JP2653570B2 - Exhaust heat recovery boiler header support device - Google Patents

Exhaust heat recovery boiler header support device

Info

Publication number
JP2653570B2
JP2653570B2 JP7951191A JP7951191A JP2653570B2 JP 2653570 B2 JP2653570 B2 JP 2653570B2 JP 7951191 A JP7951191 A JP 7951191A JP 7951191 A JP7951191 A JP 7951191A JP 2653570 B2 JP2653570 B2 JP 2653570B2
Authority
JP
Japan
Prior art keywords
truss
header
heat recovery
horizontal
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7951191A
Other languages
Japanese (ja)
Other versions
JPH04313603A (en
Inventor
秀顕 島田
博 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7951191A priority Critical patent/JP2653570B2/en
Publication of JPH04313603A publication Critical patent/JPH04313603A/en
Application granted granted Critical
Publication of JP2653570B2 publication Critical patent/JP2653570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

[発明の目的] [Object of the invention]

【0001】[0001]

【産業上の利用分野】本発明は排熱回収ボイラに係り、
特に大型排熱回収ボイラに組込まれて使用される管寄せ
の水平力のための支持装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery boiler,
More particularly, the present invention relates to a support device for horizontal force of a header used in a large-sized waste heat recovery boiler.

【0002】[0002]

【従来の技術】一般に、コンバインドサイクル発電プラ
ントにおいては、ガスタービン等の排ガスを熱源とし
て、蒸気タービン用の駆動蒸気や、プロセス用の温水を
発生させる排熱回収ボイラが用いられている。
2. Description of the Related Art In general, in a combined cycle power plant, an exhaust heat recovery boiler for generating steam for driving a steam turbine or hot water for a process using exhaust gas from a gas turbine or the like as a heat source is used.

【0003】図8は従来の排熱回収ボイラの一例を示し
ている。本図に示される排熱回収ボイラは機器の上部に
蒸気ドラムを配置し、伝熱管を鉛直方向に設置したいわ
ゆる自然循環形ボイラであって、ガスタービン等からの
排ガスは排熱回収ボイラ41に流入し、まず過熱器4
2、高圧蒸発器43を経て脱硝装置44に至り、ここで
含有する窒素酸化物が除去される。脱硝装置44を出た
排ガスは高圧節炭器45、低圧蒸発器46、低圧節炭器
47を順次通過し、各伝熱管内の内部流体を熱交換を行
う。
FIG. 8 shows an example of a conventional heat recovery steam generator. The exhaust heat recovery boiler shown in this figure is a so-called natural circulation type boiler in which a steam drum is arranged at the top of equipment and heat transfer tubes are installed in a vertical direction. Inflow, first superheater 4
2. The high-pressure evaporator 43 passes through a denitration device 44, where the nitrogen oxides contained therein are removed. The exhaust gas that has passed through the denitration device 44 sequentially passes through the high-pressure economizer 45, the low-pressure evaporator 46, and the low-pressure economizer 47, and exchanges heat with the internal fluid in each heat transfer tube.

【0004】図に示したような自然循環形排熱回収ボイ
ラは強制循環形の排熱回収ボイラと比較すると、循環ポ
ンプが不要であって、所内動力を軽減できる利点に加え
て、地上からボイラ最上部までの高さを低く抑えること
ができ、さらにボイラダクトを自立構造とすることが可
能で、支持鉄骨が不要となるなどの長所を有しているた
め、新設の多くのコンバインドサイクル発電プラントが
この方式を採用するものと考えられている。
[0004] Compared with a forced circulation type exhaust heat recovery boiler, a natural circulation type exhaust heat recovery boiler as shown in the figure does not require a circulation pump and has the advantage of reducing power in the plant. Since the height to the top can be kept low, the boiler duct can have a self-standing structure, and there are advantages such as the need for supporting steel frames, so that many new combined cycle power plants are installed. It is believed that this scheme is employed.

【0005】図9は図8のC−C断面図を示す。図中符
号55は伝熱管であり、鉛直方向に配置され、上下の管
寄せに接続されて、パネルを形成している。ボイラダク
トのケーシング51には保温材52が内張りされ、ケー
シング51の温度を大気温度近くに保っている。伝熱管
55ならびに上下の管寄せ54,56等パネルの荷重は
下部管寄せ56の下側に設置される下部支持部材57に
て支持している。このため、排熱回収ボイラの運転中に
おいて、伝熱管55および上部管寄せ54は下部管寄せ
56の支持点を起点として鉛直方向上側に変位すること
になる。
FIG. 9 is a sectional view taken along the line CC of FIG. In the figure, reference numeral 55 denotes a heat transfer tube which is arranged vertically and connected to upper and lower headers to form a panel. The casing 51 of the boiler duct is lined with a heat insulating material 52 to keep the temperature of the casing 51 close to the atmospheric temperature. The loads on the heat transfer tube 55 and the panels such as the upper and lower headers 54 and 56 are supported by a lower support member 57 installed below the lower header 56. Therefore, during operation of the exhaust heat recovery boiler, the heat transfer tube 55 and the upper header 54 are displaced vertically upward starting from the support point of the lower header 56.

【0006】かかる排熱回収ボイラの伝熱管55はガス
タービン排ガスのような比較的低温のガスから効率良く
熱回収するためにフィン付き伝熱管が使用される場合が
多い。フィン付き伝熱管ではフィンが負荷質量としては
作用するが管の剛性を高めることはなく、伝熱管55の
座屈を防止し、自立させるためには上部管寄せ54の変
位が拘束されなければならない。このため、上部管寄せ
54の水平方向の変位を拘束する支持装置が設置され
る。この支持装置は、さらに、排熱回収ボイラに地震力
などの水平力が作用した場合にも最重量物である伝熱管
55等のパネルの荷重を支持し、ケーシング51に伝達
する機能も有している。支持装置を構成する部材は強度
的には地震時の水平力に対抗し得るように設計される。
As the heat transfer tube 55 of such an exhaust heat recovery boiler, a finned heat transfer tube is often used in order to efficiently recover heat from relatively low temperature gas such as gas turbine exhaust gas. In the finned heat transfer tube, the fin acts as a load mass, but does not increase the rigidity of the tube. In order to prevent the heat transfer tube 55 from buckling and to become independent, the displacement of the upper header 54 must be restrained. . For this reason, a support device for restraining the horizontal displacement of the upper header 54 is provided. The support device further has a function of supporting the load of a panel such as the heat transfer tube 55 which is the heaviest object and transmitting the load to the casing 51 even when horizontal force such as seismic force acts on the exhaust heat recovery boiler. ing. The members constituting the support device are designed to be able to resist the horizontal force during the earthquake in terms of strength.

【0007】図10および図11は従来の排熱回収ボイラの
上部管寄せ54の水平力伝達支持構造の例を示している。
図10の例では上部管寄せ54はガス流れと直角方向に作用
する水平力を上部管寄せ54の中央部に突出したラグ62を
設けてこれをケーシング51の上部に設けたブラケット61
水平方向において保持する構成としている。また図11
の例ではガス流れ方向の水平力を上部管寄せ54の端部に
設けられた突出部材65をケーシング内面に付設された支
持部材66にて挟み込むようにして支持している(実開昭
61-141503 号公報参照)。
FIGS. 10 and 11 show an example of a horizontal force transmission support structure of an upper header 54 of a conventional heat recovery steam generator.
In the example of FIG. 10, the upper header 54 is provided with a lug 62 projecting at the center of the upper header 54 to apply a horizontal force acting in a direction perpendicular to the gas flow, and the lug 62 is provided on the upper part of the casing 51.
To hold in the horizontal direction . FIG. 11
In this example, the horizontal force in the gas flow direction is supported by sandwiching a projecting member 65 provided at the end of the upper header 54 by a supporting member 66 attached to the inner surface of the casing (see FIG.
No. 61-141503).

【0008】[0008]

【発明が解決しようとする課題】近年のコンバインドサ
イクル発電プラントはガスタービンの大容量化により大
型化する傾向にあり、これにともなって排熱回収ボイラ
も従来より大型のものが計画されるようになってきてい
る。現状ではガス通路部高さおよび幅が10mを越え、
全長30m以上にも及ぶ排熱回収ボイラも存在する。
In recent years, combined cycle power plants have tended to increase in size due to the increase in the capacity of gas turbines. As a result, a larger exhaust heat recovery boiler has been planned. It has become to. At present, gas passage height and width exceed 10m,
Some heat recovery steam generators have a total length of more than 30 m.

【0009】このような大型の排熱回収ボイラではガス
通路部の幅が長くなるため、幅方向に対して管寄せを一
本で構成することができず、ガス通路部幅方向に複数個
分割する必要がある。また点検、補修時には上部管寄せ
部分にアクセスする必要があり、さらに漏洩管の補修を
行うには、管束を吊り上げて移動させ、スペースを確保
してから行うなどの手段をとるため、上部管寄せ54と
ケーシング51との間にはクレーンレールおよび吊り上
げ用トロリを設置するために十分な空間が必要となる。
In such a large-sized waste heat recovery boiler, the width of the gas passage is long, so that it is not possible to form a single header in the width direction, and a plurality of headers are divided in the width direction of the gas passage. There is a need to. In addition, it is necessary to access the upper header at the time of inspection and repair.In addition, to repair leaked pipes, lift the pipe bundle, move it, and secure the space. Sufficient space is required between 54 and the casing 51 for installing the crane rail and the lifting trolley.

【0010】図10に示されるような上部管寄せ54の
支持構造では上部管寄せ54に取り付けたラグ62もし
くはケーシング51側のブラケット61を長くかつ大型
にする必要がある。しかしながら、上部管寄せ54に水
平力が作用した場合に前者ではモーメントアームが長く
なっているため、ラグ62の根本すなわち耐圧部である
上部管寄せ54との溶接部に過大な曲げ応力が発生し、
溶接割れなどの重大な不具合の発生が懸念される状況に
ある。また、後者においても、ブラケット61で曲げ応
力を分担しなければならず、部材が過大なものになって
しまう欠点がある。また、上部管寄せ54を幅方向に複
数個分割した場合、図11に示すように上部管寄せ54
の端部をケーシング51側から支持するのは事実上不可
能である。
In the support structure of the upper header 54 as shown in FIG. 10, the lug 62 attached to the upper header 54 or the bracket 61 on the casing 51 side needs to be long and large. However, when a horizontal force acts on the upper header 54, the former has a longer moment arm, so that excessive bending stress is generated at the root of the lug 62, that is, a welded portion with the upper header 54 which is a pressure-resistant portion. ,
There is a concern that serious problems such as welding cracks may occur. Also in the latter case, the bending stress must be shared by the bracket 61, and there is a disadvantage that the members become excessively large. When the upper header 54 is divided into a plurality of pieces in the width direction, as shown in FIG.
It is practically impossible to support the end from the casing 51 side.

【0011】さらに、図9に示したような排熱回収ボイ
ラではケーシング51の内面に保温材52を張り付けて
いるため、ケーシング51の温度と内部のガス温度には
大きな温度差が生じるので、ケーシング51の内部の構
造部材をケーシング51に接続する場合、前記温度差に
よる部材間の熱膨張差の吸収方法が問題となる。
Further, in the exhaust heat recovery boiler as shown in FIG. 9, since the heat insulating material 52 is adhered to the inner surface of the casing 51, a large temperature difference occurs between the temperature of the casing 51 and the temperature of the internal gas. When connecting the structural member inside 51 to the casing 51, a method of absorbing a thermal expansion difference between members due to the temperature difference becomes a problem.

【0012】そこで、本発明は上部管寄せに作用する前
後左右方向の力を効果的に支持することができ、かつ支
持部材に生じる熱応力を最小に保持可能な管寄せ支持装
置を提供することを目的とする。 [発明の構成]
It is an object of the present invention to provide a header support device capable of effectively supporting the front-rear and left-right forces acting on the upper header and capable of minimizing the thermal stress generated in the support member. With the goal. [Configuration of the Invention]

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
本発明は、上下に配置した管寄せの間を伝熱管で接続し
てパネルを構成し、このパネルを排ガスの流動域に配置
してなる排熱回収ボイラの管寄せ支持装置において、上
下に配置される2本の水平部材、双方の水平部材にわた
される鉛直部材および鉛直部材の外側で、双方の水平部
材にわたす斜め部材を組み合わせて上部管寄せを水平方
向において保持するトラスを形成し、このトラスの一点
を固定部材を介して天井板に固定させ、他点を滑動部材
を介して該天井板にガス流動方向に沿って滑動可能に設
けたことを特徴とするものである。また、トラス上部の
水平部材に管材を使用し、水平部材を天井板に設けられ
た環状部材に貫通させ、これにより長手方向に滑動自在
で、かつ軸方向に回動自在に支持したトラスを2面設
け、上部管寄せの突起物の周囲を囲うように2面のトラ
スの下部を構成する前記下部の水平部材を接続するよう
に構成したことを特徴とする。さらに、トラスの固定部
材が位置する固定点を伝熱管パネルの固定点に一致させ
るかもしくはできるだけ近い点に設け、運転時における
該トラスの変位方向を該伝熱管パネルの変位方向に一致
させたことを特徴とする。
According to the present invention, a panel is formed by connecting heat transfer tubes between vertically arranged headers, and the panel is arranged in a flow area of exhaust gas. In the header support device of the exhaust heat recovery boiler, two horizontal members arranged vertically, a vertical member extended to both horizontal members, and an oblique member extending to both horizontal members outside the vertical member are combined. Top header horizontal
Forming a truss that holds the truss in one direction, fixing one point of the truss to the ceiling plate via a fixing member, and slidably providing the other point on the ceiling plate via a sliding member along the gas flow direction. It is a feature. In addition, a pipe member is used as a horizontal member at the upper part of the truss, and the horizontal member penetrates through an annular member provided on the ceiling plate. It is characterized in that the lower horizontal member constituting the lower portion of the two trusses is connected so as to surround the periphery of the protrusion of the upper header. Further, the fixing point where the fixing member of the truss is located is set to coincide with the fixing point of the heat transfer tube panel or provided as close as possible, and the displacement direction of the truss during operation is matched with the displacement direction of the heat transfer tube panel. It is characterized by.

【0014】[0014]

【作用】上記の如く構成された本発明によれば、上部管
寄せ支持用トラスをガス流動方向に対して滑動自在に支
持し、該トラスを構成する部材を自由に熱膨張させ、こ
れにより部材内の熱応力の発生が抑制される。
According to the present invention constructed as described above, the truss for supporting the upper header is slidably supported in the gas flow direction, and the members constituting the truss are freely thermally expanded. The generation of thermal stress in the inside is suppressed.

【0015】また、同トラスを2面設け、これらを接続
して上部管寄せを支持する場合には、ガス流れ方向に滑
動自在に支持すると同時に、トラス面はガス流動方向を
軸に回自在に支持されるので、2面のトラスの接続金
物が熱膨張してもトラス面に面外曲げ変形が生じず、支
持部への曲げモーメントの伝達がなく、ケーシングにも
伝達されない。
Further, provided the truss second surface, in case of supporting the the upper header and connected to each other, and at the same time slidably supported in the gas flow direction, the truss plane freely rotating in the axial gas flow direction Therefore, even if the connecting hardware of the two trusses is thermally expanded, no out-of-plane bending deformation occurs on the truss surface, and no bending moment is transmitted to the support portion and is not transmitted to the casing.

【0016】さらに、支持装置の固定点を伝熱管群の固
定点に一致させるか、なるべく近い位置を選択している
ので、両者の熱膨張による変位差を最小にでき、変位の
拘束による熱応力の発生が抑制される。
Further, since the fixing point of the supporting device is made to coincide with the fixing point of the heat transfer tube group or a position as close as possible is selected, the difference in displacement due to the thermal expansion between the two can be minimized, and the thermal stress due to the constraint of the displacement can be minimized. Is suppressed.

【0017】[0017]

【実施例】以下、図1ないし図4を参照して本発明の一
実施例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0018】図1ないし図3において、上部管寄せ1は
ガス流れと直角方向に配置され、複数の伝熱管2が接続
されてパネルを構成している。本実施例ではパネル1段
には3列の伝熱管2が接続され、伝熱管群はガス流動方
向に5段のパネルよりなる。上部管寄せ1の中心には水
平力を伝達するための突起7が設けられている。ケーシ
ング3と上部管寄せ1の距離は約1.2 mであり、ケーシ
ング3の内面には保温材4が張り付けてある。ケーシン
グ3は上部構造部材5および上部補強部材6により補強
される。
1 to 3, an upper header 1 is arranged in a direction perpendicular to the gas flow, and a plurality of heat transfer tubes 2 are connected to form a panel. In this embodiment, three rows of heat transfer tubes 2 are connected to one panel, and the group of heat transfer tubes is composed of five panels in the gas flow direction. At the center of the upper header 1, a projection 7 for transmitting a horizontal force is provided. The distance between the casing 3 and the upper header 1 is about 1.2 m, and a heat insulating material 4 is adhered to the inner surface of the casing 3. The casing 3 is reinforced by an upper structural member 5 and an upper reinforcing member 6.

【0019】本実施例においてはガス流動方向のトラス
面は上部の管状水平部材10と、管寄せ1に設けられた突
起7の位置にある水平部材15とをガセットプレート11,
12を介して斜め部材13および垂直部材9にて接続するこ
とにより構成されている。トラス面の上部に位置する管
状水平部材10は、ケーシング3にガス流動方向に整列し
て取り付けられた支持金物8に接続される環状部材9の
内面を貫通しており、この貫通部を滑動することによっ
てトラス面の熱膨張を拘束しないようになっている。ま
た、このような支持構造では管状水平部材10は環状部材
9に対してその軸方向に回転可能である。上部のガセッ
トプレート11は環状部材9の周囲を囲むようなU字型を
しており、環状部材9に対して隙間をもたせて、環状水
平部材10に接続されている。この環状部材9とガセット
プレート11の隙間を調節することによりトラス面の熱膨
張の方向を規定している。本実施例ではトラス面は図4
に示すように図の右側(ガス下流側)の環状部材9とガ
セットプレート11を固定部材とし、その隙間を0または
微小量として固定とし、他の環状部材9とガセットプレ
ート11を滑動部材として滑動自在に設け、左側(ガス上
流側)へ熱膨張が生じるようになっている。また、図4
は停止時(冷態時)を示すもので、移動側の支持点では
右側を熱膨張代にとり、左側の隙間は小さくなってい
る。
In the present embodiment, the truss surface in the gas flow direction is composed of an upper tubular horizontal member 10 and a horizontal member 15 at the position of the protrusion 7 provided on the header 1, and a gusset plate 11,
It is constituted by connecting with an oblique member 13 and a vertical member 9 via 12. The tubular horizontal member 10 located at the upper part of the truss surface penetrates the inner surface of the annular member 9 connected to the support hardware 8 which is mounted in the gas flow direction on the casing 3 and slides through this penetrating portion. As a result, the thermal expansion of the truss surface is not restricted. Further, in such a support structure, the tubular horizontal member 10 is rotatable in the axial direction with respect to the annular member 9. The upper gusset plate 11 is U-shaped so as to surround the periphery of the annular member 9, and is connected to the annular horizontal member 10 with a gap between the annular member 9. By adjusting the gap between the annular member 9 and the gusset plate 11, the direction of thermal expansion of the truss surface is defined. In this embodiment, the truss surface is shown in FIG.
As shown in the figure, the annular member 9 on the right side (gas downstream side)
The set plate 11 and the fixing member, and fixing the gap as 0 or very small amount, the other annular member 9 and Gasettopure
The seat 11 is slidably provided as a sliding member so that thermal expansion occurs to the left side (gas upstream side). FIG.
Indicates a stop (in a cold state), and at the support point on the moving side, the right side is taken as a thermal expansion allowance, and the gap on the left side is small.

【0020】トラス面の固定点は伝熱管群の固定点にあ
わせて管群とトラス面が同一方向に熱膨張するように選
ぶ。これにより伝熱管群の変形、熱応力の発生を防止で
きる。
The fixing point of the truss surface is selected so that the tube group and the truss surface thermally expand in the same direction according to the fixing point of the heat transfer tube group. As a result, deformation of the heat transfer tube group and generation of thermal stress can be prevented.

【0021】上記のように構成されたトラス面は突起7
を挟んで2面からなり、図2および図3に示すように突
起7はその周囲を囲むように接続金物19で水平方向にお
いて保持されている。また、このトラス面はガス流れと
直角方向については水平部材15とケーシング3とを斜め
部材16とガセットプレート17,18によって接続してい
る。斜め部材16はガス流れ直角方向に変形しやすいよう
に、幅厚比の大きめの部材を使用し、ガス流動方向に板
厚の方向をとり、熱応力の発生を回避している。なお、
本実施例において突起7を単なる突起部物として省略し
ているが、上部管寄せ1に接続された枝管を突起として
使用してもよい。
The truss surface configured as described above has projections 7
Across a two faces, Contact horizontally connected hardware 19 so as to surround the projection 7 Waso as shown in FIGS. 2 and 3
And is held . In addition, the truss surface connects the horizontal member 15 and the casing 3 by a diagonal member 16 and gusset plates 17 and 18 in a direction perpendicular to the gas flow. The oblique member 16 uses a member having a large width-to-thickness ratio so as to be easily deformed in a direction perpendicular to the gas flow, and takes a thickness direction in the gas flow direction to avoid generation of thermal stress. In addition,
In the present embodiment, the projection 7 is omitted as a simple projection, but a branch pipe connected to the upper header 1 may be used as the projection.

【0022】上記構成からなる上部管寄せ支持用のトラ
ス面は上側の環状水平部材10がケーシング3に固定さ
れている環状部材9に対して滑動することにより熱膨張
が吸収される。すなわち、直接溶接した場合には斜め部
材13や水平部材15等の温度は最大600℃近くにも
なるため、ほぼ常温のケーシング3に対して両者の熱膨
張差により圧縮方向に過大な熱応力が発生することにな
るが、本実施例のような構成とした場合には熱応力の発
生を最小に抑えることができる。これにより該トラス部
材の熱変形や接合部の溶接割れを防ぐことが可能であ
る。
The truss surface for supporting the upper header having the above structure absorbs thermal expansion by sliding the upper annular horizontal member 10 with respect to the annular member 9 fixed to the casing 3. That is, when the members are directly welded, the temperature of the oblique member 13 and the horizontal member 15 and the like is close to 600 ° C. at the maximum. However, in the case of the configuration as in the present embodiment, generation of thermal stress can be minimized. This makes it possible to prevent thermal deformation of the truss member and welding cracks at the joint.

【0023】また、本実施例ではトラスを2面設け、こ
れらを接続して上部管寄せ1を支持するようにしている
が、トラス面はガス流動方向に滑動自在に支持すると同
時にガス流動方向を軸に回動自在に支持される。すなわ
ち、図5に示されているように、停止時においては垂直
部材14と斜め部材16はケーシング3と三角形を形成
しているが、運転時(熱ガス流入時)には接続金物19
がガス流動直角方向に熱膨張することになる。このとき
環状水平部材10と環状部材9は回転可能に接続されて
いるから、垂直部材14は曲げ変形は生じず、ハの字状
に回転変形することになる。したがって、トラスの接続
金物19が熱膨張してもトラス面に面外曲げ変形を生じ
ない。さらに、環状部材9によりトラス面を回動可能に
支持しているため、ここから支持金物8及びケーシング
3への支持部へ曲げモーメントが伝達されることがな
く、ケーシング3の設計上有利である。
In this embodiment, two trusses are provided and connected to each other to support the upper header 1, but the truss surface is slidably supported in the gas flow direction and at the same time the gas flow direction is changed. It is rotatably supported on a shaft. That is, as shown in FIG. 5, the vertical member 14 and the oblique member 16 form a triangle with the casing 3 at the time of stop, but the connecting hardware 19 at the time of operation (at the time of inflow of hot gas).
Will thermally expand in the direction perpendicular to the gas flow. At this time, since the annular horizontal member 10 and the annular member 9 are rotatably connected to each other, the vertical member 14 does not undergo bending deformation but rotationally deforms in a C-shape. Therefore, even if the connecting metal 19 of the truss is thermally expanded, no out-of-plane bending deformation occurs on the truss surface. Further, since the truss surface is rotatably supported by the annular member 9, no bending moment is transmitted from the truss surface to the support metal 8 and the support portion to the casing 3, which is advantageous in designing the casing 3. .

【0024】かかる管寄せ支持装置に伝熱管パネルから
ガス流れ方向の水平力が作用したときの力の伝達経路
は、まず突起7から接続金物19へ伝えられ、水平部材
15を通して斜め部材16から前述したトラス面の固定
点(本実施例では右端)を経てケーシング3上部へ伝達
される。ガス流動方向の場合には力は突起7から水平部
材15を通して斜め部材16からケーシング3へ伝達さ
れることになるが、この方向の場合斜め部材16の熱応
力は部材自身のたわみによって吸収するため、水平力に
対して引っ張り力が発生する方の斜め部材のみが力を分
担することになる。トラス面の固定点は伝熱管群の固定
点にあわせて管群とトラス面が同一方向に熱膨張するよ
うに選ばれており、伝熱管群の変形、熱応力の発生を防
止できる。
When a horizontal force in the gas flow direction is applied from the heat transfer tube panel to the header supporting device, a force transmission path is first transmitted from the projection 7 to the connection hardware 19, passes through the horizontal member 15, and moves from the oblique member 16 to the connection member 19. It is transmitted to the upper part of the casing 3 via the fixed point of the truss surface (the right end in this embodiment). In the gas flow direction, the force is transmitted from the projection 7 through the horizontal member 15 to the casing 3 from the oblique member 16, but in this direction, the thermal stress of the oblique member 16 is absorbed by the deflection of the member itself. Only the oblique member that generates the tensile force with respect to the horizontal force shares the force. The fixing point of the truss surface is selected so that the tube group and the truss surface thermally expand in the same direction in accordance with the fixing point of the heat transfer tube group, so that deformation of the heat transfer tube group and generation of thermal stress can be prevented.

【0025】かくして、本実施例の上部管寄せ支持装置
によれば、ガス流動方向のトラス面内での熱応力を抑制
することができる。また、ガス流動方向のトラス面では
トラス面内で自由に熱膨張させているので、斜め部材を
圧縮引張りとももたらすことができ、部材の小型化が可
能である。トラス面はケーシングに対し回転可能に支持
されているので、面外曲げ変形を防止でき、またケーシ
ングへの曲げモーメントの伝達も防止できる。さらに、
トラス面の固定点は伝熱管群の固定点にあわせて管群と
トラス面が同一方向に熱膨張するように選択されてお
り、伝熱管群の変形、熱応力の発生も防止できる。
Thus, according to the upper header support device of this embodiment, the thermal stress in the truss plane in the gas flow direction can be suppressed. Further, since the truss surface in the gas flow direction is thermally expanded freely in the truss surface, the oblique member can be compressed and pulled, and the member can be downsized. Since the truss surface is rotatably supported by the casing, out-of-plane bending deformation can be prevented, and transmission of a bending moment to the casing can also be prevented. further,
The fixing point of the truss surface is selected so that the tube group and the truss surface thermally expand in the same direction in accordance with the fixing point of the heat transfer tube group, so that deformation of the heat transfer tube group and generation of thermal stress can be prevented.

【0026】次に、図6を参照して本発明の他の実施例
について説明する。装置の構成は前記実施例とほぼ同様
であるが、支持装置が伝熱管群1Aから1Cまでの3種
類の管群を単一の支持装置にて支持している点が異なっ
ている。通常の排熱回収ボイラは複数の伝熱管群をまと
めて1つのケーシング内に組み込まれることが多く、こ
のような管群の管寄せを一括して支持する場合には、図
6に示すようにトラスがガス流動方向に長くなる。この
ような場合にもトラス面が滑動自在に支持されているこ
とから、第1の実施例に比べて水平部材がかなり長くな
っているにもかかわらず、熱応力の発生を抑制すること
ができる。さらに、本実施例のような長い支持構造を採
用することにより部材の節約、簡素化も実現可能であ
る。
Next, another embodiment of the present invention will be described with reference to FIG. The structure of the device is almost the same as that of the above embodiment, except that the supporting device supports three types of tube groups 1A to 1C by a single supporting device. A general exhaust heat recovery boiler often incorporates a plurality of heat transfer tube groups together in one casing. When such a tube group header is collectively supported, as shown in FIG. The truss becomes longer in the gas flow direction. Even in such a case, since the truss surface is slidably supported, the generation of thermal stress can be suppressed despite the fact that the horizontal member is considerably longer than in the first embodiment. . Further, by adopting the long support structure as in the present embodiment, saving and simplification of members can be realized.

【0027】図7は本発明のさらに異なる実施例を示し
ている。本装置の構成は上記実施例とほぼ同様である
が、本実施例では特に支持用のスペースが狭い場合の支
持装置であって、斜め部材13を双方の垂直部材14の
間に配置している点が上記実施例と異なっている。本実
施例においてもトラス面は自由な熱膨張を許す構造とし
ているため、斜め部材13を引っ張り、圧縮とも効かせ
ることが可能であり、部材の小型化を達成することがで
きる。
FIG. 7 shows still another embodiment of the present invention. The configuration of this device is almost the same as that of the above-described embodiment, but this embodiment is a support device particularly in a case where the space for support is narrow, and the oblique member 13 is disposed between both the vertical members 14. This is different from the above embodiment. Also in the present embodiment, since the truss surface has a structure that allows free thermal expansion, the diagonal member 13 can be pulled and made effective both in compression and the size of the member can be reduced.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば、保
温材が内張りされてケーシング外表面が常温近くに保た
れるような排熱回収ボイラにおいて、ガス流動域にあっ
て伝熱管の接続された上部管寄せを支持するトラス面を
ガス流れ方向に対して滑動自在、かつ回動自在に支持す
ることによって熱応力の発生を最小に抑え、信頼性の高
い支持装置を提供することが可能となる。
As described above, according to the present invention, in a waste heat recovery boiler in which a heat insulating material is lined and an outer surface of a casing is kept close to room temperature, connection of heat transfer tubes in a gas flow area is achieved. By supporting the truss surface that supports the selected upper header slidably and rotatably in the gas flow direction, it is possible to minimize the generation of thermal stress and provide a highly reliable support device. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る排熱回収ボイラの上部管寄せ支持
装置をボイラ側面より見た立面図。
FIG. 1 is an elevational view of a support device for an upper header of an exhaust heat recovery boiler according to the present invention as viewed from a boiler side surface.

【図2】図1におけるA−A矢視図。FIG. 2 is a view taken in the direction of arrows AA in FIG. 1;

【図3】図1におけるB−B矢視図。FIG. 3 is a view taken in the direction of arrows BB in FIG. 1;

【図4】環状水平部材の支持部の詳細を示す図。FIG. 4 is a view showing details of a support portion of the annular horizontal member.

【図5】ガス流れ直角方向の部材の変形を示す図。FIG. 5 is a diagram showing deformation of a member in a direction perpendicular to the gas flow.

【図6】本発明の他の実施例の排熱回収ボイラの上部管
寄せ支持装置を示す立面図。
FIG. 6 is an elevation view showing an upper header supporting device of an exhaust heat recovery boiler according to another embodiment of the present invention.

【図7】本発明の第3の実施例の排熱回収ボイラの上部
管寄せ支持装置を示す立面図。
FIG. 7 is an elevational view showing an upper header support device of an exhaust heat recovery boiler according to a third embodiment of the present invention.

【図8】従来の排熱回収ボイラの一例を示す構成図。FIG. 8 is a configuration diagram showing an example of a conventional exhaust heat recovery boiler.

【図9】図のC−C線に沿う断面図。FIG. 9 is a sectional view taken along the line CC of FIG. 8 ;

【図10】図9のD部詳細を示す拡大断面図。FIG. 10 is an enlarged sectional view showing details of a portion D in FIG. 9;

【図11】図のE部詳細を示す拡大断面図。FIG. 11 is an enlarged sectional view showing details of a portion E in FIG. 9 ;

【符号の説明】[Explanation of symbols]

1…上部管寄せ 1A…上部管寄
せA 1B…上部管寄せB 1C…上部管寄
せC 2…伝熱管 2A…伝熱管A 2B…伝熱管B 2C…伝熱管C 3…ケーシング 4…保温 5…上部構造部材 6…上部補強部
材 7…突起 8…支持金物 9…環状部材 10…環状水平部
材 11,12,17,18 …ガセットプレート 13,16 …斜め部
材 14…垂直部材 15…水平部材 19…接続金物
 1: Upper header 1A: Upper header
Set A 1B: Upper header B 1C: Upper header
C2: Heat transfer tube 2A: Heat transfer tube A 2B: Heat transfer tube B 2C: Heat transfer tube C 3: Casing 4: Heat insulationLumber  5 Upper structural member 6 Upper reinforcement
Material 7: Projection 8: Support hardware 9: Annular member 10: Annular horizontal portion
Lumber 11,12,17,18… Gusset plate 13,16… Diagonal part
Material 14: Vertical member 15: Horizontal member 19: Connection hardware

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 上下に配置した管寄せの間を伝熱管で接
続してパネルを構成し、このパネルを排ガスの流動域に
配置してなる排熱回収ボイラの管寄せ支持装置におい
て、上下に配置される2本の水平部材、該双方の水平部
材にわたされる鉛直部材および鉛直部材の外側で、該双
方の水平部材にわたす斜め部材を組み合せて上部管寄せ
水平方向において保持するトラスを形成し、この該ト
ラスの一点を固定部材を介して天井板に固定させ、他点
を滑動部材を介して該天井板にガス流動方向に沿って滑
動可能に設けたことを特徴とする排熱回収ボイラの管寄
せ支持装置。
1. An exhaust heat recovery boiler header feeder comprising a vertically connected header connected by a heat transfer tube to form a panel, wherein the panel is disposed in a flow area of exhaust gas. A truss that holds the upper header in the horizontal direction by combining two horizontal members to be arranged, a vertical member extending to both horizontal members, and an oblique member extending to both horizontal members outside the vertical members. An exhaust heat recovery system is characterized in that one point of the truss is fixed to a ceiling plate via a fixing member, and another point is slidably provided on the ceiling plate via a sliding member along a gas flow direction. Boiler header support device.
【請求項2】 前記トラス上部の水平部材に管材を使用
し、該水平部材を天井板に設けられた環状部材に貫通さ
せ、これにより長手方向に滑動自在で、かつ軸方向に回
動自在に支持したトラスを2面設け、上部管寄せの突起
物の周囲を囲うように2面のトラスの下部を構成する前
記下部の水平部材を接続するように構成したことを特徴
とする請求項1記載の排熱回収ボイラの管寄せ支持装
置。
2. A tubing is used for a horizontal member on the upper part of the truss, and the horizontal member is penetrated by an annular member provided on a ceiling plate, so that it is slidable in the longitudinal direction and rotatable in the axial direction. 2. The truss structure according to claim 1, wherein two supporting trusses are provided, and the lower horizontal member constituting the lower part of the two trusses is connected so as to surround the protrusion of the upper header. A header support device for an exhaust heat recovery boiler.
【請求項3】 前記トラスの固定部材が位置する固定点
を伝熱管パネルの固定点に一致させるかもしくはできる
だけ近い点に設け、運転時における該トラスの変位方向
を該伝熱管パネルの変位方向に一致させたことを特徴と
する請求項1記載の排熱回収ボイラの管寄せ支持装置。
3. The fixing point where the fixing member of the truss is located is set to coincide with or close to the fixing point of the heat transfer tube panel, and the displacement direction of the truss during operation is set to the displacement direction of the heat transfer tube panel. The header support device for the exhaust heat recovery boiler according to claim 1, wherein the headers are matched.
JP7951191A 1991-04-12 1991-04-12 Exhaust heat recovery boiler header support device Expired - Fee Related JP2653570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7951191A JP2653570B2 (en) 1991-04-12 1991-04-12 Exhaust heat recovery boiler header support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7951191A JP2653570B2 (en) 1991-04-12 1991-04-12 Exhaust heat recovery boiler header support device

Publications (2)

Publication Number Publication Date
JPH04313603A JPH04313603A (en) 1992-11-05
JP2653570B2 true JP2653570B2 (en) 1997-09-17

Family

ID=13691987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7951191A Expired - Fee Related JP2653570B2 (en) 1991-04-12 1991-04-12 Exhaust heat recovery boiler header support device

Country Status (1)

Country Link
JP (1) JP2653570B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362917B1 (en) * 1998-10-21 2003-04-18 두산중공업 주식회사 Waste heat boiler finite tube for combined power generation

Also Published As

Publication number Publication date
JPH04313603A (en) 1992-11-05

Similar Documents

Publication Publication Date Title
US6019070A (en) Circuit assembly for once-through steam generators
EP2338007B1 (en) Shop-assembled solar receiver heat exchanger
EP1662198B1 (en) Heat transfer tube panel module and method of constructing exhaust heat recovery boiler using the module
MXPA06001061A (en) Heat exchanger tube panel module, and method of constructing exhaust heat recovery boiler using the module.
JP2653570B2 (en) Exhaust heat recovery boiler header support device
JPS6337879B2 (en)
KR101465047B1 (en) Heat recovery steam generator and method of manufacturing the same
JPH11264501A (en) Waste heat recovery boiler
WO2022113484A1 (en) Support mechanism for exhaust heat recovery boilers
JPH0714461B2 (en) Denitration equipment
JP2004092988A (en) Exhaust heat recovery steam generator and its mounting method
JPH03211397A (en) Support device for heat exchanger tube
JPH0820041B2 (en) Exhaust heat recovery boiler
JP2753176B2 (en) Heat transfer tube panel
EP0014499B1 (en) Vapour generator
JPH0253682B2 (en)
JP2939294B2 (en) Support frame for waste heat recovery boiler
JPH0740805Y2 (en) Waste heat recovery equipment
JPH085001A (en) Supporting device for group of heat transfer tubes
JP7089913B2 (en) Heat exchanger
JP2001012878A (en) Heat exchanger
JPS6333603B2 (en)
KR200167979Y1 (en) Reinforcement beam structure for supporting the inner thermal insulating material of the heat recovery steam generetor
JP2947623B2 (en) Reinforced brace structure
JP2001116201A (en) Waste heat recovery boiler

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees