JP2001124763A - Method and system for diagnosing remaining life of gas turbine high-temperature part - Google Patents

Method and system for diagnosing remaining life of gas turbine high-temperature part

Info

Publication number
JP2001124763A
JP2001124763A JP30150699A JP30150699A JP2001124763A JP 2001124763 A JP2001124763 A JP 2001124763A JP 30150699 A JP30150699 A JP 30150699A JP 30150699 A JP30150699 A JP 30150699A JP 2001124763 A JP2001124763 A JP 2001124763A
Authority
JP
Japan
Prior art keywords
phase
temperature
gas turbine
remaining life
diagnosing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30150699A
Other languages
Japanese (ja)
Inventor
Takehisa Hino
武久 日野
Yutaka Ishiwatari
裕 石渡
Hiroaki Yoshioka
洋明 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30150699A priority Critical patent/JP2001124763A/en
Publication of JP2001124763A publication Critical patent/JP2001124763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a system for diagnosing a remaining life of a gas turbine high-temperature part whereby the remaining life can be highly accurately obtained with using precipitation of a degraded phase of a moving blade and a stationary blade of the gas turbine formed of an Ni group single crystal alloy containing Re as a parameter. SOLUTION: A relationship of a precipitation amount, a temperature and a time of a degraded phase is obtained for the gas turbine high-temperature part formed of the Ni group single crystal alloy containing Re. A use temperature is estimated from a particle size or a precipitation amount of a γ' phase of a surface of the high-temperature part of an actual apparatus. The remaining life is diagnosed by calculating a time when the degraded phase of a predetermined precipitation amount is detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Re(レニウム)
を含有するNi(ニッケル)基単結晶合金からなりガス
タービンの動翼や静翼を構成するガスタービン高温部品
の余寿命を診断する方法およびシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Re (rhenium)
The present invention relates to a method and a system for diagnosing the remaining life of a gas turbine high-temperature component that is made of a Ni (nickel) -based single crystal alloy and that constitutes a moving blade and a stationary blade of a gas turbine.

【0002】[0002]

【従来の技術】従来、ガスタービンの設計寿命は運転中
の材料劣化の影響は考慮せず、使用材の材料データベー
スを用いた単純化したモデルのもとで計算が行われてい
る。このため材料寿命は設計時にかなりの安全率を考慮
し、実寿命に対し安全側にシフトした設定となってい
る。またガスタービンの運転条件が寿命に与える影響に
ついても大まかに分類され、その点からも安全度を過大
に見積もった設定となっている。
2. Description of the Related Art Heretofore, the design life of a gas turbine has not been taken into account by the influence of material deterioration during operation, but has been calculated based on a simplified model using a material database of materials used. For this reason, the material life is set to a safe side with respect to the actual life in consideration of a considerable safety factor at the time of design. In addition, the effects of the operating conditions of the gas turbine on the service life are roughly classified, and from this point too, the safety level is set to be overestimated.

【0003】このようにガスタービンの高温部品は実寿
命に対し設計寿命がかなり短く設定されており、使用に
於いて高温部品の交換頻度が高く、総運転コストにしめ
る部品コストの割合が高くなり運転効率上の問題となっ
てきた。
As described above, the high-temperature components of a gas turbine are designed to have a design life that is considerably shorter than the actual life, and the frequency of replacement of the high-temperature components in use is high. It has been an efficiency issue.

【0004】そのため、設計段階できまるクリープある
いは疲労寿命と、実機の運転・立地上の環境条件により
設定される寿命(設定寿命)をベースにして、同一機
種、同一運転形態をとるガスタービンにおいて先行的に
運転されているガスタービンにて材料劣化診断式を作成
し、以後運転開始する機種にその劣化診断式を適用し、
設計寿命を使用時に補正することによって翼寿命を延伸
させる保守管理手法が開発され使用されてきた。その寿
命評価パラメータとしては、例えば特開平9−273978号
公報や特開平8−160035号公報に開示されている表面き
裂,特開平4−25745 号公報に開示されているγ’粒径
等がある。
[0004] Therefore, based on the creep or fatigue life determined at the design stage and the life (set life) set by the environmental conditions of the operation and location of the actual machine, the gas turbines of the same model and the same operation form are prioritized. Material deterioration diagnosis formula is created in a gas turbine that is operating in a typical manner, and the deterioration diagnosis formula is applied to the models that start operation thereafter,
Maintenance techniques have been developed and used to extend blade life by correcting the design life during use. As the life evaluation parameter, for example, a surface crack disclosed in JP-A-9-273978 or JP-A-8-160035, a γ ′ particle size disclosed in JP-A-4-25745, and the like are used. is there.

【0005】[0005]

【発明が解決しようとする課題】ガスタービン高温部品
としては、ガスタービンの効率向上のための燃焼ガス温
度の上昇により、従来の普通鋳造合金や一方向凝固合金
に代わって単結晶合金が使用されるようになってきてい
る。また単結晶合金においてもReを添加しないCMS
X−2(キャノン・マスケゴン社商品名)やPWA−1
480(ユナイテッドテクノロジー社商品名)等の第1
世代の単結晶合金からReを約3wt%程度含有する第
2世代の単結晶合金,Reを5wt%以上含有するCM
SX−10(キャノン・マスケゴン社商品名)等の第3
世代の単結晶合金が採用されるようになっている。
As a high temperature component of a gas turbine, a single crystal alloy is used in place of a conventional ordinary cast alloy or a directionally solidified alloy due to an increase in combustion gas temperature for improving the efficiency of the gas turbine. It is becoming. CMS without adding Re even in single crystal alloy
X-2 (trade name of Canon Muskegon) or PWA-1
480 (product name of United Technology)
A second-generation single crystal alloy containing about 3 wt% of Re from a single crystal alloy of the generation, a CM containing 5 wt% or more of Re
Third such as SX-10 (trade name of Canon Muskegon)
Generational single crystal alloys are being adopted.

【0006】このようなReを添加した単結晶合金にお
いては、使用時にシグマ相やR相と呼ばれる劣化相を析
出し、従来の普通鋳造合金や一方向凝固合金において問
題となってきた表面き裂やγ’相の粗大化等のパラメー
タに代わり、劣化相を起点としたクラックの生成や劣化
相を経路とするクラック進展が寿命支配因子となるた
め、従来の寿命診断手法にて余寿命予測を行うことは困
難となってきている。
In such a single crystal alloy to which Re is added, a deteriorated phase called a sigma phase or an R phase is precipitated during use, and a surface crack which has been a problem in conventional ordinary cast alloys and directionally solidified alloys. Crack generation starting from the deteriorated phase and crack propagation progressing through the deteriorated phase are the life governing factors instead of parameters such as coarsening and γ 'phase coarsening. It is becoming difficult to do.

【0007】そこで本発明は、Reを含有するNi基単
結晶合金からなるガスタービンの動翼や静翼について劣
化相の析出をパラメータとして精度高く余寿命を求める
ことのできるガスタービン高温部品の余寿命診断手法お
よび余寿命診断システムを提供することを目的とする。
Accordingly, the present invention provides a gas turbine high-temperature component capable of accurately determining the remaining life of a rotor blade and a stationary blade of a gas turbine made of a Ni-based single crystal alloy containing Re, using precipitation of a deteriorated phase as a parameter. An object of the present invention is to provide a life diagnosis method and a remaining life diagnosis system.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、Re
を含有するNi基単結晶合金からなるガスタービン高温
部品について劣化相の析出量と温度、時間の関係をあら
かじめ求め、実機高温部品表面のγ’相の粒径より使用
温度を推定し、劣化相が所定の析出量となる時間を算出
することによっておこなうことを特徴とする。
According to the first aspect of the present invention, there is provided a semiconductor device comprising:
The relationship between the precipitation amount of the deteriorated phase, the temperature and the time for gas turbine high-temperature components made of a Ni-based single crystal alloy containing Is calculated by calculating a time at which a predetermined amount of precipitation occurs.

【0009】請求項2の発明は、請求項1の発明におい
てガスタービン高温部品の表面温度分布をあらかじめ測
定し、コーティングを施工していない箇所のγ’相の粒
径を測定することによって最も劣化相の析出度が多い箇
所の余寿命を非破壊にて算出することを特徴とする。
The second aspect of the present invention is the most degraded by measuring the surface temperature distribution of the gas turbine high-temperature component in advance and measuring the particle size of the γ ′ phase in a portion where no coating is applied in the first aspect of the present invention. It is characterized in that the remaining life of a portion where the degree of phase precipitation is large is calculated in a non-destructive manner.

【0010】請求項3の発明は、Reを含有するNi基
単結晶合金からなるガスタービンの高温部品について劣
化相の析出量と温度、時間の関係をあらかじめ求め、実
機高温部品表面に既に析出した劣化相が所定の析出量と
なる時間を算出することによっておこなうことを特徴と
する。
According to a third aspect of the present invention, the relationship between the amount of the deteriorated phase, the temperature, and the time is determined in advance for the high-temperature components of a gas turbine made of a Ni-based single crystal alloy containing Re, and the relationship has already been found on the surface of the actual high-temperature components. It is characterized in that it is performed by calculating the time during which the deteriorated phase has a predetermined amount of precipitation.

【0011】請求項4の発明は、請求項3の発明におい
てガスタービン高温部品の表面表面温度分布をあらかじ
め測定し、コーティングを施工していない箇所の劣化相
の析出量を測定することによって最も劣化相の析出量が
多い箇所の余寿命を非破壊にて算出することを特徴とす
る。
According to a fourth aspect of the present invention, in the third aspect of the present invention, the most deteriorated state is obtained by measuring the surface temperature distribution of the surface of the gas turbine high-temperature component in advance and measuring the deposition amount of the degraded phase at the portion where the coating is not applied. It is characterized in that the remaining life of a portion where the amount of phase precipitation is large is calculated nondestructively.

【0012】請求項5の発明は、請求項1または3の発
明において合金の相安定性を示す指標であるNv値を使
用して余寿命診断式を算出することを特徴とする。請求
項6の発明は、請求項1または3の発明において合金の
相安定性を示す指標であるMdγ値を使用して余寿命診
断式を算出することを特徴とする。
A fifth aspect of the present invention is characterized in that, in the first or third aspect of the present invention, the remaining life diagnostic formula is calculated using an Nv value which is an index indicating the phase stability of the alloy. A sixth aspect of the present invention is characterized in that, in the first or third aspect of the present invention, the remaining life diagnostic expression is calculated using an Mdγ value which is an index indicating the phase stability of the alloy.

【0013】請求項7の発明は、ガスタービン高温部品
を構成する合金の劣化相析出と温度,時間の関係式を算
出する関係式演算手段と、前記関係式に実機部品の温度
分布,表面温度を代入することによって余寿命を算出す
る余寿命演算手段とを備えた構成とする。
According to a seventh aspect of the present invention, there is provided a relational expression calculating means for calculating a relational expression between the precipitation phase of the alloy constituting the high temperature component of the gas turbine, the temperature, and the time, and the temperature distribution and the surface temperature of the actual machine part in the relational expression. And a remaining life calculating means for calculating the remaining life by substituting.

【0014】このように本発明は、劣化相を析出するN
i基単結晶合金について劣化相の析出量と温度,時間の
関係をあらかじめ求め、高温部品表面のγ’相の粒径よ
りその表面温度を推定することによって劣化相の析出時
間を算出し、余寿命の予測を行う。また劣化相が少量析
出してしまったNi基単結晶合金についても、劣化相の
析出量と温度、時間の関係をあらかじめ求め、高温部品
表面に既に析出した劣化相が規定の析出量となる時間を
算出し余寿命予測を行う。またあらかじめガスタービン
動静翼のような高温部品の表面温度を解析的に求め、コ
ーティング等が金属表面を覆っていない箇所の金属組織
を鏡面まで研磨した後、レプリカフィルムにて金属組織
を転写し、γ’相の粒径および劣化相の析出量を測定す
ることにより、最も劣化相が析出していると考えられる
部位の劣化相の析出量を推定し余寿命を推定する。
As described above, according to the present invention, N
The relationship between the precipitation amount of the degraded phase, the temperature and the time for the i-based single crystal alloy is obtained in advance, and the surface temperature is estimated from the particle size of the γ 'phase on the surface of the high-temperature component to calculate the deposition time of the degraded phase. Predict the life expectancy. For Ni-based single crystal alloys in which a small amount of the deteriorated phase is precipitated, the relationship between the amount of the deteriorated phase, temperature, and time is determined in advance, and the time required for the deteriorated phase, which has already been deposited on the surface of the high-temperature component, to reach the specified amount. Is calculated and the remaining life is predicted. In addition, analytically determine the surface temperature of high-temperature components such as gas turbine rotor blades in advance, and after polishing the metal structure to a mirror surface where the coating etc. does not cover the metal surface, transfer the metal structure with a replica film, By measuring the particle size of the γ 'phase and the amount of precipitated deteriorated phase, the amount of precipitated deteriorated phase at the portion where the deteriorated phase is considered to be most deposited is estimated, and the remaining life is estimated.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を具体
的に説明する。なお本実施の形態では、劣化相の析出が
寿命支配因子となる、添加元素としてReを5wt%含
む第3世代のNi基単結晶合金の余寿命を推定する場合
について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below. In the present embodiment, a case will be described in which the remaining life of a third-generation Ni-based single crystal alloy containing 5 wt% of Re as an additional element, in which the precipitation of a deteriorated phase is a life controlling factor, is estimated.

【0016】図1は本実施の形態の余寿命診断方法を示
すフローチャートである。すなわち、あらかじめ実験室
にて実機同等材の高温時効試験を行い(ステップS1
1)、時効試験片のγ’粒径および劣化相の析出量を測
定する。また時効試験材によりクリープ試験,低サイク
ル疲労試験等の機械特性評価を行う(ステップS12)。
つづいて時効時間および時効温度と劣化相の析出開始時
刻および劣化相,γ’相の粗大化速度から劣化相析出予
測式を作成する(ステップS13)。さらに機械特性評価
から得られる材料のクライテリアおよび材料のばらつ
き,設計上の安全率を加味して規格化寿命予測式を作成
し、材料表面温度を横軸に、規格化寿命を縦軸にとった
損傷マスターカーブを作成する(ステップS14)。
FIG. 1 is a flowchart showing a method of diagnosing remaining life of the present embodiment. That is, a high-temperature aging test of a material equivalent to an actual machine is performed in advance in a laboratory (step S1).
1) Measure the γ 'particle size of the aged test specimen and the amount of precipitated deteriorated phase. In addition, mechanical properties such as a creep test and a low cycle fatigue test are evaluated using the aging test material (step S12).
Subsequently, an equation for predicting the precipitation of the deteriorated phase is created from the aging time, the aging temperature, the precipitation start time of the deteriorated phase, and the coarsening rate of the deteriorated phase and the γ 'phase (step S13). Furthermore, a standardized life prediction formula was created taking into account the material criteria obtained from the evaluation of the mechanical properties, the variation in the material, and the safety factor in the design, and the horizontal axis indicates the material surface temperature and the vertical axis indicates the standardized life. A damage master curve is created (step S14).

【0017】別に、実機ガスタービン高温部品の金属組
織をレプリカフィルムを用いて採取し(ステップS1
5)、実機高温部品のγ’粒径を測定し、劣化相が析出
している場合は劣化相の析出量を測定する(ステップS
16)。次に、γ’粒径および劣化相の析出量から実機高
温部品の表面温度を推定し(ステップS17)、前記ステ
ップS14で得られている損傷マスターカーブと比較する
ことにより余寿命を推定する(ステップS18)。
Separately, a metal structure of a high-temperature component of an actual gas turbine is collected using a replica film (step S1).
5) Measure the γ 'particle size of the high-temperature component of the actual machine, and if the deteriorated phase is precipitated, measure the amount of the precipitated deteriorated phase (step S).
16). Next, the surface temperature of the high-temperature component of the actual machine is estimated from the γ ′ grain size and the precipitation amount of the deteriorated phase (step S17), and the remaining life is estimated by comparing with the damage master curve obtained in step S14 (step S14). Step S18).

【0018】図2に損傷マスターカーブの作成手順を示
す。この作成手順は大きく分けて、劣化相析出予測式作
成の手順と、機械特性の劣化相析出率依存式作成の手順
とからなる。
FIG. 2 shows a procedure for creating a damaged master curve. This preparation procedure is roughly divided into a procedure for preparing a deteriorated phase precipitation prediction equation and a procedure for preparing a deteriorated phase precipitation rate dependent equation of mechanical properties.

【0019】高温部品の合金のクリープ特性と低サイク
ル疲労特性が寿命支配因子であるとすれば、マスターカ
ーブ作成用の機械特性評価試験としてクリープ試験およ
び低サイクル疲労試験を実施するが、実機高温部品の表
面温度を考慮してまず試験条件を決定する(ステップS
21)。つづいてこの決定した試験条件にもとづいて温
度、時間をパラメータとして高温時効試験を実施する
(ステップS22)。これより温度(T’)をパラメータ
として劣化相の析出開始時間の予測式F=f(T’)を
算出する(ステップS23)。
Assuming that the creep characteristics and low cycle fatigue characteristics of the alloy of the high temperature component are the life controlling factors, a creep test and a low cycle fatigue test are performed as a mechanical characteristic evaluation test for preparing a master curve. First, test conditions are determined in consideration of the surface temperature of step (step S).
twenty one). Subsequently, based on the determined test conditions, a high-temperature aging test is performed using temperature and time as parameters (step S22). From this, using the temperature (T ') as a parameter, a prediction formula F = f (T') for the precipitation start time of the deteriorated phase is calculated (step S23).

【0020】ここで、この劣化相は従来から相安定性の
評価に用いられているNvあるいはMdγと温度および
時間にたいして図3および図4に示すような関係となる
ことが判明している。ここで図中のNvとMdγはRe
元素の効果を含まない値を示している。またMdγはγ
相中の元素濃度を用いて算出したMd値である。図3、
図4は、Nv値あるいはMdγ値をX軸とし、時間をY
軸とし、Re含有量をZ軸にとり、劣化相の析出領域を
ハッチングして示している。これらの図より、Nv値が
1.0 以上2.5 以下でRe含有量が2.5 wt%以下の領
域、また、Mdγ値が0.86以上0.94以下でRe含有量が
2.5 wt%以下の領域では劣化相の予測が可能であると
いえる。
Here, it has been found that this deteriorated phase has a relationship as shown in FIGS. 3 and 4 with respect to temperature and time with respect to Nv or Mdγ conventionally used for evaluating phase stability. Here, Nv and Mdγ in FIG.
The values do not include the effects of the elements. Mdγ is γ
It is an Md value calculated using the element concentration in the phase. FIG.
FIG. 4 shows that the Nv value or the Mdγ value is on the X axis and the time is Y
The axis of abscissa indicates the Re content on the Z axis, and the precipitation region of the deteriorated phase is hatched. From these figures, the Nv value is
When the Re content is in the range of 1.0 to 2.5 and the Re content is 2.5 wt% or less, and when the Mdγ value is 0.86 or more and 0.94 or less, the Re content is
It can be said that the deterioration phase can be predicted in the region of 2.5 wt% or less.

【0021】つづいて、後述する機械特性の寿命を決め
る劣化相の析出量に達する時間を算出するための予測式
G=g(T’’)を算出する(ステップS23)。そして
次のステッS24において、劣化相析出開始時間Fと所定
の析出率に達する時間Gを加えて劣化相析出予測式LP
=f(T’)+g(T’’)を得る。
Subsequently, a prediction formula G = g (T ″) for calculating the time required to reach the amount of deposition of the deteriorated phase that determines the life of the mechanical characteristics described later is calculated (step S23). Then, in the next step S24, the deterioration phase precipitation start time F and the time G at which the predetermined precipitation rate is reached are added, and the deterioration phase precipitation prediction formula LP is added.
= F (T ′) + g (T ″).

【0022】別に、設計時に解析的に得られる実機高温
部品の応力と温度を参考にして低サイクル疲労試験とク
リープ試験条件を選定する(ステップS25)。また、劣
化相の析出量を変化させた試験片を高温時効試験により
あらかじめ作製し、(ステップS21)にて決定した条件
にてクリープ試験と低サイクル疲労試験を行い(ステッ
プS26)、劣化相の析出量とクリープ試験および低サイ
クル疲労試験結果から劣化相の析出限界量に達するまで
の時間の予測式H= h(P,C,T)を決定する(ステ
ップS27)。ここでPはクリープ試験の印加応力,Cは
低サイクル疲労試験の全ひずみ範囲,Tは温度を示して
いる。
Separately, the conditions of the low cycle fatigue test and the creep test are selected with reference to the stress and temperature of the high temperature parts of the actual machine obtained analytically at the time of design (step S25). Further, a test piece in which the precipitation amount of the deteriorated phase was changed was prepared in advance by a high-temperature aging test, and a creep test and a low cycle fatigue test were performed under the conditions determined in (Step S21) (Step S26). A prediction formula H = h (P, C, T) for estimating the time required to reach the deposition limit of the deteriorated phase is determined from the amount of precipitation and the results of the creep test and the low cycle fatigue test (step S27). Here, P indicates the applied stress in the creep test, C indicates the entire strain range in the low cycle fatigue test, and T indicates the temperature.

【0023】次にステップS28において、劣化相析出予
測時間に材料によるばらつきと安全率を考慮した消費寿
命式(LP×安全率)を作成し、機械特性から得られた
限界寿命Hとあわせ規格化寿命式Lを作成する。
Next, in step S28, a consumption life formula (LP × safety factor) is created in consideration of the variation in material and the safety factor in the predicted deterioration phase precipitation time, and standardized together with the critical life H obtained from the mechanical characteristics. A life formula L is created.

【0024】図5は、実機運転試験に供した動翼につい
て上述の方法により余寿命を求め、試験翼から切り出し
た試験片について実施したクリープ試験結果を比較した
ものである。これより本発明の余寿命予測法により得ら
れる余寿命はクリープ試験により得られる余寿命と高い
相関があるといえる。
FIG. 5 shows a comparison between the results of creep tests performed on the test pieces cut out from the test blades by determining the remaining life of the rotor blades subjected to the actual machine operation test by the above-described method. From this, it can be said that the remaining life obtained by the remaining life prediction method of the present invention has a high correlation with the remaining life obtained by the creep test.

【0025】また図6は、実機運転試験に供した静翼に
ついて上述の方法により余寿命を求め、試験翼から切り
出した試験片について実施した低サイクル試験結果を比
較したものである。これより本発明の余寿命予測法によ
り得られる余寿命は低サイクル試験により得られる余寿
命に対して高い相関があるといえる。
FIG. 6 shows a comparison between the results of the low-cycle test performed on the test pieces cut out from the test blades by obtaining the remaining life of the stationary blades subjected to the actual operation test. From this, it can be said that the remaining life obtained by the remaining life prediction method of the present invention has a high correlation with the remaining life obtained by the low cycle test.

【0026】図7は、設計時の解析による動翼表面の温
度分布と運転試験による劣化相の析出分布を示したもの
である。動翼表面の温度分布と劣化相の析出量には高い
相関があり、コーティングが施工されていない箇所の金
属組織をレプリカフィルムに転写しγ’粒径および劣化
相の析出量を測定することにより余寿命を推定すること
が可能であるといえる。
FIG. 7 shows the temperature distribution on the blade surface by analysis at the time of design and the precipitation distribution of the deteriorated phase by an operation test. There is a high correlation between the temperature distribution on the rotor blade surface and the amount of precipitated degraded phase, and by transferring the metal structure of the uncoated part to a replica film and measuring the γ 'grain size and the amount of precipitated degraded phase. It can be said that the remaining life can be estimated.

【0027】また図8は、設計時の解析による静翼表面
の温度分布と運転試験による劣化相の析出分布を示した
ものである。静翼表面の温度分布と劣化相の析出量には
高い相関があり、コーティングが施工されていない箇所
の金属組織をレプリカフィルムに転写しγ’粒径および
劣化相の析出量を測定することにより余寿命を推定する
ことが可能であるといえる。
FIG. 8 shows the temperature distribution on the surface of the stationary blade by the analysis at the time of design and the precipitation distribution of the deteriorated phase by the operation test. There is a high correlation between the temperature distribution on the stator blade surface and the amount of the degraded phase deposited, and by transferring the metal structure of the uncoated portion to a replica film and measuring the γ 'grain size and the amount of the degraded phase deposited It can be said that the remaining life can be estimated.

【0028】[0028]

【発明の効果】本発明のガスタービン高温部品の余寿命
診断方法および余寿命診断システムによれば、劣化相の
析出によるき裂の発生およびき裂の進展が寿命支配因子
となる第2世代および3世代Ni基単結晶合金からなる
タービン高温部品について余寿命を非破壊的かつ定量的
に推定することができる。
According to the method and system for diagnosing the remaining life of a gas turbine high-temperature component according to the present invention, the generation of a crack due to the precipitation of a deteriorated phase and the propagation of the crack are factors that govern the life of the second generation and high temperature parts. The remaining life of a turbine high-temperature component made of a third-generation Ni-based single crystal alloy can be nondestructively and quantitatively estimated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態のタービン高温部品の余寿
命診断方法を示すフローチャート。
FIG. 1 is a flowchart showing a method of diagnosing remaining life of a turbine high-temperature component according to an embodiment of the present invention.

【図2】上記実施の形態において損傷マスターカーブを
求めるための手順を示すフローチャート。
FIG. 2 is a flowchart showing a procedure for obtaining a damage master curve in the embodiment.

【図3】Re含有量、相安定性評価指標Nv値と劣化相
の析出時間および温度の関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the Re content, the phase stability evaluation index Nv value, and the deposition time and temperature of the deteriorated phase.

【図4】Re含有量、相安定性評価指標Mdγ値と劣化
相の析出時間および温度の関係を示すグラフ。
FIG. 4 is a graph showing the relationship among the Re content, the phase stability evaluation index Mdγ value, and the deposition time and temperature of the deteriorated phase.

【図5】動翼から切り出した劣化試験片のクリープ寿命
と本発明の方法により推定した余寿命の関係を示すグラ
フ。
FIG. 5 is a graph showing the relationship between the creep life of a deteriorated test piece cut out from a rotor blade and the remaining life estimated by the method of the present invention.

【図6】静翼から切り出した劣化試験片の低サイクル疲
労寿命と本発明の方法により推定した余寿命の関係を示
すグラフ。
FIG. 6 is a graph showing a relationship between a low cycle fatigue life of a deteriorated test piece cut out from a stationary blade and a remaining life estimated by the method of the present invention.

【図7】試験動翼の表面温度分布および劣化相の析出分
布を示す図。
FIG. 7 is a diagram showing a surface temperature distribution and a deposition distribution of a deteriorated phase of a test rotor blade.

【図8】試験静翼の表面温度分布および劣化相の析出分
布を示す図。
FIG. 8 is a view showing a surface temperature distribution of a test vane and a precipitation distribution of a deteriorated phase.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉岡 洋明 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 Fターム(参考) 2G024 AD07 AD24 BA12 CA11 DA03 FA02 2G055 AA05 BA05 BA11 BA14 CA01 CA11 EA08 FA01 FA02  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroaki Yoshioka 2-4, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture F-term in Toshiba Keihin Works (reference) 2G024 AD07 AD24 BA12 CA11 DA03 FA02 2G055 AA05 BA05 BA11 BA14 CA01 CA11 EA08 FA01 FA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Reを含有するNi基単結晶合金からな
るガスタービン高温部品について劣化相の析出量と温
度、時間の関係をあらかじめ求め、実機高温部品表面の
γ’相の粒径より使用温度を推定し、劣化相が所定の析
出量となる時間を算出することによっておこなうことを
特徴とするガスタービン高温部品の余寿命診断方法。
1. The relationship between the amount of degraded phase deposited, the temperature, and the time for a gas turbine high-temperature component made of a Ni-based single crystal alloy containing Re is determined in advance, and the working temperature is determined from the particle size of the γ 'phase on the surface of the actual high-temperature component. A method of diagnosing the remaining life of a high temperature component of a gas turbine, wherein the method is performed by estimating a time when a deteriorated phase reaches a predetermined deposition amount.
【請求項2】 ガスタービン高温部品の表面温度分布を
あらかじめ測定し、コーティングを施工していない箇所
のγ’相の粒径を測定することによって最も劣化相の析
出度が多い箇所の余寿命を非破壊にて算出することを特
徴とする請求項1記載のガスタービン高温部品の余寿命
診断方法。
2. Preliminarily measuring the surface temperature distribution of a gas turbine high-temperature component and measuring the particle size of the γ 'phase in a place where no coating is applied to reduce the remaining life of the place where the degree of precipitation of the deteriorated phase is large. 2. The method for diagnosing remaining life of a high temperature component of a gas turbine according to claim 1, wherein the calculation is performed nondestructively.
【請求項3】 Reを含有するNi基単結晶合金からな
るガスタービンの高温部品について劣化相の析出量と温
度、時間の関係をあらかじめ求め、実機高温部品表面に
既に析出した劣化相が所定の析出量となる時間を算出す
ることによっておこなうことを特徴とするガスタービン
高温部品の余寿命診断方法。
3. The relationship between the amount of the deteriorated phase, the temperature, and the time for a high-temperature component of a gas turbine made of a Ni-based single crystal alloy containing Re is determined in advance, and the deteriorated phase that has already precipitated on the surface of the actual high-temperature component is determined to be a predetermined value. A method for diagnosing remaining life of a gas turbine high-temperature component, wherein the method is performed by calculating a time at which the amount of precipitation is obtained.
【請求項4】 ガスタービン高温部品の表面表面温度分
布をあらかじめ測定し、コーティングを施工していない
箇所の劣化相の析出量を測定することによって最も劣化
相の析出量が多い箇所の余寿命を非破壊にて算出するこ
とを特徴とする請求項3記載のガスタービン高温部品の
余寿命診断方法。
4. Preliminarily measuring the surface temperature distribution of the surface of the gas turbine high-temperature component, and measuring the amount of the degraded phase deposited at a place where the coating is not applied, thereby increasing the remaining life of the location where the degraded phase is deposited most. 4. The method for diagnosing remaining life of a high-temperature component of a gas turbine according to claim 3, wherein the calculation is performed non-destructively.
【請求項5】 合金の相安定性を示す指標であるNv値
を使用して余寿命診断式を算出することを特徴とする請
求項1または3記載のガスタービン高温部品の余寿命診
断方法。
5. A method for diagnosing a remaining life of a high temperature component of a gas turbine according to claim 1, wherein a remaining life diagnosing equation is calculated using an Nv value which is an index indicating phase stability of the alloy.
【請求項6】 合金の相安定性を示す指標であるMdγ
値を使用して余寿命診断式を算出することを特徴とする
請求項1または3記載のガスタービン高温部品の余寿命
診断方法。
6. Mdγ which is an index indicating the phase stability of an alloy
4. The method for diagnosing a remaining life of a high temperature component of a gas turbine according to claim 1, wherein the remaining life diagnosing equation is calculated using the value.
【請求項7】 ガスタービン高温部品を構成する合金の
劣化相析出と温度,時間の関係式を算出する関係式演算
手段と、前記関係式に実機部品の温度分布,表面温度を
代入することによってガスタービン高温部品の余寿命を
算出する余寿命算出手段とを備えたことを特徴とするガ
スタービン高温部品の余寿命診断システム。
7. A relational expression calculating means for calculating a relational expression between the precipitation phase of the alloy forming the high temperature parts of the gas turbine and the temperature and time, and substituting the temperature distribution and the surface temperature of the actual machine parts into the relational expression. And a remaining life calculating means for calculating a remaining life of the gas turbine high-temperature component.
JP30150699A 1999-10-22 1999-10-22 Method and system for diagnosing remaining life of gas turbine high-temperature part Pending JP2001124763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30150699A JP2001124763A (en) 1999-10-22 1999-10-22 Method and system for diagnosing remaining life of gas turbine high-temperature part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30150699A JP2001124763A (en) 1999-10-22 1999-10-22 Method and system for diagnosing remaining life of gas turbine high-temperature part

Publications (1)

Publication Number Publication Date
JP2001124763A true JP2001124763A (en) 2001-05-11

Family

ID=17897747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30150699A Pending JP2001124763A (en) 1999-10-22 1999-10-22 Method and system for diagnosing remaining life of gas turbine high-temperature part

Country Status (1)

Country Link
JP (1) JP2001124763A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124765A (en) * 2002-09-30 2004-04-22 Toshiba Corp Method of estimating service life of rotating machine, and manufacturing device having rotating machine
JP2009145185A (en) * 2007-12-13 2009-07-02 Chugoku Electric Power Co Inc:The Creep lifetime evaluating method
JP2015151996A (en) * 2014-02-19 2015-08-24 三菱日立パワーシステムズ株式会社 Turbine member temperature estimation method
JP2020003373A (en) * 2018-06-29 2020-01-09 東芝エネルギーシステムズ株式会社 Lifetime prediction method, lifetime prediction device, and lifetime prediction device program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124765A (en) * 2002-09-30 2004-04-22 Toshiba Corp Method of estimating service life of rotating machine, and manufacturing device having rotating machine
JP2009145185A (en) * 2007-12-13 2009-07-02 Chugoku Electric Power Co Inc:The Creep lifetime evaluating method
JP2015151996A (en) * 2014-02-19 2015-08-24 三菱日立パワーシステムズ株式会社 Turbine member temperature estimation method
JP2020003373A (en) * 2018-06-29 2020-01-09 東芝エネルギーシステムズ株式会社 Lifetime prediction method, lifetime prediction device, and lifetime prediction device program

Similar Documents

Publication Publication Date Title
JP3186866B2 (en) Method and apparatus for predicting deterioration / damage of structural member
JP4176777B2 (en) Method for predicting crack growth in gas turbine high-temperature parts and crack growth prediction apparatus using this method
JP2004156580A (en) Method for managing lifespan of high temperature gas turbine component and program medium
EP3304034B1 (en) Scheduling inspections and predicting end-of-life for machine components
RU2686745C9 (en) Nickel-based alloy regenerated member, and method for manufacturing same
JP3764616B2 (en) Turbine rotor crack growth prediction method
JP3392526B2 (en) Equipment maintenance management support equipment
US20040240600A1 (en) Positron annihilation for inspection of land based industrial gas turbine components
CN112525907A (en) Method for evaluating residual creep life of high-temperature static component material of gas turbine in service
CN112307646A (en) Method for evaluating residual life of thermal mechanical fatigue of oriented alloy material
CN109957744A (en) The manufacturing method of nickel-base alloy remanufactured component and the remanufactured component
JPH10160646A (en) Method for anticipating fatigue life of structure member
JP2001124763A (en) Method and system for diagnosing remaining life of gas turbine high-temperature part
JPH10293049A (en) Maintenance control method and device for gas turbine
Moverare et al. Thermomechanical fatigue of single-crystal superalloys: influence of composition and microstructure
JPH11248605A (en) Estimation device and method for creep remaining life of gas turbine vane
JPH09304131A (en) Monitoring device for life of high-temperature apparatus
JP2804701B2 (en) Gas turbine coating blade deterioration diagnosis method and apparatus
JP3794943B2 (en) Method for estimating metal temperature and material properties of Ni-based alloy parts
JPH05223809A (en) Remaining service life estimating method for gamma' phase precipitation reinforcement type alloy
JP2004012377A (en) Method for estimating strain of high-temperature component of gas turbine and strain estimation device
JP2801741B2 (en) Damage diagnosis method for gas turbine hot parts.
JPH08160035A (en) Method and apparatus for controlling life of high temperature part of gas turbine
Pridemore Stress-rupture characterization in nickel-based superalloy gas turbine engine components
CN110907269A (en) Titanium alloy fatigue life prediction method based on micro scratches