WO2015001666A1 - Waste-heat boiler - Google Patents

Waste-heat boiler Download PDF

Info

Publication number
WO2015001666A1
WO2015001666A1 PCT/JP2013/068528 JP2013068528W WO2015001666A1 WO 2015001666 A1 WO2015001666 A1 WO 2015001666A1 JP 2013068528 W JP2013068528 W JP 2013068528W WO 2015001666 A1 WO2015001666 A1 WO 2015001666A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
resistant wall
boiler
process gas
casing
Prior art date
Application number
PCT/JP2013/068528
Other languages
French (fr)
Japanese (ja)
Inventor
朝彦 白石
祐太 横山
泉 西本
大橋 俊樹
優史 種村
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to PCT/JP2013/068528 priority Critical patent/WO2015001666A1/en
Priority to CN201410147794.4A priority patent/CN104279541A/en
Priority to CN201420178706.2U priority patent/CN204084298U/en
Publication of WO2015001666A1 publication Critical patent/WO2015001666A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1838Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/001Recuperative heat exchangers the heat being recuperated from exhaust gases for thermal power plants or industrial processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0132Auxiliary supports for elements for tubes or tube-assemblies formed by slats, tie-rods, articulated or expandable rods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a waste heat boiler that recovers heat from process gas in a plant.
  • a facility in which a raw material is burned in a combustion furnace to generate a process gas, and then a desired product is manufactured from the process gas. Further, in order to effectively use the thermal energy of the process gas, it has been conventionally performed to provide a waste heat boiler for recovering heat from the process gas and using it for power generation or the like on the downstream side of the combustion furnace.
  • Sulfuric acid production facility generally includes a converter for generating a combustion furnace to generate a process gas comprising SO 2 gas by burning sulfur, which was oxidized SO 2 gas using a V 2 O 5 catalyst SO 3 gas
  • An absorption tower that reacts SO 3 gas with H 2 O to produce H 2 SO 4 (sulfuric acid).
  • heat is recovered from the process gas between the combustion furnace and the converter to generate high-pressure steam from the boiler water.
  • a waste heat boiler to be generated is provided.
  • the waste heat boiler is provided with a casing such as a shell and a heat transfer tube arranged inside the casing.
  • boilers used as waste heat boilers for sulfuric acid production facilities include natural-circulation water pipe boilers (hereinafter referred to as heat exchangers such as boiler water) that flow through heat transfer tubes and process gases flow around the heat transfer tubes.
  • heat exchangers such as boiler water
  • smoke tube boilers there are two types of tube-type smoke tube boilers (hereinafter also simply referred to as smoke tube boilers), in which process gas flows inside the heat transfer tubes and boiler water flows around the heat transfer tubes. It was adopted.
  • the smoke tube boiler has the advantage of a simple structure compared to the water tube boiler.
  • a high-pressure heat medium such as boiler water flows inside the shell.
  • the capacity of the manufacturing equipment increases, the capacity of the waste heat boiler increases due to an increase in process gas and the shell of the smoke tube boiler becomes large, the thickness of the shell of the smoke tube boiler increases to withstand the pressure from the heat medium.
  • the cost of the waste heat boiler may increase.
  • a smoke tube boiler in a water tube boiler, high-pressure water / steam flows inside a heat transfer tube with a small diameter, so that the thickness of the heat transfer tube can be reduced to a realistic one. Can be easily accommodated.
  • a smoke tube boiler is generally adopted in a small manufacturing facility, and a water tube boiler is advantageous in a large manufacturing facility.
  • a smoke tube boiler is usually employed.
  • the size of sulfuric acid production facilities is increasing. For this reason, it is necessary to employ a water pipe boiler in the sulfuric acid production facility.
  • Patent Document 1 proposes to use a waste heat boiler composed of a vertical water tube boiler in order to recover the heat of process gas generated in an ammonia production facility.
  • a very high temperature process gas for example, about 1000 ° C. can be supplied to the waste heat boiler.
  • high heat resistance is required for the casing of the waste heat boiler.
  • a fireproof heat insulating layer having heat resistance is provided on the inner surface of the casing.
  • the process gas supplied to the waste heat boiler may be not only high temperature but also high pressure.
  • a sulfuric acid production facility in order to prevent SO 3 rich gas from reaching the converter, at a predetermined pressure from the waste heat boiler toward the converter, for example, a positive pressure of about 0.5 atm (about 5000 mmH 2 O). Process gas needs to be fed.
  • a predetermined pressure from the waste heat boiler toward the converter for example, a positive pressure of about 0.5 atm (about 5000 mmH 2 O).
  • Process gas needs to be fed.
  • not only heat resistance but also pressure resistance is required for the casing of the waste heat boiler.
  • the casing since the process gas contains SO 2 gas and some water vapor, the casing is required to have not only the above heat resistance and pressure resistance but also the corrosion resistance.
  • the present invention has been made in consideration of such points, and provides a waste heat boiler composed of a vertical water tube boiler that can be used in a large-scale manufacturing facility where high-temperature and high-pressure process gas is generated. With the goal.
  • the present invention is a waste heat boiler for recovering heat from process gas in a plant,
  • a casing having a circular cross section extending in the vertical direction, a heat-resistant wall disposed inside the casing and extending in the vertical direction, penetrating through the casing and connected to the heat-resistant wall and surrounded by the heat-resistant wall.
  • An inlet duct for supplying a process gas to the space, and a plurality of heat transfer tubes disposed in the space surrounded by the heat-resistant wall and through which a heat medium is passed, wherein the heat transfer tube heats the process gas.
  • the waste heat boiler is configured such that the vapor of the heat medium generated by absorbing the heat can flow upward due to the difference in specific gravity between the heat medium and the liquid heat medium.
  • a space surrounded by the heat-resistant wall has a first flue extending in the vertical direction and a second smoke extending in the vertical direction and passing through the process gas after passing through the first flue. It may be divided into roads.
  • the heat-resistant wall includes a plurality of cooling pipes through which a cooling medium passes and fins attached to the cooling pipes so as to fill gaps between the two adjacent cooling pipes. And may have.
  • the waste heat boiler according to the present invention is connected to the lower ends of the plurality of heat transfer tubes, and is connected to the distribution header that distributes the liquid heat medium to the heat transfer tubes, and to the upper ends of the plurality of heat transfer tubes, and heat of the process gas And an assembly header that collects the heat medium evaporated by each heat transfer tube.
  • each of the distribution header and the assembly header is disposed in a space surrounded by the heat-resistant wall.
  • an intermediate pipe penetrating the casing and the heat-resistant wall may be connected to the distribution header and the collective header.
  • a portion of the casing through which the intermediate pipe passes may be covered from the outside by a gas sealing member.
  • the part which the said intermediate piping penetrates among the said heat-resistant walls may have a curved shape corresponding to the outline of the said intermediate piping, and may be comprised by the cooling pipe which lets a cooling medium pass inside.
  • the waste heat boiler according to the present invention may further include a support mechanism for supporting the heat transfer tube.
  • the support mechanism may include a support tube suspended from above and a support member connected to the support tube and supporting the heat transfer tube from below.
  • a heat medium may be passed through the support tube of the support mechanism.
  • the heat-resistant wall includes a plurality of cooling pipes through which a cooling medium passes and fins attached to the cooling pipes so as to fill gaps between the two adjacent cooling pipes. And may have.
  • the waste heat boiler is connected to lower ends of the plurality of cooling pipes, and is connected to a lower header that distributes a cooling medium in a liquid state to the respective cooling pipes, and upper ends of the plurality of cooling pipes.
  • An upper header that collects the cooling medium evaporated by heat from each cooling pipe may be further provided.
  • the support pipe of the support mechanism is supported by the upper header.
  • the heat-resistant wall may have a rectangular cross section.
  • a reinforcing plate may be attached to the inner surface of the casing, and the reinforcing plate may be disposed at a certain interval from the outer surface of the heat-resistant wall.
  • a baffle plate extending in a horizontal direction may be provided in a space between the inner surface of the casing and the outer surface of the heat-resistant wall.
  • the waste heat boiler includes a casing that extends in the vertical direction and has a circular cross section, and a heat-resistant wall that is disposed inside the casing and extends in the vertical direction.
  • the high temperature process gas is supplied to the space surrounded by the heat resistant wall. For this reason, it is possible to suppress the heat of the process gas from being transmitted to the casing by the heat resistant wall. Therefore, it is not necessary for the casing to have high heat resistance, which can increase the degree of freedom in designing the casing.
  • the differential pressure between the process gas and the atmospheric pressure acts on the casing, but does not act on the heat resistant wall.
  • the heat-resistant wall it is not necessary for the heat-resistant wall to have a high pressure resistance, which can increase the degree of freedom in designing the heat-resistant wall.
  • a design method in which a casing is designed mainly considering pressure resistance and a heat resistant wall is designed mainly considering heat resistance. That is, the pressure resistance and heat resistance required for the waste heat boiler can be ensured by two different components. For this reason, the upper limit of the pressure resistance and heat resistance which a waste heat boiler can achieve can be raised. This makes it possible to provide a large vertical water tube boiler that can be used under severe conditions.
  • a large vertical water tube boiler can be employed under conditions where high pressure resistance, heat resistance and corrosion resistance are required for a waste heat boiler such as a large sulfuric acid production facility. Therefore, the safety of the entire waste heat boiler and the ease of manufacturing and installing the waste heat boiler can be improved.
  • FIG. 1 is a longitudinal sectional view showing a waste heat boiler according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a casing and a heat-resistant wall of the waste heat boiler shown in FIG.
  • FIG. 3 is a longitudinal sectional view showing a reinforcing plate provided between the casing and the heat-resistant wall.
  • FIG. 4 is a longitudinal sectional view showing a baffle plate provided between the casing and the heat-resistant wall.
  • FIG. 5 is a side view showing a heat transfer tube arranged in a space surrounded by a heat-resistant wall.
  • FIG. 6 is a view showing a support tube and a support member for supporting the heat transfer tube shown in FIG. 5.
  • FIG. 5 is a side view showing a heat transfer tube arranged in a space surrounded by a heat-resistant wall.
  • FIG. 6 is a view showing a support tube and a support member for supporting the heat transfer tube shown in FIG. 5.
  • FIG. 5 is a side
  • FIG. 7 is a plan view showing a case where an upper header provided on the upper portion of the waste heat boiler is viewed from above.
  • FIG. 8 is a diagram illustrating an example of a method of connecting the distribution header and the assembly header to a branch pipe outside the casing.
  • FIG. 9 is a diagram illustrating a state in which the intermediate pipe passes through the heat-resistant wall and is connected to the distribution header and the assembly header.
  • FIGS. 1 to 9 elements that represent the same function may be denoted by the same reference numerals and description thereof may be omitted.
  • FIG. 1 is a longitudinal sectional view showing a waste heat boiler 10 installed in a production facility where a high-temperature and high-pressure process gas is generated, such as a sulfuric acid production facility or an ammonia production facility.
  • FIG. 2 is a cross-sectional view showing the casing 20 and the heat-resistant wall 30 of the waste heat boiler 10 shown in FIG.
  • the case where the waste heat boiler 10 is installed in the sulfuric acid production facility will be described.
  • Waste heat boiler Waste heat boiler 10 is introduced with a high-temperature and high-pressure process gas containing SO 2 gas generated by burning sulfur using a combustion furnace.
  • arrows with reference numerals f 1 to f 5 represent the flow direction of the process gas introduced into the waste heat boiler 10.
  • heat is recovered from the process gas flowing in the vertical direction. That is, the waste heat boiler 10 is a vertical type.
  • the present invention is not limited to this, and the technical idea of the present invention may be applied to a horizontal waste heat boiler that recovers heat from a process gas flowing in a horizontal direction.
  • the waste heat boiler 10 extends in a vertical direction (vertical direction), has a casing 20 having a circular cross section, and a heat-resistant wall that is disposed inside the casing 10 and extends in the vertical direction. 30 and an inlet duct 11 for supplying process gas to the inside of the waste heat boiler 10, and an outlet duct 12 for sending the process gas after heat recovery from the inside of the waste heat boiler 10 to the converter. ing.
  • the casing 20 is configured to be able to stand on its own.
  • FIG. 2 although the example in which the casing 20 has a perfect circular cross section is shown, it is not restricted to this.
  • Various shapes can be adopted as the cross-sectional shape of the casing 20 as long as the pressure difference between the process gas and the atmospheric pressure can be withstood.
  • the casing 20 may have an elliptical cross section.
  • the heat-resistant wall 30 is disposed on the inlet duct 11 side and extends in the longitudinal direction
  • the front wall 31 is disposed on the outlet duct 12 side
  • the rear wall 32 extends in the longitudinal direction.
  • the first side wall 33 and the second side wall 34 are disposed between the wall 31 and the rear wall 32 and extend in the vertical direction.
  • the front wall 31, the rear wall 32, the first side wall 33, and the second side wall 34 each have a planar shape.
  • the heat-resistant wall 30 has a rectangular cross section, for example, a square cross section.
  • the term “planar” means that elements constituting the walls 31 to 34, for example, a cooling pipe 35 and fins 36, which will be described later, are arranged on the same plane.
  • the heat-resistant wall 30 can be easily manufactured and installed by combining the walls 31 to 34. In addition, by making the cross section of the heat resistant wall 30 rectangular, the space surrounded by the heat resistant wall 30 can be utilized without waste.
  • the inlet duct 11 penetrates the casing 20 and is connected to the front wall 31 of the heat-resistant wall 30.
  • the outlet duct 12 also penetrates the casing 20 and is connected to the rear wall 32 of the heat-resistant wall 30 in the same manner as the inlet duct 11.
  • the heat transfer tube 60 for recovering the heat of the process gas is disposed in a space surrounded by the heat-resistant wall 30 from the side. In this case, the process gas supplied to the waste heat boiler 10 exchanges heat with the heat medium passed through the heat transfer tube 60 while mainly flowing in the space surrounded by the heat-resistant wall 30. Then, it is sent toward the converter from the outlet duct 12.
  • the casing 20 does not need to have high heat resistance.
  • the structure of the casing 20 can be simplified compared with the case where high heat resistance is required for the casing.
  • a refractory material and a heat insulating material are provided on the inner surface of the casing in order to impart heat resistance and fire resistance to the casing.
  • such a refractory material and a heat insulating material can be made unnecessary. As a result, the cost required for production and maintenance of the casing 20 can be reduced. Moreover, the weight of the casing 20 can be reduced, and thereby the self-supporting property and the earthquake resistance of the casing 20 can be improved.
  • the heat-resistant wall 30 does not have to be completely airtight. That is, the space between the casing 20 and the heat-resistant wall 30 and the space surrounded by the heat-resistant wall 30 may partially communicate with each other. For example, the process gas may leak from the inside of the heat-resistant wall 30 to the outside in a portion where an intermediate pipe described later passes through the heat-resistant wall 30. Even in this case, since the flow path resistance of the space surrounded by the heat resistant wall 30 is significantly lower than the flow path resistance in the portion where the intermediate pipe passes through the heat resistant wall 30, the process gas mainly contains the heat resistant wall 30. Will flow through the space surrounded by.
  • the pressures in the two spaces are substantially the same.
  • the structure of the heat-resistant wall 30 can be simplified, or the degree of freedom in designing the heat-resistant wall 30 can be increased.
  • a rectangular shape can be adopted as described above.
  • the front wall 31, the rear wall 32, the first side wall 33, and the second side wall 34 of the heat-resistant wall 30 respectively extend in the vertical direction and have a plurality of cooling pipes 35 through which a cooling medium passes.
  • fins 36 attached to the respective cooling pipes 35 so as to fill a gap between the two adjacent cooling pipes 35.
  • the fin 36 is attached to each cooling pipe 35 by welding, for example.
  • As the cooling medium passed through the cooling pipe 35 for example, boiler water, that is, saturated water or air-water mixed water is used.
  • the walls 31 to 34 of the heat-resistant wall 30 are configured as so-called water walls.
  • the heat of the process gas can be recovered by the boiler water passing through the cooling pipes 35 of the walls 31 to 34, the heat of the process gas flowing through the space surrounded by the heat resistant wall 30 is transmitted to the casing 20. Can be further suppressed. Moreover, since the heat of process gas can be collect
  • the configuration for passing the cooling medium through each cooling pipe 35 of the heat-resistant wall 30 is not particularly limited, and various configurations can be adopted.
  • a lower header 46 for distributing a cooling medium in a liquid state to each cooling pipe 35 is connected to the lower end of each cooling pipe 35 constituting the front wall 31 and the rear wall 32, and
  • An upper header 47 that collects the cooling medium evaporated by the heat of the process gas from each cooling pipe 35 may be connected to the upper end of each cooling pipe 35.
  • the cooling medium can be efficiently supplied to the plurality of cooling pipes 35 and the cooling medium can be efficiently recovered from the plurality of cooling pipes 35.
  • the lower header and the upper header are also connected to the lower end and the upper end of each cooling pipe 35 constituting the first side wall 33 and the second side wall 34, respectively.
  • the process gas discharged from the first flue P1 reverses its traveling direction at the upper part of the casing 20, as indicated by an arrow f3. Thereafter, the process gas flows downward along the second flue P2 as indicated by an arrow f4.
  • the process gas that has reached the lower portion of the waste heat boiler 10 is discharged by the outlet duct 12 as indicated by an arrow f5.
  • two flues extending in the vertical direction are formed inside one trunk (casing).
  • Such a form is also referred to as one-body two-time flow.
  • the length of the flue formed inside one casing 20 can be doubled in the case of the single cylinder single flow, so that the heat transfer tubes 60 arranged in the flue can be provided. It is possible to recover the heat of the process gas sufficiently. For this reason, the energy efficiency of the waste heat boiler 10 can be improved.
  • the length of the flue of the process gas can be reduced while suppressing the height of the casing 20 and the heat-resistant wall 30 from becoming too large by adopting a one-cylinder and two-turn flow. It can be secured sufficiently. Thereby, the self-supporting property of the casing 20 and the ease of manufacturing and installing the casing 20 and the heat-resistant wall 30 can be ensured. Further, for comparison, a case where one waste heat boiler 10 includes two casings, that is, a case of two-cylinder two-way flow will be considered. In this case, the length of the flue of the process gas can be sufficiently secured by using a casing having almost the same height as that in the present embodiment.
  • the length of the flue of the process gas is sufficiently secured while the cost required for the production of the waste heat boiler 10 is kept low by adopting the double flow of one cylinder. Can do.
  • an intermediate wall 38 is provided between the front wall 31 and the rear wall 32.
  • the intermediate wall 38 is configured to shield the flow of process gas in the horizontal direction.
  • the intermediate wall 38 includes a vertical portion 38a extending in the vertical direction.
  • the vertical portion 38a extends in the vertical direction and includes a plurality of cooling pipes 35 through which a cooling medium passes, and two adjacent cooling pipes 35. And fins 36 attached to the respective cooling pipes 35 so as to fill the gaps therebetween.
  • each cooling pipe 35 constituting the intermediate wall 38 is connected to the lower header 46 at a place where the lower end of each cooling pipe 35 constituting the front wall 31 is connected to the lower header 46. May be.
  • the intermediate wall 38 can have a lower surface portion 38c extending from the vertical portion 38a toward the front wall 31 in the lower portion of the first flue P1.
  • the process gas supplied from the inlet duct 11 to the first flue P1 passes through the lower part of the waste heat boiler 10 to the second. Reaching the flue P2 or the outlet duct 12 can be prevented.
  • the lower header 46 to which the lower end of each cooling pipe 35 constituting the intermediate wall 38 is connected may be the same as the lower header 46 to which the lower end of each cooling pipe 35 constituting the front wall 31 is connected, Or they may be different.
  • the upper end of each cooling pipe 35 constituting the intermediate wall 38 is connected to the upper header 47 at a place where the upper end of each cooling pipe 35 constituting the rear wall 32 is connected to the upper header 47. It may be connected. Thereby, the place where the cooling medium is collected from each cooling pipe 35 constituting the rear wall 32 and the place where the cooling medium is collected from each cooling pipe 35 constituting the intermediate wall 38 can be brought close to each other.
  • the structure for taking out the vapor of the cooling medium can be simplified. In this case, as shown in FIG.
  • the intermediate wall 38 has an upper surface portion 38b extending from the vertical portion 38a toward the rear wall 32 in the upper portion of the first flue P1.
  • the process gas discharged from the first flue P1 must be reversed and flow into the second flue P2.
  • the upper surface portion 38b is configured to allow the process gas to pass therethrough.
  • the fins 36 described above are not provided between the cooling pipes 35 constituting the upper surface portion 38b. As a result, the process gas can pass through the upper surface portion 38b of the intermediate wall 38 and flow into the second flue P2.
  • the process gas discharged from the first flue P1 comes into direct contact with the inner surface of the upper part of the casing 20.
  • the upper part of the casing 20 may have high heat resistance.
  • the casing 20 is positioned below the upper end of the heat-resistant wall 30, and the vertical portion 21 extending in the vertical direction is in contact with the process gas that is folded after being discharged from the first flue P ⁇ b> 1. It may be configured by combining the folded portion 22.
  • the folded portion 22 may be provided with a refractory material and a heat insulating material on the inner surface for imparting heat resistance and fire resistance.
  • the vertical portion 21 does not need to have high heat resistance, the structure of the vertical portion 21 is simpler than the folded portion 22. As a result, the cost and weight of the entire casing 20 can be reduced as compared with the case where the entire casing 20 has heat resistance and fire resistance.
  • returning part 22 is not specifically limited, For example, a castable anchor, a heat insulation caster, a fireproof caster etc. can be used.
  • a maintenance manhole may be provided in the folded portion 22.
  • the heat of the process gas is recovered to some extent in the first flue P ⁇ b> 1 until reaching the turn-up portion 22.
  • the temperature of the process gas supplied from the inlet duct 11 is about 1000 ° C.
  • the temperature of the process gas that has reached the folded portion 22 is about 600 ° C. Therefore, the structure of the folded portion 22 is simple. For this reason, the above-described manhole for maintenance can be easily provided in the folded-back portion 22 as compared with the conventional case.
  • the process gas leaking from the heat-resistant wall 30 may slightly reach the inner surface of the vertical portion 21 of the casing 20.
  • the process gas contains SO 2 gas as described above, and the process gas may contain a small amount of water vapor.
  • the temperature of the inner surface of the vertical portion 21 is below the acid dew point, and as a result, the sulfuric acid gas is condensed and the vertical portion 21 A drop of sulfuric acid may appear on the inner surface.
  • a heat insulating member 23 may be provided in the vertical portion 21 as shown in FIG. Thereby, it can suppress that the temperature of the inner surface of the vertical part 21 falls below an acid dew point. Thereby, it can suppress that the inner surface of the vertical part 21 is damaged by corrosion.
  • FIG. 5 is an enlarged side view showing the heat transfer tube 60 shown in FIG.
  • the heat transfer tube 60 allows the heat medium vapor generated by absorbing the heat of the process gas to flow upward due to the specific gravity difference between the heat transfer tube 60 and the liquid heat medium existing inside the heat transfer tube 60. It is configured. As shown in FIG. 1, the heat transfer tube 60 meanders in a plane parallel to the flow direction of the process gas, that is, in a plane extending in the vertical direction in order to realize efficient heat exchange with the process gas. It may extend in a shape. In this case, the overall shape of the heat transfer tube 60 can also be expressed as a panel shape. For example, in FIG. 2 mentioned above and FIG. 8 shown later, the heat transfer tube 60 is drawn in a panel shape.
  • heat transfer tube panel a comprehensive shape formed by the heat transfer tubes extending in a serpentine shape
  • a plane formed by the heat transfer tube panels is sometimes referred to as a “heat transfer tube panel surface”.
  • the heat transfer tube 60 has a plurality of straight tube portions 61 extending linearly and a plurality of folded portions that connect two adjacent straight tube portions 61.
  • the folded portion is connected to the end of the two adjacent straight pipe portions 61 on the inlet duct 11 side (front wall 31 side), and has a first folded portion 62 having a substantially U-shape and two adjacent two
  • the straight pipe portion 61 is connected to an end portion on the outlet duct 12 side (rear wall 32 side) and includes a second folded portion 63 having a substantially U-shape.
  • the heat transfer tube panel surface described above is formed by alternately arranging the plurality of straight tube portions 61 and the plurality of folded portions 62 and 63 in a plane extending in the vertical direction.
  • each straight pipe portion 61 of the heat transfer tube 60 extends in a direction inclined with respect to the horizontal direction. For this reason, the vapor of the heat medium can flow upward along the heat transfer tube 60 based on the difference between the specific gravity of the heat medium in the gas state and the specific gravity of the heat medium in the liquid state.
  • the heat medium passed through the heat transfer tube 60 for example, boiler water is used as in the case of the cooling medium passed through the cooling tube 35 of the heat-resistant wall 30. In this case, the vapor of the heat medium, that is, water vapor flows upward along the heat transfer tube 60 due to the specific gravity difference between water and water vapor.
  • the configuration for passing the heat medium through the heat transfer tube 60 is not particularly limited, and various configurations can be adopted.
  • a distribution header 41 for supplying a liquid heat medium to the heat transfer tube 60 is connected to the lower end of the heat transfer tube 60, and a process header is connected to the upper end of the heat transfer tube 60.
  • a collective header 42 that collects the heat medium evaporated by the heat of the gas from the heat transfer tube 60 may be connected.
  • a plurality of, for example, three heat transfer tubes 60 are provided in the surface of one heat transfer tube panel, and the distribution header 41 and the assembly header having the same lower end and upper end of each heat transfer tube 60 are provided. 42 may be connected.
  • Each heat transfer tube 60 may be connected to the distribution header 41 and the assembly header 42 via the short tube 41a and the short tube 42a.
  • the short pipe 41a and the short pipe 42a are connected to the distribution header 41, the assembly header 42, and the heat transfer pipe 60 by welding, for example.
  • a plurality of heat transfer tubes 60 are arranged along the normal direction of the heat transfer tube panel surface, and the lower ends of the heat transfer tubes 60 constituting each heat transfer tube panel and The upper end may be connected to the same distribution header 41 and collective header 42. That is, the heat transfer tube panel group which consists of a some heat transfer tube panel may be arrange
  • a plurality of heat transfer tube panel groups may be arranged along the flow direction of the process gas, that is, along the vertical direction.
  • three heat transfer tube panel groups are arranged in the vertical direction in the first flue P1
  • two heat transfer tube panel groups are arranged in the vertical direction in the second flue P2.
  • the number of straight pipe portions 61 of the heat transfer tubes 60 constituting each heat transfer tube panel is determined according to the temperature of the process gas at the position where the heat transfer tubes 60 are arranged.
  • the high-temperature process gas generated in the combustion furnace is supplied to the first flue P1.
  • each heat transfer tube 60 can generate
  • the process gas after a certain amount of heat is recovered while passing through the first flue P1 is supplied to the second flue P2.
  • the heat transfer tube 60 located on the upper side of the second flue P2 has a four-stage straight pipe portion 61, and the heat transfer tube 60 located on the lower side of the second flue P2 has six stages.
  • a straight pipe portion 61 is provided.
  • the boiler water circulation system 15 includes an air water cylinder 16 that houses boiler water 19 and high-pressure steam of the boiler water, and a downcomer pipe 17 for sending the boiler water 19 in the air water cylinder 16 toward the cooling pipe 35 and the heat transfer pipe 60. And a return pipe 18 for returning the steam of boiler water generated in the cooling pipe 35 and the heat transfer pipe 60 to the air / water cylinder 16.
  • the air / water cylinder 16 is further connected to a pipe for extracting the generated high-pressure steam and a pipe for replenishing the boiler water 19 to the air / water cylinder 16.
  • the downpipe 17 and the return pipe 18 each extend in the vertical direction.
  • a plurality of branch pipes 17 a extending toward the lower header 46 and the distribution header 41 are connected to the downcomer pipe 17 in order to supply the boiler water 19 to the lower header 46 and the distribution header 41 described above.
  • a plurality of branch pipes 18 a extending toward the upper header 47 and the collective header 42 are connected to the return pipe 18 in order to collect steam of boiler water from the above-described upper header 47 and collective header 42.
  • boiler water 19 from each branch pipe 17a toward the lower header 46 and the distribution header 41 is indicated by a one-dot chain line arrow.
  • the steam of the boiler water which goes to each branch pipe 18a from the top header 47 and the assembly header 42 is also shown with the dashed-dotted arrow.
  • FIG. 8 is a cross-sectional view showing a case where the waste heat boiler 10 is cut by a horizontal plane passing through the distribution header 41 and the assembly header 42.
  • the distribution header 41 and the assembly header 42 are each disposed in a space surrounded by the heat-resistant wall 30.
  • a heat transfer tube module can be manufactured by combining the distribution header 41, the assembly header 42 and the heat transfer tube 60 in advance in a factory or the like. Thereby, the work at the installation site of the waste heat boiler 10 can be facilitated.
  • one end of an intermediate pipe 43 that penetrates the casing 20 and the heat-resistant wall 30 is connected to the end of the distribution header 41 by, for example, welding.
  • a branch pipe 17a is connected to the other end of the intermediate pipe 43 by, for example, welding.
  • the branch pipe 17 a and the distribution header 41 are communicated with each other, and boiler water can be supplied to the distribution header 41.
  • one end of an intermediate pipe 44 that penetrates the casing 20 and the heat-resistant wall 30 is connected to the end of the collective header 42 by, for example, welding.
  • a branch pipe 18a is connected to the other end of the intermediate pipe 44 by, for example, welding. Thereby, the branch pipe 18a and the collective header 42 are communicated with each other, and the steam of the boiler water can be recovered from the collective header 42.
  • a portion of the casing 20 through which the intermediate pipes 43 and 44 penetrate may be covered with a gas sealing member 45 from the outside. Thereby, it is possible to prevent the process gas from leaking out of the casing 20 from the portion of the casing 20 through which the intermediate pipes 43 and 44 penetrate.
  • a gas sealing member 45 for example, a metal for gas sealing made of a general steel material such as SS400 can be used.
  • a portion of the heat-resistant wall 30 through which the intermediate pipes 43 and 44 penetrate has a curved shape corresponding to the outline of the intermediate pipes 43 and 44, and a cooling pipe through which a cooling medium is passed. 35 may be comprised. That is, as shown in FIG. 9, the intermediate pipes 43 and 44 penetrate by partially bending the cooling pipe 35 to form a curved portion 35 a having a curved shape corresponding to the contour of the intermediate pipes 43 and 44. A hole that can be formed may be formed in the heat-resistant wall 30.
  • the intermediate pipes 43 and 44 can be passed through the heat-resistant wall 30 while maintaining the cooling function and the heat recovery function based on the cooling pipe 35.
  • the structure for connecting the branch pipe 17a and the lower header 46 and the structure for connecting the branch pipe 18a and the upper header 47 are the same as those in the case of the distribution header 41 and the assembly header 42 described above. Similarly, a structure using the intermediate pipes 43 and 44 may be employed.
  • FIG 8 shows an example in which the end on the first side wall 33 side of the distribution header 41 and the assembly header 42 is connected to the branch pipe 17a and the branch pipe 18a, but is not limited thereto.
  • the end of the distribution header 41 and the assembly header 42 on the second side wall 34 side is also connected to a branch pipe 17a and a branch pipe 18a different from those connected to the end of the first side wall 33 side. It may be connected. That is, boiler water may be supplied from both ends of the distribution header 41, and steam of boiler water may be recovered from both ends of the assembly header 42.
  • FIG. 1 and FIG. 5 a support mechanism that supports the heat transfer tube 60 is denoted by reference numeral 50.
  • FIG. 6 is an enlarged view of the support mechanism 50 shown in FIGS. 1 and 5.
  • the support tube 51 of the support mechanism 50 is represented by a dotted line in order to prevent the drawing from becoming complicated.
  • the support mechanism 50 includes a support tube 51 suspended from above, and a support member 52 connected to the support tube 51 and supporting the straight tube portion 61 of the heat transfer tube 60 from below.
  • a support member 52 By supporting the heat transfer tube 60 using the support tube 51 and the support member 52, the heat transfer tube 60 can be stably supported over the entire region in the vertical direction.
  • support members 52 may be connected to both sides of the support tube 51.
  • the support tube 51 can support the heat transfer tube panels on both sides thereof (see FIG. 2).
  • FIG. 2 the background of using such a support mechanism 50 will be described.
  • the support of the heat transfer tube 60 is realized by connecting the folded portions 62 and 63 of the heat transfer tube 60 to the inner surface of the container of the waste heat boiler.
  • hooks configured to be connectable to each other are attached to both the folded portions 62 and 63 and the inner surface of the container.
  • the heat transfer tube 60 can be supported by using the support tube 51 suspended from above. For this reason, the heat transfer tube 60 maintained in the final installation posture can be carried into the heat resistant wall 30 from above.
  • the support mechanism 50 includes a support beam 53 disposed on the upper portion of the waste heat boiler 10, a suspension bar 54 coupled to the support beam 53 and hanging from the support beam 53, and a lower end of the suspension bar 54. And attached hanging metal fittings 55.
  • the support pipe 51 can be suspended from above by connecting the suspension fitting 55 to the support pipe 51.
  • FIG. 7 is a plan view showing the upper header 47 provided above the heat-resistant wall 30 as viewed from above.
  • the cooling pipe 35 and the support pipe 51 are indicated by dotted lines in order to show the positional relationship between the upper header 47 and the support beam 53 and the cooling pipe 35 and the support pipe 51.
  • an upper header 47 assembled in a well shape is disposed on the upper portion of the waste heat boiler 10.
  • the upper header 47 assembled in a well shape is disposed so as to intersect the upper header 47a connected to the cooling pipe 35 constituting the front wall 31 and the rear wall 32, and to intersect the upper header 47a.
  • the support beam 53 of the support mechanism 50 is arrange
  • a fixture 56 to which the support tube 51 is connected is attached to the support beam 53.
  • a fixture for fixing the support beam 53 to the upper header 47 such as a bolt and a nut, may be provided.
  • a pair of support beams 53 arranged at a predetermined interval is used for a plurality of support tubes 51 arranged in a line from the first side wall 33 toward the second side wall 34. May be.
  • a cooling medium or a heat medium that can recover heat from the process gas, such as boiler water, is passed through the support pipe 51.
  • a lower header and an upper header for supplying boiler water to the support pipe 51 and recovering steam of the boiler water from the support pipe 51 may be connected to the support pipe 51.
  • the lower end of the support pipe 51 is the same as the lower header 46 connected to the lower end of the cooling pipe 35 of the heat-resistant wall 30, or the lower header disposed in the vicinity of the lower header 46. It may be connected to.
  • the upper end of the support pipe 51 is connected to the same upper header 47 as the upper header 47 connected to the upper end of the cooling pipe 35 of the heat-resistant wall 30 or an upper header disposed in the vicinity of the upper header 47. Also good.
  • the load caused by the load of the heat transfer tube 60 and the load of the support tube 51 is applied to the support beam 53.
  • the support beam 53 is disposed on the upper portion of the waste heat boiler 10, and a certain amount of heat is recovered in the upper portion of the waste heat boiler 10 while passing through the first flue P1 as described above. Later process gas arrives. For example, a process gas of about 600 ° C. arrives.
  • the material which comprises the support beam 53 does not use the material which has especially high heat resistance, but can use the material which has normal heat resistance.
  • general heat resistant steel such as SUS304 can be used.
  • the heat transfer tube 60 can be suspended with a simple configuration.
  • FIG. 2 shows a cross-sectional view when the waste heat boiler 10 is cut by a horizontal plane passing through the reinforcing mechanism 24.
  • the casing 20 has a circular cross section
  • the heat-resistant wall 30 has a rectangular cross section. That is, the shape of the cross section of the casing 20 and the shape of the cross section of the heat-resistant wall 30 are different from each other. Accordingly, the distance between the inner surface of the casing 20 and the outer surface of the heat-resistant wall 30 is large at a specific location. As a result, it is considered that the heat-resistant wall 30 greatly fluctuates in the horizontal direction at a specific place. In order to prevent such fluctuation, a reinforcing mechanism 24 for suppressing fluctuation of the heat-resistant wall 30 may be attached to the inner surface of the casing 20 as shown in FIG.
  • FIG. 3 is a longitudinal sectional view showing the reinforcing mechanism 24 in an enlarged manner.
  • the reinforcing mechanism 24 includes a reinforcing plate 24 a that is disposed at a certain distance from the outer surface of the heat-resistant wall 30.
  • the reinforcing mechanism 24 further includes a reinforcing member 24b having one end fixed to the inner surface of the casing 20 and the other end fixed to the reinforcing plate 24a.
  • the reinforcing plate 24 a functions as a stopper against fluctuation of the heat resistant wall 30. Therefore, the heat resistant wall 30 can be prevented from greatly fluctuating in the horizontal direction. That is, the rigidity of the entire waste heat boiler 10 can be increased.
  • a reinforcing mechanism 37 for suppressing fluctuation of the heat-resistant wall 30 may also be provided on the heat-resistant wall 30 side.
  • the reinforcing mechanism 37 includes, for example, a reinforcing plate 37a disposed at a predetermined interval from the reinforcing plate 24a, and a reinforcing member 37b fixed to the reinforcing plate 37a and the cooling pipe 35. Thereby, the fluctuation
  • the distance between the reinforcing plate 24a and the reinforcing plate 37a is, for example, in the range of 10 to 15 mm.
  • the reinforcing mechanism 24 and the reinforcing mechanism 37 disposed between the casing 20 and the heat resistant wall 30 have high heat resistance. Is not required.
  • a general material can be used as a material which comprises the reinforcement mechanism 24 and the reinforcement mechanism 37, for example, common steel materials, such as SS400, can be used.
  • baffle plate 26 that extends in the horizontal direction and is disposed in the space between the casing 20 and the heat-resistant wall 30 will be described.
  • the intermediate pipes 43 and 44 are penetrated through the heat-resistant wall 30. For this reason, it is not possible to completely prevent the process gas from leaking from the heat-resistant wall 30. Therefore, it is considered that a certain amount of process gas leaks from the heat resistant wall 30 in the space between the casing 20 and the heat resistant wall 30.
  • the baffle plate 26 described above is provided to prevent such process gas from flowing in the vertical direction.
  • a specific configuration for providing the baffle plate 26 is not particularly limited, for example, as shown in FIG. 4, a mounting plate 26 a and a mounting plate 26 b are respectively provided on the inner surface of the casing 20 and the cooling pipe 35 of the heat-resistant wall 30.
  • the baffle plate 26 may be provided on the mounting plate 26a and the mounting plate 26b.
  • each baffle plate 26 may be connected to a drain pipe (not shown) for discharging condensed water on the baffle plate 26. Thereby, it is possible to prevent the condensed water from accumulating on the baffle plate 26.
  • a module is manufactured by combining a plurality of components constituting the waste heat boiler 10.
  • the plurality of heat transfer tubes 60 are connected to the distribution header 41 and the assembly header 42 using a welding method or the like.
  • a heat transfer tube group in which the distribution header 41 and the assembly header 42 are combined can be manufactured.
  • each heat transfer tube 60 of the heat transfer tube group is attached to the support tube 51 via the support member 52. In this manner, a heat transfer tube module in which the heat transfer tube 60, the distribution header 41, the assembly header 42, and the support mechanism 50 are combined can be manufactured.
  • the heat-resistant wall 30 may be manufactured by connecting the cooling pipe 35 and the fin 36 by welding. Further, the cooling pipe 35 and the lower header 46 and the upper header 47 may be connected to manufacture a heat resistant wall module.
  • the vertical portion 21 of the casing 20 is self-supported.
  • the above-mentioned heat resistant wall module is carried into the space inside the vertical portion 21.
  • the above-described heat transfer tube module is carried into the space surrounded by the heat resistant wall 30 from above, and the heat transfer tube module is attached to the heat resistant wall 30.
  • the support beam 53 of the support mechanism 50 of the heat transfer tube module is fixed on the upper header 47 assembled in a well shape. In this way, the plurality of heat transfer tubes 60 can be easily installed in the space surrounded by the heat resistant wall 30.
  • the intermediate pipes 43 and 44 are passed through the casing 20, and the intermediate pipes 43 and 44 are welded to the distribution header 41, the assembly header 42, the lower header 46, and the upper header 47. Further, the folded portion 22 is disposed on the vertical portion 21. In this way, the waste heat boiler 10 configured as a vertical water tube boiler can be obtained.
  • Process gas flow rate 130000 Nm 3 / h
  • Process gas pressure 5000 mmH2O
  • Process gas composition SO 2 11%, O 2 10%, N 2 79%, H 2 O 0.01% -Process gas temperature in the inlet duct: 1000 ° C -Process gas temperature at the folded part: 600 ° C -Process gas temperature at outlet duct: 410 ° C ⁇
  • Operating pressure of waste heat boiler 6 MPag -Steam temperature of boiler water: 400 ° C ⁇
  • Power generation 16MW
  • the process gas at 600 ° C. discharged upward from the first flue P1 is folded back by the folded portion 22 of the casing 20, flows into the second flue P2, and flows downward along the second flue P2. .
  • the heat of the process gas is recovered by the heat transfer pipe 60 and the cooling pipe 35 disposed in the second flue P2.
  • the recovered heat is used for power generation using a steam turbine.
  • attained the lower part of the waste heat boiler 10 is discharged
  • the SO 2 gas is oxidized using a V 2 O 5 catalyst to generate SO 3 gas.
  • the process gas is sent to the converter without passing through the second flue P2 of the waste heat boiler 10. May be.
  • a bypass duct 13 that sends out process gas toward the converter may be provided in the folded portion 22 of the waste heat boiler 10 as indicated by an arrow f ⁇ b> 6.
  • the temperature of the process gas supplied to the converter can be maintained at a desired temperature.
  • the outlet duct 12 and the bypass duct 13 respectively The damper 12a and the damper 13a which can adjust a flow volume may be provided.
  • the bypass method is a mode in which a high-temperature (about 1000 ° C.) process gas is taken out from the smoke tube boiler and sent to the converter. Will be adopted.
  • a high-temperature process gas since a high-temperature process gas must be handled, it is difficult to design a damper for adjusting the flow rate.
  • the process gas can be taken out from the middle of the water tube boiler and sent out to the converter. For example, as described above, it is possible to take out the process gas at about 600 ° C. that has reached the folded portion 22. For this reason, compared with the case of a smoke tube boiler, the design of the damper 13a for adjusting a flow volume becomes easy.
  • H 2 SO 4 sulfuric acid
  • a gas cooler for cooling the SO 3 gas may be provided between the converter and the absorption tower.
  • the waste heat boiler 10 is formed in a double structure using a heat-resistant wall 30 that defines a space through which the process gas passes and a casing 20 that is disposed around the heat-resistant wall 30.
  • a thermal load caused by the temperature of the process gas is applied to the heat-resistant wall 30, while a pressure load caused by the difference between the pressure of the process gas and the atmospheric pressure is applied to the casing 20.
  • the heat resistance requirement and the pressure resistance requirement can be shared by the heat resistant wall 30 and the casing 20, respectively.
  • simplification of each structure of the heat-resistant wall 30 and the casing 20 is realizable.
  • the weight of the waste heat boiler 10 as a whole can be reduced.
  • the durability and safety of the waste heat boiler 10 as a whole can be improved.
  • the enlargement of the waste heat boiler 10 can be realized, and this makes it possible to cope with an increase in capacity of the sulfuric acid production facility.
  • the waste heat boiler 10 can be configured using a vertical water tube boiler. For this reason, a heat medium such as boiler water can be circulated naturally without using a pump or the like. Therefore, even if the sulfuric acid production facility is installed in an area where power supply is unstable, the waste heat boiler 10 can be stably operated. Further, the waste heat boiler 10 capable of natural circulation has an advantage that its operation work and maintenance work are easier than a waste heat boiler using forced circulation. Moreover, in areas where power supply is unstable, such as emerging countries, generally, the skill level of the operator who operates the sulfuric acid production facility and the waste heat boiler 10 is low. Considering these points, the waste heat boiler 10 according to the present embodiment has a high demand for sulfuric acid, and therefore, the waste heat boiler is required to be enlarged, and the operation work and the maintenance work are also required to be simplified. It is especially suitable for emerging countries.

Abstract

[Problem] To provide a waste-heat boiler which comprises a vertical water-tube boiler capable of being used in a large-scale production plant which generates a high-temperature, high-pressure process gas. [Solution] A waste-heat boiler (10) is configured as a double structure which uses: a vertically extending casing (20) having a circular transverse cross-section; and a vertically extending heat-resistant wall (30) disposed within the casing (20). Also, the waste-heat boiler (10) is provided with an inlet duct (11) which penetrates through the casing (20), is connected to the heat-resistant wall (30), and supplies a process gas to a space surrounded by the heat-resistant wall (30). Heat-transfer tubes (60) are arranged in the space surrounded by the heat-resistant wall (30).

Description

廃熱ボイラWaste heat boiler
 本発明は、プラントにおけるプロセスガスから熱を回収する廃熱ボイラに関する。 The present invention relates to a waste heat boiler that recovers heat from process gas in a plant.
 燃焼炉において原料を燃焼させてプロセスガスを生成し、その後、プロセスガスから所望の製品を製造する設備(プラント)が知られている。また、プロセスガスの熱エネルギーを有効に活用するため、燃焼炉の下流側に、プロセスガスから熱を回収して発電などに利用するための廃熱ボイラを設けることが従来から行われている。 A facility (plant) is known in which a raw material is burned in a combustion furnace to generate a process gas, and then a desired product is manufactured from the process gas. Further, in order to effectively use the thermal energy of the process gas, it has been conventionally performed to provide a waste heat boiler for recovering heat from the process gas and using it for power generation or the like on the downstream side of the combustion furnace.
 例として、硫黄を原料として硫酸を製造する硫酸製造設備(硫酸プラント)について説明する。硫酸製造設備は、一般に、硫黄を燃焼させてSOガスを含むプロセスガスを生成する燃焼炉と、V触媒を用いてSOガスを酸化させてSOガスを生成する転化器と、SOガスとHOとを反応させてHSO(硫酸)を生成する吸収塔と、を備えている。このような硫酸製造設備においては、SOガスを含むプロセスガスの熱エネルギーを有効に活用するため、燃焼炉と転化器との間に、プロセスガスから熱を回収してボイラ水の高圧蒸気を生成する廃熱ボイラが設けられている。 As an example, a sulfuric acid production facility (sulfuric acid plant) that produces sulfuric acid using sulfur as a raw material will be described. Sulfuric acid production facility generally includes a converter for generating a combustion furnace to generate a process gas comprising SO 2 gas by burning sulfur, which was oxidized SO 2 gas using a V 2 O 5 catalyst SO 3 gas An absorption tower that reacts SO 3 gas with H 2 O to produce H 2 SO 4 (sulfuric acid). In such a sulfuric acid production facility, in order to effectively use the thermal energy of the process gas including SO 2 gas, heat is recovered from the process gas between the combustion furnace and the converter to generate high-pressure steam from the boiler water. A waste heat boiler to be generated is provided.
 廃熱ボイラは、シェルなどのケーシングと、ケーシングの内部に配置された伝熱管と、を備えている。硫酸製造設備の廃熱ボイラとして使用されるボイラの形式としては、従来、ボイラ水などの熱媒体が伝熱管の内部を流れ、プロセスガスが伝熱管の周囲に流れる自然循環式水管ボイラ(以下、単に水管ボイラとも称する)、および、プロセスガスが伝熱管の内部を流れ、ボイラ水が伝熱管の周囲に流れる両端固定管板式煙管ボイラ(以下、単に煙管ボイラとも称する)の2種類が一般的に採用されていた。 The waste heat boiler is provided with a casing such as a shell and a heat transfer tube arranged inside the casing. Conventionally, boilers used as waste heat boilers for sulfuric acid production facilities include natural-circulation water pipe boilers (hereinafter referred to as heat exchangers such as boiler water) that flow through heat transfer tubes and process gases flow around the heat transfer tubes Generally, there are two types of tube-type smoke tube boilers (hereinafter also simply referred to as smoke tube boilers), in which process gas flows inside the heat transfer tubes and boiler water flows around the heat transfer tubes. It was adopted.
 煙管ボイラは、水管ボイラに比べて構造が単純であるという利点を有している。しかしながら、煙管ボイラにおいては、ボイラ水などの高圧の熱媒体がシェルの内部を流れる。このため、製造設備の容量が大きくなり、プロセスガスの増大により廃熱ボイラが大容量化して煙管式ボイラのシェルが大きくなると、熱媒体からの圧力に耐えるため、煙管ボイラのシェルの厚みを大きくする必要がある。従って、大容量の製造設備において煙管ボイラを採用すると、廃熱ボイラのコストが高くなってしまうことがある。一方、水管ボイラにおいては、高圧の水/蒸気が直径の小さい伝熱管の内側を流れるため、伝熱管の厚さを現実的なものに抑えることが可能であり、従って、製造設備の大容量化に容易に対応することができる。このため、一般に、小型の製造設備においては煙管ボイラが採用され、大型の製造設備においては水管ボイラが有利とされている。例えば、従来の硫酸製造設備は比較的に小型であったため、通常は煙管ボイラが採用されている。一方、近年は硫酸製造設備の大型化が進んでいる。このため、硫酸製造設備において水管ボイラを採用することが必要とされている。 The smoke tube boiler has the advantage of a simple structure compared to the water tube boiler. However, in the smoke tube boiler, a high-pressure heat medium such as boiler water flows inside the shell. For this reason, if the capacity of the manufacturing equipment increases, the capacity of the waste heat boiler increases due to an increase in process gas and the shell of the smoke tube boiler becomes large, the thickness of the shell of the smoke tube boiler increases to withstand the pressure from the heat medium. There is a need to. Therefore, if a smoke tube boiler is employed in a large-capacity manufacturing facility, the cost of the waste heat boiler may increase. On the other hand, in a water tube boiler, high-pressure water / steam flows inside a heat transfer tube with a small diameter, so that the thickness of the heat transfer tube can be reduced to a realistic one. Can be easily accommodated. For this reason, a smoke tube boiler is generally adopted in a small manufacturing facility, and a water tube boiler is advantageous in a large manufacturing facility. For example, since a conventional sulfuric acid production facility is relatively small, a smoke tube boiler is usually employed. On the other hand, in recent years, the size of sulfuric acid production facilities is increasing. For this reason, it is necessary to employ a water pipe boiler in the sulfuric acid production facility.
 水管ボイラとしては、プロセスガスが水平方向に流れる横型の水管ボイラ、および、プロセスガスが鉛直方向に流れる縦型の水管ボイラが知られている。水管ボイラとして大型のものが必要になる場合、通常は、ボイラ全体の安全性や、ボイラの製作および据付の容易性を考慮して、縦型の水管ボイラが採用される。例えば特許文献1において、アンモニア製造設備において生成されるプロセスガスの熱を回収するため、縦型の水管ボイラからなる廃熱ボイラを用いることが提案されている。 As a water tube boiler, a horizontal water tube boiler in which a process gas flows in a horizontal direction and a vertical water tube boiler in which a process gas flows in a vertical direction are known. When a large water tube boiler is required, a vertical water tube boiler is usually adopted in consideration of the safety of the entire boiler and the ease of manufacturing and installing the boiler. For example, Patent Document 1 proposes to use a waste heat boiler composed of a vertical water tube boiler in order to recover the heat of process gas generated in an ammonia production facility.
 ところで、硫酸製造設備やアンモニア製造設備などにおいては、非常に高温の、例えば約1000℃のプロセスガスが廃熱ボイラに供給され得る。このため、廃熱ボイラのケーシングには高い耐熱性が要求される。このような課題を考慮して、例えば特許文献1に記載の廃熱ボイラにおいては、ケーシングの内面に、耐熱性を有する耐火断熱層が設けられている。 Incidentally, in a sulfuric acid production facility, an ammonia production facility, or the like, a very high temperature process gas, for example, about 1000 ° C. can be supplied to the waste heat boiler. For this reason, high heat resistance is required for the casing of the waste heat boiler. Considering such problems, for example, in the waste heat boiler described in Patent Document 1, a fireproof heat insulating layer having heat resistance is provided on the inner surface of the casing.
特開平8-42806号公報JP-A-8-42806
 廃熱ボイラに供給されるプロセスガスは、高温であるだけでなく高圧でもある場合がある。例えば硫酸製造設備においては、転化器にSOリッチガスが到達することを抑制するため、廃熱ボイラから転化器に向けて所定の圧力で、例えば0.5気圧(約5000mmH2O)程度の正圧でプロセスガスを送り込む必要がある。この場合、廃熱ボイラのケーシングには、耐熱性だけでなく耐圧性が求められることになる。また硫酸製造設備においてはプロセスガスにSOガスおよび若干の水蒸気が含まれるため、ケーシングには、上述の耐熱性および耐圧性だけでなく耐腐食性も求められることになる。 The process gas supplied to the waste heat boiler may be not only high temperature but also high pressure. For example, in a sulfuric acid production facility, in order to prevent SO 3 rich gas from reaching the converter, at a predetermined pressure from the waste heat boiler toward the converter, for example, a positive pressure of about 0.5 atm (about 5000 mmH 2 O). Process gas needs to be fed. In this case, not only heat resistance but also pressure resistance is required for the casing of the waste heat boiler. Further, in the sulfuric acid production facility, since the process gas contains SO 2 gas and some water vapor, the casing is required to have not only the above heat resistance and pressure resistance but also the corrosion resistance.
 本発明は、このような点を考慮してなされたものであり、高温かつ高圧のプロセスガスが生成される大型の製造設備において使用され得る縦型の水管ボイラからなる廃熱ボイラを提供することを目的とする。 The present invention has been made in consideration of such points, and provides a waste heat boiler composed of a vertical water tube boiler that can be used in a large-scale manufacturing facility where high-temperature and high-pressure process gas is generated. With the goal.
 本発明は、プラントにおけるプロセスガスから熱を回収する廃熱ボイラであって、
 縦方向に延び、円形状の横断面を有するケーシングと、前記ケーシングの内側に配置され、縦方向に延びる耐熱壁と、前記ケーシングを貫通するとともに前記耐熱壁に連結され、前記耐熱壁によって囲まれた空間にプロセスガスを供給する入口ダクトと、前記耐熱壁によって囲まれた空間に配置され、内部に熱媒体が通される複数の伝熱管と、を備え、前記伝熱管は、プロセスガスの熱を吸収することによって発生する熱媒体の蒸気が、液体状態の熱媒体との間での比重差によって上方へ流れることができるよう構成されている、廃熱ボイラである。
The present invention is a waste heat boiler for recovering heat from process gas in a plant,
A casing having a circular cross section extending in the vertical direction, a heat-resistant wall disposed inside the casing and extending in the vertical direction, penetrating through the casing and connected to the heat-resistant wall and surrounded by the heat-resistant wall. An inlet duct for supplying a process gas to the space, and a plurality of heat transfer tubes disposed in the space surrounded by the heat-resistant wall and through which a heat medium is passed, wherein the heat transfer tube heats the process gas. The waste heat boiler is configured such that the vapor of the heat medium generated by absorbing the heat can flow upward due to the difference in specific gravity between the heat medium and the liquid heat medium.
 本発明による廃熱ボイラにおいて、前記耐熱壁によって囲まれた空間が、縦方向に延びる第1煙道と、縦方向に延び、前記第1煙道を通った後のプロセスガスが通る第2煙道と、に区画されていてもよい。 In the waste heat boiler according to the present invention, a space surrounded by the heat-resistant wall has a first flue extending in the vertical direction and a second smoke extending in the vertical direction and passing through the process gas after passing through the first flue. It may be divided into roads.
 本発明による廃熱ボイラにおいて、前記耐熱壁は、内部に冷却媒体が通される複数の冷却管と、隣接する2本の前記冷却管の間の隙間を埋めるよう各冷却管に取り付けられたフィンと、を有していてもよい。 In the waste heat boiler according to the present invention, the heat-resistant wall includes a plurality of cooling pipes through which a cooling medium passes and fins attached to the cooling pipes so as to fill gaps between the two adjacent cooling pipes. And may have.
 本発明による廃熱ボイラは、複数の前記伝熱管の下端に接続され、液体状態の熱媒体を各伝熱管に分配する分配ヘッダーと、複数の前記伝熱管の上端に接続され、プロセスガスの熱によって蒸発した熱媒体を各伝熱管から寄せ集める集合ヘッダーと、をさらに備えていてもよい。この場合、好ましくは、前記分配ヘッダーおよび前記集合ヘッダーはそれぞれ、前記耐熱壁によって囲まれた空間に配置されている。 The waste heat boiler according to the present invention is connected to the lower ends of the plurality of heat transfer tubes, and is connected to the distribution header that distributes the liquid heat medium to the heat transfer tubes, and to the upper ends of the plurality of heat transfer tubes, and heat of the process gas And an assembly header that collects the heat medium evaporated by each heat transfer tube. In this case, preferably, each of the distribution header and the assembly header is disposed in a space surrounded by the heat-resistant wall.
 本発明による廃熱ボイラにおいて、前記分配ヘッダーおよび前記集合ヘッダーには、前記ケーシングおよび前記耐熱壁を貫通する中間配管がそれぞれ接続されていてもよい。この場合、前記ケーシングのうち前記中間配管が貫通する部分は、ガス封止部材によって外側から覆われていてもよい。また前記耐熱壁のうち前記中間配管が貫通する部分は、前記中間配管の輪郭に対応した湾曲形状を有し、内部に冷却媒体が通される冷却管によって構成されていてもよい。 In the waste heat boiler according to the present invention, an intermediate pipe penetrating the casing and the heat-resistant wall may be connected to the distribution header and the collective header. In this case, a portion of the casing through which the intermediate pipe passes may be covered from the outside by a gas sealing member. Moreover, the part which the said intermediate piping penetrates among the said heat-resistant walls may have a curved shape corresponding to the outline of the said intermediate piping, and may be comprised by the cooling pipe which lets a cooling medium pass inside.
 本発明による廃熱ボイラは、前記伝熱管を支持する支持機構をさらに備えていてもよい。前記支持機構は、上方から吊り下げられた支持管と、前記支持管に接続され、前記伝熱管を下方から支持する支持部材と、を有していてもよい。 The waste heat boiler according to the present invention may further include a support mechanism for supporting the heat transfer tube. The support mechanism may include a support tube suspended from above and a support member connected to the support tube and supporting the heat transfer tube from below.
 本発明による廃熱ボイラにおいて、前記支持機構の前記支持管の中には熱媒体が通されていてもよい。 In the waste heat boiler according to the present invention, a heat medium may be passed through the support tube of the support mechanism.
 本発明による廃熱ボイラにおいて、前記耐熱壁は、内部に冷却媒体が通される複数の冷却管と、隣接する2本の前記冷却管の間の隙間を埋めるよう各冷却管に取り付けられたフィンと、を有していてもよい。この場合、前記廃熱ボイラは、複数の前記冷却管の下端に連結され、液体状態の冷却媒体を各冷却管に分配する下部ヘッダーと、複数の前記冷却管の上端に連結され、プロセスガスの熱によって蒸発した冷却媒体を各冷却管から寄せ集める上部ヘッダーと、をさらに備えていてもよい。この場合、好ましくは、前記支持機構の前記支持管は、前記上部ヘッダーによって支持されている。 In the waste heat boiler according to the present invention, the heat-resistant wall includes a plurality of cooling pipes through which a cooling medium passes and fins attached to the cooling pipes so as to fill gaps between the two adjacent cooling pipes. And may have. In this case, the waste heat boiler is connected to lower ends of the plurality of cooling pipes, and is connected to a lower header that distributes a cooling medium in a liquid state to the respective cooling pipes, and upper ends of the plurality of cooling pipes. An upper header that collects the cooling medium evaporated by heat from each cooling pipe may be further provided. In this case, preferably, the support pipe of the support mechanism is supported by the upper header.
 本発明による廃熱ボイラにおいて、前記耐熱壁が、矩形状の横断面を有していてもよい。 In the waste heat boiler according to the present invention, the heat-resistant wall may have a rectangular cross section.
 本発明による廃熱ボイラにおいて、前記ケーシングの内面に補強板が取り付けられており、前記補強板は、前記耐熱壁の外面から一定の間隔を空けて配置されていてもよい。 In the waste heat boiler according to the present invention, a reinforcing plate may be attached to the inner surface of the casing, and the reinforcing plate may be disposed at a certain interval from the outer surface of the heat-resistant wall.
 本発明による廃熱ボイラにおいて、前記ケーシングの内面と前記耐熱壁の外面との間の空間に、水平方向に延びるバッフルプレートが設けられていてもよい。 In the waste heat boiler according to the present invention, a baffle plate extending in a horizontal direction may be provided in a space between the inner surface of the casing and the outer surface of the heat-resistant wall.
 本発明によれば、廃熱ボイラは、縦方向に延び、円形状の横断面を有するケーシングと、ケーシングの内側に配置され、縦方向に延びる耐熱壁と、を備えている。また高温のプロセスガスは、耐熱壁によって囲まれた空間に供給される。このため、プロセスガスの熱がケーシングに伝わることを、耐熱壁によって抑制することができる。従って、ケーシングが高い耐熱性を備える必要はなく、このことにより、ケーシングの設計の自由度を高めることができる。また本発明によれば、プロセスガスと大気圧との間の差圧は、ケーシングには作用するが、耐熱壁には作用しない。従って、耐熱壁が高い耐圧性を備える必要はなく、このことにより、耐熱壁の設計の自由度を高めることができる。例えば本発明によれば、主に耐圧性を考慮してケーシングを設計し、そして主に耐熱性を考慮して耐熱壁を設計する、という設計手法を採用することができる。すなわち、廃熱ボイラに要求される耐圧性および耐熱性を、異なる2つの構成要素によってそれぞれ確保することができる。このため、廃熱ボイラが達成することができる耐圧性および耐熱性の上限を高めることができる。このことにより、過酷な条件下で使用され得る大型の縦型水管ボイラを提供することが可能になる。例えば、大型の硫酸製造設備のような、廃熱ボイラに対して高い耐圧性、耐熱性および耐腐食性が要求される条件下で、大型の縦型水管ボイラを採用することが可能になる。従って、廃熱ボイラ全体の安全性や、廃熱ボイラの製作および据付の容易性を向上させることができる。 According to the present invention, the waste heat boiler includes a casing that extends in the vertical direction and has a circular cross section, and a heat-resistant wall that is disposed inside the casing and extends in the vertical direction. Further, the high temperature process gas is supplied to the space surrounded by the heat resistant wall. For this reason, it is possible to suppress the heat of the process gas from being transmitted to the casing by the heat resistant wall. Therefore, it is not necessary for the casing to have high heat resistance, which can increase the degree of freedom in designing the casing. Further, according to the present invention, the differential pressure between the process gas and the atmospheric pressure acts on the casing, but does not act on the heat resistant wall. Therefore, it is not necessary for the heat-resistant wall to have a high pressure resistance, which can increase the degree of freedom in designing the heat-resistant wall. For example, according to the present invention, it is possible to adopt a design method in which a casing is designed mainly considering pressure resistance and a heat resistant wall is designed mainly considering heat resistance. That is, the pressure resistance and heat resistance required for the waste heat boiler can be ensured by two different components. For this reason, the upper limit of the pressure resistance and heat resistance which a waste heat boiler can achieve can be raised. This makes it possible to provide a large vertical water tube boiler that can be used under severe conditions. For example, a large vertical water tube boiler can be employed under conditions where high pressure resistance, heat resistance and corrosion resistance are required for a waste heat boiler such as a large sulfuric acid production facility. Therefore, the safety of the entire waste heat boiler and the ease of manufacturing and installing the waste heat boiler can be improved.
図1は、本発明の実施の形態に係る廃熱ボイラを示す縦断面図。FIG. 1 is a longitudinal sectional view showing a waste heat boiler according to an embodiment of the present invention. 図2は、図1に示す廃熱ボイラのケーシングおよび耐熱壁を示す横断面図。FIG. 2 is a cross-sectional view showing a casing and a heat-resistant wall of the waste heat boiler shown in FIG. 図3は、ケーシングと耐熱壁との間に設けられた補強板を示す縦断面図。FIG. 3 is a longitudinal sectional view showing a reinforcing plate provided between the casing and the heat-resistant wall. 図4は、ケーシングと耐熱壁との間に設けられたバッフルプレートを示す縦断面図。FIG. 4 is a longitudinal sectional view showing a baffle plate provided between the casing and the heat-resistant wall. 図5は、耐熱壁によって囲まれた空間に配置された伝熱管を示す側面図。FIG. 5 is a side view showing a heat transfer tube arranged in a space surrounded by a heat-resistant wall. 図6は、図5に示す伝熱管を支持するための支持管および支持部材を示す図。FIG. 6 is a view showing a support tube and a support member for supporting the heat transfer tube shown in FIG. 5. 図7は、廃熱ボイラの上部に設けられた上部ヘッダーを上方から見た場合を示す平面図。FIG. 7 is a plan view showing a case where an upper header provided on the upper portion of the waste heat boiler is viewed from above. 図8は、分配ヘッダーおよび集合ヘッダーをケーシングの外部の支流管に連結する方法の一例を示す図。FIG. 8 is a diagram illustrating an example of a method of connecting the distribution header and the assembly header to a branch pipe outside the casing. 図9は、中間配管が耐熱壁を貫通して分配ヘッダーおよび集合ヘッダーに連結される様子を示す図。FIG. 9 is a diagram illustrating a state in which the intermediate pipe passes through the heat-resistant wall and is connected to the distribution header and the assembly header.
 以下、図1乃至図9を参照して、本発明の実施の形態について説明する。なお図面において、同じ機能を表す要素には同じ参照番号を付して、説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 9. In the drawings, elements that represent the same function may be denoted by the same reference numerals and description thereof may be omitted.
 まず図1および図2により、プロセスガスの熱を回収する廃熱ボイラ10全体について説明する。図1は、硫酸製造設備やアンモニア製造設備などの、高温かつ高圧のプロセスガスが生成される生産設備に設置される廃熱ボイラ10を示す縦断面図である。図2は、図1に示す廃熱ボイラ10のケーシング20および耐熱壁30を示す横断面図である。ここでは、廃熱ボイラ10が硫酸製造設備に設置されている場合について説明する。 First, the entire waste heat boiler 10 that recovers the heat of the process gas will be described with reference to FIGS. 1 and 2. FIG. 1 is a longitudinal sectional view showing a waste heat boiler 10 installed in a production facility where a high-temperature and high-pressure process gas is generated, such as a sulfuric acid production facility or an ammonia production facility. FIG. 2 is a cross-sectional view showing the casing 20 and the heat-resistant wall 30 of the waste heat boiler 10 shown in FIG. Here, the case where the waste heat boiler 10 is installed in the sulfuric acid production facility will be described.
 廃熱ボイラ
 廃熱ボイラ10には、燃焼炉を用いて硫黄を燃焼させることによって生成された、SOガスを含む高温かつ高圧のプロセスガスが導入される。図1において、符号f1~f5が付された矢印は、廃熱ボイラ10に導入されたプロセスガスの流れ方向を表している。本実施の形態による廃熱ボイラ10においては、鉛直方向に流れるプロセスガスから熱が回収される。すなわち廃熱ボイラ10は、縦型のものとなっている。しかしながら、これに限られることはなく、本発明の技術的思想は、水平方向に流れるプロセスガスから熱を回収する横型の廃熱ボイラに適用されてもよい。
Waste heat boiler Waste heat boiler 10 is introduced with a high-temperature and high-pressure process gas containing SO 2 gas generated by burning sulfur using a combustion furnace. In FIG. 1, arrows with reference numerals f 1 to f 5 represent the flow direction of the process gas introduced into the waste heat boiler 10. In the waste heat boiler 10 according to the present embodiment, heat is recovered from the process gas flowing in the vertical direction. That is, the waste heat boiler 10 is a vertical type. However, the present invention is not limited to this, and the technical idea of the present invention may be applied to a horizontal waste heat boiler that recovers heat from a process gas flowing in a horizontal direction.
 図1および図2に示すように、廃熱ボイラ10は、縦方向(鉛直方向)に延び、円形状の横断面を有するケーシング20と、ケーシング10の内側に配置され、縦方向に延びる耐熱壁30と、廃熱ボイラ10の内部にプロセスガスを供給する入口ダクト11と、熱回収された後のプロセスガスを廃熱ボイラ10の内部から転化器に向けて送出する出口ダクト12と、を備えている。ケーシング20は、自立が可能なように構成されている。なお図2においては、ケーシング20が真円形状の横断面を有する例が示されているが、これに限られることはない。プロセスガスと大気圧との間の差圧に耐えることができる限りにおいて、ケーシング20の横断面の形状として様々な形状を採用することが可能である。例えばケーシング20が、楕円形状の横断面を有していてもよい。 As shown in FIGS. 1 and 2, the waste heat boiler 10 extends in a vertical direction (vertical direction), has a casing 20 having a circular cross section, and a heat-resistant wall that is disposed inside the casing 10 and extends in the vertical direction. 30 and an inlet duct 11 for supplying process gas to the inside of the waste heat boiler 10, and an outlet duct 12 for sending the process gas after heat recovery from the inside of the waste heat boiler 10 to the converter. ing. The casing 20 is configured to be able to stand on its own. In addition, in FIG. 2, although the example in which the casing 20 has a perfect circular cross section is shown, it is not restricted to this. Various shapes can be adopted as the cross-sectional shape of the casing 20 as long as the pressure difference between the process gas and the atmospheric pressure can be withstood. For example, the casing 20 may have an elliptical cross section.
 図1および図2に示すように、耐熱壁30は、入口ダクト11側に配置され、縦方向に延びる前壁31と、出口ダクト12側に配置され、縦方向に延びる後壁32と、前壁31と後壁32との間に配置され、それぞれ縦方向に延びる第1側壁33および第2側壁34と、を有している。また、前壁31、後壁32、第1側壁33および第2側壁34はそれぞれ、平面状の形状を有している。この結果、図2に示すように、耐熱壁30は、矩形状、例えば正方形状の横断面を有している。なお「平面状」とは、各壁31~34を構成する要素、例えば後述する冷却管35およびフィン36が、同一平面上に配置されていることを意味している。 As shown in FIGS. 1 and 2, the heat-resistant wall 30 is disposed on the inlet duct 11 side and extends in the longitudinal direction, the front wall 31 is disposed on the outlet duct 12 side, and the rear wall 32 extends in the longitudinal direction. The first side wall 33 and the second side wall 34 are disposed between the wall 31 and the rear wall 32 and extend in the vertical direction. The front wall 31, the rear wall 32, the first side wall 33, and the second side wall 34 each have a planar shape. As a result, as shown in FIG. 2, the heat-resistant wall 30 has a rectangular cross section, for example, a square cross section. The term “planar” means that elements constituting the walls 31 to 34, for example, a cooling pipe 35 and fins 36, which will be described later, are arranged on the same plane.
 耐熱壁30は、各壁31~34を組み合わせることによって容易に製作および設置され得る。また、耐熱壁30の横断面を矩形状にすることにより、耐熱壁30によって囲まれた空間を無駄無く活用することができる。 The heat-resistant wall 30 can be easily manufactured and installed by combining the walls 31 to 34. In addition, by making the cross section of the heat resistant wall 30 rectangular, the space surrounded by the heat resistant wall 30 can be utilized without waste.
 図1に示すように、入口ダクト11は、ケーシング20を貫通するとともに耐熱壁30の前壁31に連結されている。また図1に示すように、出口ダクト12も、入口ダクト11と同様に、ケーシング20を貫通するとともに耐熱壁30の後壁32に連結されている。また図1に示すように、プロセスガスの熱を回収するための伝熱管60は、耐熱壁30によって側方から囲まれた空間に配置されている。この場合、廃熱ボイラ10に供給されたプロセスガスは、主に耐熱壁30によって囲まれた空間内を流れている間に、伝熱管60に通されている熱媒体との間で熱交換し、その後、出口ダクト12から転化器に向けて送出される。すなわち、プロセスガスの熱の影響を受けるのは主に耐熱壁30の内面であり、ケーシング20の内面には、プロセスガスの熱はあまり伝わらない。従って、ケーシング20が高い耐熱性を備える必要はない。このため、ケーシングに高い耐熱性が要求される場合に比べて、ケーシング20の構造を簡略化することができる。例えば従来の廃熱ボイラにおいては、ケーシングに耐熱性や耐火性を持たせるため、ケーシングの内面に耐火材や断熱材が設けられていた。一方、本実施の形態によれば、このような耐火材や断熱材を不要にすることができる。このことにより、ケーシング20の製作やメンテナンスに要するコストを削減することができる。また、ケーシング20の重量を削減することができ、このことにより、ケーシング20の自立性や耐震性を向上させることができる。 As shown in FIG. 1, the inlet duct 11 penetrates the casing 20 and is connected to the front wall 31 of the heat-resistant wall 30. As shown in FIG. 1, the outlet duct 12 also penetrates the casing 20 and is connected to the rear wall 32 of the heat-resistant wall 30 in the same manner as the inlet duct 11. As shown in FIG. 1, the heat transfer tube 60 for recovering the heat of the process gas is disposed in a space surrounded by the heat-resistant wall 30 from the side. In this case, the process gas supplied to the waste heat boiler 10 exchanges heat with the heat medium passed through the heat transfer tube 60 while mainly flowing in the space surrounded by the heat-resistant wall 30. Then, it is sent toward the converter from the outlet duct 12. That is, it is mainly the inner surface of the heat-resistant wall 30 that is affected by the heat of the process gas, and the heat of the process gas is not transmitted to the inner surface of the casing 20 so much. Therefore, the casing 20 does not need to have high heat resistance. For this reason, the structure of the casing 20 can be simplified compared with the case where high heat resistance is required for the casing. For example, in a conventional waste heat boiler, a refractory material and a heat insulating material are provided on the inner surface of the casing in order to impart heat resistance and fire resistance to the casing. On the other hand, according to this Embodiment, such a refractory material and a heat insulating material can be made unnecessary. As a result, the cost required for production and maintenance of the casing 20 can be reduced. Moreover, the weight of the casing 20 can be reduced, and thereby the self-supporting property and the earthquake resistance of the casing 20 can be improved.
 なお本実施の形態において、耐熱壁30は、完全な気密性を有する必要はない。すなわち、ケーシング20と耐熱壁30との間の空間と、耐熱壁30によって囲まれた空間とは、部分的に連通していてもよい。例えば、後述する中間配管が耐熱壁30を貫通する部分において、プロセスガスが、耐熱壁30の内部から外部へ漏れ出るようになっていてもよい。この場合であっても、耐熱壁30によって囲まれた空間の流路抵抗は、中間配管が耐熱壁30を貫通する部分における流路抵抗よりも著しく低いため、プロセスガスは、主に耐熱壁30によって囲まれた空間を流れることになる。なお、ケーシング20と耐熱壁30との間の空間と、耐熱壁30によって囲まれた空間とが部分的に連通されている場合、2つの空間の圧力はほぼ同一になる。この場合、耐熱壁30に作用される差圧はほとんど存在しないので、耐熱壁30が高い耐圧性を備える必要はない。このため、耐熱壁30に高い耐圧性が要求される場合に比べて、耐熱壁30の構造を簡略化することができ、若しくは、耐熱壁30の設計の自由度を高めることができる。例えば、耐熱壁30の横断面の形状として、上述のように矩形状を採用することが可能になる。 In the present embodiment, the heat-resistant wall 30 does not have to be completely airtight. That is, the space between the casing 20 and the heat-resistant wall 30 and the space surrounded by the heat-resistant wall 30 may partially communicate with each other. For example, the process gas may leak from the inside of the heat-resistant wall 30 to the outside in a portion where an intermediate pipe described later passes through the heat-resistant wall 30. Even in this case, since the flow path resistance of the space surrounded by the heat resistant wall 30 is significantly lower than the flow path resistance in the portion where the intermediate pipe passes through the heat resistant wall 30, the process gas mainly contains the heat resistant wall 30. Will flow through the space surrounded by. In addition, when the space between the casing 20 and the heat-resistant wall 30 and the space surrounded by the heat-resistant wall 30 are partially communicated, the pressures in the two spaces are substantially the same. In this case, since there is almost no differential pressure acting on the heat resistant wall 30, it is not necessary for the heat resistant wall 30 to have high pressure resistance. For this reason, compared with the case where high pressure resistance is required for the heat-resistant wall 30, the structure of the heat-resistant wall 30 can be simplified, or the degree of freedom in designing the heat-resistant wall 30 can be increased. For example, as the shape of the cross section of the heat-resistant wall 30, a rectangular shape can be adopted as described above.
 (耐熱壁)
 次に耐熱壁30の構造について、図2を参照して詳細に説明する。本実施の形態において、耐熱壁30の前壁31、後壁32、第1側壁33および第2側壁34はそれぞれ、縦方向に延び、内部に冷却媒体が通される複数の冷却管35と、隣接する2本の冷却管35の間の隙間を埋めるよう各冷却管35に取り付けられたフィン36と、を有している。フィン36は、例えば溶接によって各冷却管35に取り付けられている。冷却管35に通される冷却媒体としては、例えばボイラ水、すなわち飽和水または気水混合水が用いられる。このように本実施の形態において、耐熱壁30の各壁31~34は、いわゆる水壁として構成されている。この場合、プロセスガスの熱を、各壁31~34の冷却管35を通るボイラ水によって回収することができるため、耐熱壁30によって囲まれた空間を流れるプロセスガスの熱がケーシング20に伝わることをさらに抑制することができる。また、プロセスガスの熱がケーシング20に伝わることを抑制することと同時に、冷却媒体を用いてプロセスガスの熱を回収することができるため、廃熱ボイラ10のエネルギー効率を高めることができる。
(Heat-resistant wall)
Next, the structure of the heat-resistant wall 30 will be described in detail with reference to FIG. In the present embodiment, the front wall 31, the rear wall 32, the first side wall 33, and the second side wall 34 of the heat-resistant wall 30 respectively extend in the vertical direction and have a plurality of cooling pipes 35 through which a cooling medium passes. And fins 36 attached to the respective cooling pipes 35 so as to fill a gap between the two adjacent cooling pipes 35. The fin 36 is attached to each cooling pipe 35 by welding, for example. As the cooling medium passed through the cooling pipe 35, for example, boiler water, that is, saturated water or air-water mixed water is used. Thus, in the present embodiment, the walls 31 to 34 of the heat-resistant wall 30 are configured as so-called water walls. In this case, since the heat of the process gas can be recovered by the boiler water passing through the cooling pipes 35 of the walls 31 to 34, the heat of the process gas flowing through the space surrounded by the heat resistant wall 30 is transmitted to the casing 20. Can be further suppressed. Moreover, since the heat of process gas can be collect | recovered using a cooling medium simultaneously with suppressing that the heat of process gas is transmitted to the casing 20, the energy efficiency of the waste heat boiler 10 can be improved.
 耐熱壁30の各冷却管35に冷却媒体を通すための構成が特に限定されることはなく、様々な構成が採用され得る。例えば図1に示すように、前壁31および後壁32を構成する各冷却管35の下端には、液体状態の冷却媒体を各冷却管35に分配する下部ヘッダー46が接続されており、また各冷却管35の上端には、プロセスガスの熱によって蒸発した冷却媒体を各冷却管35から寄せ集める上部ヘッダー47が接続されていてもよい。このような構成を採用することにより、複数の冷却管35に対して効率的に冷却媒体を供給すること、および、複数の冷却管35から効率的に冷却媒体を回収することができる。なお図1には示されていないが、第1側壁33および第2側壁34を構成する各冷却管35の下端および上端にも、下部ヘッダーおよび上部ヘッダーがそれぞれ接続されている。 The configuration for passing the cooling medium through each cooling pipe 35 of the heat-resistant wall 30 is not particularly limited, and various configurations can be adopted. For example, as shown in FIG. 1, a lower header 46 for distributing a cooling medium in a liquid state to each cooling pipe 35 is connected to the lower end of each cooling pipe 35 constituting the front wall 31 and the rear wall 32, and An upper header 47 that collects the cooling medium evaporated by the heat of the process gas from each cooling pipe 35 may be connected to the upper end of each cooling pipe 35. By adopting such a configuration, the cooling medium can be efficiently supplied to the plurality of cooling pipes 35 and the cooling medium can be efficiently recovered from the plurality of cooling pipes 35. Although not shown in FIG. 1, the lower header and the upper header are also connected to the lower end and the upper end of each cooling pipe 35 constituting the first side wall 33 and the second side wall 34, respectively.
 (煙道)
 次に、耐熱壁30によって囲まれた空間に形成され、プロセスガスが通る流路、いわゆる煙道について説明する。本実施の形態においては、図1および図2に示すように、耐熱壁30によって囲まれた空間が、入口ダクト11に連通し、縦方向に延びる第1煙道P1と、出口ダクト12に連通し、縦方向に延び、かつ第1煙道P1を通った後のプロセスガスが通る第2煙道P2と、に区画されていてもよい。この場合、矢印f1に沿って廃熱ボイラ10に供給されたプロセスガスは、はじめに、矢印f2で示すように、第1煙道P1に沿って上方向に流れる。第1煙道P1から排出されたプロセスガスは、矢印f3で示すように、ケーシング20の上部においてその進行方向を反転させる。その後、プロセスガスは、矢印f4で示すように、第2煙道P2に沿って下方向に流れる。廃熱ボイラ10の下部に到達したプロセスガスは、矢印f5で示すように、出口ダクト12によって排出される。このように本実施の形態においては、1つの胴(ケーシング)の内部に、縦方向に延びる2つの煙道が形成されている。このような形式は、一胴二回流とも称される。一胴二回流においては、1つのケーシング20の内部に形成される煙道の長さを、一胴一回流の場合の2倍にすることができるので、煙道に配置される伝熱管60を用いてプロセスガスの熱を十分に回収することができる。このため、廃熱ボイラ10のエネルギー効率を高めることができる。
(Flues)
Next, a flow path that is formed in a space surrounded by the heat-resistant wall 30 and through which process gas passes, that is, a so-called flue will be described. In the present embodiment, as shown in FIGS. 1 and 2, the space surrounded by the heat-resistant wall 30 communicates with the inlet duct 11 and communicates with the first flue P1 extending in the vertical direction and the outlet duct 12. However, it may be partitioned into a second flue P2 that extends in the vertical direction and through which the process gas passes through the first flue P1. In this case, the process gas supplied to the waste heat boiler 10 along the arrow f1 first flows upward along the first flue P1, as indicated by the arrow f2. The process gas discharged from the first flue P1 reverses its traveling direction at the upper part of the casing 20, as indicated by an arrow f3. Thereafter, the process gas flows downward along the second flue P2 as indicated by an arrow f4. The process gas that has reached the lower portion of the waste heat boiler 10 is discharged by the outlet duct 12 as indicated by an arrow f5. As described above, in the present embodiment, two flues extending in the vertical direction are formed inside one trunk (casing). Such a form is also referred to as one-body two-time flow. In the single cylinder double flow, the length of the flue formed inside one casing 20 can be doubled in the case of the single cylinder single flow, so that the heat transfer tubes 60 arranged in the flue can be provided. It is possible to recover the heat of the process gas sufficiently. For this reason, the energy efficiency of the waste heat boiler 10 can be improved.
 以下、一胴二回流を採用することのその他の利点について説明する。まずは、比較のため、プロセスガスの煙道が廃熱ボイラの内部で折り返されない場合、すなわち一胴一回流の場合について考える。この場合、本実施の形態の場合と同一の長さの煙道を得るためには、ケーシングおよび耐熱壁の高さを、本実施の形態の場合の約2倍にする必要がある。このため、ケーシングの自立性が低下することや、ケーシングおよび耐熱壁の製作や据付が困難になることが考えられる。これに対して本実施の形態によれば、一胴二回流を採用することにより、ケーシング20や耐熱壁30の高さが大きくなりすぎることを抑制しながら、プロセスガスの煙道の長さを十分に確保することができる。これによって、ケーシング20の自立性や、ケーシング20および耐熱壁30の製作や据付の容易性を確保することができる。
 また比較のため、1つの廃熱ボイラ10が2つのケーシングを備える場合、すなわち二胴二回流の場合について考える。この場合、本実施の形態の場合とほぼ同一の高さを有するケーシングを用いて、プロセスガスの煙道の長さを十分に確保することができる。しかしながら、2つのケーシングが必要になるため、廃熱ボイラの製作に要するコストが増大してしまうことが考えられる。これに対して本実施の形態によれば、一胴二回流を採用することにより、廃熱ボイラ10の製作に要するコストを低く抑えながら、プロセスガスの煙道の長さを十分に確保することができる。
Hereinafter, other advantages of adopting a one-body two-time flow will be described. First, for comparison, consider the case where the flue of the process gas is not folded inside the waste heat boiler, that is, the case of a single cylinder and one flow. In this case, in order to obtain a flue having the same length as in the present embodiment, the height of the casing and the heat-resistant wall needs to be about twice that in the present embodiment. For this reason, it is possible that the independence of a casing falls and manufacture and installation of a casing and a heat-resistant wall become difficult. On the other hand, according to the present embodiment, the length of the flue of the process gas can be reduced while suppressing the height of the casing 20 and the heat-resistant wall 30 from becoming too large by adopting a one-cylinder and two-turn flow. It can be secured sufficiently. Thereby, the self-supporting property of the casing 20 and the ease of manufacturing and installing the casing 20 and the heat-resistant wall 30 can be ensured.
Further, for comparison, a case where one waste heat boiler 10 includes two casings, that is, a case of two-cylinder two-way flow will be considered. In this case, the length of the flue of the process gas can be sufficiently secured by using a casing having almost the same height as that in the present embodiment. However, since two casings are required, it is considered that the cost required for manufacturing the waste heat boiler increases. On the other hand, according to the present embodiment, the length of the flue of the process gas is sufficiently secured while the cost required for the production of the waste heat boiler 10 is kept low by adopting the double flow of one cylinder. Can do.
 次に、上述の一胴二回流を実現するための具体的な構造について説明する。例えば図1および図2に示すように、前壁31と後壁32との間には中間壁38が設けられている。中間壁38は、水平方向においてプロセスガスの流れを遮蔽するよう構成されている。例えば中間壁38は、上下方向に延びる鉛直部38aを含んでいる。この鉛直部38aは、耐熱壁30の各壁31~34の場合と同様に、縦方向に延び、内部に冷却媒体が通される複数の冷却管35と、隣接する2本の冷却管35の間の隙間を埋めるよう各冷却管35に取り付けられたフィン36と、を有していてもよい。
 図1に示すように、中間壁38を構成する各冷却管35の下端は、前壁31を構成する各冷却管35の下端が下部ヘッダー46に接続されている場所において、下部ヘッダー46に接続されていてもよい。これによって、図1に示すように、中間壁38が、第1煙道P1の下部において鉛直部38aから前壁31に向かって延びる下面部38cを有することができるようになる。この場合、下面部38cを構成する各冷却管35の間にフィン36を設けることにより、入口ダクト11から第1煙道P1に供給されたプロセスガスが廃熱ボイラ10の下部を通って第2煙道P2や出口ダクト12に到達することを防ぐことができる。なお、中間壁38を構成する各冷却管35の下端が接続される下部ヘッダー46は、前壁31を構成する各冷却管35の下端が接続される下部ヘッダー46と同一であってもよく、若しくは異なっていてもよい。
 また図1に示すように、中間壁38を構成する各冷却管35の上端は、後壁32を構成する各冷却管35の上端が上部ヘッダー47に接続されている場所において、上部ヘッダー47に接続されていてもよい。これによって、後壁32を構成する各冷却管35から冷却媒体が回収される場所と、中間壁38を構成する各冷却管35から冷却媒体が回収される場所とを近接させることができ、これによって、冷却媒体の蒸気を取り出すための構造を簡略化することができる。なおこの場合、図1に示すように、中間壁38が、第1煙道P1の上部において鉛直部38aから後壁32に向かって延びる上面部38bを有するようになる。一方、上述のように、第1煙道P1から排出されたプロセスガスは、反転して第2煙道P2内に流入しなければならない。従って、上面部38bは、プロセスガスを通過させることができるように構成されている。例えば上面部38bを構成する各冷却管35の間には、上述のフィン36が設けられていない。これによって、プロセスガスが中間壁38の上面部38bを通過して第2煙道P2に流入することが可能になる。
Next, a specific structure for realizing the above-described one-body two-way flow will be described. For example, as shown in FIGS. 1 and 2, an intermediate wall 38 is provided between the front wall 31 and the rear wall 32. The intermediate wall 38 is configured to shield the flow of process gas in the horizontal direction. For example, the intermediate wall 38 includes a vertical portion 38a extending in the vertical direction. As in the case of the walls 31 to 34 of the heat-resistant wall 30, the vertical portion 38a extends in the vertical direction and includes a plurality of cooling pipes 35 through which a cooling medium passes, and two adjacent cooling pipes 35. And fins 36 attached to the respective cooling pipes 35 so as to fill the gaps therebetween.
As shown in FIG. 1, the lower end of each cooling pipe 35 constituting the intermediate wall 38 is connected to the lower header 46 at a place where the lower end of each cooling pipe 35 constituting the front wall 31 is connected to the lower header 46. May be. Accordingly, as shown in FIG. 1, the intermediate wall 38 can have a lower surface portion 38c extending from the vertical portion 38a toward the front wall 31 in the lower portion of the first flue P1. In this case, by providing the fins 36 between the cooling pipes 35 constituting the lower surface portion 38c, the process gas supplied from the inlet duct 11 to the first flue P1 passes through the lower part of the waste heat boiler 10 to the second. Reaching the flue P2 or the outlet duct 12 can be prevented. The lower header 46 to which the lower end of each cooling pipe 35 constituting the intermediate wall 38 is connected may be the same as the lower header 46 to which the lower end of each cooling pipe 35 constituting the front wall 31 is connected, Or they may be different.
As shown in FIG. 1, the upper end of each cooling pipe 35 constituting the intermediate wall 38 is connected to the upper header 47 at a place where the upper end of each cooling pipe 35 constituting the rear wall 32 is connected to the upper header 47. It may be connected. Thereby, the place where the cooling medium is collected from each cooling pipe 35 constituting the rear wall 32 and the place where the cooling medium is collected from each cooling pipe 35 constituting the intermediate wall 38 can be brought close to each other. Thus, the structure for taking out the vapor of the cooling medium can be simplified. In this case, as shown in FIG. 1, the intermediate wall 38 has an upper surface portion 38b extending from the vertical portion 38a toward the rear wall 32 in the upper portion of the first flue P1. On the other hand, as described above, the process gas discharged from the first flue P1 must be reversed and flow into the second flue P2. Accordingly, the upper surface portion 38b is configured to allow the process gas to pass therethrough. For example, the fins 36 described above are not provided between the cooling pipes 35 constituting the upper surface portion 38b. As a result, the process gas can pass through the upper surface portion 38b of the intermediate wall 38 and flow into the second flue P2.
 ところで上述のように廃熱ボイラ10の上部においてプロセスガスを折り返す場合、ケーシング20の上部の内面には、第1煙道P1から排出されたプロセスガスが直接的に接触することになる。この場合、プロセスガスの熱によってケーシング20の上部が損傷することを防ぐため、ケーシング20の上部に高い耐熱性を持たせてもよい。例えば図1に示すように、ケーシング20は、耐熱壁30の上端よりも下方に位置し、上下方向に延びる鉛直部21と、第1煙道P1から排出された後に折り返されるプロセスガスが接触する折り返し部22と、を組み合わせることによって構成されていてもよい。この場合、折り返し部22には、耐熱性や耐火性を持たせるための耐火材や断熱材が内面に設けられていてもよい。一方、鉛直部21が高い耐熱性を備える必要はないため、鉛直部21の構造は、折り返し部22に比べて簡略なものとなっている。このことにより、ケーシング20全体に耐熱性や耐火性を持たせる場合に比べて、ケーシング20全体のコストや重量を削減することができる。折り返し部22に耐熱性を持たせるための具体的な構造は特には限られないが、例えば、キャスブルアンカー、断熱キャスター、耐火キャスターなどを用いることができる。
 また、鉛直部21の構造が簡略化されているため、鉛直部21に、廃熱ボイラ10のメンテナンスを実施するためのマンホールを容易に設けることができる。このため、廃熱ボイラ10の内部へのアクセスが容易になり、このことにより、廃熱ボイラ10のメンテナンス作業を簡易化することができる。なお以下に説明するように、メンテナンス用のマンホールは、折り返し部22に設けられていてもよい。
 プロセスガスの熱は、折り返し部22に到達するまでの間に、第1煙道P1においてある程度回収されている。例えば、入口ダクト11から供給されるプロセスガスの温度が約1000℃である場合、折り返し部22に到達したプロセスガスの温度は約600℃となっている。従って、折り返し部22の構造は簡略なものとなっている。このため、従来に比べて、メンテナンスのための上述のマンホールを折り返し部22に容易に設けることができる。
By the way, when the process gas is turned up in the upper part of the waste heat boiler 10 as described above, the process gas discharged from the first flue P1 comes into direct contact with the inner surface of the upper part of the casing 20. In this case, in order to prevent the upper part of the casing 20 from being damaged by the heat of the process gas, the upper part of the casing 20 may have high heat resistance. For example, as shown in FIG. 1, the casing 20 is positioned below the upper end of the heat-resistant wall 30, and the vertical portion 21 extending in the vertical direction is in contact with the process gas that is folded after being discharged from the first flue P <b> 1. It may be configured by combining the folded portion 22. In this case, the folded portion 22 may be provided with a refractory material and a heat insulating material on the inner surface for imparting heat resistance and fire resistance. On the other hand, since the vertical portion 21 does not need to have high heat resistance, the structure of the vertical portion 21 is simpler than the folded portion 22. As a result, the cost and weight of the entire casing 20 can be reduced as compared with the case where the entire casing 20 has heat resistance and fire resistance. Although the specific structure for giving heat resistance to the folding | returning part 22 is not specifically limited, For example, a castable anchor, a heat insulation caster, a fireproof caster etc. can be used.
Moreover, since the structure of the vertical part 21 is simplified, the manhole for implementing the maintenance of the waste heat boiler 10 can be easily provided in the vertical part 21. For this reason, the access to the inside of the waste heat boiler 10 becomes easy, and this makes it possible to simplify the maintenance work of the waste heat boiler 10. As will be described below, a maintenance manhole may be provided in the folded portion 22.
The heat of the process gas is recovered to some extent in the first flue P <b> 1 until reaching the turn-up portion 22. For example, when the temperature of the process gas supplied from the inlet duct 11 is about 1000 ° C., the temperature of the process gas that has reached the folded portion 22 is about 600 ° C. Therefore, the structure of the folded portion 22 is simple. For this reason, the above-described manhole for maintenance can be easily provided in the folded-back portion 22 as compared with the conventional case.
 ところで上述のように、ケーシング20の鉛直部21の内面には、耐熱壁30から漏れ出たプロセスガスがわずかに到達することがある。プロセスガスには、上述のようにSOガスが含まれており、またプロセスガスには、わずかではあるが水蒸気が含まれていることがある。この場合、ケーシング20の外部の雰囲気温度がプロセスガスの温度に比べて著しく低いと、鉛直部21の内面の温度が酸露点を下回り、この結果、硫酸のガスが結露し、そして鉛直部21の内面に硫酸の液滴が出現することがある。このような結露を防ぐため、図1に示すように、鉛直部21には断熱部材23が設けられていてもよい。これによって、鉛直部21の内面の温度が酸露点を下回ることを抑制することができる。このことにより、鉛直部21の内面が腐食によって損傷してしまうことを抑制することができる。 Incidentally, as described above, the process gas leaking from the heat-resistant wall 30 may slightly reach the inner surface of the vertical portion 21 of the casing 20. The process gas contains SO 2 gas as described above, and the process gas may contain a small amount of water vapor. In this case, if the atmospheric temperature outside the casing 20 is significantly lower than the temperature of the process gas, the temperature of the inner surface of the vertical portion 21 is below the acid dew point, and as a result, the sulfuric acid gas is condensed and the vertical portion 21 A drop of sulfuric acid may appear on the inner surface. In order to prevent such condensation, a heat insulating member 23 may be provided in the vertical portion 21 as shown in FIG. Thereby, it can suppress that the temperature of the inner surface of the vertical part 21 falls below an acid dew point. Thereby, it can suppress that the inner surface of the vertical part 21 is damaged by corrosion.
 (伝熱管)
 次に、耐熱壁30によって囲まれた空間に配置される伝熱管60の構造について、図1および図5を参照して説明する。図5は、図1に示す伝熱管60を拡大して示す側面図である。
(Heat transfer tube)
Next, the structure of the heat transfer tube 60 disposed in the space surrounded by the heat resistant wall 30 will be described with reference to FIGS. 1 and 5. FIG. 5 is an enlarged side view showing the heat transfer tube 60 shown in FIG.
 伝熱管60は、プロセスガスの熱を吸収することによって発生する熱媒体の蒸気が、伝熱管60の内部に存在する液体状態の熱媒体との間での比重差によって上方へ流れることができるよう構成されている。なお図1に示すように、伝熱管60は、プロセスガスとの間での効率的な熱交換を実現するため、プロセスガスの流れ方向に平行な面内、すなわち縦方向に延びる面内で蛇行状に延在していてもよい。この場合、伝熱管60の全体的な形状は、パネル状とも表現され得る。例えば上述の図2や後に示す図8においては、伝熱管60がパネル状に描かれている。以下、蛇行状に延在する伝熱管によって形成される包括的な形状を「伝熱管パネル」と称し、伝熱管パネルによって形成される平面を「伝熱管パネル面」と称することもある。 The heat transfer tube 60 allows the heat medium vapor generated by absorbing the heat of the process gas to flow upward due to the specific gravity difference between the heat transfer tube 60 and the liquid heat medium existing inside the heat transfer tube 60. It is configured. As shown in FIG. 1, the heat transfer tube 60 meanders in a plane parallel to the flow direction of the process gas, that is, in a plane extending in the vertical direction in order to realize efficient heat exchange with the process gas. It may extend in a shape. In this case, the overall shape of the heat transfer tube 60 can also be expressed as a panel shape. For example, in FIG. 2 mentioned above and FIG. 8 shown later, the heat transfer tube 60 is drawn in a panel shape. Hereinafter, a comprehensive shape formed by the heat transfer tubes extending in a serpentine shape is sometimes referred to as a “heat transfer tube panel”, and a plane formed by the heat transfer tube panels is sometimes referred to as a “heat transfer tube panel surface”.
 図5に示すように、伝熱管60は、直線状に延びる複数の直管部61と、隣接する2つの直管部61を連結する複数の折り返し部と、を有している。折り返し部は、隣接する2つの直管部61のうち入口ダクト11側(前壁31側)の端部に接続され、略U字状の形状からなる第1折り返し部62と、隣接する2つの直管部61のうち出口ダクト12側(後壁32側)の端部に接続され、略U字状の形状からなる第2折り返し部63と、を含んでいる。これら複数の直管部61及び複数の折り返し部62,63を、鉛直方向に延びる平面内で交互に配置することにより、上述の伝熱管パネル面が形成されている。 As shown in FIG. 5, the heat transfer tube 60 has a plurality of straight tube portions 61 extending linearly and a plurality of folded portions that connect two adjacent straight tube portions 61. The folded portion is connected to the end of the two adjacent straight pipe portions 61 on the inlet duct 11 side (front wall 31 side), and has a first folded portion 62 having a substantially U-shape and two adjacent two The straight pipe portion 61 is connected to an end portion on the outlet duct 12 side (rear wall 32 side) and includes a second folded portion 63 having a substantially U-shape. The heat transfer tube panel surface described above is formed by alternately arranging the plurality of straight tube portions 61 and the plurality of folded portions 62 and 63 in a plane extending in the vertical direction.
 図5に示すように、伝熱管60の各直管部61は、水平方向に対して傾斜した方向に延びている。このため、気体状態の熱媒体の比重と、液体状態の熱媒体の比重との差に基づいて、熱媒体の蒸気が伝熱管60に沿って上方向に流れることができる。このことにより、ポンプなどを用いることなく自然に熱媒体を循環させることができる。すなわち、自然循環式の水管ボイラを実現することができる。なお伝熱管60に通される熱媒体としては、例えば、耐熱壁30の冷却管35に通される冷却媒体の場合と同様に、ボイラ水が用いられる。この場合、熱媒体の蒸気、すなわち水蒸気は、水と水蒸気の比重差によって伝熱管60に沿って上方へ流れていく。 As shown in FIG. 5, each straight pipe portion 61 of the heat transfer tube 60 extends in a direction inclined with respect to the horizontal direction. For this reason, the vapor of the heat medium can flow upward along the heat transfer tube 60 based on the difference between the specific gravity of the heat medium in the gas state and the specific gravity of the heat medium in the liquid state. This makes it possible to circulate the heat medium naturally without using a pump or the like. That is, a natural circulation water tube boiler can be realized. As the heat medium passed through the heat transfer tube 60, for example, boiler water is used as in the case of the cooling medium passed through the cooling tube 35 of the heat-resistant wall 30. In this case, the vapor of the heat medium, that is, water vapor flows upward along the heat transfer tube 60 due to the specific gravity difference between water and water vapor.
 伝熱管60に熱媒体を通すための構成が特に限定されることはなく、様々な構成が採用され得る。例えば図1および図5に示すように、伝熱管60の下端には、液体状態の熱媒体を伝熱管60に供給する分配ヘッダー41が接続されており、また伝熱管60の上端には、プロセスガスの熱によって蒸発した熱媒体を伝熱管60から寄せ集める集合ヘッダー42が接続されていてもよい。 The configuration for passing the heat medium through the heat transfer tube 60 is not particularly limited, and various configurations can be adopted. For example, as shown in FIGS. 1 and 5, a distribution header 41 for supplying a liquid heat medium to the heat transfer tube 60 is connected to the lower end of the heat transfer tube 60, and a process header is connected to the upper end of the heat transfer tube 60. A collective header 42 that collects the heat medium evaporated by the heat of the gas from the heat transfer tube 60 may be connected.
 なお図5に示すように、1つの伝熱管パネル面内に複数の、例えば3本の伝熱管60が設けられており、そして各伝熱管60の下端および上端が同一の分配ヘッダー41および集合ヘッダー42に接続されていてもよい。このような構成を採用することにより、プロセスガスから効率的に熱を回収することができる。なお各伝熱管60は、短管41aおよび短管42aを介して分配ヘッダー41および集合ヘッダー42に接続されていてもよい。短管41aおよび短管42aは、例えば溶接によって分配ヘッダー41および集合ヘッダー42並びに伝熱管60に接続されている。 As shown in FIG. 5, a plurality of, for example, three heat transfer tubes 60 are provided in the surface of one heat transfer tube panel, and the distribution header 41 and the assembly header having the same lower end and upper end of each heat transfer tube 60 are provided. 42 may be connected. By adopting such a configuration, heat can be efficiently recovered from the process gas. Each heat transfer tube 60 may be connected to the distribution header 41 and the assembly header 42 via the short tube 41a and the short tube 42a. The short pipe 41a and the short pipe 42a are connected to the distribution header 41, the assembly header 42, and the heat transfer pipe 60 by welding, for example.
 なお図2に示すように、伝熱管パネル面の法線方向に沿って複数の伝熱管60(伝熱管パネル)が並べられており、そして、各伝熱管パネルを構成する伝熱管60の下端および上端が同一の分配ヘッダー41および集合ヘッダー42に接続されていてもよい。すなわち、同一の高さの場所に、複数の伝熱管パネルからなる伝熱管パネル群が配置されていてもよい。このような構成を採用することにより、複数の伝熱管60に対して効率的に熱媒体を供給すること、および、複数の伝熱管60から効率的に熱媒体を回収することができる。 As shown in FIG. 2, a plurality of heat transfer tubes 60 (heat transfer tube panels) are arranged along the normal direction of the heat transfer tube panel surface, and the lower ends of the heat transfer tubes 60 constituting each heat transfer tube panel and The upper end may be connected to the same distribution header 41 and collective header 42. That is, the heat transfer tube panel group which consists of a some heat transfer tube panel may be arrange | positioned in the place of the same height. By adopting such a configuration, the heat medium can be efficiently supplied to the plurality of heat transfer tubes 60, and the heat medium can be efficiently recovered from the plurality of heat transfer tubes 60.
 図1に示すように、伝熱管パネル群は、プロセスガスの流れ方向に沿って、すなわち上下方向に沿って複数並べられていてもよい。例えば図1において、第1煙道P1では3つの伝熱管パネル群が上下方向に並べられ、第2煙道P2では2つの伝熱管パネル群が上下方向に並べられている。各伝熱管パネルを構成する伝熱管60の直管部61の数は、伝熱管60が配置される位置におけるプロセスガスの温度に応じて決定される。
 例えば第1煙道P1には、燃焼炉において生成された高温のプロセスガスが供給される。このため、各伝熱管60は、上下方向に沿って並べられた3段の直管部61を用いることによって、プロセスガスの熱を十分に回収して熱媒体の蒸気を生成することができる。
 一方、第2煙道P2には、第1煙道P1を通る間にある程度の熱が回収された後のプロセスガスが供給される。このため、各伝熱管60は、3段よりも多くの直管部61を有することが好ましい。例えば、第2煙道P2の上側に位置する伝熱管60は、4段の直管部61を有しており、また第2煙道P2の下側に位置する伝熱管60は、6段の直管部61を有している。
As shown in FIG. 1, a plurality of heat transfer tube panel groups may be arranged along the flow direction of the process gas, that is, along the vertical direction. For example, in FIG. 1, three heat transfer tube panel groups are arranged in the vertical direction in the first flue P1, and two heat transfer tube panel groups are arranged in the vertical direction in the second flue P2. The number of straight pipe portions 61 of the heat transfer tubes 60 constituting each heat transfer tube panel is determined according to the temperature of the process gas at the position where the heat transfer tubes 60 are arranged.
For example, the high-temperature process gas generated in the combustion furnace is supplied to the first flue P1. For this reason, each heat transfer tube 60 can generate | occur | produce the heat | fever of a heat medium fully recovering the heat | fever of process gas by using the three-stage straight pipe part 61 arranged along the up-down direction.
On the other hand, the process gas after a certain amount of heat is recovered while passing through the first flue P1 is supplied to the second flue P2. For this reason, it is preferable that each heat transfer tube 60 has more straight tube portions 61 than three stages. For example, the heat transfer tube 60 located on the upper side of the second flue P2 has a four-stage straight pipe portion 61, and the heat transfer tube 60 located on the lower side of the second flue P2 has six stages. A straight pipe portion 61 is provided.
 (ボイラ水循環システム)
 次に、耐熱壁30を構成する冷却管35において用いられる冷却媒体を循環させるシステムについて説明する。ここでは、冷却媒体としてボイラ水が用いられる場合について説明する。図1において、ボイラ水を循環させるボイラ水循環システムが符号15で表されている。ボイラ水循環システム15は、ボイラ水19およびボイラ水の高圧蒸気を収容する気水胴16と、気水胴16のボイラ水19を冷却管35や伝熱管60に向けて送るための降水管17と、冷却管35や伝熱管60において発生したボイラ水の蒸気を気水胴16に戻すための戻り管18と、を有している。なお図示はしないが、気水胴16には、生成された高圧蒸気を取り出す配管、および、ボイラ水19を気水胴16に補充するための配管がさらに接続されている。
(Boiler water circulation system)
Next, a system for circulating a cooling medium used in the cooling pipe 35 constituting the heat resistant wall 30 will be described. Here, the case where boiler water is used as a cooling medium is demonstrated. In FIG. 1, a boiler water circulation system that circulates boiler water is denoted by reference numeral 15. The boiler water circulation system 15 includes an air water cylinder 16 that houses boiler water 19 and high-pressure steam of the boiler water, and a downcomer pipe 17 for sending the boiler water 19 in the air water cylinder 16 toward the cooling pipe 35 and the heat transfer pipe 60. And a return pipe 18 for returning the steam of boiler water generated in the cooling pipe 35 and the heat transfer pipe 60 to the air / water cylinder 16. Although not shown in the figure, the air / water cylinder 16 is further connected to a pipe for extracting the generated high-pressure steam and a pipe for replenishing the boiler water 19 to the air / water cylinder 16.
 降水管17および戻り管18はそれぞれ、鉛直方向に延びている。また降水管17には、上述の下部ヘッダー46や分配ヘッダー41にボイラ水19を供給するため、下部ヘッダー46および分配ヘッダー41に向かって延びる複数の支流管17aが接続されている。同様に、戻り管18には、上述の上部ヘッダー47や集合ヘッダー42からボイラ水の蒸気を回収するため、上部ヘッダー47および集合ヘッダー42に向かって延びる複数の支流管18aが接続されている。なお図1においては、各支流管17aから下部ヘッダー46および分配ヘッダー41に向かうボイラ水19が一点鎖線の矢印で示されている。また、上部ヘッダー47および集合ヘッダー42から各支流管18aに向かうボイラ水の蒸気も一点鎖線の矢印で示されている。 The downpipe 17 and the return pipe 18 each extend in the vertical direction. A plurality of branch pipes 17 a extending toward the lower header 46 and the distribution header 41 are connected to the downcomer pipe 17 in order to supply the boiler water 19 to the lower header 46 and the distribution header 41 described above. Similarly, a plurality of branch pipes 18 a extending toward the upper header 47 and the collective header 42 are connected to the return pipe 18 in order to collect steam of boiler water from the above-described upper header 47 and collective header 42. In FIG. 1, boiler water 19 from each branch pipe 17a toward the lower header 46 and the distribution header 41 is indicated by a one-dot chain line arrow. Moreover, the steam of the boiler water which goes to each branch pipe 18a from the top header 47 and the assembly header 42 is also shown with the dashed-dotted arrow.
 (支流管と分配ヘッダーおよび集合ヘッダーとを連結するための構造)
 次に図8を参照して、支流管17aと分配ヘッダー41とを連結するための構造、および支流管18aと集合ヘッダー42とを連結するための構造について詳細に説明する。図8は、分配ヘッダー41および集合ヘッダー42を通る水平面によって廃熱ボイラ10を切断した場合を示す横断面図である。
(Structure for connecting the branch pipe to the distribution header and the assembly header)
Next, a structure for connecting the branch pipe 17a and the distribution header 41 and a structure for connecting the branch pipe 18a and the assembly header 42 will be described in detail with reference to FIG. FIG. 8 is a cross-sectional view showing a case where the waste heat boiler 10 is cut by a horizontal plane passing through the distribution header 41 and the assembly header 42.
 図8に示すように、分配ヘッダー41および集合ヘッダー42はそれぞれ、耐熱壁30によって囲まれた空間に配置されている。これによって、後述するように、工場などにおいて分配ヘッダー41、集合ヘッダー42および伝熱管60を予め組み合わせて伝熱管モジュールを製作することができる。これによって、廃熱ボイラ10の設置現場における作業を容易化することができる。 As shown in FIG. 8, the distribution header 41 and the assembly header 42 are each disposed in a space surrounded by the heat-resistant wall 30. Thereby, as will be described later, a heat transfer tube module can be manufactured by combining the distribution header 41, the assembly header 42 and the heat transfer tube 60 in advance in a factory or the like. Thereby, the work at the installation site of the waste heat boiler 10 can be facilitated.
 図8に示すように、分配ヘッダー41の端部には、ケーシング20および耐熱壁30を貫通する中間配管43の一端が、例えば溶接によって接続されている。またケーシング20の外部において、中間配管43の他端には、支流管17aが例えば溶接によって接続されている。これによって、支流管17aと分配ヘッダー41とを連通させ、ボイラ水を分配ヘッダー41に供給することができる。同様に、集合ヘッダー42の端部には、ケーシング20および耐熱壁30を貫通する中間配管44の一端が、例えば溶接によって接続されている。またケーシング20の外部において、中間配管44の他端には、支流管18aが例えば溶接によって接続されている。これによって、支流管18aと集合ヘッダー42とを連通させ、ボイラ水の蒸気を集合ヘッダー42から回収することができる。 As shown in FIG. 8, one end of an intermediate pipe 43 that penetrates the casing 20 and the heat-resistant wall 30 is connected to the end of the distribution header 41 by, for example, welding. In addition, outside the casing 20, a branch pipe 17a is connected to the other end of the intermediate pipe 43 by, for example, welding. As a result, the branch pipe 17 a and the distribution header 41 are communicated with each other, and boiler water can be supplied to the distribution header 41. Similarly, one end of an intermediate pipe 44 that penetrates the casing 20 and the heat-resistant wall 30 is connected to the end of the collective header 42 by, for example, welding. In addition, outside the casing 20, a branch pipe 18a is connected to the other end of the intermediate pipe 44 by, for example, welding. Thereby, the branch pipe 18a and the collective header 42 are communicated with each other, and the steam of the boiler water can be recovered from the collective header 42.
 図8に示すように、ケーシング20のうち中間配管43,44が貫通する部分は、ガス封止部材45によって外側から覆われていてもよい。これによって、ケーシング20のうち中間配管43,44が貫通する部分からプロセスガスがケーシング20の外部に漏れ出ることを抑制することができる。ガス封止部材45としては、例えばSS400などの一般的な鋼材から構成された、ガス封止用の金物を用いることができる。 As shown in FIG. 8, a portion of the casing 20 through which the intermediate pipes 43 and 44 penetrate may be covered with a gas sealing member 45 from the outside. Thereby, it is possible to prevent the process gas from leaking out of the casing 20 from the portion of the casing 20 through which the intermediate pipes 43 and 44 penetrate. As the gas sealing member 45, for example, a metal for gas sealing made of a general steel material such as SS400 can be used.
 また図8に示すように、耐熱壁30のうち中間配管43,44が貫通する部分は、中間配管43,44の輪郭に対応した湾曲形状を有し、内部に冷却媒体が通される冷却管35によって構成されていてもよい。すなわち、図9に示すように、冷却管35を部分的に曲げて、中間配管43,44の輪郭に対応した湾曲形状を有する湾曲部35aを形成することにより、中間配管43,44が貫通することができる孔を耐熱壁30に形成してもよい。このような構造を採用することにより、冷却管35に基づく冷却機能および熱回収機能を維持しながら、耐熱壁30に中間配管43,44を貫通させることができる。 Further, as shown in FIG. 8, a portion of the heat-resistant wall 30 through which the intermediate pipes 43 and 44 penetrate has a curved shape corresponding to the outline of the intermediate pipes 43 and 44, and a cooling pipe through which a cooling medium is passed. 35 may be comprised. That is, as shown in FIG. 9, the intermediate pipes 43 and 44 penetrate by partially bending the cooling pipe 35 to form a curved portion 35 a having a curved shape corresponding to the contour of the intermediate pipes 43 and 44. A hole that can be formed may be formed in the heat-resistant wall 30. By adopting such a structure, the intermediate pipes 43 and 44 can be passed through the heat-resistant wall 30 while maintaining the cooling function and the heat recovery function based on the cooling pipe 35.
 なお図示はしないが、支流管17aと下部ヘッダー46とを連結するための構造、および支流管18aと上部ヘッダー47とを連結するための構造としても、上述の分配ヘッダー41および集合ヘッダー42の場合と同様に、中間配管43,44を用いた構造が採用されてもよい。 Although not shown, the structure for connecting the branch pipe 17a and the lower header 46 and the structure for connecting the branch pipe 18a and the upper header 47 are the same as those in the case of the distribution header 41 and the assembly header 42 described above. Similarly, a structure using the intermediate pipes 43 and 44 may be employed.
 また図8においては、分配ヘッダー41および集合ヘッダー42のうち第1側壁33側の端部が支流管17aおよび支流管18aに連結される例を示したが、これに限られることはない。図示はしないが、分配ヘッダー41および集合ヘッダー42のうち第2側壁34側の端部も、第1側壁33側の端部に連結されているものとは別の支流管17aおよび支流管18aに連結されていてもよい。すなわち、分配ヘッダー41の両端部からそれぞれボイラ水が供給され、また集合ヘッダー42の両端部からそれぞれボイラ水の蒸気が回収されてもよい。 8 shows an example in which the end on the first side wall 33 side of the distribution header 41 and the assembly header 42 is connected to the branch pipe 17a and the branch pipe 18a, but is not limited thereto. Although not shown, the end of the distribution header 41 and the assembly header 42 on the second side wall 34 side is also connected to a branch pipe 17a and a branch pipe 18a different from those connected to the end of the first side wall 33 side. It may be connected. That is, boiler water may be supplied from both ends of the distribution header 41, and steam of boiler water may be recovered from both ends of the assembly header 42.
 (伝熱管を支持するための構成)
 次に図1、図5および図6を参照して、伝熱管60を支持するための構成について詳細に説明する。図1および図5において、伝熱管60を支持する支持機構が符号50で表されている。図6は、図1および図5に示す支持機構50を拡大して示す図である。なお図1においては、図が煩雑になるのを防ぐため、支持機構50の支持管51が点線で表されている。
(Configuration to support the heat transfer tube)
Next, a configuration for supporting the heat transfer tube 60 will be described in detail with reference to FIGS. 1, 5, and 6. In FIG. 1 and FIG. 5, a support mechanism that supports the heat transfer tube 60 is denoted by reference numeral 50. FIG. 6 is an enlarged view of the support mechanism 50 shown in FIGS. 1 and 5. In FIG. 1, the support tube 51 of the support mechanism 50 is represented by a dotted line in order to prevent the drawing from becoming complicated.
 支持機構50は、上方から吊り下げられた支持管51と、支持管51に接続され、伝熱管60の直管部61を下方から支持する支持部材52と、を有している。このような支持管51および支持部材52を用いて伝熱管60を支持することにより、上下方向の全域にわたって安定に伝熱管60を支持することができる。なお図6に示すように、支持管51の両側に支持部材52が接続されていてもよい。これによって、支持管51がその両側でそれぞれ伝熱管パネルを支持することができる(図2参照)。以下、このような支持機構50を用いることの背景について説明する。 The support mechanism 50 includes a support tube 51 suspended from above, and a support member 52 connected to the support tube 51 and supporting the straight tube portion 61 of the heat transfer tube 60 from below. By supporting the heat transfer tube 60 using the support tube 51 and the support member 52, the heat transfer tube 60 can be stably supported over the entire region in the vertical direction. As shown in FIG. 6, support members 52 may be connected to both sides of the support tube 51. Thereby, the support tube 51 can support the heat transfer tube panels on both sides thereof (see FIG. 2). Hereinafter, the background of using such a support mechanism 50 will be described.
 はじめに、従来の廃熱ボイラにおいて採用されていた、伝熱管60を支持するための構成について説明する。従来の廃熱ボイラにおいては、一般に、伝熱管60の折り返し部62,63を、廃熱ボイラの容器の内面に連結することにより、伝熱管60の支持が実現されていた。例えば、折り返し部62,63および容器の内面の両方に、互いに連結可能に構成されたフックが取り付けられていた。このような従来の廃熱ボイラにおいては、設置現場で容器の内部に伝熱管60を搬入する場合、容器側のフックと伝熱管60側のフックとが干渉することを防ぐため、伝熱管60を、最終的な設置姿勢に対して傾けた状態で容器の内部に搬入する必要がある。しかしながら、この場合、複数の伝熱管60をまとめて傾けることは困難であるため、伝熱管60を1つずつ容器の内部に搬入することになる。このため、伝熱管60に対して予め分配ヘッダー41や集合ヘッダー42を接続しておくことが不可能であり、従って、伝熱管60を容器の内部に搬入した後に伝熱管60を分配ヘッダー41および集合ヘッダー42に対して溶接することになる。このため、設置現場における作業が煩雑になり、この結果、廃熱ボイラの製作コストが高くなってしまう。 First, a configuration for supporting the heat transfer tube 60, which has been employed in a conventional waste heat boiler, will be described. In the conventional waste heat boiler, generally, the support of the heat transfer tube 60 is realized by connecting the folded portions 62 and 63 of the heat transfer tube 60 to the inner surface of the container of the waste heat boiler. For example, hooks configured to be connectable to each other are attached to both the folded portions 62 and 63 and the inner surface of the container. In such a conventional waste heat boiler, when the heat transfer tube 60 is carried into the container at the installation site, in order to prevent the hook on the container side and the hook on the heat transfer tube 60 side from interfering with each other, It is necessary to carry it into the container in an inclined state with respect to the final installation posture. However, in this case, since it is difficult to incline the plurality of heat transfer tubes 60 together, the heat transfer tubes 60 are carried into the container one by one. For this reason, it is impossible to connect the distribution header 41 and the assembly header 42 to the heat transfer tube 60 in advance. Therefore, after the heat transfer tube 60 is carried into the container, the heat transfer tube 60 is connected to the distribution header 41 and The assembly header 42 will be welded. For this reason, the work at the installation site becomes complicated, and as a result, the production cost of the waste heat boiler becomes high.
 これに対して本実施の形態によれば、上方から吊り下げられた支持管51を用いることによって、伝熱管60を支持することができる。このため、最終的な設置姿勢に維持されている伝熱管60を上方から耐熱壁30の内部に搬入することができる。このことにより、複数の伝熱管60をまとめて耐熱壁30の内部に搬入することが可能になる。従って、工場などにおいて伝熱管60に対して予め分配ヘッダー41や集合ヘッダー42を接続した後、これらをまとめて耐熱壁30の内部に搬入することができる。これによって、廃熱ボイラ10の設置現場における作業を容易化することができる。 On the other hand, according to the present embodiment, the heat transfer tube 60 can be supported by using the support tube 51 suspended from above. For this reason, the heat transfer tube 60 maintained in the final installation posture can be carried into the heat resistant wall 30 from above. This makes it possible to carry a plurality of heat transfer tubes 60 together into the heat resistant wall 30. Therefore, after connecting the distribution header 41 and the assembly header 42 to the heat transfer tube 60 in advance in a factory or the like, these can be brought together into the heat-resistant wall 30. Thereby, the work at the installation site of the waste heat boiler 10 can be facilitated.
 (支持管を支持するための構成)
 次に図1を参照して、支持管51を上方から吊り下げるための構成について詳細に説明する。
(Configuration to support the support tube)
Next, a configuration for suspending the support tube 51 from above will be described in detail with reference to FIG.
 図1に示すように、支持機構50は、廃熱ボイラ10の上部に配置された支持梁53と、支持梁53に連結され、支持梁53から垂れ下がる吊り棒54と、吊り棒54の下端に取り付けられた吊り金具55と、を含んでいてもよい。この場合、吊り金具55を支持管51に接続することによって、支持管51を上方から吊り下げることができる。 As shown in FIG. 1, the support mechanism 50 includes a support beam 53 disposed on the upper portion of the waste heat boiler 10, a suspension bar 54 coupled to the support beam 53 and hanging from the support beam 53, and a lower end of the suspension bar 54. And attached hanging metal fittings 55. In this case, the support pipe 51 can be suspended from above by connecting the suspension fitting 55 to the support pipe 51.
 次に図7を参照して、支持梁53を廃熱ボイラ10の上部に配置するための方法の一例について説明する。図7は、耐熱壁30の上方に設けられた上部ヘッダー47を上方から見た場合を示す平面図である。なお図7においては、上部ヘッダー47および支持梁53と、冷却管35および支持管51との間の位置関係を示すため、冷却管35および支持管51が点線で示されている。 Next, an example of a method for arranging the support beam 53 on the upper portion of the waste heat boiler 10 will be described with reference to FIG. FIG. 7 is a plan view showing the upper header 47 provided above the heat-resistant wall 30 as viewed from above. In FIG. 7, the cooling pipe 35 and the support pipe 51 are indicated by dotted lines in order to show the positional relationship between the upper header 47 and the support beam 53 and the cooling pipe 35 and the support pipe 51.
 図7に示すように、廃熱ボイラ10の上部には、井形に組まれた上部ヘッダー47が配置されている。井形に組まれた上部ヘッダー47は、前壁31および後壁32を構成する冷却管35に接続される上部ヘッダー47aと、上部ヘッダー47aに対して交差するよう配置され、第1側壁33および第2側壁34を構成する冷却管35に接続される上部ヘッダー47bと、から構成されている。そして支持機構50の支持梁53は、井形に組まれた上部ヘッダー47の上に配置されている。すなわち、支持梁53は上部ヘッダー47によって支持されている。また支持梁53には、支持管51が連結される取付具56が取り付けられている。このような構成を採用することにより、支持管51を上方から吊り下げることを容易に実現することができる。 As shown in FIG. 7, an upper header 47 assembled in a well shape is disposed on the upper portion of the waste heat boiler 10. The upper header 47 assembled in a well shape is disposed so as to intersect the upper header 47a connected to the cooling pipe 35 constituting the front wall 31 and the rear wall 32, and to intersect the upper header 47a. And an upper header 47 b connected to the cooling pipe 35 constituting the two side walls 34. And the support beam 53 of the support mechanism 50 is arrange | positioned on the upper header 47 assembled in the well shape. That is, the support beam 53 is supported by the upper header 47. In addition, a fixture 56 to which the support tube 51 is connected is attached to the support beam 53. By adopting such a configuration, it is possible to easily realize suspension of the support tube 51 from above.
 なお図示はしないが、支持梁53を上部ヘッダー47に対して固定するための固定具、例えばボルトおよびナットが設けられていてもよい。また図7に示すように、第1側壁33から第2側壁34に向かって一列に並べられた複数の支持管51に対して、一定の間隔を空けて配置された一対の支持梁53が用いられてもよい。 Although not shown, a fixture for fixing the support beam 53 to the upper header 47, such as a bolt and a nut, may be provided. Further, as shown in FIG. 7, a pair of support beams 53 arranged at a predetermined interval is used for a plurality of support tubes 51 arranged in a line from the first side wall 33 toward the second side wall 34. May be.
 また図示はしないが、冷却管35や伝熱管60の場合と同様に、支持管51の中にも、プロセスガスから熱を回収することができる冷却媒体や熱媒体、例えばボイラ水が通されていてもよい。また図示はしないが、支持管51にボイラ水を供給し、また支持管51からボイラ水の蒸気を回収するための下部ヘッダーおよび上部ヘッダーが支持管51に接続されていてもよい。例えば図1に示すように、支持管51の下端が、耐熱壁30の冷却管35の下端に接続された下部ヘッダー46と同一の下部ヘッダー、または当該下部ヘッダー46の近傍に配置された下部ヘッダーに接続されていてもよい。同様に、支持管51の上端が、耐熱壁30の冷却管35の上端に接続された上部ヘッダー47と同一の上部ヘッダー、または当該上部ヘッダー47の近傍に配置された上部ヘッダーに接続されていてもよい。 Although not shown, similarly to the cooling pipe 35 and the heat transfer pipe 60, a cooling medium or a heat medium that can recover heat from the process gas, such as boiler water, is passed through the support pipe 51. May be. Although not shown, a lower header and an upper header for supplying boiler water to the support pipe 51 and recovering steam of the boiler water from the support pipe 51 may be connected to the support pipe 51. For example, as shown in FIG. 1, the lower end of the support pipe 51 is the same as the lower header 46 connected to the lower end of the cooling pipe 35 of the heat-resistant wall 30, or the lower header disposed in the vicinity of the lower header 46. It may be connected to. Similarly, the upper end of the support pipe 51 is connected to the same upper header 47 as the upper header 47 connected to the upper end of the cooling pipe 35 of the heat-resistant wall 30 or an upper header disposed in the vicinity of the upper header 47. Also good.
 ところで、支持梁53には、伝熱管60の荷重および支持管51の荷重に起因する負荷が掛かっている。このため、支持梁53を構成する材料としては、十分な耐荷重性を有する材料が用いられる。一方、支持梁53は、廃熱ボイラ10の上部に配置されており、また廃熱ボイラ10の上部には、上述のように、第1煙道P1を通る間にある程度の熱が回収された後のプロセスガスが到達する。例えば、約600℃のプロセスガスが到達する。このため、支持梁53を構成する材料として、特別に高い耐熱性を有する材料を用いることはなく、通常の耐熱性を有する材料を用いることができる。例えば、SUS304などの一般的な耐熱鋼を用いることができる。このように本実施の形態によれば、簡易な構成によって伝熱管60の吊り下げを実現することができる。 By the way, the load caused by the load of the heat transfer tube 60 and the load of the support tube 51 is applied to the support beam 53. For this reason, as the material constituting the support beam 53, a material having sufficient load resistance is used. On the other hand, the support beam 53 is disposed on the upper portion of the waste heat boiler 10, and a certain amount of heat is recovered in the upper portion of the waste heat boiler 10 while passing through the first flue P1 as described above. Later process gas arrives. For example, a process gas of about 600 ° C. arrives. For this reason, the material which comprises the support beam 53 does not use the material which has especially high heat resistance, but can use the material which has normal heat resistance. For example, general heat resistant steel such as SUS304 can be used. As described above, according to the present embodiment, the heat transfer tube 60 can be suspended with a simple configuration.
 (ケーシングと耐熱壁との間の空間の構成)
 次に、ケーシング20と耐熱壁30との間の空間に配置される構成要素の例について説明する。はじめに、耐熱壁30が水平方向において変動することを抑制する補強機構24について説明する。なお図2には、補強機構24を通る水平面によって廃熱ボイラ10を切断した場合の横断面図が示されている。
(Configuration of the space between the casing and the heat-resistant wall)
Next, an example of components disposed in the space between the casing 20 and the heat resistant wall 30 will be described. First, the reinforcing mechanism 24 that suppresses fluctuation of the heat-resistant wall 30 in the horizontal direction will be described. FIG. 2 shows a cross-sectional view when the waste heat boiler 10 is cut by a horizontal plane passing through the reinforcing mechanism 24.
 上述のように、ケーシング20は円形状の横断面を有しており、耐熱壁30は矩形状の横断面を有している。すなわち、ケーシング20の横断面の形状と耐熱壁30の横断面の形状とが互いに異なっている。従って、ケーシング20の内面と耐熱壁30の外面との間の間隔が特定の場所において大きくなっている。この結果、特定の場所において耐熱壁30が水平方向に大きく変動してしまうことが考える。このような変動を防ぐため、図1に示すように、ケーシング20の内面に、耐熱壁30の変動を抑制するための補強機構24が取り付けられていてもよい。 As described above, the casing 20 has a circular cross section, and the heat-resistant wall 30 has a rectangular cross section. That is, the shape of the cross section of the casing 20 and the shape of the cross section of the heat-resistant wall 30 are different from each other. Accordingly, the distance between the inner surface of the casing 20 and the outer surface of the heat-resistant wall 30 is large at a specific location. As a result, it is considered that the heat-resistant wall 30 greatly fluctuates in the horizontal direction at a specific place. In order to prevent such fluctuation, a reinforcing mechanism 24 for suppressing fluctuation of the heat-resistant wall 30 may be attached to the inner surface of the casing 20 as shown in FIG.
 図3は、補強機構24を拡大して示す縦断面図である。補強機構24は、耐熱壁30の外面から一定の間隔を空けて配置された補強板24aを含んでいる。また補強機構24は、その一端がケーシング20の内面に固定され、その他端が補強板24aに固定された補強部材24bをさらに含んでいる。この場合、補強板24aは、耐熱壁30の変動に対するストッパとして機能する。従って、耐熱壁30が水平方向に大きく変動することを防止することができる。すなわち、廃熱ボイラ10全体の剛性を高めることができる。 FIG. 3 is a longitudinal sectional view showing the reinforcing mechanism 24 in an enlarged manner. The reinforcing mechanism 24 includes a reinforcing plate 24 a that is disposed at a certain distance from the outer surface of the heat-resistant wall 30. The reinforcing mechanism 24 further includes a reinforcing member 24b having one end fixed to the inner surface of the casing 20 and the other end fixed to the reinforcing plate 24a. In this case, the reinforcing plate 24 a functions as a stopper against fluctuation of the heat resistant wall 30. Therefore, the heat resistant wall 30 can be prevented from greatly fluctuating in the horizontal direction. That is, the rigidity of the entire waste heat boiler 10 can be increased.
 図2および図3に示すように、耐熱壁30側にも、耐熱壁30の変動を抑制するための補強機構37が設けられていてもよい。補強機構37は、例えば、補強板24aから一定の間隔を空けて配置された補強板37aと、補強板37aおよび冷却管35に固定された補強部材37bと、を含んでいる。これによって、耐熱壁30の変動をより安定に抑制することができる。補強板24aと補強板37aとの間の間隔は、例えば10~15mmの範囲内となっている。 2 and 3, a reinforcing mechanism 37 for suppressing fluctuation of the heat-resistant wall 30 may also be provided on the heat-resistant wall 30 side. The reinforcing mechanism 37 includes, for example, a reinforcing plate 37a disposed at a predetermined interval from the reinforcing plate 24a, and a reinforcing member 37b fixed to the reinforcing plate 37a and the cooling pipe 35. Thereby, the fluctuation | variation of the heat-resistant wall 30 can be suppressed more stably. The distance between the reinforcing plate 24a and the reinforcing plate 37a is, for example, in the range of 10 to 15 mm.
 上述のように、高温のプロセスガスは主に耐熱壁30によって囲まれた空間内を流れるので、ケーシング20と耐熱壁30との間に配置される補強機構24および補強機構37に、高い耐熱性は要求されない。このため、補強機構24および補強機構37を構成する材料として、一般的な材料を用いることができ、例えばSS400などの一般的な鋼材を用いることができる。 As described above, since the high-temperature process gas mainly flows in the space surrounded by the heat resistant wall 30, the reinforcing mechanism 24 and the reinforcing mechanism 37 disposed between the casing 20 and the heat resistant wall 30 have high heat resistance. Is not required. For this reason, a general material can be used as a material which comprises the reinforcement mechanism 24 and the reinforcement mechanism 37, for example, common steel materials, such as SS400, can be used.
 次に、ケーシング20と耐熱壁30との間の空間に配置された、水平方向に延びるバッフルプレート26について説明する。 Next, the baffle plate 26 that extends in the horizontal direction and is disposed in the space between the casing 20 and the heat-resistant wall 30 will be described.
 上述のように、耐熱壁30には中間配管43,44が貫通されている。このため、耐熱壁30からプロセスガスが漏れ出ることを完全には防ぐことができない。従って、ケーシング20と耐熱壁30との間の空間には、ある程度のプロセスガスが耐熱壁30から漏れ出ていると考えられる。上述のバッフルプレート26は、このようなプロセスガスが上下方向に流動するのを防ぐために設けられるものである。 As described above, the intermediate pipes 43 and 44 are penetrated through the heat-resistant wall 30. For this reason, it is not possible to completely prevent the process gas from leaking from the heat-resistant wall 30. Therefore, it is considered that a certain amount of process gas leaks from the heat resistant wall 30 in the space between the casing 20 and the heat resistant wall 30. The baffle plate 26 described above is provided to prevent such process gas from flowing in the vertical direction.
 バッフルプレート26を設けるための具体的な構成が特に限られることはないが、例えば図4に示すように、ケーシング20の内面および耐熱壁30の冷却管35にそれぞれ取付板26aおよび取付板26bが取り付けられ、それら取付板26aおよび取付板26bの上にバッフルプレート26が設けられていてもよい。 Although a specific configuration for providing the baffle plate 26 is not particularly limited, for example, as shown in FIG. 4, a mounting plate 26 a and a mounting plate 26 b are respectively provided on the inner surface of the casing 20 and the cooling pipe 35 of the heat-resistant wall 30. The baffle plate 26 may be provided on the mounting plate 26a and the mounting plate 26b.
 なお、ケーシング20と耐熱壁30との間の空間においては、硫酸を含むガスの結露が生じ、この結果、硫酸を含む結露水が生じることがある。このような結露水が、廃熱ボイラ10の運転が停止されているときにバッフルプレート26上に残っていると、バッフルプレート26が硫酸によって腐食されてしまう可能性がある。このような腐食が発生するのを防ぐため、各バッフルプレート26には、バッフルプレート26上にある結露水を排出するためのドレン配管(図示せず)が接続されていてもよい。これによって、バッフルプレート26に結露水が溜まってしまうことを防ぐことができる。 In the space between the casing 20 and the heat-resistant wall 30, condensation of gas containing sulfuric acid occurs, and as a result, condensed water containing sulfuric acid may be generated. If such condensed water remains on the baffle plate 26 when the operation of the waste heat boiler 10 is stopped, the baffle plate 26 may be corroded by sulfuric acid. In order to prevent such corrosion from occurring, each baffle plate 26 may be connected to a drain pipe (not shown) for discharging condensed water on the baffle plate 26. Thereby, it is possible to prevent the condensed water from accumulating on the baffle plate 26.
 次に、このような構成からなる本実施の形態の作用および効果について説明する。はじめに、廃熱ボイラ10を製作する方法について説明する。 Next, the operation and effect of the present embodiment having such a configuration will be described. First, a method for manufacturing the waste heat boiler 10 will be described.
 (廃熱ボイラの製作方法)
 はじめに、工場において実施される作業について説明する。工場においては、廃熱ボイラ10を構成する複数の構成要素を組み合わせてモジュールを製作する。例えば、はじめに、複数の伝熱管60を、溶接法などを用いて分配ヘッダー41および集合ヘッダー42に接続する。これによって、分配ヘッダー41および集合ヘッダー42が組み合わされた伝熱管群を製作することができる。次に、伝熱管群の各伝熱管60を、支持部材52を介して支持管51に取り付ける。このようにして、伝熱管60、分配ヘッダー41、集合ヘッダー42および支持機構50が組み合わされた伝熱管モジュールを製作することができる。
(Waste heat boiler manufacturing method)
First, work performed in the factory will be described. In the factory, a module is manufactured by combining a plurality of components constituting the waste heat boiler 10. For example, first, the plurality of heat transfer tubes 60 are connected to the distribution header 41 and the assembly header 42 using a welding method or the like. Thus, a heat transfer tube group in which the distribution header 41 and the assembly header 42 are combined can be manufactured. Next, each heat transfer tube 60 of the heat transfer tube group is attached to the support tube 51 via the support member 52. In this manner, a heat transfer tube module in which the heat transfer tube 60, the distribution header 41, the assembly header 42, and the support mechanism 50 are combined can be manufactured.
 また工場において、冷却管35とフィン36とを溶接によって接続し、耐熱壁30を製作してもよい。さらに冷却管35と下部ヘッダー46および上部ヘッダー47とを接続して、耐熱壁モジュールを製作してもよい。 In the factory, the heat-resistant wall 30 may be manufactured by connecting the cooling pipe 35 and the fin 36 by welding. Further, the cooling pipe 35 and the lower header 46 and the upper header 47 may be connected to manufacture a heat resistant wall module.
 次に、設置現場において実施される作業について説明する。まず、ケーシング20の鉛直部21を自立させる。次に、鉛直部21の内側の空間に上述の耐熱壁モジュールを搬入する。その後、耐熱壁30によって囲われた空間に、上述の伝熱管モジュールを上方から搬入し、そして伝熱管モジュールを耐熱壁30に取り付ける。例えば、井形に組まれた上部ヘッダー47の上に、伝熱管モジュールの支持機構50の支持梁53を固定する。このようにして、耐熱壁30によって囲われた空間に容易に複数の伝熱管60を設置することができる。 Next, the work performed at the installation site will be described. First, the vertical portion 21 of the casing 20 is self-supported. Next, the above-mentioned heat resistant wall module is carried into the space inside the vertical portion 21. Thereafter, the above-described heat transfer tube module is carried into the space surrounded by the heat resistant wall 30 from above, and the heat transfer tube module is attached to the heat resistant wall 30. For example, the support beam 53 of the support mechanism 50 of the heat transfer tube module is fixed on the upper header 47 assembled in a well shape. In this way, the plurality of heat transfer tubes 60 can be easily installed in the space surrounded by the heat resistant wall 30.
 その後、上述の中間配管43,44をケーシング20に貫通させ、そして中間配管43,44を分配ヘッダー41、集合ヘッダー42、下部ヘッダー46、上部ヘッダー47に溶接する。また、鉛直部21の上に折り返し部22を配置する。このようにして、縦型の水管ボイラとして構成される廃熱ボイラ10を得ることができる。 Thereafter, the intermediate pipes 43 and 44 are passed through the casing 20, and the intermediate pipes 43 and 44 are welded to the distribution header 41, the assembly header 42, the lower header 46, and the upper header 47. Further, the folded portion 22 is disposed on the vertical portion 21. In this way, the waste heat boiler 10 configured as a vertical water tube boiler can be obtained.
 次に、硫酸製造設備において廃熱ボイラ10を使用する方法の一例について説明する。硫酸製造設備および廃熱ボイラ10の運転条件は以下の通りである。
 ・プロセスガスの流量:130000Nm/h
 ・プロセスガスの圧力:5000mmH2O
 ・プロセスガスの組成:SO11%、O10%、N79%、HO0.01%
 ・入口ダクトにおけるプロセスガスの温度:1000℃
 ・折り返し部におけるプロセスガスの温度:600℃
 ・出口ダクトにおけるプロセスガスの温度:410℃
 ・廃熱ボイラの運転圧力:6MPag
 ・ボイラ水の蒸気の温度:400℃
 ・ボイラ水の蒸発量:80t/h
 ・発電量:16MW
Next, an example of a method for using the waste heat boiler 10 in the sulfuric acid production facility will be described. The operating conditions of the sulfuric acid production facility and the waste heat boiler 10 are as follows.
Process gas flow rate: 130000 Nm 3 / h
Process gas pressure: 5000 mmH2O
Process gas composition: SO 2 11%, O 2 10%, N 2 79%, H 2 O 0.01%
-Process gas temperature in the inlet duct: 1000 ° C
-Process gas temperature at the folded part: 600 ° C
-Process gas temperature at outlet duct: 410 ° C
・ Operating pressure of waste heat boiler: 6 MPag
-Steam temperature of boiler water: 400 ° C
・ Boiler water evaporation: 80t / h
・ Power generation: 16MW
 はじめに燃焼炉において、濃硫酸によって乾燥された空気を用いて、硫黄を燃焼させる。これによって、SOガスを含むプロセスガスが生成される。生成されたプロセスガスは、1000℃で廃熱ボイラ10に供給される。廃熱ボイラ10に供給されたプロセスガスは、はじめに、第1煙道P1に沿って上方へ向かって流れる。このとき、第1煙道P1内に配置された伝熱管60および冷却管35によってプロセスガスの熱が回収される。回収された熱は、蒸気タービンを用いた発電に利用される。 First, in a combustion furnace, sulfur is burned using air dried with concentrated sulfuric acid. Thereby, a process gas including SO 2 gas is generated. The generated process gas is supplied to the waste heat boiler 10 at 1000 ° C. The process gas supplied to the waste heat boiler 10 first flows upward along the first flue P1. At this time, the heat of the process gas is recovered by the heat transfer pipe 60 and the cooling pipe 35 arranged in the first flue P1. The recovered heat is used for power generation using a steam turbine.
 第1煙道P1から上方へ排出された600℃のプロセスガスは、ケーシング20の折り返し部22によって折り返されて第2煙道P2に流入し、第2煙道P2に沿って下方へ向かって流れる。このとき、第2煙道P2内に配置された伝熱管60および冷却管35によってプロセスガスの熱が回収される。回収された熱は、蒸気タービンを用いた発電に利用される。 The process gas at 600 ° C. discharged upward from the first flue P1 is folded back by the folded portion 22 of the casing 20, flows into the second flue P2, and flows downward along the second flue P2. . At this time, the heat of the process gas is recovered by the heat transfer pipe 60 and the cooling pipe 35 disposed in the second flue P2. The recovered heat is used for power generation using a steam turbine.
 廃熱ボイラ10の下部に到達した410℃のプロセスガスは、出口ダクト12によって廃熱ボイラ10から排出され、転化器に向かう。転化器においては、V触媒を用いてSOガスを酸化させてSOガスを生成する。なお、転化器に到達したプロセスガスの温度が、所望の温度よりも低くなることが予想される場合、廃熱ボイラ10の第2煙道P2を通すことなくプロセスガスを転化器に向けて送り出してもよい。例えば図1に示すように、廃熱ボイラ10の折り返し部22には、矢印f6で示すように、転化器に向けてプロセスガスを送り出すバイパスダクト13が設けられていてもよい。これによって、転化器に供給されるプロセスガスの温度を所望の温度に維持することができる。なお、出口ダクト12から転化器に向けて送り出されるプロセスガスの量、および、バイパスダクト13から転化器に向けて送り出されるプロセスガスの量を調整するため、出口ダクト12およびバイパスダクト13にそれぞれ、流量を調整することができるダンパー12aおよびダンパー13aが設けられていてもよい。 The 410 degreeC process gas which reached | attained the lower part of the waste heat boiler 10 is discharged | emitted from the waste heat boiler 10 by the exit duct 12, and goes to a converter. In the converter, the SO 2 gas is oxidized using a V 2 O 5 catalyst to generate SO 3 gas. When the temperature of the process gas that has reached the converter is expected to be lower than the desired temperature, the process gas is sent to the converter without passing through the second flue P2 of the waste heat boiler 10. May be. For example, as shown in FIG. 1, a bypass duct 13 that sends out process gas toward the converter may be provided in the folded portion 22 of the waste heat boiler 10 as indicated by an arrow f <b> 6. Thereby, the temperature of the process gas supplied to the converter can be maintained at a desired temperature. In order to adjust the amount of process gas sent out from the outlet duct 12 toward the converter and the amount of process gas sent out from the bypass duct 13 toward the converter, the outlet duct 12 and the bypass duct 13 respectively The damper 12a and the damper 13a which can adjust a flow volume may be provided.
 ここで、バイパスダクト13によって得られる効果について、煙管ボイラの場合と比較することによってさらに説明する。廃熱ボイラの形式として煙管ボイラが採用されていると仮定する場合、バイパス方法としては、煙管ボイラの入口における高温(約1000℃)のプロセスガスを取り出して転化器に向けて送り出す、という形態が採用されることになる。この場合、高温のプロセスガスを扱わなければならないので、流量を調整するためのダンパーの設計が困難である。一方、本実施の形態のように水管ボイラが採用される場合、水管ボイラの中間からプロセスガスを取り出して転化器に向けて送り出すことが可能である。例えば上述のように、折り返し部22に到達した約600℃のプロセスガスを取り出すことが可能である。このため、煙管ボイラの場合に比べて、流量を調整するためのダンパー13aの設計が容易になる。 Here, the effect obtained by the bypass duct 13 will be further described by comparing with the case of a smoke tube boiler. Assuming that a smoke tube boiler is adopted as the type of waste heat boiler, the bypass method is a mode in which a high-temperature (about 1000 ° C.) process gas is taken out from the smoke tube boiler and sent to the converter. Will be adopted. In this case, since a high-temperature process gas must be handled, it is difficult to design a damper for adjusting the flow rate. On the other hand, when a water tube boiler is employed as in the present embodiment, the process gas can be taken out from the middle of the water tube boiler and sent out to the converter. For example, as described above, it is possible to take out the process gas at about 600 ° C. that has reached the folded portion 22. For this reason, compared with the case of a smoke tube boiler, the design of the damper 13a for adjusting a flow volume becomes easy.
 その後、転化器の下流側に配置された吸収塔において、SOガスとHOとを反応させてHSO(硫酸)を生成する。このようにして、廃熱ボイラ10を用いてプロセスガスの熱を有効に利用しながら、硫酸を製造することができる。なお、転化器と吸収塔との間に、SOガスを冷却するガスクーラーが設けられていてもよい。 Thereafter, in an absorption tower disposed downstream of the converter, SO 3 gas and H 2 O are reacted to generate H 2 SO 4 (sulfuric acid). In this manner, sulfuric acid can be produced while effectively using the heat of the process gas using the waste heat boiler 10. Note that a gas cooler for cooling the SO 3 gas may be provided between the converter and the absorption tower.
 ここで本実施の形態によれば、廃熱ボイラ10は、プロセスガスが通る空間を画定する耐熱壁30と、耐熱壁30の周囲に配置されたケーシング20と、を用いた二重構造で形成されている。この場合、プロセスガスの温度に起因する熱的な負荷は耐熱壁30に掛かり、一方、プロセスガスの圧力と大気圧との間の差に起因する圧力的な負荷はケーシング20に掛かる。すなわち、耐熱性に関する要求、および耐圧性に関する要求を、耐熱壁30およびケーシング20によってそれぞれ分担することができる。このため、耐熱壁30およびケーシング20の各々の構造の簡素化を実現することができる。この結果、例えば、廃熱ボイラ10全体としての重量を削減することができる。このことにより、廃熱ボイラ10全体としての耐久性および安全性を向上させることができる。このため、廃熱ボイラ10の大型化を実現することができ、このことにより、硫酸製造設備の大容量化に対応することができる。 Here, according to the present embodiment, the waste heat boiler 10 is formed in a double structure using a heat-resistant wall 30 that defines a space through which the process gas passes and a casing 20 that is disposed around the heat-resistant wall 30. Has been. In this case, a thermal load caused by the temperature of the process gas is applied to the heat-resistant wall 30, while a pressure load caused by the difference between the pressure of the process gas and the atmospheric pressure is applied to the casing 20. In other words, the heat resistance requirement and the pressure resistance requirement can be shared by the heat resistant wall 30 and the casing 20, respectively. For this reason, simplification of each structure of the heat-resistant wall 30 and the casing 20 is realizable. As a result, for example, the weight of the waste heat boiler 10 as a whole can be reduced. Thereby, the durability and safety of the waste heat boiler 10 as a whole can be improved. For this reason, the enlargement of the waste heat boiler 10 can be realized, and this makes it possible to cope with an increase in capacity of the sulfuric acid production facility.
 また本実施の形態によれば、廃熱ボイラ10全体としての耐久性および安全性を向上させることができるため、縦型の水管ボイラを用いて廃熱ボイラ10を構成することができる。このため、ポンプなどを用いることなく自然にボイラ水などの熱媒体を循環させることができる。従って、電力供給が不安定な地域に硫酸製造設備が設置される場合であっても、廃熱ボイラ10を安定に運転することができる。また自然循環が可能な廃熱ボイラ10は、強制循環が用いられる廃熱ボイラに比べて、その運転作業や保守作業が容易になるという利点を有している。また、新興国などの、電力供給が不安定な地域においては、一般に、硫酸製造設備や廃熱ボイラ10を運転するオペレータの熟練度が低い。これらの点を考慮すると、本実施の形態による廃熱ボイラ10は、硫酸の需要が高く、このため廃熱ボイラの大型化が求められており、かつ、運転作業や保守作業の簡易化も求められている新興国に特に適していると言える。 Further, according to the present embodiment, since the durability and safety of the waste heat boiler 10 as a whole can be improved, the waste heat boiler 10 can be configured using a vertical water tube boiler. For this reason, a heat medium such as boiler water can be circulated naturally without using a pump or the like. Therefore, even if the sulfuric acid production facility is installed in an area where power supply is unstable, the waste heat boiler 10 can be stably operated. Further, the waste heat boiler 10 capable of natural circulation has an advantage that its operation work and maintenance work are easier than a waste heat boiler using forced circulation. Moreover, in areas where power supply is unstable, such as emerging countries, generally, the skill level of the operator who operates the sulfuric acid production facility and the waste heat boiler 10 is low. Considering these points, the waste heat boiler 10 according to the present embodiment has a high demand for sulfuric acid, and therefore, the waste heat boiler is required to be enlarged, and the operation work and the maintenance work are also required to be simplified. It is especially suitable for emerging countries.
 10 廃熱ボイラ
 11 入口ダクト
 12 出口ダクト
 13 バイパスダクト
 15 ボイラ水循環システム
 16 気水胴
 17 降水管
 18 戻り管
 20 ケーシング
 23 断熱部材
 24 補強機構
 26 バッフルプレート
 30 耐熱壁
 35 冷却管
 37 補強機構
 38 中間壁
 41 分配ヘッダー
 42 集合ヘッダー
 45 ガス封止部材
 46 下部ヘッダー
 47 上部ヘッダー
 50 支持機構
 51 支持管
 60 伝熱管
 P1 第1煙道
 P2 第2煙道
DESCRIPTION OF SYMBOLS 10 Waste heat boiler 11 Inlet duct 12 Outlet duct 13 Bypass duct 15 Boiler water circulation system 16 Air cylinder 17 Precipitation pipe 18 Return pipe 20 Casing 23 Thermal insulation member 24 Reinforcement mechanism 26 Baffle plate 30 Heat-resistant wall 35 Cooling pipe 37 Reinforcement mechanism 38 Intermediate wall 41 Distribution header 42 Collective header 45 Gas sealing member 46 Lower header 47 Upper header 50 Support mechanism 51 Support tube 60 Heat transfer tube P1 1st flue P2 2nd flue

Claims (11)

  1.  プラントにおけるプロセスガスから熱を回収する廃熱ボイラであって、
     縦方向に延び、円形状の横断面を有するケーシングと、
     前記ケーシングの内側に配置され、縦方向に延びる耐熱壁と、
     前記ケーシングを貫通するとともに前記耐熱壁に連結され、前記耐熱壁によって囲まれた空間にプロセスガスを供給する入口ダクトと、
     前記耐熱壁によって囲まれた空間に配置され、内部に熱媒体が通される複数の伝熱管と、を備え、
     前記伝熱管は、プロセスガスの熱を吸収することによって発生する熱媒体の蒸気が、液体状態の熱媒体との間での比重差によって上方へ流れることができるよう構成されている、廃熱ボイラ。
    A waste heat boiler that recovers heat from process gas in a plant,
    A casing extending in the longitudinal direction and having a circular cross section;
    A heat-resistant wall disposed inside the casing and extending in the longitudinal direction;
    An inlet duct that passes through the casing and is connected to the heat-resistant wall and supplies process gas to a space surrounded by the heat-resistant wall;
    A plurality of heat transfer tubes arranged in a space surrounded by the heat-resistant wall and through which a heat medium passes;
    The heat transfer tube is configured so that the vapor of the heat medium generated by absorbing the heat of the process gas can flow upward due to a specific gravity difference with the heat medium in a liquid state. .
  2.  前記耐熱壁によって囲まれた空間が、縦方向に延びる第1煙道と、縦方向に延び、前記第1煙道を通った後のプロセスガスが通る第2煙道と、に区画されている、請求項1に記載の廃熱ボイラ。 A space surrounded by the heat-resistant wall is partitioned into a first flue extending in the vertical direction and a second flue extending in the vertical direction and through which the process gas passes through the first flue. The waste heat boiler according to claim 1.
  3.  前記耐熱壁は、内部に冷却媒体が通される複数の冷却管と、隣接する2本の前記冷却管の間の隙間を埋めるよう各冷却管に取り付けられたフィンと、を有する、請求項1または2に記載の廃熱ボイラ。 The heat-resistant wall includes a plurality of cooling pipes through which a cooling medium is passed, and fins attached to the cooling pipes so as to fill a gap between the two adjacent cooling pipes. Or the waste heat boiler of 2.
  4.  前記廃熱ボイラは、
     複数の前記伝熱管の下端に接続され、液体状態の熱媒体を各伝熱管に分配する分配ヘッダーと、
     複数の前記伝熱管の上端に接続され、プロセスガスの熱によって蒸発した熱媒体を各伝熱管から寄せ集める集合ヘッダーと、をさらに備え、
     前記分配ヘッダーおよび前記集合ヘッダーはそれぞれ、前記耐熱壁によって囲まれた空間に配置されている、請求項1乃至3のいずれか一項に記載の廃熱ボイラ。
    The waste heat boiler is
    A distribution header connected to the lower ends of the plurality of heat transfer tubes and distributing a heat medium in a liquid state to each heat transfer tube;
    An assembly header connected to the upper ends of the plurality of heat transfer tubes, and collecting the heat medium evaporated by the heat of the process gas from each heat transfer tube,
    The waste heat boiler according to any one of claims 1 to 3, wherein each of the distribution header and the collective header is disposed in a space surrounded by the heat-resistant wall.
  5.  前記分配ヘッダーおよび前記集合ヘッダーには、前記ケーシングおよび前記耐熱壁を貫通する中間配管がそれぞれ接続されており、
     前記ケーシングのうち前記中間配管が貫通する部分は、ガス封止部材によって外側から覆われており、
     前記耐熱壁のうち前記中間配管が貫通する部分は、前記中間配管の輪郭に対応した湾曲形状を有し、内部に冷却媒体が通される冷却管によって構成されている、請求項4に記載の廃熱ボイラ。
    Intermediate pipes that pass through the casing and the heat-resistant wall are connected to the distribution header and the assembly header, respectively.
    The portion of the casing through which the intermediate pipe passes is covered from the outside by a gas sealing member,
    The portion of the heat-resistant wall through which the intermediate pipe passes has a curved shape corresponding to the contour of the intermediate pipe, and is configured by a cooling pipe through which a cooling medium passes. Waste heat boiler.
  6.  前記廃熱ボイラは、前記伝熱管を支持する支持機構をさらに備え、
     前記支持機構は、上方から吊り下げられた支持管と、前記支持管に接続され、前記伝熱管を下方から支持する支持部材と、を有する、請求項1乃至5のいずれか一項に記載の廃熱ボイラ。
    The waste heat boiler further includes a support mechanism for supporting the heat transfer tube,
    6. The support mechanism according to claim 1, comprising: a support pipe suspended from above; and a support member connected to the support pipe and supporting the heat transfer pipe from below. Waste heat boiler.
  7.  前記支持機構の前記支持管の中には熱媒体が通されている、請求項6に記載の廃熱ボイラ。 The waste heat boiler according to claim 6, wherein a heat medium is passed through the support tube of the support mechanism.
  8.  前記耐熱壁は、内部に冷却媒体が通される複数の冷却管と、隣接する2本の前記冷却管の間の隙間を埋めるよう各冷却管に取り付けられたフィンと、を有し、
     前記廃熱ボイラは、
     複数の前記冷却管の下端に連結され、液体状態の冷却媒体を各冷却管に分配する下部ヘッダーと、
     複数の前記冷却管の上端に連結され、プロセスガスの熱によって蒸発した冷却媒体を各冷却管から寄せ集める上部ヘッダーと、をさらに備え、
     前記支持機構の前記支持管は、前記上部ヘッダーによって支持されている、請求項6または7に記載の廃熱ボイラ。
    The heat-resistant wall has a plurality of cooling pipes through which a cooling medium is passed, and fins attached to the cooling pipes so as to fill a gap between the two adjacent cooling pipes,
    The waste heat boiler is
    A lower header connected to the lower ends of the plurality of cooling pipes and distributing a liquid cooling medium to the cooling pipes;
    An upper header connected to the upper ends of the plurality of cooling pipes and collecting the cooling medium evaporated by the heat of the process gas from each cooling pipe;
    The waste heat boiler according to claim 6 or 7, wherein the support pipe of the support mechanism is supported by the upper header.
  9.  前記耐熱壁が、矩形状の横断面を有する、請求項1乃至8のいずれか一項に記載の廃熱ボイラ。 The waste heat boiler according to any one of claims 1 to 8, wherein the heat-resistant wall has a rectangular cross section.
  10.  前記ケーシングの内面に補強板が取り付けられており、
     前記補強板は、前記耐熱壁の外面から一定の間隔を空けて配置されている、請求項9に記載の廃熱ボイラ。
    A reinforcing plate is attached to the inner surface of the casing,
    The waste heat boiler according to claim 9, wherein the reinforcing plate is disposed at a predetermined interval from an outer surface of the heat-resistant wall.
  11.  前記ケーシングの内面と前記耐熱壁の外面との間の空間に、水平方向に延びるバッフルプレートが設けられている、請求項1乃至10のいずれか一項に記載の廃熱ボイラ。 The waste heat boiler according to any one of claims 1 to 10, wherein a baffle plate extending in a horizontal direction is provided in a space between an inner surface of the casing and an outer surface of the heat-resistant wall.
PCT/JP2013/068528 2013-07-05 2013-07-05 Waste-heat boiler WO2015001666A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/068528 WO2015001666A1 (en) 2013-07-05 2013-07-05 Waste-heat boiler
CN201410147794.4A CN104279541A (en) 2013-07-05 2014-04-14 Waste-heat boiler
CN201420178706.2U CN204084298U (en) 2013-07-05 2014-04-14 Waste heat boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068528 WO2015001666A1 (en) 2013-07-05 2013-07-05 Waste-heat boiler

Publications (1)

Publication Number Publication Date
WO2015001666A1 true WO2015001666A1 (en) 2015-01-08

Family

ID=52143282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068528 WO2015001666A1 (en) 2013-07-05 2013-07-05 Waste-heat boiler

Country Status (2)

Country Link
CN (2) CN104279541A (en)
WO (1) WO2015001666A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508739A (en) * 2015-02-12 2018-03-29 安徽海螺川崎工程有限公司 Residual heat boiler
US10907822B2 (en) 2015-02-12 2021-02-02 Anhui Conch Kawasaki Engineering Company Limited Waste heat boiler
EP3819538A1 (en) * 2019-11-08 2021-05-12 General Electric Company Multiple cooled supports for heat exchange tubes in heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001666A1 (en) * 2013-07-05 2015-01-08 川崎重工業株式会社 Waste-heat boiler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183969A (en) * 1962-02-28 1965-05-18 Foster Wheeler Corp Heat exchangers
JPH08226606A (en) * 1995-02-22 1996-09-03 Ishikawajima Harima Heavy Ind Co Ltd Supporting structure of heat-transfer pipe for boiler
JPH1161156A (en) * 1997-08-26 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd Convection type gas-cooling device for gasification of coal
JP2004176934A (en) * 2002-11-22 2004-06-24 Toyo Radiator Co Ltd Steam generator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101639212B (en) * 2009-08-21 2011-01-05 苏州海陆重工股份有限公司 Waste-heat boiler
WO2015001666A1 (en) * 2013-07-05 2015-01-08 川崎重工業株式会社 Waste-heat boiler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183969A (en) * 1962-02-28 1965-05-18 Foster Wheeler Corp Heat exchangers
JPH08226606A (en) * 1995-02-22 1996-09-03 Ishikawajima Harima Heavy Ind Co Ltd Supporting structure of heat-transfer pipe for boiler
JPH1161156A (en) * 1997-08-26 1999-03-05 Ishikawajima Harima Heavy Ind Co Ltd Convection type gas-cooling device for gasification of coal
JP2004176934A (en) * 2002-11-22 2004-06-24 Toyo Radiator Co Ltd Steam generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018508739A (en) * 2015-02-12 2018-03-29 安徽海螺川崎工程有限公司 Residual heat boiler
EP3258168A4 (en) * 2015-02-12 2019-02-20 Anhui Conch Kawasaki Engineering Company Limited Waste heat boiler
US10907822B2 (en) 2015-02-12 2021-02-02 Anhui Conch Kawasaki Engineering Company Limited Waste heat boiler
EP3819538A1 (en) * 2019-11-08 2021-05-12 General Electric Company Multiple cooled supports for heat exchange tubes in heat exchanger
US11519597B2 (en) 2019-11-08 2022-12-06 General Electric Company Multiple cooled supports for heat exchange tubes in heat exchanger

Also Published As

Publication number Publication date
CN204084298U (en) 2015-01-07
CN104279541A (en) 2015-01-14

Similar Documents

Publication Publication Date Title
US8511258B2 (en) Coal boiler and coal boiler combustion method
JP5462128B2 (en) Thermal power plant
WO2015001666A1 (en) Waste-heat boiler
US9920476B2 (en) Arrangement and method in soda recovery boiler
JP2017534828A (en) A once-through vertical tube supercritical evaporator for heat recovery steam generators.
AU2009205434B2 (en) Heat exchanger
CN202432493U (en) Modular afterheat boiler
WO2014064949A1 (en) Boiler system
EP2884163B1 (en) Fluidized bed apparatus with a fluidized bed heat exchanger
CN201611090U (en) Waste-heat boiler superheater
EP3273162B1 (en) Thermal device, its use, and method for heating a heat transfer medium
CN103574569B (en) cement kiln head waste heat boiler
JPH0474601B2 (en)
RU2249761C2 (en) Boiler plant with a cylindrical boiler and a water-heater, a water-tube countercurrent cylindrical boiler with a convective beam, a ring-shaped sectional finned collector
CN109186093A (en) Fire hot-water boiler in a kind of vertical condensation one room
KR200167978Y1 (en) Complex heat recovery steam generator
CN217653835U (en) Coke oven flue gas waste heat boiler
CN218480594U (en) Assembled gas steam boiler and heating system thereof
EP3889501B1 (en) Heat transmission pipe block, waste heat recovery boiler, and method for constructing waste heat recovery boiler
KR100636087B1 (en) Boiler drum
CN203656884U (en) Cement kiln head waste heat boiler
JP2009222304A (en) Once-through exhaust heat recovery boiler
JP6514490B2 (en) Internally reinforced high-life waste heat recovery boiler equipment
JPH02126001A (en) Anti-vibration structure for large sized economizer
EA032077B1 (en) Water-heating boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP