JP2001116201A - Waste heat recovery boiler - Google Patents

Waste heat recovery boiler

Info

Publication number
JP2001116201A
JP2001116201A JP29423299A JP29423299A JP2001116201A JP 2001116201 A JP2001116201 A JP 2001116201A JP 29423299 A JP29423299 A JP 29423299A JP 29423299 A JP29423299 A JP 29423299A JP 2001116201 A JP2001116201 A JP 2001116201A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
exhaust gas
transfer pipe
recovery boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29423299A
Other languages
Japanese (ja)
Inventor
Seiji Kikuhara
誠治 菊原
Eiji Murakami
英治 村上
Shoichi Takeda
祥一 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP29423299A priority Critical patent/JP2001116201A/en
Publication of JP2001116201A publication Critical patent/JP2001116201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waste heat recovery boiler having a heat transfer pipe support structure capable of selfsupportingly installing a heat transfer pipe having a height at which buckling heretofore occurs by improving the limit buckling height of a heat transfer pipe panel. SOLUTION: A heat transfer pipe panel 34 is bent in a V-shape, as seen from above, to a flow of exhaust gas 1 to form a heat transfer pipe group, and width is provided with regard the direction of an exhaust gas flow. Since, as mentioned above, wide width is provided with regard to the direction of an exhaust gas flow and heat transfer pipes 26 are respectively coupled together by supports 35, a section secondary moment against bending is increased and as a result, bending rigidity of a heat transfer pipe panel 34 is improved, whereby the limit bucking height by tare weight available when a self-standing support system is employed is further increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は排熱回収ボイラに係
り、特に排熱回収ボイラに設置される伝熱管の支持構造
に特徴のある排熱回収ボイラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery boiler, and more particularly to an exhaust heat recovery boiler characterized by a support structure of a heat transfer tube installed in the exhaust heat recovery boiler.

【0002】[0002]

【従来の技術】コンバインドサイクル発電プラントは、
ガスタービンで発電を行うとともに、ガスタービンから
排出された排ガス中の熱を排熱回収ボイラで回収して蒸
気を発生させ、蒸気タービンでも発電を行うようにした
ものである。一般に、コンバインドサイクル発電プラン
トは、発電効率が高いことに加えて負荷応答性が高く、
急激な電力需要の増加に対応できることから、近年多用
される傾向にある。
2. Description of the Related Art A combined cycle power plant is
In addition to the power generation by the gas turbine, the heat in the exhaust gas discharged from the gas turbine is recovered by a waste heat recovery boiler to generate steam, and the steam turbine also generates power. In general, combined cycle power plants have high load responsiveness in addition to high power generation efficiency.
Since it can cope with a sudden increase in power demand, it has been used frequently in recent years.

【0003】図4に従来から実施されている排熱回収ボ
イラの構成の一例を示す。この排熱回収ボイラは、上部
に蒸気ドラム11,12を配置し、伝熱管を鉛直方向に
配置した横置き型の自然循環ボイラである。このボイラ
では、ケーシング2内のガス流れ方向に沿って、過熱器
3、高圧蒸発器4、脱硝装置5、高圧節炭器6、低圧蒸
発器7及び低圧節炭器8が配置されている。
FIG. 4 shows an example of the configuration of a conventional heat recovery steam generator. This exhaust heat recovery boiler is a horizontal type natural circulation boiler in which steam drums 11 and 12 are arranged on the upper part and heat transfer tubes are arranged in a vertical direction. In this boiler, a superheater 3, a high-pressure evaporator 4, a denitration device 5, a high-pressure economizer 6, a low-pressure evaporator 7, and a low-pressure economizer 8 are arranged along the gas flow direction in the casing 2.

【0004】このような構成の排熱回収ボイラでは、ケ
ーシング2内に流入したガスタービンからの排気ガス1
は、過熱器3、高圧蒸発器4で熱交換された後、脱硝装
置5に入り、排ガス1中に含まれる窒素酸化物が除去さ
れる。さらに、この排ガス1は高圧節炭器6、低圧蒸発
器7、低圧節炭器8を順次通過し、伝熱管内の内部流体
と熱交換を行い、温度が低下した状態で図示しない煙突
から排出される。
In the exhaust heat recovery boiler having such a configuration, the exhaust gas 1 from the gas turbine flowing into the casing 2 is used.
After the heat is exchanged in the superheater 3 and the high-pressure evaporator 4, the gas enters the denitration apparatus 5, and nitrogen oxides contained in the exhaust gas 1 are removed. Further, the exhaust gas 1 sequentially passes through the high-pressure economizer 6, the low-pressure evaporator 7, and the low-pressure economizer 8, exchanges heat with the internal fluid in the heat transfer tube, and is discharged from a chimney (not shown) in a state where the temperature is lowered. Is done.

【0005】この図4に示した過熱器3、高圧蒸発器
4、高圧節炭器6、低圧蒸発器7及び低圧節炭器8は、
それぞれ鉛直方向に配置した伝熱管群で構成されてい
る。これらの鉛直方向に配置した伝熱管群は、吊り下げ
式あるいは自立式のいずれかの方式で支持されている。
The superheater 3, high-pressure evaporator 4, high-pressure economizer 6, low-pressure evaporator 7, and low-pressure economizer 8 shown in FIG.
Each is composed of a group of heat transfer tubes arranged in the vertical direction. These vertically arranged heat transfer tube groups are supported by either a hanging type or a self-standing type.

【0006】図5は吊り下げ式の支持方法で支持された
伝熱管群、ここでは伝熱管パネルの支持状態を示す図で
ある。この例では、上部管寄せ24と下部管寄せ28を
複数の伝熱管26で接続することによって構成される伝
熱管パネル34が4組配置され、それぞれの伝熱管パネ
ル34は、吊り部材25で支持梁21から吊り下げられ
ている。下部管寄せ28には管寄せ支持部材27を介し
てラグ29が取り付けられており、このラグ29をブラ
ケット30内に収容し、ラグ29の位置を規制すること
によって排ガス1の流れ方向への伝熱管パネルの振れを
防止できるようになっている。
FIG. 5 is a view showing a heat transfer tube group supported by a hanging type support method, here a support state of a heat transfer tube panel. In this example, four sets of heat transfer tube panels 34 configured by connecting the upper header 24 and the lower header 28 with a plurality of heat transfer tubes 26 are arranged, and each of the heat transfer tube panels 34 is supported by the suspending member 25. It is suspended from the beam 21. A lug 29 is attached to the lower header 28 via a header support member 27. The lug 29 is accommodated in a bracket 30, and the position of the lug 29 is regulated to transmit the exhaust gas 1 in the flow direction. The heat tube panel can be prevented from swaying.

【0007】また、ラグ29とブラケット30との間に
は鉛直方向に空間が設けられ、伝熱管26の熱膨張によ
る伸びを吸収できるようになっている。さらに、蒸気流
による振動を抑制するために、伝熱管26は相互に連結
されている。この連結方式としては、例えば図7に示す
ようなハニカムサポート35と称される構造が採用され
ている。なお、図5において符号22,31は保温材、
符号23,32はケーシング、符号33は支持梁であ
る。
A space is provided between the lug 29 and the bracket 30 in the vertical direction so that the heat transfer tube 26 can absorb the expansion due to the thermal expansion. Further, the heat transfer tubes 26 are connected to each other to suppress vibration caused by the steam flow. As this connection method, for example, a structure called a honeycomb support 35 as shown in FIG. 7 is employed. In FIG. 5, reference numerals 22 and 31 are heat insulating materials,
Reference numerals 23 and 32 denote casings, and reference numeral 33 denotes a support beam.

【0008】図6は自立式の支持方法で支持された伝熱
管群(伝熱管パネル)支持状態を示す図である。この例
では、上部管寄せ24、伝熱管26及び下部管寄せ28
からなる4組の伝熱管パネル34を自立させている。自
立支持方式においても吊り下げ式の場合と同様に伝熱管
26はハニカムサポート35などによって連結される
(図7)。なお、図5と同様に、図6において符号31
は保温材、符号32はケーシングは支持梁である。
FIG. 6 is a view showing a heat transfer tube group (heat transfer tube panel) supported by a self-supporting supporting method. In this example, the upper header 24, the heat transfer tube 26, and the lower header 28
The four sets of heat transfer tube panels 34 are made independent. Also in the self-supporting system, the heat transfer tubes 26 are connected by a honeycomb support 35 or the like as in the case of the hanging system (FIG. 7). Note that, as in FIG.
Denotes a heat insulating material, and 32 denotes a support beam for the casing.

【0009】[0009]

【発明が解決しようとする課題】ところで、前記吊り下
げ式の支持方式では、伝熱管26に坐屈破壊が生じない
という長所はあるが、伝熱管パネル群の全ての重量を支
持部材21で吊り下げて支持することになるので、支持
部材21及びこの支持部材21を基礎から支える鉄骨に
剛性の高い大型の部材を使用する必要があり、必然的に
コストが高くなる。一方、自立支持方式では、伝熱管2
6の自重は支持梁33を介して基礎で支持されるので、
上部ケーシングに伝熱管26を支える梁は必要としな
い。そのため、吊り下げ式に比べてコスト的に有利であ
り、伝熱管の支持方法としては、吊り下げ式よりも自立
式を採用するほうが好ましい。
By the way, in the above-mentioned suspension type support system, there is an advantage that buckling breakage does not occur in the heat transfer tubes 26, but the entire weight of the heat transfer tube panel group is suspended by the support member 21. Since the support member 21 is lowered and supported, it is necessary to use a large member having high rigidity for the support member 21 and a steel frame supporting the support member 21 from the foundation, which inevitably increases the cost. On the other hand, in the self-supporting system, the heat transfer tubes 2
6 is supported on the foundation via the support beam 33,
A beam for supporting the heat transfer tube 26 is not required in the upper casing. Therefore, it is advantageous in terms of cost as compared with the hanging type, and it is preferable to adopt a self-supporting type rather than the hanging type as a method of supporting the heat transfer tube.

【0010】しかし、自立型の支持方式では、図9に示
すように伝熱管パネル34は自重により坐屈破壊を生じ
る可能性があり、伝熱管高さには自ずと限界がある。す
なわち、ボイラが大型になり、伝熱管の高さが高くなる
と、特に排気ガスの上流側のガス温度が高い領域におい
て自重による坐屈破壊が問題となる。そのため、今度は
自立型の支持方式を採用することができなくなる。
[0010] However, in the self-supporting support system, as shown in FIG. 9, the heat transfer tube panel 34 may cause buckling failure due to its own weight, and the height of the heat transfer tube is naturally limited. That is, when the size of the boiler is increased and the height of the heat transfer tube is increased, buckling breakage due to its own weight becomes a problem particularly in a region where the gas temperature on the upstream side of the exhaust gas is high. Therefore, a self-supporting support system cannot be adopted this time.

【0011】図8はFEM解析によって求めた伝熱管高
さと坐屈限界荷重との関係を示す特性図である。図8か
ら分かるように、伝熱管高さが高くなるほど自重による
荷重が増加し、ある高さ以上になると限界坐屈荷重を上
回ることになり、それだけでは構造物を構築することが
できない。
FIG. 8 is a characteristic diagram showing the relationship between the heat transfer tube height and the buckling limit load determined by FEM analysis. As can be seen from FIG. 8, as the height of the heat transfer tube increases, the load due to its own weight increases. When the height exceeds a certain height, the load exceeds the limit buckling load, and a structure alone cannot be constructed.

【0012】本発明は、斯かる点に鑑みてなされたもの
で、その目的は、伝熱管パネルの限界坐屈高さを向上さ
せ、従来では坐屈が生じたような高い伝熱管を自立させ
ることができる伝熱管支持構造を備えた排熱回収ボイラ
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the limit buckling height of a heat transfer tube panel, and to make a high heat transfer tube that is buckled in the past stand alone. It is an object of the present invention to provide a heat recovery steam generator provided with a heat transfer tube supporting structure capable of performing the heat recovery.

【0013】[0013]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、複数の伝熱管群をガスの流れ方向を横切
る方向に自立的に配置して熱交換を行う排熱回収ボイラ
において、前記伝熱管群にそれぞれ排ガスの流れ方向に
対して進出した部分と後退した部分とを設けて連結部材
によって各伝熱管を連結し、流れ方向に対して平行な方
向に幅を持たせて自立させるように構成した。
To achieve the above object, the present invention relates to a waste heat recovery boiler which performs heat exchange by independently arranging a plurality of heat transfer tube groups in a direction transverse to a gas flow direction. The heat transfer tube group is provided with a portion that has advanced to the flow direction of the exhaust gas and a portion that retreats, and each heat transfer tube is connected by a connecting member, and has a width in a direction parallel to the flow direction to be independent. It was configured as follows.

【0014】この場合、前記伝熱管を平面視くの字型に
曲げられた部分を有する下部管寄せに立設するように構
成しても、前記伝熱管を所定本数ずつ平面視直線状に配
置して1単位の伝熱管群を構成し、さらに、隣接する各
単位の伝熱管群を相対的に角度を持って連結してもよ
い。
[0014] In this case, even if the heat transfer tubes are arranged upright on the lower header having a portion bent in a U shape when viewed in plan, the heat transfer tubes are arranged in a predetermined number of straight lines in plan view. Thus, one unit of the heat transfer tube group may be configured, and the heat transfer tube groups of the adjacent units may be connected with a relative angle.

【0015】なお、本実施形態では、連結部材としてハ
ニカムサポートを使用している。
In the present embodiment, a honeycomb support is used as a connecting member.

【0016】[0016]

【発明の実施の形態】以下、図面を参照し、本発明の実
施形態について説明する。なお、以下の説明において、
前述の従来例と同等な各部には同一の参照符号を付し、
重複する説明は省略する。
Embodiments of the present invention will be described below with reference to the drawings. In the following description,
The same parts as those in the conventional example described above are denoted by the same reference numerals,
Duplicate description will be omitted.

【0017】本発明は図2の概念図に示すように、伝熱
管群を排ガス1の流れ方向に対して上側から見て(平面
視)V字型に(図2(a))配置し、排ガス流れ方向に
対して幅を持たせた(図2(b))ものである。このよ
うに排ガス流れ方向に対して幅を大きく取ることができ
れば、伝熱管26はそれぞれサポート35によって結合
されているため曲げに対して断面2次モーメントが大き
くなり、結果として伝熱管パネル34の曲げ剛性が向上
する。これにより、自立型の支持方式を採用したときの
自重による限界坐屈高さをより高くすることができる。
In the present invention, as shown in the conceptual diagram of FIG. 2, the heat transfer tube group is arranged in a V-shape (FIG. 2A) when viewed from above (in plan view) with respect to the flow direction of the exhaust gas 1, It has a width in the exhaust gas flow direction (FIG. 2B). If the width can be made large in the exhaust gas flow direction in this way, the heat transfer tubes 26 are connected by the supports 35, so that the second moment of area with respect to bending becomes large, and as a result, the bending of the heat transfer tube panel 34 The rigidity is improved. This makes it possible to further increase the limit buckling height due to its own weight when the self-supporting support method is adopted.

【0018】図1は本実施形態に係る排熱回収ボイラの
伝熱管の構造を示す図である。本実施形態に係る排熱回
収ボイラの伝熱管26は、図6に示した前述の従来例と
同様の構成要素、すなわち、伝熱管パネル34、下部管
寄せ28、上部管寄せ24、ハニカムサポート35から
来例を同様の構成要素から構成されている。ただし、伝
熱管パネル34の曲げ剛性を向上させるため、下部管寄
せ28はほぼ中央部(中間部)に曲がり部36を設け、
平面視略「く」の字型に形成されている。伝熱管26は
この下部管寄せ28の形状に沿って立設され、伝熱管群
として下部管寄せ28の同様の形状の略「く」の字型に
配設される。この例の場合、図1(a)に示すように1
2本の伝熱管26が3列設けられ、6本目に当たる部分
で折り曲げられており、全体として「く」の字型を呈し
ている。各伝熱管26は前述の従来例と同様にハニカム
サポート35によって締結されて(図1(c))各伝熱
管26の相対的な位置決めがなされ、図1(b)に示す
ように炉幅方向(排ガス1の流れ方向に直交する方向)
に3個並べて配置される。なお、このように3個並べて
配置された伝熱管パネル34は炉長方向(排ガス1の流
れ方向に平行な方向)に複数段配置されて熱交換を行
う。その他、特に説明しない各部は前述の従来例と同等
に構成されている。
FIG. 1 is a view showing a structure of a heat transfer tube of the heat recovery steam generator according to the present embodiment. The heat transfer tubes 26 of the exhaust heat recovery boiler according to the present embodiment include the same components as those of the above-described conventional example shown in FIG. 6, namely, a heat transfer tube panel 34, a lower header 28, an upper header 24, and a honeycomb support 35. The following examples are composed of similar components. However, in order to improve the bending rigidity of the heat transfer tube panel 34, the lower header 28 is provided with a bent portion 36 substantially at the center (intermediate portion).
It is formed in a substantially “C” shape in plan view. The heat transfer tubes 26 are erected along the shape of the lower header 28, and are arranged in a substantially “<” shape having the same shape as the lower header 28 as a heat transfer tube group. In the case of this example, as shown in FIG.
The two heat transfer tubes 26 are provided in three rows, and are bent at a portion corresponding to the sixth heat transfer tube 26, so that the heat transfer tubes 26 have an overall shape of "". Each of the heat transfer tubes 26 is fastened by the honeycomb support 35 in the same manner as in the above-described conventional example (FIG. 1C), the relative positions of the heat transfer tubes 26 are determined, and as shown in FIG. (Direction perpendicular to the flow direction of exhaust gas 1)
Are arranged side by side. The three heat transfer tube panels 34 arranged in this manner are arranged in a plurality of stages in the furnace length direction (a direction parallel to the flow direction of the exhaust gas 1) to perform heat exchange. Other parts not particularly described are configured in the same manner as the above-described conventional example.

【0019】なお、FEM解析によると、このように構
成した伝熱管群においては、従来構造では困難であった
伝熱管高さ20mとした場合でも、自重による坐屈破壊
は生じなかった。
According to the FEM analysis, in the heat transfer tube group configured as described above, even when the heat transfer tube height was 20 m, which was difficult with the conventional structure, buckling failure due to its own weight did not occur.

【0020】図1に示した実施形態では、下部管寄せ2
8自体を「く」の字型に曲げて、その上面に伝熱管26
群が立設された形態になっているが、このような形態に
代えて、図3(a)に示すように下部管寄せ28を曲げ
るのではなく、設定した単位の伝熱管群を支持する下部
管寄せ28を排ガス1の流れ方向に対して傾けて配置
し、隣接する伝熱管パネル34を結合して排ガス流れ方
向に対して直交する方向からそれぞれ所定の角度を持っ
て配置するように構成することもできる。また、図3
(b)に示すように、一部の伝熱管パネル34について
は、排ガス1の流れ方向に対して直交するように配置す
るようにすることもできる。この場合も、隣接する伝熱
管パネル34とは、角度を持って配置されていることに
なる。
In the embodiment shown in FIG.
8 itself is bent in the shape of a square, and the heat transfer tube 26
Although the group has an upright form, instead of bending the lower header 28 as shown in FIG. 3A instead of such a form, a set unit of heat transfer tube group is supported. The lower header 28 is arranged so as to be inclined with respect to the flow direction of the exhaust gas 1, and the adjacent heat transfer tube panels 34 are connected to each other and arranged at a predetermined angle from a direction orthogonal to the flow direction of the exhaust gas. You can also. FIG.
As shown in (b), some of the heat transfer tube panels 34 may be arranged so as to be orthogonal to the flow direction of the exhaust gas 1. Also in this case, the adjacent heat transfer tube panel 34 is arranged at an angle.

【0021】なお、隣接する伝熱管パネル34は板状サ
ポート37によって結合される。板状サポート37とし
ては、伝熱管26が貫通する孔を設けた金属板をそれぞ
れのパネル34にはめ、パネル間同士は溶接により接合
している。このように構成すると図1に示した実施形態
よりも下部管寄せ28に曲げ部36を持たないため、前
記実施形態のものよりも製作が容易である。
The adjacent heat transfer tube panels 34 are connected by a plate-like support 37. As the plate-like support 37, a metal plate provided with a hole through which the heat transfer tube 26 passes is fitted to each of the panels 34, and the panels are joined to each other by welding. With this configuration, since the lower header 28 does not have the bent portion 36 as compared with the embodiment shown in FIG. 1, it is easier to manufacture than the embodiment.

【0022】[0022]

【発明の効果】以上のように本発明によれば、伝熱管群
にそれぞれ排ガスの流れ方向に対して進出した部分と後
退した部分とを設けて連結部材によって各伝熱管を相対
的に固定し、流れ方向に対して平行な方向に幅を持たせ
て自立させたので、伝熱管高さの高い排熱回収ボイラに
おいても伝熱管パネルを自立支持方式とすることが可能
となる。これによって、排熱回収ボイラのコストを低減
することができる。
As described above, according to the present invention, each of the heat transfer tube groups is provided with a portion that advances in the flow direction of the exhaust gas and a portion that retreats, and the heat transfer tubes are relatively fixed by the connecting member. Since the heat transfer tube panel is self-supported with a width in a direction parallel to the flow direction, the heat transfer tube panel can be of a self-supporting type even in an exhaust heat recovery boiler having a high heat transfer tube height. Thereby, the cost of the exhaust heat recovery boiler can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る排熱回収ボイラの伝熱
管の構造を示す図である。
FIG. 1 is a diagram showing a structure of a heat transfer tube of an exhaust heat recovery boiler according to an embodiment of the present invention.

【図2】本発明の技術思想を説明するための概念図であ
る。
FIG. 2 is a conceptual diagram for explaining a technical idea of the present invention.

【図3】本発明の他の実施形態に係る排熱回収ボイラの
伝熱管パネルの配置を示す図である。
FIG. 3 is a view showing an arrangement of a heat transfer tube panel of an exhaust heat recovery boiler according to another embodiment of the present invention.

【図4】従来から実施されている排熱回収ボイラの装置
構成を示す図である。
FIG. 4 is a diagram showing a device configuration of a conventional heat recovery steam generator.

【図5】従来から実施されている吊り下げ式の伝熱管パ
ネルの構造を排ガス流れ方向に対して直交する方向から
見た図である。
FIG. 5 is a diagram showing a structure of a conventional heat-transfer tube panel of a hanging type viewed from a direction orthogonal to a flow direction of exhaust gas.

【図6】従来から実施されている自立式の伝熱管パネル
の構造を排ガス流れ方向に対して直交する方向から見た
図である。
FIG. 6 is a view of a conventional structure of a self-supporting heat transfer tube panel viewed from a direction orthogonal to a flow direction of exhaust gas.

【図7】従来から実施されているハニカムサポートの構
造を示す図である。
FIG. 7 is a view showing a structure of a honeycomb support conventionally implemented.

【図8】限界座屈荷重と自重により伝熱管に加わる荷重
の比と、伝熱管高さとの関係を示す特性図である。
FIG. 8 is a characteristic diagram showing a relationship between a ratio of a load applied to a heat transfer tube due to a limit buckling load and its own weight, and a height of the heat transfer tube.

【図9】自立式伝熱管パネルの坐屈変形を示す側面図で
ある。
FIG. 9 is a side view showing buckling deformation of the self-supporting heat transfer tube panel.

【符号の説明】[Explanation of symbols]

1 排ガス 24 上部管寄せ 26 伝熱管 28 下部管寄せ 33 支持梁 34 伝熱管パネル 35 ハニカムサポート 36 管寄せ曲がり部 37 板状サポート DESCRIPTION OF SYMBOLS 1 Exhaust gas 24 Upper header 26 Heat transfer tube 28 Lower header 33 Support beam 34 Heat transfer tube panel 35 Honeycomb support 36 Header bent part 37 Plate support

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の伝熱管群をガスの流れ方向を横切
る方向に自立的に配置して熱交換を行う排熱回収ボイラ
において、 前記伝熱管群にそれぞれ排ガスの流れ方向に対して進出
した部分と後退した部分とを設け、連結部材によって各
伝熱管を連結し、流れ方向に対して平行な方向に幅を持
たせて自立させたことを特徴とする排熱回収ボイラ。
1. An exhaust heat recovery boiler for independently exchanging heat by arranging a plurality of heat transfer tube groups in a direction transverse to a gas flow direction, wherein each of the heat transfer tube groups has advanced in the flow direction of exhaust gas. An exhaust heat recovery boiler, comprising: a portion and a retreated portion, wherein each heat transfer tube is connected by a connecting member, and has a width in a direction parallel to a flow direction to be self-standing.
【請求項2】 前記伝熱管が平面視くの字型に曲げられ
た部分を有する下部管寄せに立設されていることを特徴
とする請求項1記載の排熱回収ボイラ。
2. The exhaust heat recovery boiler according to claim 1, wherein said heat transfer tube is erected on a lower header having a portion bent in a U shape in plan view.
【請求項3】 前記伝熱管が所定本数ずつ平面視直線状
に配置されて1単位の伝熱管群を構成し、隣接する各単
位の伝熱管群が相対的に角度を持って連結されているこ
とを特徴とする請求項1記載の排熱回収ボイラ。
3. A predetermined number of the heat transfer tubes are linearly arranged in a plan view to constitute one unit of heat transfer tube group, and adjacent heat transfer tube groups of each unit are connected with a relative angle. The exhaust heat recovery boiler according to claim 1, wherein:
JP29423299A 1999-10-15 1999-10-15 Waste heat recovery boiler Pending JP2001116201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29423299A JP2001116201A (en) 1999-10-15 1999-10-15 Waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29423299A JP2001116201A (en) 1999-10-15 1999-10-15 Waste heat recovery boiler

Publications (1)

Publication Number Publication Date
JP2001116201A true JP2001116201A (en) 2001-04-27

Family

ID=17805061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29423299A Pending JP2001116201A (en) 1999-10-15 1999-10-15 Waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JP2001116201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057463A (en) * 2011-09-08 2013-03-28 Babcock Hitachi Kk Exhaust heat recovery boiler
CN104791745A (en) * 2015-04-21 2015-07-22 张家港格林沙洲锅炉有限公司 Evaporation device of waste heat boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057463A (en) * 2011-09-08 2013-03-28 Babcock Hitachi Kk Exhaust heat recovery boiler
CN104791745A (en) * 2015-04-21 2015-07-22 张家港格林沙洲锅炉有限公司 Evaporation device of waste heat boiler

Similar Documents

Publication Publication Date Title
AU2003252325B2 (en) Heat exchanger tube panel module, and method of constructing exhaust heat recovery boiler using the module
JPH0650502A (en) Heat exchanging unit for heat recovery steam generator
JPS6337879B2 (en)
JP2001116201A (en) Waste heat recovery boiler
JP2857440B2 (en) Heat transfer tube support device
JP3763856B2 (en) Heat transfer tube group support device
JPH08159402A (en) Boiler apparatus and method of repairing heat transfer device
JP2001012878A (en) Heat exchanger
JP2001108203A (en) Heat transfer tube supporting device for waste heat recovery boiler
US5005529A (en) Modular heat recovery steam generator having parallel offset headers
JPH0311524Y2 (en)
CN218954857U (en) Suspension device for tower type boiler header
JP2001241606A (en) Structure for supporting heat exchanger tube in exhaust gas boiler
JP7220992B2 (en) Heat transfer tube support structure and heat transfer tube support method
JP2653570B2 (en) Exhaust heat recovery boiler header support device
JP2009222304A (en) Once-through exhaust heat recovery boiler
JP2753176B2 (en) Heat transfer tube panel
JPH08285207A (en) Support device for vertical flow type boiler
US10145626B2 (en) Internally stiffened extended service heat recovery steam generator apparatus
JPS597890A (en) Supporting device for heat-transmitting pipe
JPH0443682Y2 (en)
JPH0740805Y2 (en) Waste heat recovery equipment
CN116438406A (en) Supporting mechanism of waste heat recovery boiler
JP2003222304A (en) Support structure of heat transfer tube panel and exhaust heat recovery boiler
JPH0565761B2 (en)