WO2014064949A1 - Boiler system - Google Patents

Boiler system Download PDF

Info

Publication number
WO2014064949A1
WO2014064949A1 PCT/JP2013/053097 JP2013053097W WO2014064949A1 WO 2014064949 A1 WO2014064949 A1 WO 2014064949A1 JP 2013053097 W JP2013053097 W JP 2013053097W WO 2014064949 A1 WO2014064949 A1 WO 2014064949A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiler
drain
once
combustion gas
air
Prior art date
Application number
PCT/JP2013/053097
Other languages
French (fr)
Japanese (ja)
Inventor
立季 小林
智浩 大久保
和弘 上永
宏之 畑中
草平 秋永
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Publication of WO2014064949A1 publication Critical patent/WO2014064949A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes

Definitions

  • the present invention relates to a boiler system. This application claims priority based on Japanese Patent Application No. 2012-233265 for which it applied to Japan on October 22, 2012, and uses the content here.
  • a drain recovery apparatus that supplies steam generated by a boiler to a load device, recovers drain generated from the steam used as a heat source in the load device, and reuses it as water supply to the boiler.
  • the drain generated in the load equipment is recovered in an open drain recovery tank that is open to the atmosphere and supplied to the boiler, and a sealed type having pressure resistance
  • a closed-type drain recovery device that recovers drain in a high-temperature and high-pressure state in this drain recovery tank and supplies the drain to a boiler (for example, see Patent Document 1).
  • water can be supplied at a higher temperature than in the open drain recovery device, so that the fuel consumption of the boiler can be reduced and the operating cost of the boiler can be reduced.
  • an air heater for exchanging heat between the combustion gas and the combustion air supplied to the boiler as disclosed in Patent Document 2 is provided together with the economizer. Can be considered.
  • JP 2006-105442 A JP-A-61-59114
  • the air heater may not be able to sufficiently recover heat from the combustion gas whose temperature has been recovered by the economizer.
  • an object of the present invention is to provide a boiler system that can further improve thermal efficiency when a closed type drain recovery device and a boiler are combined.
  • the present invention relates to a once-through boiler that generates steam by heating feed water with combustion gas, and a drain that is generated by agglomeration of steam generated by the once-through boiler is recovered in a high-temperature and high-pressure state, and the drain is recovered from the once-through boiler.
  • a boiler system comprising: a closed-type drain recovery device that supplies heat to the combustion gas discharged from the once-through boiler, and a feed water heater that exchanges heat between the drain supplied to the once-through boiler.
  • the present invention also relates to a boiler system further comprising an air heater that performs heat exchange by circulating the combustion gas heat-exchanged in the feed water heater and the combustion air supplied to the once-through boiler in opposite directions.
  • the heat recovery rate of the air heater is preferably 10% or less.
  • the temperature of the combustion air introduced into the air heater is ⁇ 20 ° C. to 80 ° C., and the temperature of the combustion air after heat exchange in the air heater is 200 ° C. or less. It is preferable.
  • the once-through boiler is a rectangular parallelepiped can body, and a plurality of can bodies disposed in the longitudinal direction and the width direction of the can body at predetermined intervals while being arranged extending in the vertical direction inside the can body.
  • a water pipe, a burner which is provided on a first side surface located on one end side in the longitudinal direction of the can body, and injects and burns fuel in a substantially horizontal direction, and is located on the other end side in the longitudinal direction of the can body It is preferable to provide an exhaust pipe that is provided on the second side surface and discharges combustion gas generated inside the can body.
  • the exhaust pipe is connected to the combustion gas discharge part, and is provided with an upward discharge path part through which the combustion gas flows upward, and provided downstream of the upward discharge path part, and the combustion gas is directed downward.
  • a downward discharge passage portion that circulates, wherein the feed water heater is provided in the upward discharge passage portion, the air heater is provided in the downward discharge passage portion, and combustion air is directed from below to above It is preferable to distribute toward.
  • the thermal efficiency can be further improved.
  • FIG. 4 is a sectional view taken along line AA in FIG. 3. It is a figure which shows the temperature distribution of the combustion gas and the combustion air in a countercurrent type heat exchange and a parallel flow type heat exchange.
  • FIG. 1 is a diagram showing a configuration of a boiler system 1 according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating the configuration of the once-through boiler 10, the feed water heater 30, and the air heater 40.
  • the boiler system 1 of this embodiment is provided with the boiler apparatus 70 comprised including the some once-through boiler 10, and the closed-type drain collection
  • the boiler device 70 is generated by a plurality of once-through boilers 10, a feed water heater 30 and an air heater 40 attached to each of the plurality of once-through boilers 10, and a plurality of once-through boilers 10. And a connecting pipe 72 that connects the plurality of once-through boilers 10 and the steam header 71 to each other.
  • the once-through boiler 10 generates steam by heating the feed water supplied to the inside with combustion gas.
  • the drain recovered by a drain recovery device 20 described later is supplied as feed water to the once-through boiler 10 (a plurality of water pipes). Details of the once-through boiler 10 and the feed water heater 30 and the air heater 40 will be described later.
  • the steam generated by the plurality of once-through boilers 10 is supplied to the steam header 71 through a connecting pipe 72.
  • the steam header 71 stores the steam generated by the plurality of once-through boilers 10 and supplies the steam to the load device 50.
  • the load device 50 uses the steam generated by the once-through boiler 10 as a heat source, and performs heat exchange with the object to be heated.
  • the drain recovery device 20 recovers the drain produced by agglomeration of the steam generated by the once-through boiler 10 in the load device 50 in a high-temperature and high-pressure state, and again uses the recovered drain as feed water to supply the once-through boiler 10 again.
  • the drain recovery device 20 includes a drain tank 21, an open tank 22, a first steam supply line L1, a first drain supply line L2, a second drain supply line L3, a second steam supply line L4, and flash steam.
  • a discharge line L5 and a makeup water supply line L6 are provided.
  • the drain tank 21 collects and stores the drain produced by agglomeration of part of the steam used for heat exchange in the load device 50.
  • the drain tank 21 is constituted by a pressure vessel that has pressure resistance and can be sealed.
  • the open tank 22 is open to the atmosphere.
  • the open tank 22 stores makeup water supplied to the once-through boiler 10. Further, the open tank 22 is introduced with flash steam generated from the drain in the drain tank 21.
  • the first steam supply line L ⁇ b> 1 connects the steam header 71 and the load device 50, and supplies the steam generated by the once-through boiler 10 to the load device 50.
  • the first drain supply line L ⁇ b> 2 connects the load device 50 and the drain tank 21, and supplies the drain generated in the load device 50 to the drain tank 21.
  • a steam trap 61, a check valve 62, and a motor valve 63 that discharge drain generated in the load device 50 and prevent discharge of steam are disposed.
  • the second drain supply line L3 connects the drain tank 21 and the once-through boiler 10 and supplies the drain accommodated in the drain tank 21 to the once-through boiler 10.
  • the upstream end of the second drain supply line L ⁇ b> 3 is connected to the lower portion of the drain tank 21.
  • the downstream side of the second drain supply line L3 is branched so as to be connected to each of the plurality of cans 11.
  • a drain pump 64 and a drain supply valve 65 are arranged in the second drain supply line L3.
  • the drain pump 64 boosts the drain supplied from the drain tank 21 and supplies it to the once-through boiler 10.
  • the drain supply valve 65 is constituted by a motor valve and adjusts the amount of drain supplied from the drain tank 21 to the once-through boiler 10.
  • the second steam supply line L4 connects the steam header 71 and the drain tank 21.
  • the second steam supply line L4 supplies the steam generated in the once-through boiler 10 to the drain tank 21 and adjusts the pressure inside the drain tank 21.
  • a pressure adjustment valve 66 and a motor valve 67 are disposed in the second steam supply line L4.
  • the flush steam discharge line L5 connects the drain tank 21 and the open tank 22, and discharges the flash steam generated in the drain tank 21 to the open tank 22.
  • a pressure regulating valve 68 is disposed in the flash steam discharge line L5. When the pressure inside the drain tank 21 exceeds a predetermined pressure, the pressure regulating valve 68 releases the flash vapor to the open tank 22 side and reduces the pressure inside the drain tank 21.
  • the makeup water supply line L6 connects the open tank 22 and the drain tank 21 and supplies the water stored in the open tank 22 to the drain tank 21.
  • a pump 69 is disposed in the makeup water supply line L6.
  • FIG. 3 is a vertical cross-sectional view of the can 11 of the once-through boiler 10.
  • 4 is a cross-sectional view taken along line AA of FIG. 3, and is a horizontal cross-sectional view of the can 11.
  • the once-through boiler 10 includes a can 11, a plurality of water pipes 12, a connecting wall 13, a lower header 14, an upper header 15, a duct 16, a burner 17, And a cylinder 18.
  • the can body 11 is configured in a rectangular parallelepiped shape in a plan view.
  • the plurality of water pipes 12 are arranged extending in the vertical direction inside the can body 11 and are arranged at predetermined intervals in the longitudinal direction and the width direction of the can body 11.
  • the plurality of water tubes 12 are disposed along the longitudinal direction at the outer water tube group 12 a disposed along the side portion extending in the longitudinal direction of the can body 11 and at the center portion in the width direction of the can body 11.
  • the central water pipe group 12b and the intermediate water pipe group 12c disposed between the outer water pipe group 12a and the central water pipe group 12b are classified.
  • the connection wall 13 connects the water pipes 12 arranged adjacent to each other in the outer water pipe group 12a.
  • the lower header 14 is configured by a rectangular parallelepiped container having a rectangular shape in plan view, and is disposed at the lower portion of the can 11.
  • the lower header 14 is connected to lower ends of the plurality of water pipes 12. Drain is supplied to the lower header 14 from the drain recovery device 20, and drain is supplied from the lower header 14 to the plurality of water pipes 12.
  • the upper header 15 is configured by a rectangular parallelepiped container having a rectangular shape in plan view, and is disposed on the upper portion of the can 11.
  • the upper header 15 is connected to the upper ends of the plurality of water pipes 12. Steam generated in the plurality of water pipes 12 is collected in the upper header 15.
  • a connecting pipe 72 (see FIG. 1) is connected to the upper header 15, and the steam collected in the upper header 15 is supplied to the steam header 71 through the connecting pipe 72.
  • the duct 16 is connected to a lower portion of the first side surface 11 a located on one end side in the longitudinal direction of the can body 11. Connected to the upstream side of the duct 16 are a fuel supply unit 161 to which fuel gas is supplied and an air supply line AL (see FIG. 2) to which combustion air is supplied.
  • the duct 16 mixes the fuel gas supplied from the fuel supply unit 161 and the combustion air supplied from the air supply path AL and supplies the mixed gas toward the inside of the can 11.
  • the burner 17 is disposed at a connection portion between the duct 16 and the can body 11 on the first side surface 11a.
  • the burner 17 ejects a mixed gas in which combustion air and fuel are mixed from the duct 16 into the can 11 and burns the mixed gas.
  • the exhaust cylinder 18 is connected to the second side surface 11b located on the other end side in the longitudinal direction of the can body 11 (the side opposite to the side where the duct 16 is provided).
  • the exhaust cylinder 18 discharges the combustion gas generated by burning the mixed gas inside the can 11.
  • the exhaust cylinder 18 is bent from a first upward exhaust passage portion 181 extending upward from a connection portion with the can body 11 and an upper end portion of the first upward exhaust passage portion 181.
  • a downward exhaust passage portion 182 extending downward, and a second upward exhaust passage portion 183 that is bent from the lower end portion of the downward exhaust passage portion 182 and extends upward.
  • the combustion gas discharged from the can 11 circulates upward through the first upward exhaust passage portion 181, then flows downward through the downward exhaust passage portion 182, and It flows through the second upward exhaust passage 183 upward and is discharged to the outside.
  • the feed water heater 30 and the air heater 40 are provided in the exhaust pipe 18.
  • the feed water heater 30 performs heat exchange between the combustion gas discharged from the once-through boiler 10 and the drain supplied to the once-through boiler 10.
  • the feed water heater 30 is disposed in the first upward exhaust path portion 181. More specifically, the feed water heater 30 is configured by disposing a part of the second drain supply line L3 (see FIG. 1) for supplying drain to the once-through boiler 10 in the first upward exhaust passage portion 181.
  • the 2nd drain supply line L3 is arrange
  • the air heater 40 performs heat exchange between the combustion gas heat-exchanged in the feed water heater 30 and the combustion air supplied to the once-through boiler 10.
  • the air heater 40 is disposed in the downward exhaust path portion 182. More specifically, as shown in FIG. 2, the air heater 40 is configured such that a part of the air supply line AL that supplies combustion air from the blower 80 to the once-through boiler 10 (duct 16) has a downward exhaust path portion 182. It is comprised by arranging in. Further, in the air heater 40, the air supply line AL is arranged so that the combustion air flows from below to above. That is, in the air heater 40 of the present embodiment, countercurrent heat exchange is performed in which the combustion gas and the combustion air flow in opposite directions to exchange heat.
  • the heat recovery rate from the combustion gas is set to 3% to 7% by causing the air heater 40 to perform countercurrent heat exchange.
  • the air heater is used when air having an outside air temperature (for example, 0 ° C. to 50 ° C.) is used as the combustion air.
  • the temperature of the combustion air after heat exchange at 40 can be made 200 ° C. or lower.
  • the heat recovery rate from the combustion gas includes the inlet temperature of the combustion gas to the air heater 40, the outlet temperature of the combustion gas from the air heater 40, the flow rate of the combustion gas, and the air heater of the combustion air. It is determined based on the inlet temperature to 40, the outlet temperature of the combustion air from the air heater 40, and the flow rate of the combustion air.
  • steam is generated in the once-through boiler 10. Specifically, first, the fuel gas and the combustion air are mixed in the duct 16, and the mixed gas of the combustion gas and the combustion air is ejected from the burner 17 into the can 11 and burned. Next, the plurality of water pipes 12 are heated by the combustion gas generated by the combustion of the mixed gas, and steam is generated from the feed water (drain) supplied to the inside of the plurality of water pipes 12. The steam generated inside the plurality of water pipes 12 is collected in the upper header 15 and then supplied to the steam header 71 via the connecting pipe 72.
  • the steam supplied to the steam header 71 becomes drain after being used in the load device 50 and is stored in the drain tank 21 in a high temperature and high pressure state.
  • the drain stored in the drain tank 21 is supplied as feed water to the once-through boiler 10 through the second drain supply line L3.
  • the combustion gas G1 used for generating steam inside the can 11 flows upward through the first upward exhaust passage portion 181 (see G2 in FIG. 2), and then downwards through the downward exhaust passage portion 182. 2 (see G3 in FIG. 2), further flows upward through the second upward exhaust passage portion 183 (see G4 in FIG. 2), and is discharged to the outside (see G5 in FIG. 2).
  • the feed water heater 30 is disposed in the first upward exhaust passage portion 181, and the air heater 40 is disposed in the downward exhaust passage portion 182.
  • the air heater 40 is designed so that the heat recovery rate is 10% or less, preferably 3% to 7%.
  • the combustion gas (for example, 250 ° C. to 350 ° C.) discharged from the can 11 is first drained (for example, 140 ° C. to 170 ° C.) through the feed water heater 30 in the first upward exhaust passage 181. ) And heat is recovered. Further, the combustion gas (for example, 140 ° C. to 200 ° C.) recovered by heat in the feed water heater 30 passes through the air heater 40 in the downward exhaust passage 182 (for example, ⁇ 20 ° C. to 80 ° C.). ) And heat is recovered. Then, the combustion gas (for example, 80 ° C. to 120 ° C.) recovered by heat in the air heater 40 is discharged to the outside.
  • the feed water heater 30 is disposed in the first upward exhaust passage portion 181, and the air heater 40 is disposed in the downward exhaust passage portion 182, thereby using high-temperature drain as the feed water. Even in such a case, the heat of the combustion gas that could not be recovered by the feed water heater 30 is given to the combustion air, so that the thermal efficiency (boiler efficiency) of the boiler system 1 can be improved.
  • the air supply line AL is disposed so that the combustion air flows from the lower side to the upper side.
  • the combustion gas and the combustion air are made to be opposite to each other. Counterflow heat exchange is performed. Therefore, the heat recovery rate from the combustion gas can be increased as compared with the parallel flow type heat exchange in which the combustion gas and the combustion air flow in the same direction. That is, as shown in FIG. 5 (a), according to the countercurrent heat exchange, the combustion air first exchanged heat with the coldest portion T4 of the combustion gas in the coldest portion T1.
  • the temperature of the combustion gas heat recovered in the feed water heater 30 can be lowered from about 140 ° C. to 200 ° C. to about 80 ° C. to 120 ° C., This allows 3% to 7% heat recovery.
  • the heat recovery rate in the air heater 40 is set to 10% or less, preferably 3% to 7%, the temperature of the combustion air heated in the air heater 40 and supplied to the once-through boiler 10 becomes high. You can prevent too much. Therefore, the thermal efficiency of the boiler system 1 can be improved and an increase in NOx contained in the combustion gas (exhaust gas) discharged from the once-through boiler 10 can be suppressed.
  • NOx contained in the combustion gas greatly increases when the temperature of the combustion air supplied to the once-through boiler 10 exceeds 200 ° C.
  • the air of the environment where the boiler system 1 is installed is used as combustion air. Therefore, when the temperature of the combustion air introduced into the air heater 40 (that is, the outside air temperature) is 0 ° C. to 50 ° C., the temperature of the combustion air subjected to heat exchange becomes 200 ° C. or less.
  • the air heater 40 was arranged in the. Thereby, it is possible to suppress an increase in NOx contained in the exhaust gas discharged from the once-through boiler 10 while improving the thermal efficiency of the boiler system 1 by performing heat recovery with the air heater 40.
  • the once-through boiler 10 is fueled from a rectangular parallelepiped can body 11, a plurality of water pipes 12 arranged in the can body 11 at predetermined intervals in the longitudinal direction and the width direction, and a side surface of the can body 11. And a burner 17 for injecting and burning gas.
  • a burner 17 for injecting and burning gas.
  • the second drain supply line L ⁇ b> 3 is disposed so that the drain flows from the upper side to the lower side.
  • the exhaust pipe 18 includes the first upward exhaust passage portion 181, the downward exhaust passage portion 182, and the second upward exhaust passage portion 183, but is not limited thereto. That is, the exhaust pipe may be configured by a downward exhaust passage portion whose upper end portion is connected to the can body and an upward exhaust passage portion connected to the lower end portion of the downward exhaust passage portion.
  • a feed water heater may be disposed in the downward exhaust passage and an air heater may be disposed in the upward exhaust passage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Supply (AREA)

Abstract

Provided is a boiler system having improved heat efficiency when a closed-type condensate recovery apparatus and a boiler are combined. A boiler system (1) provided with: a through-flow boiler (10) for generating steam by heating feed water using combustion gas; a closed-type condensate recovery apparatus (20) for recovering, at high temperature and high pressure, condensate produced by condensing steam generated by the through-flow boiler (10), and supplying the condensate to the through-flow boiler (10); and a feed water heater (30) for performing heat exchange between combustion gas discharged from the through-flow boiler (10) and condensate supplied to the through-flow boiler (10), the boiler system further provided with an air heater (40) for causing the combustion gas heat-exchanged by the feed water heater (30) and combustion air supplied to the through-flow boiler (10) each to circulate in the reverse direction to perform heat exchange.

Description

ボイラシステムBoiler system
 本発明は、ボイラシステムに関する。本願は、2012年10月22日に日本に出願された特願2012-233265号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a boiler system. This application claims priority based on Japanese Patent Application No. 2012-233265 for which it applied to Japan on October 22, 2012, and uses the content here.
 従来、ボイラで生成した蒸気を負荷機器に供給し、この負荷機器において熱源として使用された蒸気から発生するドレンを回収して再度ボイラへの給水として利用するドレン回収装置が提案されている。
 このようなドレン回収装置としては、負荷機器において発生したドレンを、大気に開放された開放型のドレン回収タンクに回収してボイラに給水するオープン方式のドレン回収装置、及び耐圧性を有する密閉型のドレン回収タンクにドレンを高温高圧の状態で回収して、このドレンをボイラに給水するクローズド方式のドレン回収装置が知られている(例えば、特許文献1参照)。
 クローズド方式のドレン回収装置では、オープン方式のドレン回収装置に比して、高温での給水が可能となるため、ボイラの燃料消費量を低減でき、ボイラの運転コストを低減できる。
2. Description of the Related Art Conventionally, there has been proposed a drain recovery apparatus that supplies steam generated by a boiler to a load device, recovers drain generated from the steam used as a heat source in the load device, and reuses it as water supply to the boiler.
As such a drain recovery device, the drain generated in the load equipment is recovered in an open drain recovery tank that is open to the atmosphere and supplied to the boiler, and a sealed type having pressure resistance There is known a closed-type drain recovery device that recovers drain in a high-temperature and high-pressure state in this drain recovery tank and supplies the drain to a boiler (for example, see Patent Document 1).
In the closed drain recovery device, water can be supplied at a higher temperature than in the open drain recovery device, so that the fuel consumption of the boiler can be reduced and the operating cost of the boiler can be reduced.
 ところで、クローズド方式のドレン回収装置とボイラとを組み合わせてボイラシステムを構成した場合には、ボイラにおいて蒸気を生成するために用いられた燃焼ガスからの熱回収が十分に行えず、ボイラシステムの熱効率が低下してしまう場合があった。即ち、ボイラシステムでは、ボイラに供給される水と、蒸気を生成するために用いられた後の燃焼ガスとの間で熱交換を行うエコノマイザを設けることにより、燃焼ガスから熱回収を行い熱効率を向上させている。しかしながら、ボイラにドレンを供給した場合、エコノマイザに導入される給水の温度が高いため、燃焼ガスからの熱回収が十分に行えない。 By the way, when a boiler system is configured by combining a closed-type drain recovery device and a boiler, heat recovery from the combustion gas used to generate steam in the boiler cannot be sufficiently performed, and the thermal efficiency of the boiler system May fall. In other words, in a boiler system, by providing an economizer that exchanges heat between water supplied to the boiler and the combustion gas that has been used to generate steam, heat recovery from the combustion gas can be achieved. It is improving. However, when drain is supplied to the boiler, the temperature of the feed water introduced into the economizer is high, so that heat cannot be sufficiently recovered from the combustion gas.
 そこで、ボイラシステムの熱効率を向上させるために、特許文献2で開示されているような燃焼ガスとボイラに供給される燃焼用空気との間で熱交換を行うエアヒータを、エコノマイザと共に設けてボイラシステムを構成することが考えられる。 Therefore, in order to improve the thermal efficiency of the boiler system, an air heater for exchanging heat between the combustion gas and the combustion air supplied to the boiler as disclosed in Patent Document 2 is provided together with the economizer. Can be considered.
特開2006-105442号公報JP 2006-105442 A 特開昭61-59114号公報JP-A-61-59114
 しかしながら、ボイラシステムをエコノマイザ及びエアヒータを含んで構成した場合、エアヒータにおいて、エコノマイザにより熱回収されて温度が低下した燃焼ガスから十分に熱回収できない場合があった。 However, when the boiler system includes an economizer and an air heater, the air heater may not be able to sufficiently recover heat from the combustion gas whose temperature has been recovered by the economizer.
 従って、本発明は、クローズドタイプのドレン回収装置とボイラとを組み合わせた場合に、熱効率をより向上させられるボイラシステムを提供することを目的とする。 Therefore, an object of the present invention is to provide a boiler system that can further improve thermal efficiency when a closed type drain recovery device and a boiler are combined.
 本発明は、給水を燃焼ガスにより加熱して蒸気を生成する貫流ボイラと、前記貫流ボイラにより生成された蒸気が凝集して生じたドレンを高温高圧の状態で回収し、該ドレンを前記貫流ボイラに供給するクローズド方式のドレン回収装置と、前記貫流ボイラから排出される燃焼ガスと、前記貫流ボイラに供給されるドレンとの間で熱交換を行う給水加熱器と、を備えるボイラシステムであって、前記給水加熱器において熱交換された燃焼ガスと前記貫流ボイラに供給される燃焼用空気とを互いに逆方向に流通させて熱交換を行う空気加熱器を更に備えるボイラシステムに関する。 The present invention relates to a once-through boiler that generates steam by heating feed water with combustion gas, and a drain that is generated by agglomeration of steam generated by the once-through boiler is recovered in a high-temperature and high-pressure state, and the drain is recovered from the once-through boiler. A boiler system comprising: a closed-type drain recovery device that supplies heat to the combustion gas discharged from the once-through boiler, and a feed water heater that exchanges heat between the drain supplied to the once-through boiler. The present invention also relates to a boiler system further comprising an air heater that performs heat exchange by circulating the combustion gas heat-exchanged in the feed water heater and the combustion air supplied to the once-through boiler in opposite directions.
 また、前記空気加熱器の熱回収率は、10%以下であることが好ましい。 The heat recovery rate of the air heater is preferably 10% or less.
 また、前記空気加熱器に導入される燃焼用空気の温度は、-20℃~80℃であり、該空気加熱器において熱交換を行った後の燃焼用空気の温度は、200℃以下であることが好ましい。 The temperature of the combustion air introduced into the air heater is −20 ° C. to 80 ° C., and the temperature of the combustion air after heat exchange in the air heater is 200 ° C. or less. It is preferable.
 また、前記貫流ボイラは、直方体状の缶体と、前記缶体の内部に上下方向に延びて配置されると共に、該缶体の長手方向及び幅方向に所定の間隔をあけて配置される複数の水管と、前記缶体の長手方向の一端側に位置する第1側面に設けられ、略水平方向に燃料を噴出して燃焼させるバーナと、前記缶体の長手方向の他端側に位置する第2側面に設けられ前記缶体の内部で生じた燃焼ガスを排出する排気筒と、を備えることが好ましい。 In addition, the once-through boiler is a rectangular parallelepiped can body, and a plurality of can bodies disposed in the longitudinal direction and the width direction of the can body at predetermined intervals while being arranged extending in the vertical direction inside the can body. A water pipe, a burner which is provided on a first side surface located on one end side in the longitudinal direction of the can body, and injects and burns fuel in a substantially horizontal direction, and is located on the other end side in the longitudinal direction of the can body It is preferable to provide an exhaust pipe that is provided on the second side surface and discharges combustion gas generated inside the can body.
 また、前記排気筒は、前記燃焼ガス排出部に接続され、燃焼ガスが上方に向かって流通する上向き排出路部と、前記上向き排出路部よりも下流側に設けられ燃焼ガスが下方に向かって流通する下向き排出路部と、を備え、前記給水加熱器は、前記上向き排出路部に設けられ、前記空気加熱器は、前記下向き排出路部に設けられると共に、燃焼用空気は下方から上方に向かって流通することが好ましい。 The exhaust pipe is connected to the combustion gas discharge part, and is provided with an upward discharge path part through which the combustion gas flows upward, and provided downstream of the upward discharge path part, and the combustion gas is directed downward. A downward discharge passage portion that circulates, wherein the feed water heater is provided in the upward discharge passage portion, the air heater is provided in the downward discharge passage portion, and combustion air is directed from below to above It is preferable to distribute toward.
 本発明のドレンシステムによれば、クローズドタイプのドレン回収装置とボイラとを組み合わせた場合に、熱効率をより向上させられる。 According to the drain system of the present invention, when a closed type drain recovery device and a boiler are combined, the thermal efficiency can be further improved.
本発明の一実施形態に係るボイラシステムの構成を示す図である。It is a figure showing the composition of the boiler system concerning one embodiment of the present invention. ボイラシステムを構成する貫流ボイラ、給水加熱器及び空気加熱器を模式的に示した図である。It is the figure which showed typically the once-through boiler, feed water heater, and air heater which comprise a boiler system. 貫流ボイラの缶体の鉛直方向断面図である。It is a vertical direction sectional view of the can of a once-through boiler. 図3のA-A線断面図である。FIG. 4 is a sectional view taken along line AA in FIG. 3. 向流式の熱交換及び並流式の熱交換における燃焼ガス及び燃焼用空気の温度分布を示す図である。It is a figure which shows the temperature distribution of the combustion gas and the combustion air in a countercurrent type heat exchange and a parallel flow type heat exchange.
 以下、本発明のボイラシステムの好ましい一実施形態について、図面を参照しながら説明する。図1は、本発明の一実施形態に係るボイラシステム1の構成を示す図である。図2は、貫流ボイラ10、給水加熱器30及び空気加熱器40の構成を模式的に示した図である。
 本実施形態のボイラシステム1は、図1に示すように、複数の貫流ボイラ10を含んで構成されるボイラ装置70と、クローズド方式のドレン回収装置20と、を備える。
Hereinafter, a preferred embodiment of a boiler system of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a boiler system 1 according to an embodiment of the present invention. FIG. 2 is a diagram schematically illustrating the configuration of the once-through boiler 10, the feed water heater 30, and the air heater 40.
The boiler system 1 of this embodiment is provided with the boiler apparatus 70 comprised including the some once-through boiler 10, and the closed-type drain collection | recovery apparatus 20, as shown in FIG.
 ボイラ装置70は、図1及び図2に示すように、複数の貫流ボイラ10と、これら複数の貫流ボイラ10それぞれに取り付けられる給水加熱器30及び空気加熱器40と、複数の貫流ボイラ10で生成された蒸気が集合される蒸気ヘッダ71と、複数の貫流ボイラ10と蒸気ヘッダ71とを連結する連結管72と、を備える。 As shown in FIGS. 1 and 2, the boiler device 70 is generated by a plurality of once-through boilers 10, a feed water heater 30 and an air heater 40 attached to each of the plurality of once-through boilers 10, and a plurality of once-through boilers 10. And a connecting pipe 72 that connects the plurality of once-through boilers 10 and the steam header 71 to each other.
 貫流ボイラ10は、内部に供給された給水を燃焼ガスにより加熱して蒸気を生成する。本実施形態では、貫流ボイラ10(複数の水管)には、後述のドレン回収装置20により回収されたドレンが給水として供給される。
 貫流ボイラ10の詳細、並びに給水加熱器30及び空気加熱器40については、後述する。
The once-through boiler 10 generates steam by heating the feed water supplied to the inside with combustion gas. In the present embodiment, the drain recovered by a drain recovery device 20 described later is supplied as feed water to the once-through boiler 10 (a plurality of water pipes).
Details of the once-through boiler 10 and the feed water heater 30 and the air heater 40 will be described later.
 図1に示すように、複数の貫流ボイラ10で生成された蒸気は、連結管72を通って蒸気ヘッダ71に供給される。蒸気ヘッダ71は、複数の貫流ボイラ10で生成された蒸気を貯留し、負荷機器50に供給する。
 負荷機器50は、貫流ボイラ10で生成された蒸気を熱源として利用し、加熱対象物との間で熱交換を行う。
As shown in FIG. 1, the steam generated by the plurality of once-through boilers 10 is supplied to the steam header 71 through a connecting pipe 72. The steam header 71 stores the steam generated by the plurality of once-through boilers 10 and supplies the steam to the load device 50.
The load device 50 uses the steam generated by the once-through boiler 10 as a heat source, and performs heat exchange with the object to be heated.
 ドレン回収装置20は、貫流ボイラ10により生成された蒸気が負荷機器50で利用されることで凝集して生じたドレンを高温高圧の状態で回収し、この回収したドレンを給水として再び貫流ボイラ10に供給する。
 ドレン回収装置20は、ドレンタンク21と、オープンタンク22と、第1蒸気供給ラインL1と、第1ドレン供給ラインL2と、第2ドレン供給ラインL3と、第2蒸気供給ラインL4と、フラッシュ蒸気排出ラインL5と、補給水供給ラインL6と、を備える。
The drain recovery device 20 recovers the drain produced by agglomeration of the steam generated by the once-through boiler 10 in the load device 50 in a high-temperature and high-pressure state, and again uses the recovered drain as feed water to supply the once-through boiler 10 again. To supply.
The drain recovery device 20 includes a drain tank 21, an open tank 22, a first steam supply line L1, a first drain supply line L2, a second drain supply line L3, a second steam supply line L4, and flash steam. A discharge line L5 and a makeup water supply line L6 are provided.
 ドレンタンク21は、負荷機器50において熱交換に用いられた蒸気の一部が凝集して生じるドレンを回収して収容する。このドレンタンク21は、耐圧性を有し密閉可能な圧力容器により構成される。 The drain tank 21 collects and stores the drain produced by agglomeration of part of the steam used for heat exchange in the load device 50. The drain tank 21 is constituted by a pressure vessel that has pressure resistance and can be sealed.
 オープンタンク22は、大気に開放されている。このオープンタンク22は、貫流ボイラ10に供給される補給水を貯留する。また、オープンタンク22には、ドレンタンク21においてドレンから発生したフラッシュ蒸気が導入される。 The open tank 22 is open to the atmosphere. The open tank 22 stores makeup water supplied to the once-through boiler 10. Further, the open tank 22 is introduced with flash steam generated from the drain in the drain tank 21.
 第1蒸気供給ラインL1は、蒸気ヘッダ71と負荷機器50とを接続し、貫流ボイラ10で生成された蒸気を負荷機器50に供給する。
 第1ドレン供給ラインL2は、負荷機器50とドレンタンク21とを接続し、負荷機器50で発生したドレンをドレンタンク21に供給する。この第1ドレン供給ラインL2には、負荷機器50において発生したドレンを排出し、かつ、蒸気の排出を防ぐスチームトラップ61、逆止弁62及びモータバルブ63が配置される。
The first steam supply line L <b> 1 connects the steam header 71 and the load device 50, and supplies the steam generated by the once-through boiler 10 to the load device 50.
The first drain supply line L <b> 2 connects the load device 50 and the drain tank 21, and supplies the drain generated in the load device 50 to the drain tank 21. In the first drain supply line L2, a steam trap 61, a check valve 62, and a motor valve 63 that discharge drain generated in the load device 50 and prevent discharge of steam are disposed.
 第2ドレン供給ラインL3は、ドレンタンク21と貫流ボイラ10とを接続し、ドレンタンク21に収容されたドレンを貫流ボイラ10に供給する。本実施形態では、第2ドレン供給ラインL3の上流側の端部は、ドレンタンク21の下部に接続される。また、第2ドレン供給ラインL3の下流側は、複数の缶体11のそれぞれに接続されるように分岐している。 The second drain supply line L3 connects the drain tank 21 and the once-through boiler 10 and supplies the drain accommodated in the drain tank 21 to the once-through boiler 10. In the present embodiment, the upstream end of the second drain supply line L <b> 3 is connected to the lower portion of the drain tank 21. Further, the downstream side of the second drain supply line L3 is branched so as to be connected to each of the plurality of cans 11.
 以上の第2ドレン供給ラインL3には、ドレンポンプ64及びドレン供給弁65が配置される。ドレンポンプ64は、ドレンタンク21から供給されたドレンを昇圧して貫流ボイラ10に供給する。ドレン供給弁65は、モータバルブにより構成され、ドレンタンク21から貫流ボイラ10に供給されるドレンの量を調節する。 A drain pump 64 and a drain supply valve 65 are arranged in the second drain supply line L3. The drain pump 64 boosts the drain supplied from the drain tank 21 and supplies it to the once-through boiler 10. The drain supply valve 65 is constituted by a motor valve and adjusts the amount of drain supplied from the drain tank 21 to the once-through boiler 10.
 第2蒸気供給ラインL4は、蒸気ヘッダ71とドレンタンク21とを接続する。この第2蒸気供給ラインL4は、貫流ボイラ10で生成された蒸気をドレンタンク21に供給し、ドレンタンク21の内部の圧力を調節する。第2蒸気供給ラインL4には、圧力調整弁66及びモータバルブ67が配置される。 The second steam supply line L4 connects the steam header 71 and the drain tank 21. The second steam supply line L4 supplies the steam generated in the once-through boiler 10 to the drain tank 21 and adjusts the pressure inside the drain tank 21. A pressure adjustment valve 66 and a motor valve 67 are disposed in the second steam supply line L4.
 フラッシュ蒸気排出ラインL5は、ドレンタンク21とオープンタンク22とを接続し、ドレンタンク21で発生したフラッシュ蒸気をオープンタンク22に排出する。このフラッシュ蒸気排出ラインL5には、圧力調整弁68が配置されている。圧力調整弁68は、ドレンタンク21の内部の圧力が所定の圧力を超えた場合に、フラッシュ蒸気をオープンタンク22側に逃がして、ドレンタンク21の内部の圧力を低下させる。 The flush steam discharge line L5 connects the drain tank 21 and the open tank 22, and discharges the flash steam generated in the drain tank 21 to the open tank 22. A pressure regulating valve 68 is disposed in the flash steam discharge line L5. When the pressure inside the drain tank 21 exceeds a predetermined pressure, the pressure regulating valve 68 releases the flash vapor to the open tank 22 side and reduces the pressure inside the drain tank 21.
 補給水供給ラインL6は、オープンタンク22とドレンタンク21とを接続し、オープンタンク22に貯留された水をドレンタンク21に供給する。補給水供給ラインL6には、ポンプ69が配置されている。 The makeup water supply line L6 connects the open tank 22 and the drain tank 21 and supplies the water stored in the open tank 22 to the drain tank 21. A pump 69 is disposed in the makeup water supply line L6.
 次に、貫流ボイラ10の詳細、並びに給水加熱器30及び空気加熱器40について説明する。図3は、貫流ボイラ10の缶体11の鉛直方向断面図である。図4は、図3のA-A線断面図であり、缶体11の水平方向断面図である。
 貫流ボイラ10は、図3及び図4に示すように、缶体11と、複数の水管12と、連結壁13と、下部ヘッダ14と、上部ヘッダ15と、ダクト16と、バーナ17と、排気筒18と、を備える。
Next, the details of the once-through boiler 10 and the feed water heater 30 and the air heater 40 will be described. FIG. 3 is a vertical cross-sectional view of the can 11 of the once-through boiler 10. 4 is a cross-sectional view taken along line AA of FIG. 3, and is a horizontal cross-sectional view of the can 11.
As shown in FIGS. 3 and 4, the once-through boiler 10 includes a can 11, a plurality of water pipes 12, a connecting wall 13, a lower header 14, an upper header 15, a duct 16, a burner 17, And a cylinder 18.
 缶体11は、平面視矩形形状の直方体状に構成される。
 複数の水管12は、缶体11の内部に上下方向に延びて配置されると共に、缶体11の長手方向及び幅方向に所定の間隔をあけて配置される。
 本実施形態では、複数の水管12は、缶体11の長手方向に延びる側部に沿って配置される外側水管群12aと、缶体11の幅方向の中央部に、長手方向に沿って配置される中央水管群12bと、外側水管群12aと中央水管群12bとの間に配置される中間水管群12cと、に分類される。
 連結壁13は、外側水管群12aにおいて隣り合って配置される水管12同士を連結する。
The can body 11 is configured in a rectangular parallelepiped shape in a plan view.
The plurality of water pipes 12 are arranged extending in the vertical direction inside the can body 11 and are arranged at predetermined intervals in the longitudinal direction and the width direction of the can body 11.
In the present embodiment, the plurality of water tubes 12 are disposed along the longitudinal direction at the outer water tube group 12 a disposed along the side portion extending in the longitudinal direction of the can body 11 and at the center portion in the width direction of the can body 11. The central water pipe group 12b and the intermediate water pipe group 12c disposed between the outer water pipe group 12a and the central water pipe group 12b are classified.
The connection wall 13 connects the water pipes 12 arranged adjacent to each other in the outer water pipe group 12a.
 下部ヘッダ14は、平面視矩形形状の直方体状の容器によって構成され、缶体11の下部に配置される。下部ヘッダ14には、複数の水管12の下端部が接続される。下部ヘッダ14には、ドレン回収装置20からドレンが供給され、この下部ヘッダ14から複数の水管12にドレンが供給される。 The lower header 14 is configured by a rectangular parallelepiped container having a rectangular shape in plan view, and is disposed at the lower portion of the can 11. The lower header 14 is connected to lower ends of the plurality of water pipes 12. Drain is supplied to the lower header 14 from the drain recovery device 20, and drain is supplied from the lower header 14 to the plurality of water pipes 12.
 上部ヘッダ15は、平面視矩形形状の直方体状の容器によって構成され、缶体11の上部に配置される。上部ヘッダ15には、複数の水管12の上端部が接続される。上部ヘッダ15には、複数の水管12において生成された蒸気が集められる。上部ヘッダ15には、連結管72(図1参照)が連結されており、上部ヘッダ15に集められた蒸気は、この連結管72を介して蒸気ヘッダ71に供給される。 The upper header 15 is configured by a rectangular parallelepiped container having a rectangular shape in plan view, and is disposed on the upper portion of the can 11. The upper header 15 is connected to the upper ends of the plurality of water pipes 12. Steam generated in the plurality of water pipes 12 is collected in the upper header 15. A connecting pipe 72 (see FIG. 1) is connected to the upper header 15, and the steam collected in the upper header 15 is supplied to the steam header 71 through the connecting pipe 72.
 ダクト16は、缶体11の長手方向の一端側に位置する第1側面11aの下部に接続される。ダクト16の上流側には、燃料ガスが供給される燃料供給部161及び燃焼用空気が供給される給気ラインAL(図2参照)が接続される。ダクト16は、燃料供給部161から供給される燃料ガスと給気路ALから供給される燃焼用空気とを混合して缶体11の内部に向けて供給する。 The duct 16 is connected to a lower portion of the first side surface 11 a located on one end side in the longitudinal direction of the can body 11. Connected to the upstream side of the duct 16 are a fuel supply unit 161 to which fuel gas is supplied and an air supply line AL (see FIG. 2) to which combustion air is supplied. The duct 16 mixes the fuel gas supplied from the fuel supply unit 161 and the combustion air supplied from the air supply path AL and supplies the mixed gas toward the inside of the can 11.
 バーナ17は、第1側面11aにおけるダクト16と缶体11との接続部分に配置される。バーナ17は、燃焼用空気と燃料とが混合された混合ガスをダクト16から缶体11の内部に噴出し、この混合ガスを燃焼させる。 The burner 17 is disposed at a connection portion between the duct 16 and the can body 11 on the first side surface 11a. The burner 17 ejects a mixed gas in which combustion air and fuel are mixed from the duct 16 into the can 11 and burns the mixed gas.
 排気筒18は、缶体11の長手方向の他端側(ダクト16が設けられた側と反対側)に位置する第2側面11bに接続される。排気筒18は、缶体11の内部で混合ガスが燃焼して生じた燃焼ガスを排出する。 The exhaust cylinder 18 is connected to the second side surface 11b located on the other end side in the longitudinal direction of the can body 11 (the side opposite to the side where the duct 16 is provided). The exhaust cylinder 18 discharges the combustion gas generated by burning the mixed gas inside the can 11.
 本実施形態では、排気筒18は、図2に示すように、缶体11との接続部分から上方に延びる第1上向き排気路部181と、第1上向き排気路部181の上端部から屈曲すると共に下方に延びる下向き排気路部182と、下向き排気路部182の下端部から屈曲すると共に上方に延びる第2上向き排気路部183と、を備える。
 以上の排気筒18によれば、缶体11から排出された燃焼ガスは、第1上向き排気路部181を上方に向かって流通した後、下向き排気路部182を下方に向かって流通し、更に第2上向き排気路部183を上方に向かって流通して外部に排出される。
In the present embodiment, as shown in FIG. 2, the exhaust cylinder 18 is bent from a first upward exhaust passage portion 181 extending upward from a connection portion with the can body 11 and an upper end portion of the first upward exhaust passage portion 181. A downward exhaust passage portion 182 extending downward, and a second upward exhaust passage portion 183 that is bent from the lower end portion of the downward exhaust passage portion 182 and extends upward.
According to the exhaust cylinder 18 described above, the combustion gas discharged from the can 11 circulates upward through the first upward exhaust passage portion 181, then flows downward through the downward exhaust passage portion 182, and It flows through the second upward exhaust passage 183 upward and is discharged to the outside.
 給水加熱器30及び空気加熱器40は、排気筒18に設けられる。
 給水加熱器30は、貫流ボイラ10から排出される燃焼ガスと、貫流ボイラ10に供給されるドレンとの間で熱交換を行う。本実施形態では、給水加熱器30は、第1上向き排気路部181に配置される。より具体的には、給水加熱器30は、貫流ボイラ10にドレンを供給する第2ドレン供給ラインL3(図1参照)の一部を、第1上向き排気路部181に配置することで構成される。また、給水加熱器30においては、第2ドレン供給ラインL3は、ドレンが上方から下方に向かって流通するように配置される。
The feed water heater 30 and the air heater 40 are provided in the exhaust pipe 18.
The feed water heater 30 performs heat exchange between the combustion gas discharged from the once-through boiler 10 and the drain supplied to the once-through boiler 10. In the present embodiment, the feed water heater 30 is disposed in the first upward exhaust path portion 181. More specifically, the feed water heater 30 is configured by disposing a part of the second drain supply line L3 (see FIG. 1) for supplying drain to the once-through boiler 10 in the first upward exhaust passage portion 181. The Moreover, in the feed water heater 30, the 2nd drain supply line L3 is arrange | positioned so that a drain may distribute | circulate from upper direction toward the downward direction.
 空気加熱器40は、給水加熱器30において熱交換された燃焼ガスと、貫流ボイラ10に供給される燃焼用空気との間で熱交換を行う。本実施形態では、空気加熱器40は、下向き排気路部182に配置される。より具体的には、図2に示すように、空気加熱器40は、燃焼用空気を送風機80から貫流ボイラ10(ダクト16)に供給する給気ラインALの一部を、下向き排気路部182に配置することで構成される。また、空気加熱器40においては、給気ラインALは、燃焼用空気が下方から上方に向かって流通するように配置される。即ち、本実施形態の空気加熱器40では、燃焼ガスと燃焼用空気とが互いに逆方向に流通して熱交換を行う向流式の熱交換が行われる。 The air heater 40 performs heat exchange between the combustion gas heat-exchanged in the feed water heater 30 and the combustion air supplied to the once-through boiler 10. In the present embodiment, the air heater 40 is disposed in the downward exhaust path portion 182. More specifically, as shown in FIG. 2, the air heater 40 is configured such that a part of the air supply line AL that supplies combustion air from the blower 80 to the once-through boiler 10 (duct 16) has a downward exhaust path portion 182. It is comprised by arranging in. Further, in the air heater 40, the air supply line AL is arranged so that the combustion air flows from below to above. That is, in the air heater 40 of the present embodiment, countercurrent heat exchange is performed in which the combustion gas and the combustion air flow in opposite directions to exchange heat.
 ここで、本実施形態では、空気加熱器40において向流式の熱交換を行わせることにより、燃焼ガスからの熱回収率を3%~7%としている。このように、空気加熱器40における熱回収率を3%~7%とすることにより、燃焼用空気として、外気温(例えば、0℃~50℃)の空気を用いた場合に、空気加熱器40において熱交換を行った後の燃焼用空気の温度を200℃以下にできる。
 尚、燃焼ガスからの熱回収率は、燃焼ガスの空気加熱器40への入口温度、燃焼ガスの空気加熱器40からの出口温度、及び燃焼ガスの流量、並びに、燃焼用空気の空気加熱器40への入口温度、燃焼用空気の空気加熱器40からの出口温度、及び燃焼用空気の流量に基いて求められる。
Here, in the present embodiment, the heat recovery rate from the combustion gas is set to 3% to 7% by causing the air heater 40 to perform countercurrent heat exchange. In this way, by setting the heat recovery rate in the air heater 40 to 3% to 7%, the air heater is used when air having an outside air temperature (for example, 0 ° C. to 50 ° C.) is used as the combustion air. The temperature of the combustion air after heat exchange at 40 can be made 200 ° C. or lower.
It should be noted that the heat recovery rate from the combustion gas includes the inlet temperature of the combustion gas to the air heater 40, the outlet temperature of the combustion gas from the air heater 40, the flow rate of the combustion gas, and the air heater of the combustion air. It is determined based on the inlet temperature to 40, the outlet temperature of the combustion air from the air heater 40, and the flow rate of the combustion air.
 次に、本実施形態のボイラシステム1の動作について説明する。
 本実施形態では、まず、貫流ボイラ10において蒸気が生成される。具体的には、まず、燃料ガスと燃焼用空気とがダクト16において混合され、この燃焼ガスと燃焼用空気との混合ガスがバーナ17から缶体11の内部に噴出されて燃焼される。次いで、混合ガスの燃焼により発生した燃焼ガスにより、複数の水管12が加熱され、これら複数の水管12の内部に供給された給水(ドレン)から蒸気が生成される。複数の水管12の内部で生成された蒸気は、上部ヘッダ15に集められた後、連結管72を介して蒸気ヘッダ71に供給される。
 蒸気ヘッダ71に供給された蒸気は、負荷機器50において利用された後ドレンとなり、高温高圧の状態でドレンタンク21に貯留される。そして、ドレンタンク21に貯留されたドレンは、第2ドレン供給ラインL3を通って貫流ボイラ10に給水として供給される。
Next, operation | movement of the boiler system 1 of this embodiment is demonstrated.
In the present embodiment, first, steam is generated in the once-through boiler 10. Specifically, first, the fuel gas and the combustion air are mixed in the duct 16, and the mixed gas of the combustion gas and the combustion air is ejected from the burner 17 into the can 11 and burned. Next, the plurality of water pipes 12 are heated by the combustion gas generated by the combustion of the mixed gas, and steam is generated from the feed water (drain) supplied to the inside of the plurality of water pipes 12. The steam generated inside the plurality of water pipes 12 is collected in the upper header 15 and then supplied to the steam header 71 via the connecting pipe 72.
The steam supplied to the steam header 71 becomes drain after being used in the load device 50 and is stored in the drain tank 21 in a high temperature and high pressure state. The drain stored in the drain tank 21 is supplied as feed water to the once-through boiler 10 through the second drain supply line L3.
 一方、缶体11の内部において蒸気の生成に用いられた燃焼ガスG1は、第1上向き排気路部181を上方に向かって流通した後(図2のG2参照)、下向き排気路部182を下方に向かって流通し(図2のG3参照)、更に第2上向き排気路部183を上方に向かって流通して(図2のG4参照)、外部に排出される(図2のG5参照)。 On the other hand, the combustion gas G1 used for generating steam inside the can 11 flows upward through the first upward exhaust passage portion 181 (see G2 in FIG. 2), and then downwards through the downward exhaust passage portion 182. 2 (see G3 in FIG. 2), further flows upward through the second upward exhaust passage portion 183 (see G4 in FIG. 2), and is discharged to the outside (see G5 in FIG. 2).
 ここで、本実施形態では、第1上向き排気路部181に給水加熱器30が配置され、下向き排気路部182に空気加熱器40が配置されている。そして、空気加熱器40は、熱回収率が10%以下、好ましくは3%~7%となるように設計されている。これにより、缶体11から排出される燃焼ガス(例えば、250℃~350℃)は、まず、第1上向き排気路部181において、給水加熱器30を流通するドレン(例えば、140℃~170℃)との間で熱交換されて熱回収される。また、給水加熱器30において熱回収された燃焼ガス(例えば、140℃~200℃)は、下向き排気路部182において、空気加熱器40を流通する燃焼用空気(例えば、-20℃~80℃)との間で熱交換されて、更に熱回収される。そして、空気加熱器40において熱回収された燃焼ガス(例えば、80℃~120℃)は、外部に排出される。 Here, in the present embodiment, the feed water heater 30 is disposed in the first upward exhaust passage portion 181, and the air heater 40 is disposed in the downward exhaust passage portion 182. The air heater 40 is designed so that the heat recovery rate is 10% or less, preferably 3% to 7%. As a result, the combustion gas (for example, 250 ° C. to 350 ° C.) discharged from the can 11 is first drained (for example, 140 ° C. to 170 ° C.) through the feed water heater 30 in the first upward exhaust passage 181. ) And heat is recovered. Further, the combustion gas (for example, 140 ° C. to 200 ° C.) recovered by heat in the feed water heater 30 passes through the air heater 40 in the downward exhaust passage 182 (for example, −20 ° C. to 80 ° C.). ) And heat is recovered. Then, the combustion gas (for example, 80 ° C. to 120 ° C.) recovered by heat in the air heater 40 is discharged to the outside.
 このように、本実施形態では、第1上向き排気路部181に給水加熱器30を配置し、更に、下向き排気路部182に空気加熱器40を配置することで、給水として高温のドレンを用いた場合においても、給水加熱器30において回収できなかった燃焼ガスの熱を燃焼用空気に与えられるので、ボイラシステム1の熱効率(ボイラ効率)を向上させられる。 As described above, in this embodiment, the feed water heater 30 is disposed in the first upward exhaust passage portion 181, and the air heater 40 is disposed in the downward exhaust passage portion 182, thereby using high-temperature drain as the feed water. Even in such a case, the heat of the combustion gas that could not be recovered by the feed water heater 30 is given to the combustion air, so that the thermal efficiency (boiler efficiency) of the boiler system 1 can be improved.
 また、下向き排気路部182に配置した空気加熱器40において、給気ラインALを、燃焼用空気が下方から上方に向かって流通するように配置した。これにより、下向き排気路部182における燃焼ガスの流れと、空気加熱器40における燃焼用空気の流れとを対向させられるので、空気加熱器40において、燃焼ガスと燃焼用空気とを互いに逆方向に流通させる向流式の熱交換を行わせられる。よって、燃焼ガスと燃焼用空気とが同じ方向に流通する並流式の熱交換に比して、燃焼ガスからの熱回収率を高められる。即ち、図5(a)に示すように、向流式の熱交換によれば、燃焼用空気は、まず、最も低温の部分T1において、燃焼ガスの最も低温の部分T4と熱交換を行った後、最も高温の部分T2において燃焼ガスの最も高温の部分T3と熱交換を行う。これにより、図5(b)に示すように、まず、燃焼用空気の最も低温の部分T1と燃焼ガスの最も高温の部分T3との間で熱交換を行う並流式の熱交換よりも多くの熱回収を行える。また、熱交換後の燃焼用空気の温度(燃焼用空気の出口温度)T2を、熱交換後の燃焼ガスの温度(燃焼ガスの出口温度)T4よりも高くすることも可能となる(図5(a)参照)。
 尚、図5における縦軸は、燃焼用空気及び燃焼ガスの温度を示し、横軸は、空気加熱器40における燃焼用空気の入口からの距離である熱交換距離を示す。
Further, in the air heater 40 disposed in the downward exhaust passage portion 182, the air supply line AL is disposed so that the combustion air flows from the lower side to the upper side. Thereby, since the flow of the combustion gas in the downward exhaust passage 182 and the flow of the combustion air in the air heater 40 can be opposed to each other, in the air heater 40, the combustion gas and the combustion air are made to be opposite to each other. Counterflow heat exchange is performed. Therefore, the heat recovery rate from the combustion gas can be increased as compared with the parallel flow type heat exchange in which the combustion gas and the combustion air flow in the same direction. That is, as shown in FIG. 5 (a), according to the countercurrent heat exchange, the combustion air first exchanged heat with the coldest portion T4 of the combustion gas in the coldest portion T1. Thereafter, heat exchange is performed with the hottest portion T3 of the combustion gas in the hottest portion T2. As a result, as shown in FIG. 5 (b), first, more than the parallel flow heat exchange in which heat exchange is performed between the coldest portion T1 of the combustion air and the hottest portion T3 of the combustion gas. Heat recovery. Further, the temperature of combustion air after heat exchange (combustion air outlet temperature) T2 can be made higher than the temperature of combustion gas after combustion (combustion gas outlet temperature) T4 (FIG. 5). (See (a)).
Note that the vertical axis in FIG. 5 indicates the temperature of the combustion air and the combustion gas, and the horizontal axis indicates the heat exchange distance that is the distance from the inlet of the combustion air in the air heater 40.
 具体的には、本実施形態の空気加熱器40によれば、給水加熱器30において熱回収された燃焼ガスの温度を、140℃~200℃程度から80℃~120℃程度に低下させられ、これにより3%~7%の熱回収を行える。 Specifically, according to the air heater 40 of the present embodiment, the temperature of the combustion gas heat recovered in the feed water heater 30 can be lowered from about 140 ° C. to 200 ° C. to about 80 ° C. to 120 ° C., This allows 3% to 7% heat recovery.
 また、空気加熱器40における熱回収率を10%以下、好ましくは3%~7%としているため、空気加熱器40において昇温されて貫流ボイラ10に供給される燃焼用空気の温度が高くなりすぎることを防げる。よって、ボイラシステム1の熱効率を向上させ、かつ、貫流ボイラ10から排出される燃焼ガス(排ガス)中に含まれるNOxの増加を抑制できる。 Further, since the heat recovery rate in the air heater 40 is set to 10% or less, preferably 3% to 7%, the temperature of the combustion air heated in the air heater 40 and supplied to the once-through boiler 10 becomes high. You can prevent too much. Therefore, the thermal efficiency of the boiler system 1 can be improved and an increase in NOx contained in the combustion gas (exhaust gas) discharged from the once-through boiler 10 can be suppressed.
 また、燃焼ガス中に含まれるNOxは、貫流ボイラ10に供給される燃焼用空気の温度が200℃を超えると大きく増加することがわかっている。そして、貫流ボイラ10には、ボイラシステム1が設置される環境の空気が燃焼用空気として用いられる。そこで、空気加熱器40に導入される燃焼用空気の温度(つまり、外気温)が0℃~50℃であった場合に、熱交換を行った燃焼用空気の温度が200℃以下となるように空気加熱器40を配置した。これにより、空気加熱器40により熱回収を行うことでボイラシステム1の熱効率を向上させつつ、貫流ボイラ10から排出される排ガス中に含まれるNOxの増加を抑制できる。 Further, it has been found that NOx contained in the combustion gas greatly increases when the temperature of the combustion air supplied to the once-through boiler 10 exceeds 200 ° C. And in the once-through boiler 10, the air of the environment where the boiler system 1 is installed is used as combustion air. Therefore, when the temperature of the combustion air introduced into the air heater 40 (that is, the outside air temperature) is 0 ° C. to 50 ° C., the temperature of the combustion air subjected to heat exchange becomes 200 ° C. or less. The air heater 40 was arranged in the. Thereby, it is possible to suppress an increase in NOx contained in the exhaust gas discharged from the once-through boiler 10 while improving the thermal efficiency of the boiler system 1 by performing heat recovery with the air heater 40.
 また、貫流ボイラ10を、直方体状の缶体11と、この缶体11の内部に長手方向及び幅方向に所定の間隔をあけて配置される複数の水管12と、缶体11の側面から燃料ガスを噴出して燃焼させるバーナ17と、を含んで構成した。これにより、缶体11の中央部に燃焼室を有するボイラに比して、バーナ17において燃料ガスが燃焼してから複数の水管12への伝熱が行われるまでの時間を短くできる。よって、バーナ17における燃料ガスの燃焼温度(火炎の温度)を低くできるので、NOxの発生をより低減できる。 Further, the once-through boiler 10 is fueled from a rectangular parallelepiped can body 11, a plurality of water pipes 12 arranged in the can body 11 at predetermined intervals in the longitudinal direction and the width direction, and a side surface of the can body 11. And a burner 17 for injecting and burning gas. Thereby, compared with the boiler which has a combustion chamber in the center part of the can 11, the time after the fuel gas combusts in the burner 17 until heat transfer to the several water pipe 12 can be shortened. Therefore, since the combustion temperature (flame temperature) of the fuel gas in the burner 17 can be lowered, the generation of NOx can be further reduced.
 また、第1上向き排気路部181に配置した給水加熱器30において、第2ドレン供給ラインL3を、ドレンが上方から下方に向かって流通するように配置した。これにより、第1上向き排気路部181における燃焼ガスの流れと、給水加熱器30におけるドレンの流れとを対向させられるので、給水加熱器30における熱回収の効率をより向上させられる。 Further, in the feed water heater 30 disposed in the first upward exhaust passage portion 181, the second drain supply line L <b> 3 is disposed so that the drain flows from the upper side to the lower side. Thereby, since the flow of the combustion gas in the first upward exhaust passage 181 and the flow of the drain in the feed water heater 30 can be opposed to each other, the efficiency of heat recovery in the feed water heater 30 can be further improved.
 以上、本発明のボイラシステム1の好ましい一実施形態について説明したが、本発明は、上述した実施形態に制限されるものではなく、適宜変更が可能である。
 例えば、本実施形態では、排気筒18を、第1上向き排気路部181、下向き排気路部182及び第2上向き排気路部183を含んで構成したが、これに限らない。即ち、排気筒を、上端部が缶体に接続された下向き排気路部と、この下向き排気路部の下端部に接続された上向き排気路部とにより構成してもよい。この場合、下向き排気路部に給水加熱器を配置し、上向き排気路部に空気加熱器を配置してもよい。
As mentioned above, although one preferable embodiment of the boiler system 1 of this invention was described, this invention is not restrict | limited to embodiment mentioned above and can change suitably.
For example, in the present embodiment, the exhaust pipe 18 includes the first upward exhaust passage portion 181, the downward exhaust passage portion 182, and the second upward exhaust passage portion 183, but is not limited thereto. That is, the exhaust pipe may be configured by a downward exhaust passage portion whose upper end portion is connected to the can body and an upward exhaust passage portion connected to the lower end portion of the downward exhaust passage portion. In this case, a feed water heater may be disposed in the downward exhaust passage and an air heater may be disposed in the upward exhaust passage.
 1 ボイラシステム
 10 貫流ボイラ
 11 缶体
 11a 第1側面
 11b 第2側面
 12 水管
 17 バーナ
 18 排気筒
 20 ドレン回収装置
 30 給水加熱器
 40 空気加熱器
 181 第1上向き排出路部(上向き排出路部)
 182 下向き排出路部
DESCRIPTION OF SYMBOLS 1 Boiler system 10 Through-flow boiler 11 Can 11a 1st side surface 11b 2nd side surface 12 Water pipe 17 Burner 18 Exhaust pipe 20 Drain collection device 30 Feed water heater 40 Air heater 181 1st upward discharge path part (upward discharge path part)
182 Downward discharge passage

Claims (5)

  1.  給水を燃焼ガスにより加熱して蒸気を生成する貫流ボイラと、
     前記貫流ボイラにより生成された蒸気が凝集して生じたドレンを高温高圧の状態で回収し、該ドレンを前記貫流ボイラに供給するクローズド方式のドレン回収装置と、
     前記貫流ボイラから排出される燃焼ガスと、前記貫流ボイラに供給されるドレンとの間で熱交換を行う給水加熱器と、を備えるボイラシステムであって、
     前記給水加熱器において熱交換された燃焼ガスと前記貫流ボイラに供給される燃焼用空気とを互いに逆方向に流通させて熱交換を行う空気加熱器を更に備えるボイラシステム。
    A once-through boiler that generates steam by heating feed water with combustion gas;
    A closed-type drain recovery device that recovers the drain produced by agglomeration of the steam generated by the once-through boiler in a high-temperature and high-pressure state, and supplies the drain to the once-through boiler;
    A boiler system comprising a combustion gas discharged from the once-through boiler and a feed water heater that performs heat exchange between the drain supplied to the once-through boiler,
    A boiler system further comprising an air heater for exchanging heat by circulating the combustion gas exchanged in the feed water heater and the combustion air supplied to the once-through boiler in opposite directions.
  2.  前記空気加熱器の熱回収率は、10%以下である請求項1に記載のボイラシステム。 The boiler system according to claim 1, wherein a heat recovery rate of the air heater is 10% or less.
  3.  前記空気加熱器に導入される燃焼用空気の温度は、-20℃~80℃であり、該空気加熱器において熱交換を行った後の燃焼用空気の温度は、200℃以下である請求項1又は2に記載のボイラシステム。 The temperature of combustion air introduced into the air heater is -20 ° C to 80 ° C, and the temperature of the combustion air after heat exchange in the air heater is 200 ° C or less. The boiler system according to 1 or 2.
  4.  前記貫流ボイラは、
      直方体状の缶体と、
      前記缶体の内部に上下方向に延びて配置されると共に、該缶体の長手方向及び幅方向に所定の間隔をあけて配置される複数の水管と、
      前記缶体の長手方向の一端側に位置する第1側面に設けられ、略水平方向に燃料を噴出して燃焼させるバーナと、
      前記缶体の長手方向の他端側に位置する第2側面に設けられ前記缶体の内部で生じた燃焼ガスを排出する排気筒と、を備える請求項1~3のいずれかに記載のボイラシステム。
    The once-through boiler is
    A rectangular parallelepiped can,
    A plurality of water pipes arranged in the can body so as to extend in the vertical direction and arranged at predetermined intervals in the longitudinal direction and the width direction of the can body,
    A burner which is provided on a first side surface located on one end side in the longitudinal direction of the can body and which burns by burning fuel in a substantially horizontal direction;
    The boiler according to any one of claims 1 to 3, further comprising: an exhaust pipe that is provided on a second side surface located on the other end side in the longitudinal direction of the can body and discharges combustion gas generated inside the can body. system.
  5.  前記排気筒は、燃焼ガスが上方に向かって流通する上向き排出路部と、前記上向き排出路部よりも下流側に設けられ燃焼ガスが下方に向かって流通する下向き排出路部と、を備え、
     前記給水加熱器は、前記上向き排出路部に設けられ、
     前記空気加熱器は、前記下向き排出路部に設けられると共に、燃焼用空気は下方から上方に向かって流通する請求項4に記載のボイラシステム。
    The exhaust pipe includes an upward discharge passage portion through which the combustion gas flows upward, and a downward discharge passage portion that is provided downstream of the upward discharge passage portion and through which the combustion gas flows downward.
    The feed water heater is provided in the upward discharge path part,
    The boiler system according to claim 4, wherein the air heater is provided in the downward discharge passage portion, and combustion air circulates from below to above.
PCT/JP2013/053097 2012-10-22 2013-02-08 Boiler system WO2014064949A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-233265 2012-10-22
JP2012233265A JP6056371B2 (en) 2012-10-22 2012-10-22 Boiler system

Publications (1)

Publication Number Publication Date
WO2014064949A1 true WO2014064949A1 (en) 2014-05-01

Family

ID=50544333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053097 WO2014064949A1 (en) 2012-10-22 2013-02-08 Boiler system

Country Status (2)

Country Link
JP (1) JP6056371B2 (en)
WO (1) WO2014064949A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949101A (en) * 2015-04-22 2015-09-30 华北电力大学 Secondary reheat unit economizer variable-area waste heat utilizing system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6430099B2 (en) * 2013-03-13 2018-11-28 三浦工業株式会社 Boiler system
JP6136722B2 (en) * 2013-08-01 2017-05-31 三浦工業株式会社 Boiler system
CN104390202A (en) * 2014-11-25 2015-03-04 中国东方电气集团有限公司 L-shaped radiation boiler capable of reducing high-alkalinity coal combustion contamination
CN113813634A (en) * 2021-08-23 2021-12-21 中国神华煤制油化工有限公司 Condensate recovery equipment and methanol-to-olefin device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186905U (en) * 1985-05-14 1986-11-21
JPS6438503A (en) * 1987-07-31 1989-02-08 Kawasaki Heavy Ind Ltd Heat recovery device for boiler exhaust gas
JPH11118104A (en) * 1997-10-20 1999-04-30 Mitsubishi Heavy Ind Ltd Boiler
JP2000046302A (en) * 1999-07-19 2000-02-18 Miura Co Ltd Boiler
JP2011122736A (en) * 2009-12-08 2011-06-23 Miura Co Ltd Drain recovery system
JP2012002385A (en) * 2010-06-14 2012-01-05 Miura Co Ltd Boiler water supply system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5050071B2 (en) * 2010-03-29 2012-10-17 株式会社日立製作所 Boiler equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186905U (en) * 1985-05-14 1986-11-21
JPS6438503A (en) * 1987-07-31 1989-02-08 Kawasaki Heavy Ind Ltd Heat recovery device for boiler exhaust gas
JPH11118104A (en) * 1997-10-20 1999-04-30 Mitsubishi Heavy Ind Ltd Boiler
JP2000046302A (en) * 1999-07-19 2000-02-18 Miura Co Ltd Boiler
JP2011122736A (en) * 2009-12-08 2011-06-23 Miura Co Ltd Drain recovery system
JP2012002385A (en) * 2010-06-14 2012-01-05 Miura Co Ltd Boiler water supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949101A (en) * 2015-04-22 2015-09-30 华北电力大学 Secondary reheat unit economizer variable-area waste heat utilizing system
CN104949101B (en) * 2015-04-22 2017-01-18 华北电力大学 Secondary reheat unit economizer variable-area waste heat utilizing system

Also Published As

Publication number Publication date
JP6056371B2 (en) 2017-01-11
JP2014085038A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
FI122653B (en) Arrangement in a recovery boiler
RU2522704C2 (en) Union of separate streams of air heater with water heat exchanger and waste-gas heater
JP5739021B2 (en) Circulating fluidized bed boiler with two external heat exchangers for high temperature solids flow
US7587994B2 (en) Arrangement in recovery boiler
JP6056371B2 (en) Boiler system
CN108775573A (en) A kind of novel electricity generation boiler of burning away the refuse
ES2928375T3 (en) recovery boiler
US9267678B2 (en) Continuous steam generator
RU2217654C2 (en) Parallel-current steam generator operating on fossil fuel
CN109798511B (en) Waste heat recovery device of steam boiler
JP5345217B2 (en) Once-through boiler
JP5225469B2 (en) Once-through boiler
FI127390B (en) Arrangement of the heat recovery surfaces of the recovery boiler
JP6209940B2 (en) Boiler system
JP2014092357A (en) Boiler system
JP5312617B2 (en) How to blow a boiler
JP6221706B2 (en) Boiler equipment
JP6430099B2 (en) Boiler system
JP6075016B2 (en) Boiler system
CN109990257B (en) High-temperature ultrahigh-pressure reheating waste heat boiler of heat recovery coke oven
CN208670988U (en) A kind of novel electricity generation boiler of burning away the refuse
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
TW201529961A (en) Heat exchanging system and method for a heat recovery steam generator
CN209926889U (en) High-temperature ultrahigh-pressure reheating waste heat boiler of heat recovery coke oven
CN217382889U (en) Low nitrogen discharge water pipe steam boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848367

Country of ref document: EP

Kind code of ref document: A1