JP3801267B2 - Installation method and structure of horizontal heat transfer tube group - Google Patents

Installation method and structure of horizontal heat transfer tube group Download PDF

Info

Publication number
JP3801267B2
JP3801267B2 JP21636496A JP21636496A JP3801267B2 JP 3801267 B2 JP3801267 B2 JP 3801267B2 JP 21636496 A JP21636496 A JP 21636496A JP 21636496 A JP21636496 A JP 21636496A JP 3801267 B2 JP3801267 B2 JP 3801267B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
tube group
installation
lifting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21636496A
Other languages
Japanese (ja)
Other versions
JPH1061902A (en
Inventor
恒夫 渡部
靖昭 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP21636496A priority Critical patent/JP3801267B2/en
Publication of JPH1061902A publication Critical patent/JPH1061902A/en
Application granted granted Critical
Publication of JP3801267B2 publication Critical patent/JP3801267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、大型ボイラの据付けに係り、特に排ガスとの対流伝熱を効果的に行うために、ガス流路にガス流れに対して直管部が略直角になるように横置きされた横置き伝熱管群の据付け方法と据付け構造体に関する。
【0002】
【従来の技術】
横置き伝熱管群を有する大型ボイラの代表的な構成を図9に示す。同図に示すように事業用火力発電用ボイラのような大型ボイラは、ボイラ本体がボイラ建屋内部のボイラ本体収納空間に配置され、鉄骨柱及び梁などで構成されるボイラ本体支持鉄骨群1のうち最上部のトップ大梁11を支持点とするスリングボルト2により吊り下げて支持される。
【0003】
前記ボイラ本体は例えば、燃料の燃焼が行われるボイラ火炉室3、該ボイラ火炉室3からの燃焼排ガスの流路となる副側壁室4、及び該副側壁室4からのガス流れの後流側に設けられる後部伝熱壁室5の3室に大きく分けられ、それぞれの室は伝熱管群が取り囲むことによって構成される。また、各室の天井の部分には伝熱壁群であるところの天井壁6が設けられ、前記ボイラ建屋の屋上部分にペントハウス7と称される空間を構成している。
【0004】
前記伝熱壁群は、メンブレンバーまたはフィンなどの平板上の伝熱部品を伝熱管と交互に接続して溶接することによって一体化された壁構造になっており、必要によって保温が施工されている。
【0005】
前記ボイラ火炉室3のガス流れの後流側及び副側壁室4の内部には、吊り下げ型の伝熱管群8や伝熱管が配置され、前記ペントハウス7内に設けられたそれぞれの管寄せ9を支持点とし、スリングボルト2を介してトップ大梁11に吊り下げられている。
【0006】
また、前記後部伝熱壁室5は、後部伝熱隔壁53によって、ボイラ火炉室3に近い側の後部伝熱前壁51、後部伝熱側壁52及び後部伝熱隔壁53とで囲まれた後部伝熱壁前室5aと、ボイラ火炉室3に遠い側の後部伝熱隔壁53、後部伝熱側壁52及び後部伝熱後壁54とで囲まれた後部伝熱壁後室5bに2分割されており、それぞれの室内には吊り下げ型の伝熱管群や伝熱管の他に、過熱器10a、再熱器10c、蒸発器10bまたは節炭器10dなどの横置き型の伝熱管群10や、伝熱管12a,12bなどが配置されている。
【0007】
図11及び図12に示すように、前記伝熱管群10は、曲げ加工及び溶接によってコイル形状に組み立てた複数の伝熱管コイルをボイラの缶幅方向に複数枚、一定の間隔Qをあけて並べた構成になっており、後部伝熱壁室5内にそれぞれの伝熱管群の直管部がガス流れに対し直角となるように横置きに配置されている。前記間隔Qは対流伝熱効率を考慮した設定になっている。
【0008】
図9及び図11に示すように、前記後部伝熱壁後室5bに設置される横置き型の伝熱管群は、伝熱管コイル間に配置した複数の吊り下げ管13により図示していない支持金具を介して支持されており、排ガス流路にガス流れに対して複数段の伝熱管群が設置される場合には、前記吊り下げ管13の全数を各段ごとに突き合わせ溶接によって連結することによって、複数段の伝熱管群が全段にわたって伝熱管コイル間に配置した複数の吊り下げ管13により図示していない支持金具を介して支持される。
【0009】
また、前記吊り下げ管13は、ペントハウス7内に設けられた吊り下げ管管寄せ14のスタッブ15に突き合わせ溶接されており、伝熱管群は前記吊り下げ管13を介して吊り下げ管管寄せ14に支持されている。
【0010】
さらに、該管寄せ14は、スリングボルト2を介してトップ大梁11に吊り下げられており、例えば、地上から40m以上の高さに設置されている。
【0011】
また、前記横置き型の伝熱管群は、伝熱効率を向上させるために前記それぞれの室内に、例えば、ボイラの缶幅方向に管間隔で100ミリピッチで100から300列のように密接して配列されており、前記吊り下げ管13も、伝熱管コイル間に配置されるため同様の列数を有する。
【0012】
前記のような横置き伝熱管群の輸送及び据付けは、図11、図12に示すように、まず工場において、それぞれの伝熱管群をボイラ缶幅方向に20列から30列の小ブロックに分割し、さらに該ブロックを枠柱16a、枠梁16b及び補強材16cで梱包して発送する。
【0013】
前記小ブロックの大きさは、設定時のスリングボルト2での吊り下げ能力及び吊り上げ時の作業効率によって設定され、伝熱管群が複数段の場合には、それぞれの伝熱管群は略同じ大きさの小ブロックに分割されると共に、小ブロックの全段を同時に吊り上げることから、吊り下げ管13の管列ピッチは全段にわたって共通の寸法に設定される。
【0014】
次に、図10に示すように、据付け現地では、ボイラ本体支持鉄骨1の建て方終了後、複数のセンタホールジャッキ17aなどの吊り上げ装置17をトップ大梁11に設置し、スリングボルト2を地上に降ろし、該スリングボルト2の下部に吊り上げ梁18を取り付け、ワイヤやロッドなどの吊り下げ手段を前記吊り下げ管管寄せ14に取り付ける。
【0015】
前記吊り上げ梁18及び吊り下げ管管寄せ14の分割寸法は小ブロックの大きさに合わせて設定している。
【0016】
次に、前記吊り下げ管管寄せ14のスタッブ群15の下端となる突き合わせ溶接位置が、最上段に設置する伝熱管群の小ブロックの上端となる吊り下げ管13との突き合わせ溶接位置をかわす高さになるまで吊り上げる。
【0017】
次に、前記輸送されたきた最上段に設置する伝熱管群の小ブロックを前記吊り下げ管管寄せ14の略直下に移動し、枠柱16a、枠梁16b及び補強材16cなどの梱包枠16を地上作業で解体して取り外し、1段目の結合として前記吊り下げ管13同士の開先合わせ及び突き合わせ溶接を行う。また同時に、伝熱管群同士についても、開先合わせ及び突き合わせ溶接作業を行い、上下のブロックを一体化する。
【0018】
以下、伝熱管群が複数段の場合には、順次、2段目以降について、次の段の小ブロックをかわす高さまでの吊り上げ、梱包枠の解体、搬入、溶接及び吊り上げ作業を行い、最下段に設置する伝熱管群の小ブロックを溶接によって取り付けた後、設定位置までの全段の吊り上げを行う。
【0019】
また、前記吊り下げ管13同士の開先合わせ及び突き合わせ溶接作業においては、梱包枠16を取り外すことにより管列ピッチにばらつきが生じ、上下の開先合わせが行えないため、上下段ともに図示していない管列ピッチ調節部品を各管ごとにボルト締めによって取り付ける必要があった。
【0020】
【発明が解決しようとする課題】
以上述べた従来技術には次のような問題点があった。即ち、横置き伝熱管群を現地に輸送して据え付ける場合に、まず工場内で、輸送及び据付け効率を考慮した大きさの小ブロックにするが、従来技術によれば、図11に示すように、各伝熱管の管列ピッチQを、輸送時の振動などによる管の損傷を防止するために、据付け時の寸法と略同じまたは広い間隔とした上で、梱包枠16を取り付けていた。
【0021】
このため、据付け時にはそのまま吊り上げた場合に、伝熱管ブロック寸法La×Waが梱包枠16の寸法を加えたことによって収納寸法以上の寸法La′×Wa′となり、隣接する梱包枠と干渉することから、据付け現地の地上において吊り上げ前に梱包枠16を取り外す必要があった。
【0022】
しかしながら、この方法では梱包枠を吊り上げに使用できないことから、少なくとも吊り下げ管13同士を伝熱管群の設置位置の略直下の地上において、吊り下げ管13のばらつき防止のために、図示していない管列ピッチ調節部品を各吊り下げ管13ごとにボルト締めによって取り付けた上で開先合わせ及び突き合わせ溶接作業を行う必要があり、複数段の伝熱管群を小ブロック単位でボイラ缶幅にわたって全数吊り上げた場合には、例えば3カ月もの長期間の作業期間を要していた。
【0023】
また、ボイラの据付け現地においては地上での作業範囲が限られており、前記のように地上での作業期間が長くなった場合には、伝熱管群の下部のボイラ建屋や、収納空間に配置されるファン、ホッパ、ケーシング、配管類、及び煙道などの据付け準備が行えなかった。
【0024】
また、各伝熱管群は据付け終了時の設定寸法L×Wと略同寸法で吊り上げられるため、伝熱管群の収納空間である後部伝熱壁室5を取り囲む各壁との間に溶接などの作業空間が殆どないことから、後部伝熱壁と伝熱管群との吊り上げを同時に行うことができないため、やむを得ず先に伝熱管群を吊り上げた後に、後部伝熱壁を吊り上げていたが、吊り上げ後のそれぞれの取り合い作業は狭隘部での作業となり、非常に困難であった。
【0025】
前記従来技術はボイラ本体の据付け工事期間の短縮化についての考慮が払われていなかった。具体的には、後部伝熱壁及び横置き伝熱管群の据付けにおける地上作業の削減及び並行作業による期間短縮、ならびに高所での組立て作業の安全性向上についての考慮が払われていなかった。このため、据付け工事期間が長期間となっていた。
【0026】
本発明の目的は、横置き伝熱管群の据付けにおける地上作業を削減し、並行作業を可能とすることで工事期間を短縮化すると共に、高所での組立て作業の安全性の向上を図ることができる横置き伝熱管群の輸送及び据付け方法と輸送及び据付け構造体を提供することにある。
【0027】
【課題を解決するための手段】
上記目的は、ボイラからの排ガス流路に、ガス流れに対して直管部が直角となるように横置きに配置される、過熱器、再熱器、蒸発器、節炭器などの、それぞれ複数枚の伝熱管コイルからなる横置き伝熱管群を据付ける方法において、前記伝熱管群を複数の小伝熱管群にそれぞれ分割し、さらに該小伝熱管群の伝熱管コイルの缶幅方向の管列間隔を、梱包を含めて据付け寸法より縮小した寸法となるように梱包して現地まで輸送し、ボイラ建屋の横置き伝熱管群の収納部の略直下部へ搬入し、吊り上げた後に前記梱包を外し、伝熱管群の管列を該間隔が据付け寸法となるように缶幅方向に広げる第1の手段により達成される。
【0028】
また第1の手段の横置き伝熱管群の据付け方法において、ガス流れに対して複数段が配置される伝熱管群のうち、前回に搬入した上流側の伝熱管群を、今回搬入する下流側の伝熱管群をかわす高さ以上に吊り上げ、梱包同士を最少個所数で接合し、次回搬入する下流側の伝熱管群をかわす高さ以上に吊り上げ、前記吊り上げを順次行い、最下流側の伝熱管群の梱包の接合が終了した後は、全段を据付け位置に吊り上げ、前記梱包を外して下降させると共に、それぞれの伝熱管群の管列を該間隔が据付け寸法となるように缶幅方向に広げる第2の手段により達成される。
【0029】
またボイラからの排ガス流路に、ガス流れに対して直管部が直角となるように横置きに配置される、過熱器、再熱器、蒸発器、節炭器などの、それぞれ複数枚の伝熱管コイルからなる横置き伝熱管群の据付け構造体において、前記伝熱管群をそれぞれ分割した複数の小伝熱管群であって、該小伝熱管群の伝熱管コイルの缶幅方向の管列間隔は、梱包を含めて据付け寸法より縮小した寸法であり、吊り上げ後に前記梱包が取り外せ、伝熱管群の缶列を缶幅方向に広げることによって該缶列間隔を据付け寸法にできる第3の手段により達成される。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態について添付図面を参照しながら説明する。まず、図1〜図6を参照して本発明の一実施の形態について説明する。図1〜図6にはそれぞれ本発明の一実施の形態となる横置き伝熱管群の吊り上げ手順の説明図、収納空間における作業空間を説明するための平面図、小ブロック構造及び梱包枠の取り付け図、伝熱管コイルまたは吊り下げ管の管列ピッチを最小とした場合の説明図、ならびに横置き伝熱管群の小ブロックごとの吊り上げ形態の説明図を示す。
【0031】
まず、工場において、それぞれの伝熱管群を分割してボイラ缶幅方向に20列から30列の小ブロックにするのに、図5に示すように、伝熱管コイルまたは吊り下げ管13の管列ピッチを、据付け終了後の設定寸法Qより小さいPに間隔を詰めて行う。本実施の形態では間隔Pが最小となる場合を示している。
【0032】
次に、前記によって作成した小ブロックに、枠柱16a、枠梁16b及び補強材16cからなる梱包枠16を、図4に示すように、伝熱管コイルの長手方向において吊り下げ管13よりも内側の位置に、小ブロックにおいて最も外側に配置される伝熱管コイルに密接するように配置し、梱包枠16寸法をR×Wbに収まる寸法とする。
【0033】
前記のように、小ブロックにおける伝熱管または吊り下げ管13の間隔を最小とし、さらに梱包枠16を密接して配置することにより、輸送中の隣接する伝熱管コイル及び梱包枠16同士の振動または撓みなどによる接触や擦れによる損傷を防止することができる。また、梱包枠16寸法をR×Wbに収まる寸法としているので、収納空間となる後部伝熱壁室5の缶長手方向の寸法に対して梱包枠16が干渉することがない。さらに、缶幅方向の寸法に対しては、図3に示すように、伝熱管群を8ブロックの小ブロックに分割しているが、小ブロック間の現地接合個所21との間に十分な作業空間20を確保できる。
【0034】
これに対して従来は、小ブロックの幅方向の寸法Waは略小ブロック間の現地接合個所21間の寸法と一致していたため、作業空間が殆ど取れず、地上で溶接作業を終了させておく必要があった。
【0035】
また、本実施の形態では、梱包枠16を取り付けたままの吊り上げを考慮して、枠柱16aの高さ方向の寸法はHbとし、枠柱16aの伝熱管コイル長手方向の前記吊り下げ管13の上下段との突き合わせ溶接位置間の寸法と略一致するように設定している。
【0036】
次に、図1、図6を示して、本発明の実施の形態になる横置き伝熱管群の吊り上げを説明する。図1は図の左から右に吊り上げ手順を時系列的に示したものである。
【0037】
まず、ボイラ本体支持鉄骨1の建て方終了後、複数のセンタホールジャッキ17aなどの吊り上げ装置17をトップ大梁11に設置し、スリングボルト2を地上に降ろし、該スリングボルト2の下部に吊り上げ梁18を取り付け、ワイヤやロッドなどの吊り下げ手段を吊り下げ管管寄せ14に取り付ける。この場合、トップ大梁11から直接にワイヤやロッドなどの吊り下げ手段を吊り下げ管管寄せ14に取り付け、吊り上げ梁18を省略することもできる。
【0038】
前記吊り下げ管管寄せ14のスタッブ群15の下端となる突き合わせ溶接位置の近傍には管列ピッチ調節手段17を取り付け、該手段17によって、前記スタッブ群15の下端となる吊り下げ管の管列ピッチを、最上段となる小ブロック10aの管列ピッチに設定する。
【0039】
次に、前記吊り下げ管管寄せ14のスタッブ群15の下端となる突き合わせ溶接位置が、最上段に設置する伝熱管群の小ブロック10aの上端となる吊り下げ管13との突き合わせ溶接位置をかわす高さになるまで吊り上げる。
【0040】
次に、前記輸送されてきた最上段に設置する伝熱管群の小ブロック10aを前記吊り下げ管管寄せ14の略直下に移動し、梱包枠16を解体せずに、1段目の結合として前記吊り下げ管13同士の開先合わせ及び突き合わせ溶接を行う。
【0041】
この場合、吊り上げ梁18に最上段に設置する小ブロック10aの梱包枠16のうち、枠柱16aを吊り下げるためのワイヤやロッドなどの吊り下げ手段を設けておき、これを枠柱16aの上端と結合すれば、前記小ブロック10aの荷重を伝達できるので、前記吊り下げ管13同士の開先合わせ及び突き合わせ溶接を吊り上げ後に行い、地上での作業を削減することができる。
【0042】
以下、2段目以降については、次の段の小ブロックをかわす高さまでの吊り上げ後は枠柱16a同士の結合のみ行い、最下段に設置する小ブロック、例えば10dを枠柱16a同士で結合した後は、図5に示すように、設定位置までの全段の吊り上げを行う。
【0043】
次に、全段を設定位置まで吊り上げた後、各段の吊り下げ管及び伝熱管同士の突き合わせ溶接を行った後、梱包枠16を解体して地上へ降ろす。
【0044】
次に、管列ピッチ調節手段17を取り外し、管列ピッチを設定寸法に調節し、同じ伝熱管群の小ブロック同士を現地接合個所20で拘束手段によって結合し、伝熱管群として一体化させ、据付けを完了する。
【0045】
本発明の他の実施の形態を図2に示す。この実施の形態では、吊り下げ管管寄せ14から吊り下げ管13との突き合わせ溶接位置までを据付けの最初の段階で吊り上げておき、次にトップ大梁11から直接にワイヤやロッドなどの吊り下げ手段を地上へ降ろし、これに小ブロックを梱包枠16の枠柱16aなどを結合することで、順次全段の吊り上げを行う。
【0046】
本実施の形態によれば、伝熱管群全体の据付けが並行作業で行うことができ、最上段に設置する伝熱管群から順番に据付け工程に合わせての製作、輸送及び吊り上げが行えるため、効率的な工程管理が行える。
【0047】
また、本発明のさらに他の実施の形態を図7及び図8に示す。この実施の形態では、小ブロックの範囲を上下段の小ブロックを合わせたものとしており、本実施の形態によれば、工場側で予め上下段の小ブロックの組立てを行っているため、据付け現地での吊り上げ及び吊り上げ後の突き合わせ溶接に要する時間が半減できる。
【0048】
本発明においては、工場での横置き伝熱管群10をボイラ缶幅方向に分割して小ブロックにする際に、小ブロックの構造を各伝熱管コイルの管列ピッチ、即ち吊り下げ管の管列ピッチが据付け終了時の設定寸法より小さいピッチで、梱包枠が各小ブロックの外側になる伝熱管コイルに密接して配置した構造にしたので、各小ブロックの吊り上げ時にボイラ幅方向での干渉を防止でき、設定位置に吊り上げたときに十分な作業空間が確保できる。
【0049】
このため、前記小ブロックの梱包枠を地上で解体する必要がなくなり、さらに伝熱管群が複数段ある場合には、上下の段の接続を梱包枠同士で最小点数の溶接を行うだけでよく、据付け工事の進行を図るには出来るだけ少なくする必要のある地上作業を削減できる。
【0050】
さらに、横置き伝熱管群10の収納空間となる後部伝熱壁室5を取り囲む各壁の据付けを、横置き伝熱管群との間に十分な作業空間が生じることから、横置き伝熱管群の吊り上げと並行作業で行え、後部伝熱壁室に関する全ての吊り上げ作業終了後に、十分な作業空間において安全に数百本の吊り上げ管、伝熱管群及び後部伝熱壁室を取り囲む各壁との取り合い部の溶接が行える。
【0051】
また、吊り上げ作業が終了した小ブロックのうち最上段のものは、吊り下げ管管寄せ14に吊り下げ管13を介して支持されているが、該吊り下げ管管寄せ14からの吊り下げ管13の管列ピッチは、吊り下げ管管寄せ14においては据付け終了時の設定寸法であり、最上段との取り合い部においては管列ピッチ調節手段17によって小ブロックの管列ピッチ、即ち、据付け終了時の設定寸法より小さいピッチに設定している。
【0052】
このため、前記管列ピッチ調節手段17を据付けの最終段階で取り外すことで、簡単な作業で伝熱管群を構成する全ての伝熱管コイルの管列ピッチを据付け終了時の設定寸法に調節することができる。
【0053】
なお、梱包枠の取り外し及び吊り降ろしは、前記管列ピッチを据付け終了時の寸法に調節する作業の前までに行えばよい。
【0054】
【発明の効果】
本発明の横置き伝熱管群の輸送及び据付け方法と輸送及び据付け構造体によれば、横置き伝熱管群をコンパクト化しているので輸送効率の向上と、梱包枠ごとの吊り上げにより据付けにおける地上作業の大幅削減が可能となる。また、他のボイラ本体部品の据付け作業との並行作業が行えることから、工事期間の大幅な短縮化ができると共に、高所での組立て作業の安全性の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る横置き伝熱管群の吊り上げ手順の説明図である。
【図2】本発明の他の実施の形態に係る横置き伝熱管群の吊り上げ手順の説明図である。
【図3】本発明の実施の形態に係る横置き伝熱管群の収納空間における作業空間の説明図である。
【図4】本発明の実施の形態に係る横置き伝熱管群の小ブロック構造及び梱包枠の取り付け状態を示す斜視図である。
【図5】本発明の実施の形態に係る横置き伝熱管群の伝熱管コイルまたは吊り下げ管の管列ピッチを最小とした場合の説明図である。
【図6】本発明の実施の形態に係る横置き伝熱管群の小ブロックごとの吊り上げ形態の斜視図である。
【図7】本発明の他の実施の形態に係る横置き伝熱管群の吊り上げ手順の説明図である。
【図8】本発明の他の実施の形態に係る横置き伝熱管群の小ブロック構造及び梱包枠の取り付け状態を示す斜視図である。
【図9】横置き伝熱管群を有する大型ボイラの代表的な構成図である。
【図10】従来例に係る横置き伝熱管群の吊り上げ手順の説明図である。
【図11】従来例に係る横置き伝熱管群の小ブロック構造及び梱包枠の取り付け状態を示す斜視図である。
【図12】従来例に係る横置き伝熱管群の伝熱管コイルまたは吊り下げ管の管列ピッチ説明図である。
【符号の説明】
2 スリングボルト
11 トップ大梁
14 吊り下げ管管寄せ
15 スタッブ群
16 梱包枠
17 吊り上げ装置
18 吊り上げ梁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the installation of large boilers, and in particular, in order to effectively perform convective heat transfer with exhaust gas, the horizontal direction is set so that the straight pipe portion is substantially perpendicular to the gas flow in the gas flow path. The present invention relates to an installation method and an installation structure of a heat transfer tube group.
[0002]
[Prior art]
FIG. 9 shows a typical configuration of a large boiler having a horizontal heat transfer tube group. As shown in the figure, a large boiler such as a boiler for commercial thermal power generation has a boiler body supporting steel frame group 1 in which a boiler body is disposed in a boiler body storage space inside a boiler building and is composed of steel columns and beams. Among them, the uppermost top beam 11 is supported by being suspended by a sling bolt 2 having a support point.
[0003]
The boiler main body includes, for example, a boiler furnace chamber 3 in which fuel is burned, a sub-side wall chamber 4 serving as a flow path of combustion exhaust gas from the boiler furnace chamber 3, and a downstream side of the gas flow from the sub-side wall chamber 4 The rear heat transfer wall chamber 5 is roughly divided into three chambers, each of which is configured by surrounding a heat transfer tube group. Moreover, the ceiling wall 6 which is a heat-transfer wall group is provided in the ceiling part of each room, and the space called the penthouse 7 is comprised in the roof part of the said boiler building.
[0004]
The heat transfer wall group has an integrated wall structure by connecting and welding heat transfer parts on a flat plate such as membrane bars or fins alternately with heat transfer tubes, and heat insulation is applied if necessary. Yes.
[0005]
A suspended heat transfer tube group 8 and heat transfer tubes are arranged on the downstream side of the gas flow in the boiler furnace chamber 3 and in the sub-side wall chamber 4, and each header 9 provided in the penthouse 7. Is supported by the top girder 11 via the sling bolt 2.
[0006]
Further, the rear heat transfer wall chamber 5 is surrounded by a rear heat transfer partition wall 53 by a rear heat transfer front wall 51, a rear heat transfer side wall 52, and a rear heat transfer partition wall 53 on the side close to the boiler furnace chamber 3. The heat transfer wall front chamber 5a is divided into a rear heat transfer wall rear chamber 5b surrounded by a rear heat transfer partition wall 53, a rear heat transfer side wall 52 and a rear heat transfer rear wall 54 which are far from the boiler furnace chamber 3. In each room, in addition to a suspended heat transfer tube group and heat transfer tube, a horizontal heat transfer tube group 10 such as a superheater 10a, a reheater 10c, an evaporator 10b, or a economizer 10d, The heat transfer tubes 12a and 12b are arranged.
[0007]
As shown in FIGS. 11 and 12, the heat transfer tube group 10 includes a plurality of heat transfer tube coils assembled in a coil shape by bending and welding and arranged in a boiler can width direction at a constant interval Q. In the rear heat transfer wall chamber 5, the straight pipe portions of the respective heat transfer tube groups are arranged horizontally so as to be perpendicular to the gas flow. The interval Q is set in consideration of convective heat transfer efficiency.
[0008]
As shown in FIGS. 9 and 11, the horizontal heat transfer tube group installed in the rear heat transfer wall rear chamber 5 b is supported by a plurality of suspension tubes 13 arranged between the heat transfer tube coils. When a plurality of heat transfer tube groups are installed in the exhaust gas flow path with respect to the gas flow, the total number of the suspension tubes 13 is connected to each step by butt welding. Thus, the plurality of stages of heat transfer tube groups are supported by the plurality of suspension pipes 13 disposed between the heat transfer tube coils over the entire stage via a support fitting (not shown).
[0009]
The suspension tube 13 is butt welded to a stub 15 of a suspension tube header 14 provided in the penthouse 7, and the heat transfer tube group is suspended via the suspension tube 13. It is supported by.
[0010]
Further, the header 14 is suspended from the top beam 11 via the sling bolt 2, and is installed at a height of 40 m or more from the ground, for example.
[0011]
Further, the horizontal type heat transfer tube group is arranged closely in the respective chambers, for example, 100 to 300 rows at a 100 mm pitch in the tube width direction of the boiler in order to improve heat transfer efficiency. The suspension tube 13 is also disposed between the heat transfer tube coils and has the same number of rows.
[0012]
As shown in FIGS. 11 and 12, the horizontal heat transfer tube group is transported and installed as described above. First, in the factory, each heat transfer tube group is divided into 20 to 30 small blocks in the boiler can width direction. Further, the block is packed and shipped by the frame pillar 16a, the frame beam 16b, and the reinforcing material 16c.
[0013]
The size of the small block is set according to the suspending ability with the sling bolt 2 at the time of setting and the work efficiency at the time of lifting, and when the heat transfer tube group has a plurality of stages, each heat transfer tube group is substantially the same size. Since all the stages of the small blocks are lifted at the same time, the pipe row pitch of the suspension pipe 13 is set to a common dimension over all the stages.
[0014]
Next, as shown in FIG. 10, at the installation site, after the boiler body supporting steel frame 1 is finished, the lifting devices 17 such as a plurality of center hole jacks 17a are installed on the top beam 11 and the sling bolts 2 are placed on the ground. The lifting beam 18 is attached to the lower part of the sling bolt 2 and a suspension means such as a wire or a rod is attached to the suspension header 14.
[0015]
The division dimensions of the lifting beam 18 and the suspension pipe header 14 are set in accordance with the size of the small block.
[0016]
Next, the butt welding position that is the lower end of the stub group 15 of the suspension pipe header 14 is a height that avoids the butt welding position with the suspension pipe 13 that is the upper end of the small block of the heat transfer pipe group installed at the uppermost stage. Lift up until it is.
[0017]
Next, the transported small block of the heat transfer tube group installed on the uppermost stage is moved to a position just below the suspension tube header 14, and a packing frame 16 such as a frame column 16a, a frame beam 16b, and a reinforcing material 16c is provided. Is dismantled and removed by ground work, and as a first-stage connection, the grooved pipes 13 and the butt welds are joined to each other. At the same time, for the heat transfer tube groups, groove alignment and butt welding work are performed to integrate the upper and lower blocks.
[0018]
Hereinafter, when the heat transfer tube group has a plurality of stages, the second and subsequent stages are sequentially lifted to a height where the next small block is dodged, the packaging frame is disassembled, carried in, welded and lifted. After attaching the small block of the heat transfer tube group to be installed by welding, the entire stage is lifted to the set position.
[0019]
Further, in the groove alignment and butt welding operations between the suspension pipes 13, the pipe row pitch varies due to the removal of the packing frame 16, and the vertical groove alignment cannot be performed. There was no pipe row pitch adjustment part needed to be bolted to each pipe.
[0020]
[Problems to be solved by the invention]
The prior art described above has the following problems. That is, when a horizontally placed heat transfer tube group is transported and installed on the site, it is first made into a small block in the factory in consideration of transportation and installation efficiency, but according to the prior art, as shown in FIG. In order to prevent the tube row pitch Q of each heat transfer tube from being damaged due to vibrations during transportation, the packaging frame 16 is attached after being set to be approximately the same as or wider than the dimensions at the time of installation.
[0021]
For this reason, when it is lifted as it is at the time of installation, the heat transfer tube block dimension La × Wa becomes the dimension La ′ × Wa ′ larger than the storage dimension due to the addition of the dimensions of the packing frame 16 and interferes with the adjacent packing frame. It was necessary to remove the packing frame 16 before lifting on the ground of the installation site.
[0022]
However, since the packaging frame cannot be used for lifting in this method, at least the suspension pipes 13 are not shown in the figure to prevent variation of the suspension pipes 13 on the ground almost directly below the installation position of the heat transfer tube group. It is necessary to perform pipe alignment and butt welding work after attaching the pipe row pitch adjustment parts to each suspension pipe 13 by bolting, and lift all the heat transfer pipe groups across the boiler can width in small blocks. In such a case, a long work period of, for example, 3 months is required.
[0023]
In addition, the range of work on the ground is limited at the site of boiler installation, and if the work period on the ground becomes longer as described above, it is placed in the boiler building or storage space below the heat transfer tube group. The fan, hopper, casing, piping, and flue could not be prepared for installation.
[0024]
In addition, since each heat transfer tube group is lifted with a dimension approximately the same as the set dimension L × W at the end of installation, welding or the like is performed between each wall surrounding the rear heat transfer wall chamber 5 which is a storage space for the heat transfer tube group. Since there is almost no work space, it is impossible to lift the rear heat transfer wall and the heat transfer tube group at the same time, so the rear heat transfer wall was lifted first after the heat transfer tube group was lifted first, Each of these work was a work in a narrow space and was very difficult.
[0025]
In the prior art, consideration has not been given to shortening the installation period of the boiler body. Specifically, consideration has not been given to reducing ground work and shortening the period by parallel work in installing the rear heat transfer wall and the horizontal heat transfer tube group, and improving the safety of assembly work at high places. For this reason, the installation work period was long.
[0026]
The object of the present invention is to reduce ground work in installing horizontal heat transfer tube groups and to enable parallel work, thereby shortening the construction period and improving the safety of assembly work at high places. It is an object of the present invention to provide a transportation and installation method and a transportation and installation structure for a horizontally placed heat transfer tube group.
[0027]
[Means for Solving the Problems]
The above-mentioned purpose is such that each of the superheater, the reheater, the evaporator, and the economizer is disposed in the exhaust gas flow path from the boiler so that the straight pipe portion is perpendicular to the gas flow. In the method of installing a horizontally placed heat transfer tube group comprising a plurality of heat transfer tube coils, the heat transfer tube group is divided into a plurality of small heat transfer tube groups, respectively, and the tube rows in the can width direction of the heat transfer tube coils of the small heat transfer tube group Pack the package so that the interval is smaller than the installation size including the package, transport it to the site, carry it to the lower part of the storage part of the horizontal heat transfer tube group in the boiler building, lift it and This is achieved by the first means for extending the tube rows of the heat transfer tube group in the can width direction so that the interval becomes the installation dimension.
[0028]
Also, in the horizontal heat transfer tube group installation method of the first means, among the heat transfer tube groups in which a plurality of stages are arranged with respect to the gas flow, the upstream heat transfer tube group that was previously loaded is the downstream side that is loaded this time. The heat transfer tube group is lifted to a height higher than the dowel level, the packages are joined together with a minimum number of places, the downstream heat transfer tube group to be carried in next time is lifted to a height higher than the dowel height, and the above-mentioned lifting is performed in order. After joining the packaging of the heat tube groups, all the stages are lifted to the installation position, the packaging is removed and lowered, and the tube rows of the respective heat transfer tube groups are arranged in the can width direction so that the interval becomes the installation size. This is achieved by the second means of spreading.
[0029]
Also, in the exhaust gas flow path from the boiler, a plurality of sheets, such as superheaters, reheaters, evaporators, and economizers, are placed horizontally so that the straight pipe part is perpendicular to the gas flow. In the installation structure of a horizontal heat transfer tube group composed of heat transfer tube coils, the heat transfer tube group is divided into a plurality of small heat transfer tube groups, and the tube row interval in the can width direction of the heat transfer tube coil of the small heat transfer tube group is This is a size reduced from the installation size including the packaging, and is achieved by the third means which can remove the packaging after lifting and can expand the can row of the heat transfer tube group in the can width direction to make the can row interval the installation size. Is done.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. First, an embodiment of the present invention will be described with reference to FIGS. FIGS. 1 to 6 are explanatory views of a procedure for lifting a horizontal heat transfer tube group, which is an embodiment of the present invention, a plan view for explaining a work space in a storage space, a small block structure, and attachment of a packing frame. The figure, the explanatory view at the time of minimizing the pipe row pitch of a heat exchanger tube coil or a suspension pipe, and the explanatory view of the lifting form for every small block of a horizontal heat exchanger tube group are shown.
[0031]
First, in a factory, each heat transfer tube group is divided into small blocks of 20 to 30 rows in the boiler can width direction. As shown in FIG. The pitch is set to P smaller than the set dimension Q after installation is completed. In the present embodiment, a case where the interval P is minimum is shown.
[0032]
Next, the packing frame 16 composed of the frame column 16a, the frame beam 16b, and the reinforcing material 16c is placed on the small block created as described above inside the suspension tube 13 in the longitudinal direction of the heat transfer tube coil as shown in FIG. In such a position, it is arranged so as to be in close contact with the heat transfer tube coil arranged on the outermost side in the small block, and the dimensions of the packing frame 16 are set to fit into R × Wb.
[0033]
As described above, the distance between the heat transfer tubes or the suspension tubes 13 in the small block is minimized, and the packing frame 16 is closely arranged, so that vibrations between adjacent heat transfer tube coils and the packing frames 16 during transportation or Damage due to contact or rubbing due to bending or the like can be prevented. Moreover, since the packaging frame 16 is dimensioned to fit within R × Wb, the packaging frame 16 does not interfere with the longitudinal dimension of the rear heat transfer wall chamber 5 serving as a storage space. Furthermore, for the dimensions in the can width direction, as shown in FIG. 3, the heat transfer tube group is divided into small blocks of 8 blocks. Space 20 can be secured.
[0034]
On the other hand, conventionally, since the dimension Wa in the width direction of the small block substantially coincides with the dimension between the on-site joint portions 21 between the small blocks, the work space is hardly taken and the welding work is finished on the ground. There was a need.
[0035]
In the present embodiment, in consideration of lifting with the packaging frame 16 attached, the height of the frame column 16a is set to Hb, and the suspension tube 13 in the longitudinal direction of the heat transfer tube coil of the frame column 16a. Are set so as to substantially coincide with the dimensions between the butt welding positions with the upper and lower stages.
[0036]
Next, with reference to FIG. 1 and FIG. 6, the lifting of the horizontally placed heat transfer tube group according to the embodiment of the present invention will be described. FIG. 1 shows the lifting procedure in time series from the left to the right in the figure.
[0037]
First, after the boiler body supporting steel frame 1 is built, a lifting device 17 such as a plurality of center hole jacks 17 a is installed on the top beam 11, the sling bolt 2 is lowered to the ground, and the lifting beam 18 is placed below the sling bolt 2. And a hanging means such as a wire or a rod is attached to the hanging pipe header 14. In this case, a suspension means such as a wire or a rod can be directly attached to the suspension pipe header 14 from the top beam 11 and the lifting beam 18 can be omitted.
[0038]
A pipe row pitch adjusting means 17 is attached in the vicinity of the butt welding position which becomes the lower end of the stub group 15 of the suspension pipe header 14, and the pipe row of the suspension pipe which becomes the lower end of the stub group 15 by the means 17. The pitch is set to the tube row pitch of the uppermost small block 10a.
[0039]
Next, the butt welding position that is the lower end of the stub group 15 of the suspension pipe header 14 evades the butt welding position with the suspension pipe 13 that is the upper end of the small block 10a of the heat transfer pipe group installed at the uppermost stage. Lift to height.
[0040]
Next, the small block 10a of the heat transfer tube group installed on the transported uppermost stage is moved almost directly below the suspension pipe header 14, and the packaging frame 16 is not disassembled as a first-stage coupling. Groove alignment and butt welding between the suspension pipes 13 are performed.
[0041]
In this case, a suspension means such as a wire or a rod for suspending the frame column 16a is provided in the packing frame 16 of the small block 10a installed at the uppermost stage on the lifting beam 18, and this is provided at the upper end of the frame column 16a. Since the load of the small block 10a can be transmitted, the groove alignment between the suspension pipes 13 and the butt welding can be performed after lifting, and work on the ground can be reduced.
[0042]
Hereinafter, for the second and subsequent stages, after lifting up to the height that dodges the next small block, only the frame pillars 16a are joined together, and a small block, for example, 10d installed at the lowest stage, is joined by the frame pillars 16a. After that, as shown in FIG. 5, all stages are lifted up to the set position.
[0043]
Next, after all the stages are lifted to the set position, the suspending pipes and the heat transfer pipes of each stage are subjected to butt welding, and then the packaging frame 16 is disassembled and lowered to the ground.
[0044]
Next, the tube row pitch adjusting means 17 is removed, the tube row pitch is adjusted to the set dimension, the small blocks of the same heat transfer tube group are joined together by the restraining means at the on-site joint point 20, and integrated as a heat transfer tube group, Complete the installation.
[0045]
Another embodiment of the present invention is shown in FIG. In this embodiment, from the suspension pipe header 14 to the butt welding position with the suspension pipe 13 is lifted at the first stage of installation, and then a suspension means such as a wire or a rod is directly attached from the top girder 11. Is lowered to the ground, and the small blocks are joined to the frame pillars 16a of the packing frame 16 and the like, thereby lifting all the stages in sequence.
[0046]
According to this embodiment, installation of the entire heat transfer tube group can be performed in parallel work, and production, transportation and lifting can be performed in order from the heat transfer tube group installed in the top stage in accordance with the installation process. Process control.
[0047]
Still another embodiment of the present invention is shown in FIGS. In this embodiment, the range of the small blocks is the sum of the upper and lower small blocks. According to this embodiment, the upper and lower small blocks are assembled on the factory side in advance. The time required for lifting and butt welding after lifting can be halved.
[0048]
In the present invention, when the horizontal heat transfer tube group 10 in a factory is divided into small blocks by dividing the horizontal heat transfer tube group 10 in the width direction of the boiler can, the structure of the small block is the tube row pitch of each heat transfer tube coil, that is, the tube of the suspension tube. Since the row pitch is smaller than the set dimension at the end of installation, and the packing frame is placed in close contact with the heat transfer tube coil outside each small block, interference in the boiler width direction when each small block is lifted Can be prevented, and a sufficient working space can be ensured when suspended at the set position.
[0049]
For this reason, it is not necessary to dismantle the packaging frame of the small block on the ground, and if there are a plurality of heat transfer tube groups, it is only necessary to weld the upper and lower stages between the packaging frames with a minimum number of points, Ground work that needs to be reduced as much as possible to reduce the progress of installation work can be reduced.
[0050]
Furthermore, since the installation of each wall that surrounds the rear heat transfer wall chamber 5 serving as a storage space for the horizontal heat transfer tube group 10 has a sufficient working space between the horizontal heat transfer tube group, the horizontal heat transfer tube group It can be done in parallel with the lifting of the rear wall, and after all the lifting work related to the rear heat transfer wall chamber is completed, it is possible to safely connect hundreds of lifting tubes, heat transfer tube groups, and each wall surrounding the rear heat transfer wall chamber in a sufficient work space. Welding of joints can be performed.
[0051]
The uppermost one of the small blocks that have finished the lifting operation is supported by the suspension tube header 14 via the suspension tube 13, and the suspension tube 13 from the suspension tube header 14. The tube row pitch is the set dimension at the end of installation in the suspended header 14, and the tube row pitch adjusting means 17 at the connection portion with the uppermost stage, that is, at the end of installation, by the tube row pitch adjusting means 17. The pitch is smaller than the set dimension.
[0052]
For this reason, by removing the tube row pitch adjusting means 17 at the final stage of installation, the tube row pitches of all the heat transfer tube coils constituting the heat transfer tube group can be adjusted to the set dimensions at the end of installation by a simple operation. Can do.
[0053]
It should be noted that the packaging frame can be removed and suspended before the operation of adjusting the tube row pitch to the dimension at the end of installation.
[0054]
【The invention's effect】
According to the transport and installation method and the transport and installation structure of the horizontal heat transfer tube group of the present invention, since the horizontal heat transfer tube group is made compact, the transportation work is improved and the ground work in the installation is performed by lifting each packaging frame. Can be greatly reduced. In addition, since the work can be performed in parallel with the installation work of other boiler body parts, the construction period can be greatly shortened and the safety of the assembly work at a high place can be improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a procedure for lifting a horizontal heat transfer tube group according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a procedure for lifting a horizontal heat transfer tube group according to another embodiment of the present invention.
FIG. 3 is an explanatory diagram of a work space in the storage space of the horizontal heat transfer tube group according to the embodiment of the present invention.
FIG. 4 is a perspective view showing a small block structure of a horizontally placed heat transfer tube group according to an embodiment of the present invention and an attached state of a packing frame.
FIG. 5 is an explanatory diagram in the case where the tube row pitch of the heat transfer tube coil or the suspension tube of the horizontal heat transfer tube group according to the embodiment of the present invention is minimized.
FIG. 6 is a perspective view of a lifting form for each small block of the horizontal heat transfer tube group according to the embodiment of the present invention.
FIG. 7 is an explanatory diagram of a procedure for lifting a horizontal heat transfer tube group according to another embodiment of the present invention.
FIG. 8 is a perspective view showing a small block structure of a horizontally placed heat transfer tube group and a mounting state of a packing frame according to another embodiment of the present invention.
FIG. 9 is a typical configuration diagram of a large boiler having a horizontal heat transfer tube group.
FIG. 10 is an explanatory diagram of a procedure for lifting a horizontal heat transfer tube group according to a conventional example.
FIG. 11 is a perspective view showing a small block structure of a horizontally placed heat transfer tube group and a mounting state of a packaging frame according to a conventional example.
FIG. 12 is an explanatory diagram of a pitch of a heat transfer tube coil or a suspension tube of a horizontal heat transfer tube group according to a conventional example.
[Explanation of symbols]
2 Sling bolt 11 Top girder 14 Suspension pipe header 15 Stub group 16 Packing frame 17 Lifting device 18 Lifting beam

Claims (3)

ボイラからの排ガス流路に、ガス流れ方向に対して直管部がほぼ直角となるように横置きに配置される複数枚の伝熱管群を据付ける方法において、
前記伝熱管群を複数の小伝熱管群にそれぞれ分割し、その小伝熱管群の伝熱管コイルの缶幅方向の管列間隔を、梱包を含めて据付け寸法より縮小した寸法となるように梱包して現地まで輸送し、ボイラ建屋の横置き伝熱管群の収納部の略直下部へ搬入し、吊り上げた後に前記梱包を外して、伝熱管群の管列を該間隔が据付け寸法となるように缶幅方向に広げることを特徴とする横置き伝熱管群の据付け方法。
In the method of installing a plurality of heat transfer tube groups that are arranged horizontally so that the straight pipe portion is substantially perpendicular to the gas flow direction in the exhaust gas flow path from the boiler,
The heat transfer tube group is divided into a plurality of small heat transfer tube groups, and the tube row spacing in the can width direction of the heat transfer tube coil of the small heat transfer tube group is packed so as to be a size smaller than the installation size including packing. Transport to the site, carry it to the lower part of the storage part of the horizontal heat transfer tube group in the boiler building, lift it, remove the packing, and place the tube row of the heat transfer tube group so that the distance is the installation dimension A horizontal heat transfer tube group installation method characterized by spreading in the width direction.
請求項1記載において、ガス流れに対して複数段が配置される伝熱管群のうち、前回に搬入した上流側の伝熱管群を、今回搬入する下流側の伝熱管群をかわす高さ以上に吊り上げ、梱包同士を最少個所数で接合し、次回搬入する下流側の伝熱管群をかわす高さ以上に吊り上げ、前記吊り上げを順次行い、最下流側の伝熱管群の梱包の接合が終了した後は、全段を据付け位置に吊り上げ、前記梱包を外して下降させると共に、それぞれの伝熱管群の管列を該間隔が据付け寸法となるように缶幅方向に広げることを特徴とする横置き伝熱管群の据付け方法。In claim 1, among the heat transfer tube groups in which a plurality of stages are arranged with respect to the gas flow, the upstream heat transfer tube group carried in last time is higher than the height of dodging the downstream heat transfer tube group carried in this time. After lifting, joining the packages together with the minimum number of places, lifting the downstream heat transfer tube group to be carried in next time to a height higher than dodging, performing the above-mentioned lifting sequentially, after joining the packaging of the most downstream heat transfer tube group is completed The horizontal transmission is characterized in that all the stages are lifted to the installation position, the packaging is removed and lowered, and the tube rows of the respective heat transfer tube groups are expanded in the can width direction so that the interval becomes the installation dimension. How to install the heat tube group. ボイラからの排ガス流路に、ガス流れ方向に対して直管部がほぼ直角となるように横置きに配置される複数枚の伝熱管群の据付け構造体において、
前記伝熱管群が分割した複数の小伝熱管群で構成され、その小伝熱管群の伝熱管コイルの缶幅方向の管列間隔は梱包を含めて据付け寸法より縮小した寸法であり、吊り上げ後に前記梱包が取り外され、伝熱管群の缶列を缶幅方向に広げることによってその缶列間隔を据付け寸法にできることを特徴とする横置き伝熱管群の据付け構造体。
In the installation structure of a plurality of heat transfer tube groups that are arranged horizontally in the exhaust gas flow path from the boiler so that the straight pipe portion is substantially perpendicular to the gas flow direction,
The heat transfer tube group is composed of a plurality of small heat transfer tube groups, and the tube row interval in the can width direction of the heat transfer tube coil of the small heat transfer tube group is a size smaller than the installation size including packing, and after lifting, the packing The installation structure of the horizontal heat transfer tube group is characterized in that the space between the can rows can be set to the installation size by expanding the can row of the heat transfer tube group in the can width direction.
JP21636496A 1996-08-16 1996-08-16 Installation method and structure of horizontal heat transfer tube group Expired - Fee Related JP3801267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21636496A JP3801267B2 (en) 1996-08-16 1996-08-16 Installation method and structure of horizontal heat transfer tube group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21636496A JP3801267B2 (en) 1996-08-16 1996-08-16 Installation method and structure of horizontal heat transfer tube group

Publications (2)

Publication Number Publication Date
JPH1061902A JPH1061902A (en) 1998-03-06
JP3801267B2 true JP3801267B2 (en) 2006-07-26

Family

ID=16687421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21636496A Expired - Fee Related JP3801267B2 (en) 1996-08-16 1996-08-16 Installation method and structure of horizontal heat transfer tube group

Country Status (1)

Country Link
JP (1) JP3801267B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939060B2 (en) * 2006-01-06 2012-05-23 三菱重工業株式会社 Waste heat recovery boiler and method for assembling the boiler.
JP5862213B2 (en) * 2011-11-09 2016-02-16 株式会社Ihi How to build a tower boiler
CN109604854B (en) * 2018-12-29 2020-12-25 哈电集团(秦皇岛)重型装备有限公司 Assembly welding method of C-shaped heat exchange tube set

Also Published As

Publication number Publication date
JPH1061902A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
EP1662198B1 (en) Heat transfer tube panel module and method of constructing exhaust heat recovery boiler using the module
KR910000816B1 (en) Modular exhaust gas system generater with common boiler casing
US7357100B2 (en) Heat exchanger tube panel module, and method of constructing exhaust heat recovery boiler using the same
ES2234719T3 (en) STEAM GENERATOR AND ASSEMBLY PROCEDURE FOR THE SAME.
US20090265935A1 (en) Method for assembling a steam generator
US5722354A (en) Heat recovery steam generating apparatus
US3608525A (en) Vapor generator and structural unit therefor
JP3801267B2 (en) Installation method and structure of horizontal heat transfer tube group
JP4234517B2 (en) Waste heat recovery boiler and its installation method
JP2003222302A (en) Constructing method of exhaust heat recovery boiler and heat transfer tube panel block used in method
JPH08159402A (en) Boiler apparatus and method of repairing heat transfer device
JP2007107787A (en) Installation method of boiler facility
JPS5944504A (en) Temporarily installed scaffold in boiler furnace
JPH0355723B2 (en)
JP5862213B2 (en) How to build a tower boiler
JP7465792B2 (en) Support mechanism for heat recovery steam generator
JPH11281002A (en) Method for assembling and installing heat recovery apparatus in boiler and jig for assembling heat recovery apparatus
JP2753176B2 (en) Heat transfer tube panel
JP2001116201A (en) Waste heat recovery boiler
JP2021139514A (en) Waste heat collection boiler, connecting tool and construction method of waste heat collection boiler
US10145626B2 (en) Internally stiffened extended service heat recovery steam generator apparatus
JPH05126486A (en) Exhaust gas economizer
JP2003161584A (en) Condenser
JPH04313603A (en) Supporting apparatus for header in exhaust-heat recovery boiler
JPH06323502A (en) Modularity construction method for rear transferring section of pendant type boiler

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees