10 DA10 FA05 GA16 4K044 AA06 AA16 AB02 AB08 BA06 BA08 BA21 BB04 BB05 BB10 BC14 CA13 CA15 CA18 5E317 AA07 AA11 AA24 BB02 BB03 BB12 BB15 CC22 CC25 CC32 CC33 CC53 CD05 CD15 CD25 CD27 CD32 GG09 GG14 5E346 AA02 AA12 AA15 AA26 AA32 AA43 BB06 CC04 CC05 CC09 CC10 CC32 CC34 CC37 CC40 CC54 CC55 DD02 DD13 DD16 DD17 DD23 DD24 EE31 EE38 EE39 FF01 FF03 FF07 FF10 FF13 FF14 FF17 FF27 GG15 GG17 GG27 GG28 HH11 HH17 HH24 HH25 Continued on the front page F term (reference) 4K024 AA09 AB03 AB04 AB08 AB15 AB17 BA12 BB11 BC10 DA10 FA05 GA16 4K044 AA06 AA16 AB02 AB08 BA06 BA08 BA21 BB04 BB05 BB10 BC14 CA13 CA15 CA18 5E317 AA07 AA11 AA24 BB02 CC33 CC12 CC12 CD05 CD15 CD25 CD27 CD32 GG09 GG14 5E346 AA02 AA12 AA15 AA26 AA32.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 スルーホールを設けたコア基板に層間樹
脂絶縁層をビルドアップしてなる多層プリント配線板に
おいて、 前記コア基板のスルーホールが、電解めっきによる第1
金属層と、無電解めっき、スパッタ又は蒸着による金属
膜と、電解めっきによる第2金属層とを充填してなるこ
とを特徴とする多層プリント配線板。
1. A multilayer printed wiring board in which an interlayer resin insulating layer is built up on a core substrate provided with a through hole, wherein the through hole of the core substrate is formed by a first electrode formed by electrolytic plating.
A multilayer printed wiring board characterized by being filled with a metal layer, a metal film formed by electroless plating, sputtering or vapor deposition, and a second metal layer formed by electrolytic plating.
【請求項2】 少なくとも以下の(A)〜(E)の工程
を備えることを特徴とする多層プリント配線板の製造方
法: (A)一方の面に金属層の形成された樹脂絶縁層に、レ
ーザで前記金属層へ至る非貫通孔を形成する工程; (B)前記樹脂絶縁層の非貫通孔に、前記金属層を介し
て電流を流し電解めっきにより第1金属層を充填する工
程; (C)前記樹脂絶縁層の金属層の反対面に、金属膜を形
成する工程: (D)前記樹脂絶縁層の非貫通孔に、前記金属膜を介し
て電流を流し電解めっきにより第2金属層を充填する工
程; (E)前記樹脂絶縁層の金属層と金属膜とエッチングし
て、スルーホールのランドを形成する工程。
2. A method of manufacturing a multilayer printed wiring board, comprising at least the following steps (A) to (E): (A) forming a resin insulating layer having a metal layer on one surface; Forming a non-through hole to the metal layer with a laser; (B) filling the first metal layer by electrolytic plating by passing an electric current through the metal layer to the non-through hole of the resin insulating layer; C) a step of forming a metal film on the surface of the resin insulation layer opposite to the metal layer: (D) passing a current through the metal film to a non-through hole of the resin insulation layer and electrolytic plating to form a second metal layer And (E) etching the metal layer and the metal film of the resin insulating layer to form lands for through holes.
【請求項3】 前記樹脂絶縁層に、無電解めっき、スパ
ッタ又は蒸着により金属層を形成する工程を更に有する
ことを特徴とする請求項2の多層プリント配線板の製造
方法。
3. The method for manufacturing a multilayer printed wiring board according to claim 2, further comprising a step of forming a metal layer on said resin insulating layer by electroless plating, sputtering or vapor deposition.
【請求項4】 前記樹脂絶縁層の金属層の反対面に、金
属膜を形成する工程において、無電解めっき、スパッタ
又は蒸着を用いることを特徴とする請求項2又は3の多
層プリント配線板の製造方法。
4. The multilayer printed wiring board according to claim 2, wherein in the step of forming a metal film on the surface of the resin insulating layer opposite to the metal layer, electroless plating, sputtering or vapor deposition is used. Production method.
JP35265999A 1999-06-02 1999-12-13 Multilayer printed wiring board and method for manufacturing multilayer printed wiring board Expired - Lifetime JP4278806B2 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
JP35265999A JP4278806B2 (en) 1999-12-13 1999-12-13 Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
EP09156837A EP2086299A1 (en) 1999-06-02 2000-05-25 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board
EP09156841A EP2086300A1 (en) 1999-06-02 2000-05-25 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board
EP00931571A EP1194022B1 (en) 1999-06-02 2000-05-25 Multilayer printed wiring board and method of manufacturing multilayer printed wiring board
DE60031680T DE60031680T2 (en) 1999-06-02 2000-05-25 MULTILAYER, PRINTED PCB AND MANUFACTURING METHOD FOR A MULTILAYER, PRINTED PCB
US09/979,388 US6828510B1 (en) 1999-06-02 2000-05-25 Multilayer printed wiring board and method of manufacturing multilayer printed wiring board
PCT/JP2000/003377 WO2000076281A1 (en) 1999-06-02 2000-05-25 Multilayer printed wiring board and method of manufacturing multilayer printed wiring board
EP06123074A EP1744609B1 (en) 1999-06-02 2000-05-25 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board
MYPI20002406A MY125537A (en) 1999-06-02 2000-05-30 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board.
TW089110559A TW471244B (en) 1999-06-02 2000-05-31 Multilayer printed circuit board and method of manufacturing multilayer printed circuit board
US10/921,525 US7985930B2 (en) 1999-06-02 2004-08-19 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board
US12/171,794 US8288664B2 (en) 1999-06-02 2008-07-11 Multi-layer printed circuit board and method of manufacturing multilayer printed circuit board
US12/694,322 US8283573B2 (en) 1999-06-02 2010-01-27 Multi-layer printed circuit board and method of manufacturing multilayer printed circuit board
US12/887,197 US20110024164A1 (en) 1999-06-02 2010-09-21 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board
US12/913,258 US8288665B2 (en) 1999-06-02 2010-10-27 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board
US13/089,378 US8822828B2 (en) 1999-06-02 2011-04-19 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board
US13/169,674 US8745863B2 (en) 1999-06-02 2011-06-27 Method of manufacturing multi-layer printed circuit board
US13/169,736 US8782882B2 (en) 1999-06-02 2011-06-27 Method of manufacturing multi-layer printed circuit board
US13/432,471 US8822830B2 (en) 1999-06-02 2012-03-28 Multi-layer printed circuit board and method of manufacturing multi-layer printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35265999A JP4278806B2 (en) 1999-12-13 1999-12-13 Multilayer printed wiring board and method for manufacturing multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2001168529A true JP2001168529A (en) 2001-06-22
JP4278806B2 JP4278806B2 (en) 2009-06-17

Family

ID=18425566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35265999A Expired - Lifetime JP4278806B2 (en) 1999-06-02 1999-12-13 Multilayer printed wiring board and method for manufacturing multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP4278806B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286184A (en) * 2004-03-30 2005-10-13 Nec Electronics Corp Through electrode, spacer using the same, and methods for manufacturing them
JP2005310934A (en) * 2004-04-20 2005-11-04 Dainippon Printing Co Ltd Multilayer wiring board and its manufacturing method
JP2010157664A (en) * 2009-01-05 2010-07-15 Meiko:Kk Circuit substrate with electric and electronic component incorporated therein, and method of manufacturing the same
JP2012253227A (en) * 2011-06-03 2012-12-20 Shinko Electric Ind Co Ltd Wiring board and manufacturing method of the same
JP2014038993A (en) * 2012-08-13 2014-02-27 Samsung Electro-Mechanics Co Ltd Core substrate and printed circuit board using the same
JP2014082490A (en) * 2012-09-28 2014-05-08 Hitachi Chemical Co Ltd Multilayer wiring board
US9451711B2 (en) 2013-02-06 2016-09-20 Ibiden Co., Ltd. Printed wiring board and method for manufacturing printed wiring board
JP2017022220A (en) * 2015-07-09 2017-01-26 大日本印刷株式会社 Through electrode substrate and method of manufacturing the same
US10477671B2 (en) 2015-09-30 2019-11-12 Sekisui Chemical Co., Ltd. Laminated body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286184A (en) * 2004-03-30 2005-10-13 Nec Electronics Corp Through electrode, spacer using the same, and methods for manufacturing them
US7994048B2 (en) 2004-03-30 2011-08-09 Renesas Electronics Corporation Method of manufacturing a through electrode
JP2005310934A (en) * 2004-04-20 2005-11-04 Dainippon Printing Co Ltd Multilayer wiring board and its manufacturing method
JP4634735B2 (en) * 2004-04-20 2011-02-16 大日本印刷株式会社 Manufacturing method of multilayer wiring board
JP2010157664A (en) * 2009-01-05 2010-07-15 Meiko:Kk Circuit substrate with electric and electronic component incorporated therein, and method of manufacturing the same
JP2012253227A (en) * 2011-06-03 2012-12-20 Shinko Electric Ind Co Ltd Wiring board and manufacturing method of the same
JP2014038993A (en) * 2012-08-13 2014-02-27 Samsung Electro-Mechanics Co Ltd Core substrate and printed circuit board using the same
JP2014082490A (en) * 2012-09-28 2014-05-08 Hitachi Chemical Co Ltd Multilayer wiring board
US9451711B2 (en) 2013-02-06 2016-09-20 Ibiden Co., Ltd. Printed wiring board and method for manufacturing printed wiring board
JP2017022220A (en) * 2015-07-09 2017-01-26 大日本印刷株式会社 Through electrode substrate and method of manufacturing the same
US10477671B2 (en) 2015-09-30 2019-11-12 Sekisui Chemical Co., Ltd. Laminated body

Also Published As

Publication number Publication date
JP4278806B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
WO2000076281A1 (en) Multilayer printed wiring board and method of manufacturing multilayer printed wiring board
WO2007074941A1 (en) Multilayer printed wiring board
WO2001011932A1 (en) Electroplating solution, method for fabricating multilayer printed wiring board using the solution, and multilayer printed wiring board
JP2003023252A (en) Multilayered printed wiring board
JP2001015931A (en) Multilayer printed wiring board and manufacture thereof
JP2001168529A (en) Multilayer printed wiring board and manufacturing method therefor
JP2001053448A (en) Printed wiring board, solder resist resin composition, and method for manufacturing printed wiring board
JP2003101244A (en) Multilayer printed wiring board and method of manufacturing the same
JP2002151841A (en) Method of manufacturing multilayer printed wiring board
JP2001168531A (en) Multilayer printed wiring board and manufacturing method therefor
JP2002271040A (en) Method for manufacturing multilayer printed wiring board
JP4592929B2 (en) Multilayer circuit board
JP2002271034A (en) Printed wiring board and manufacturing method therefor
JP2001057466A (en) Printed wiring board, manufacture thereof and solder resist resin board
JP2002204057A (en) Multilayer printed wiring board and method of manufacturing the same
JP4535559B2 (en) Multilayer printed wiring board
JP3219396B2 (en) Manufacturing method of multilayer printed wiring board
JP2002047594A (en) Electroplating solution, method for producing multilayer printed circuit board using the same solution and multilayer printed circuit board
JP3348846B2 (en) Method of manufacturing multilayer printed wiring board and multilayer printed wiring board
JP2002134921A (en) Multilayer printed wiring board and method for manufacturing the same
JP2001196740A (en) Method for manufacturing multilayer printed wiring board
JP2002271027A (en) Multi-layer printed board
JP2001244640A (en) Multilayer printed wiring board and its manufacturing method
JP2001177254A (en) Filling method for through-hole and manufacturing method for multilayer printed wiring board
JP2003008239A (en) Multilayer printed wiring board

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Effective date: 20090206

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090310

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120319

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4