JP2003222304A - Support structure of heat transfer tube panel and exhaust heat recovery boiler - Google Patents

Support structure of heat transfer tube panel and exhaust heat recovery boiler

Info

Publication number
JP2003222304A
JP2003222304A JP2002024363A JP2002024363A JP2003222304A JP 2003222304 A JP2003222304 A JP 2003222304A JP 2002024363 A JP2002024363 A JP 2002024363A JP 2002024363 A JP2002024363 A JP 2002024363A JP 2003222304 A JP2003222304 A JP 2003222304A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
support
vibration
support structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002024363A
Other languages
Japanese (ja)
Inventor
Eiji Murakami
英治 村上
Mitsugi Musashi
貢 武蔵
Atsuo Kawahara
淳夫 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2002024363A priority Critical patent/JP2003222304A/en
Publication of JP2003222304A publication Critical patent/JP2003222304A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a support structure of a heat transfer tube panel which can prolong the life of the heat transfer tube support by decreasing a thermal stress (temperature difference) generated at a heat transfer tube and the heat transfer tube support on the rear flow side of a duct burner, especially the thermal stress (temperature difference) at a welded part. <P>SOLUTION: In this support structure, between adjacent vibration proof supports 22, 23; 25, 26; 28, 29 made of a honeycomb structure for welding and fixing each of the heat transfer tubes 31, arranged with their longitudinal direction crossing the pipe axis direction of the heat transfer tube 31 in a gas passage and bundling a plurality of the heat transfer tubes 31, plate-state supports 21, 24; 27, 30 are arranged in a space where the heat transfer tube 31 is not arranged, and the vibration proof supports 22, 23; 25, 26; 28, 29 corresponding to a portion of a gap between the vibration proof support and the heat transfer tube 31 are welded and connected to contact portions 32a and 32b of the plate- state supports 21, 24; 27, 30. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱ガスが流れるガス流
路内に配置して蒸気を発生させる伝熱管のサポート構造
に関し、特にガスタービン排ガスからの熱を回収して蒸
気を発生させる排熱回収ボイラに関する。また、伝熱管
パネルに設置する伝熱管サポートに発生する熱応力を低
減し、伝熱管サポートの疲労寿命を伸ばして許容できる
起動停止回数を増加できる伝熱管のサポート構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a support structure for a heat transfer tube which is arranged in a gas passage through which hot gas flows to generate steam, and more particularly to an exhaust structure for recovering heat from a gas turbine exhaust gas to generate steam. Regarding heat recovery boilers. Further, the present invention relates to a heat transfer tube support structure capable of reducing the thermal stress generated in the heat transfer tube support installed in the heat transfer tube panel, extending the fatigue life of the heat transfer tube support, and increasing the allowable number of start-stop operations.

【0002】[0002]

【従来の技術】コンバインドサイクル発電プラントは、
ガスタービンで発電を行うと共に、ガスタービンから排
出された排ガス中の熱を排熱回収ボイラで回収して蒸気
を発生させ、蒸気タービンでも発電を行う。一般に、コ
ンバインドサイクル発電プラントは、発電効率が高いこ
とに加えて負荷応答性が高く、急激な電力需要の増加に
対応できるという特徴があり、近年多用される傾向にあ
る。
2. Description of the Related Art A combined cycle power plant is
Power is generated by the gas turbine, and heat in the exhaust gas discharged from the gas turbine is recovered by an exhaust heat recovery boiler to generate steam, and power is also generated by the steam turbine. In general, a combined cycle power plant has characteristics that it has high power generation efficiency and high load responsiveness, and can cope with a sudden increase in power demand.

【0003】図4に横型排熱回収ボイラの装置構成の一
例を示す。図4の排熱回収ボイラは、ボイラ入口にダク
トバーナ(助燃バーナ)を配置し、伝熱管を鉛直方向に
配置した横置き型の自然循環ボイラであり、ケーシング
2内の排ガス流れ方向1に沿って、ダクトバーナ13、
過熱器3、高圧蒸発器4、脱硝装置5、高圧節炭器6、
低圧蒸発器7及び低圧節炭器8が配置されている。
FIG. 4 shows an example of the device configuration of a horizontal exhaust heat recovery boiler. The exhaust heat recovery boiler of FIG. 4 is a horizontal type natural circulation boiler in which a duct burner (auxiliary burner) is arranged at the boiler inlet, and heat transfer tubes are arranged in the vertical direction. , Duct burner 13,
Superheater 3, high pressure evaporator 4, denitration device 5, high pressure economizer 6,
A low pressure evaporator 7 and a low pressure economizer 8 are arranged.

【0004】図示しないガスタービンからの排ガス1は
ケーシング2内に流入し、ダクトバーナ13の火炎14
によってガス温度を上昇させ、過熱器3、高圧蒸発器4
を通過して熱交換した後で脱硝装置5に入り、排ガス中
の窒素酸化物が除去される。更にこの排ガス1は高圧節
炭器6、低圧蒸発器7、低圧節炭器8を順次通過し、伝
熱管内の内部流体と熱交換され、ガス温度が低下し、図
示していない煙突から排出される。
Exhaust gas 1 from a gas turbine (not shown) flows into a casing 2, and a flame 14 of a duct burner 13
The gas temperature is raised by the superheater 3, high-pressure evaporator 4
After passing through and heat exchange, it enters the denitration device 5, and nitrogen oxides in the exhaust gas are removed. Further, the exhaust gas 1 sequentially passes through the high-pressure economizer 6, the low-pressure evaporator 7, and the low-pressure economizer 8, undergoes heat exchange with the internal fluid in the heat transfer tube, the gas temperature decreases, and the gas is discharged from a stack (not shown). To be done.

【0005】図5には排熱回収ボイラの入口から出口ま
での排ガス1の温度変化を示す。ダクトバーナ13がな
い排熱回収ボイラの温度変化曲線61の場合には、ガス
タービンから排出された排ガス1の温度は過熱器3から
低圧節炭器8に至る各伝熱管によって熱交換されるの
で、徐々に温度が低下する。一方、ダクトバーナ13が
ある排熱回収ボイラの温度変化曲線60の場合は、ダク
トバーナ13によって排ガス温度が急上昇し、ダクトバ
ーナ13がない場合に比べて過熱器3から低圧節炭器8
に至る各伝熱管による熱交換量が大きいため、排ガスの
温度は急激に低下する。一般に、ガスタービンの排ガス
温度は600℃程度で、ダクトバーナ13によって排ガ
ス1の温度が700〜1000℃程度まで上昇する。
FIG. 5 shows the temperature change of the exhaust gas 1 from the inlet to the outlet of the exhaust heat recovery boiler. In the case of the temperature change curve 61 of the exhaust heat recovery boiler without the duct burner 13, the temperature of the exhaust gas 1 discharged from the gas turbine is heat-exchanged by the heat transfer tubes from the superheater 3 to the low pressure economizer 8, The temperature gradually decreases. On the other hand, in the case of the temperature change curve 60 of the exhaust heat recovery boiler with the duct burner 13, the exhaust gas temperature sharply rises due to the duct burner 13, and compared with the case without the duct burner 13, the superheater 3 to the low-pressure economizer 8
Due to the large amount of heat exchange by each heat transfer tube up to, the temperature of the exhaust gas drops sharply. Generally, the exhaust gas temperature of the gas turbine is about 600 ° C., and the temperature of the exhaust gas 1 is raised to about 700 to 1000 ° C. by the duct burner 13.

【0006】図4に示すダクトバーナ13と過熱器3の
詳細な構造を図6に示す。図6において、ダクトバーナ
13には3段のバーナ131a、131b、131cが
取付けられており、それぞれのバーナで燃料が燃焼し
て、火炎132a、132b、132cを形成する。過
熱器3は上部管寄せ120および下部管寄せ121を3
列の伝熱管123a、123b、123cで連結した伝
熱管パネルで構成され、伝熱管吊りサポート122でケ
ーシング2から吊り下げられている。この伝熱管パネル
には、排ガス1の流れによって伝熱管123が振動する
ことを防止するために、伝熱管サポート124a〜12
4fが溶接接続されている。
Detailed structures of the duct burner 13 and the superheater 3 shown in FIG. 4 are shown in FIG. In FIG. 6, three-stage burners 131a, 131b, 131c are attached to the duct burner 13, and the fuel burns in each burner to form flames 132a, 132b, 132c. The superheater 3 includes an upper head 120 and a lower head 121.
It is composed of heat transfer tube panels connected by rows of heat transfer tubes 123a, 123b, 123c, and is suspended from the casing 2 by a heat transfer tube suspension support 122. In this heat transfer tube panel, in order to prevent the heat transfer tube 123 from vibrating due to the flow of the exhaust gas 1, the heat transfer tube supports 124 a to 12 a.
4f is welded and connected.

【0007】[0007]

【発明が解決しようとする課題】前記従来技術におい
て、ダクトバーナ13から離れたガス流路内に配置され
た伝熱管群には、熱吸収効率を高めるために管外周にフ
ィンを巻き付けた構造体を用いるが、ダクトバーナ13
の近傍の伝熱管123a〜123cは火炎からの輻射熱
を直接受けるため、その外周にフィンを巻き付けていな
い伝熱管(裸管)を用いる。
In the above-mentioned prior art, the heat transfer tube group arranged in the gas flow path away from the duct burner 13 has a structure in which fins are wound around the outer circumference of the tube in order to enhance heat absorption efficiency. Used, but duct burner 13
Since the heat transfer tubes 123a to 123c in the vicinity of are directly subjected to radiant heat from the flame, heat transfer tubes (bare tubes) having no fins wound around their outer circumferences are used.

【0008】通常、伝熱管123a〜123cと管寄せ
120、121の溶接はフィン付き伝熱管を基準にした
複雑な曲面上を自動溶接することで行われるが、数量的
に比較的少ない裸管から成る伝熱管とその管寄せの溶接
もコスト低減のため、前記フィン付き伝熱管と同じ手順
(溶接座標位置、肉盛厚さなど)に従って自動溶接が行
われている。
Usually, the heat transfer tubes 123a to 123c and the headers 120 and 121 are welded by automatically welding on a complicated curved surface based on the heat transfer tube with fins. In order to reduce the cost, the welding of the heat transfer tube and the heat transfer tube is performed automatically according to the same procedure as the heat transfer tube with fins (welding coordinate position, overlay thickness, etc.).

【0009】そのためダクトバーナ13の近傍の伝熱管
123a〜123cはフィンが無い分、ダクトバーナ1
3に近い伝熱管群の隣接伝熱管同士の間隔が比較的大き
くなり、その間隔部分に何も部材がないため、伝熱管伝
熱管が熱変形しやすいという問題が発生する。
Therefore, since the heat transfer tubes 123a to 123c near the duct burner 13 have no fins, the duct burner 1
Since the interval between adjacent heat transfer tubes of the heat transfer tube group close to 3 becomes relatively large and there is no member in the interval portion, there is a problem that the heat transfer tube is easily thermally deformed.

【0010】また、伝熱管サポート124a〜124f
は火炎からの輻射熱を受けるのにもかかわらず、伝熱管
123a〜123c内には流体が流れているため、それ
ぞれのメタル温度に差が生じて伝熱管サポート124a
〜124fと伝熱管123a〜123cとの間に過大な
熱応力が発生し、プラントの起動停止によって両者の溶
接部が疲労損傷を受け、場合によっては溶接部が破断す
る場合がある、本発明の課題は、ダクトバーナ後流側の
伝熱管の変形を防ぎ、また伝熱管と伝熱管サポートとの
間に発生する熱応力(温度差)、特に溶接部の熱応力
(温度差)を減少させて、伝熱管及び伝熱管サポートの
寿命を増加させる伝熱管パネルのサポート構造及び該サ
ポート構造を備えた排熱回収ボイラを提供することであ
る。
Further, the heat transfer tube supports 124a to 124f
Despite receiving radiant heat from the flame, since the fluid flows in the heat transfer tubes 123a to 123c, a difference occurs between the metal temperatures of the heat transfer tubes 123a to 123c, and the heat transfer tube support 124a
~ 124f and the heat transfer pipes 123a to 123c, excessive thermal stress occurs, the welded parts of both are fatigue-damaged by the start and stop of the plant, and in some cases, the welded parts may be broken. The problem is to prevent deformation of the heat transfer tube on the downstream side of the duct burner, and to reduce the thermal stress (temperature difference) generated between the heat transfer tube and the heat transfer tube support, especially the thermal stress (temperature difference) of the welded part, A heat transfer tube and a support structure for a heat transfer tube panel that increases the life of the heat transfer tube support, and an exhaust heat recovery boiler equipped with the support structure.

【0011】[0011]

【課題を解決するための手段】本発明の上記課題は、次
のような手段で解決される。すなわち、熱ガス流路内に
配置した伝熱管と、長手方向が伝熱管の管軸方向に直交
して配置され、かつ複数の伝熱管を束ねるように各伝熱
管を空孔内部に収容して各伝熱管との接触部を固定する
防振サポートを備えた伝熱管サポート構造であって、隣
接する二つの前記防振サポートの間における伝熱管が配
置されない空間に板状サポートを配置し、前記防振サポ
ートと伝熱管との間の空隙がある部位に対応する防振サ
ポートと板状サポートの当接部位を溶接接続する伝熱管
サポート構造である。
The above-mentioned problems of the present invention can be solved by the following means. That is, the heat transfer tubes arranged in the hot gas flow path, the longitudinal direction is arranged orthogonal to the tube axis direction of the heat transfer tubes, and each heat transfer tube is housed inside the hole so as to bundle a plurality of heat transfer tubes. A heat transfer tube support structure having a vibration proof support for fixing a contact portion with each heat transfer tube, wherein a plate-shaped support is arranged in a space in which a heat transfer tube between two adjacent vibration proof supports is not arranged, This is a heat transfer tube support structure for welding and connecting the abutting portions of the vibration support and the plate-shaped support corresponding to the portion having the gap between the vibration support and the heat transfer tube.

【0012】本発明の前記伝熱管サポート構造におい
て、複数の伝熱管の端部に各伝熱管内の流体が集合する
伝熱管管寄せを設け、前記防振サポートの内、伝熱管管
寄せに近い部分の防振サポート以外の防振サポートは、
伝熱管の管軸に直交する方向に二つの折れ曲がり板を張
り合わせ、得られる空孔部に伝熱管を配置した構造体を
用いることができる。
In the heat transfer tube support structure of the present invention, a heat transfer tube header for collecting the fluid in each heat transfer tube is provided at an end of the plurality of heat transfer tubes, and is close to the heat transfer tube header among the vibration isolation supports. Anti-vibration support other than the part's anti-vibration support,
It is possible to use a structure in which two bent plates are attached to each other in a direction orthogonal to the tube axis of the heat transfer tube, and the heat transfer tube is arranged in the obtained hole portion.

【0013】また、二つの折れ曲がり板を張り合わせて
得られる防振サポートの空孔部の伝熱管管軸に直交する
方向の断面形状は六角形状(ハニカム形状)、四角形状
()四辺形状)などとすることができ、防振サポートと
伝熱管との接触部を溶接して固定して用いる。
Further, the cross-sectional shape of the hole portion of the vibration isolation support obtained by pasting the two bent plates in a direction orthogonal to the heat transfer tube tube axis is hexagonal (honeycomb shape), quadrangular () square shape, etc. It is possible to weld and fix the contact portion between the vibration-proof support and the heat transfer tube.

【0014】また、伝熱管を支持する部位が熱ガスの流
れ方向に対して千鳥状に配置することで熱ガスとの熱交
換が促進される。
Further, heat exchange with the hot gas is promoted by arranging the portions supporting the heat transfer tubes in a zigzag pattern in the flow direction of the hot gas.

【0015】さらに、前記伝熱管サポート構造をガスタ
ービン燃焼排ガスからの熱を回収して蒸気を発生させる
伝熱管群を配置した排熱回収ボイラのガス流路に備える
ことができる。
Further, the heat transfer tube support structure may be provided in a gas passage of an exhaust heat recovery boiler in which a heat transfer tube group for recovering heat from a gas turbine combustion exhaust gas and generating steam is arranged.

【0016】[0016]

【作用】ダクトバーナ後流側に配置された隣接する二つ
の防振サポートの間における伝熱管のない空間に板状サ
ポートを配置することで伝熱管の熱変形を防ぎ、さらに
防振サポートと伝熱管との間の空隙がある部位に対応す
る防振サポートと板状サポートの当接部位を溶接接続す
ることで伝熱管の熱変形をさらに強固に防ぐことができ
る。
[Operation] By disposing the plate-shaped support in the space where there is no heat transfer tube between two adjacent vibration isolation supports arranged on the downstream side of the duct burner, thermal deformation of the heat transfer tube is prevented, and the vibration isolation support and heat transfer tube are also provided. It is possible to more firmly prevent thermal deformation of the heat transfer tube by welding and connecting the abutting portions of the vibration-proof support and the plate-shaped support corresponding to the portion having the gap between the heat-transfer tube and the plate-shaped support.

【0017】また、排熱回収ボイラの運転中、伝熱管に
は内部流体(蒸気)が流れているので冷却されるが、防
振サポートは冷却されないので伝熱管と防振サポートに
は大きな温度差が発生している。防振サポートと伝熱管
が接する部位では防振サポートが伝熱管に冷却されるの
で、防振サポートは局所的に温度が低下し、この部位に
熱伸び差が生じて局所的に過大な熱応力が発生する。
Further, during operation of the exhaust heat recovery boiler, the internal fluid (steam) flows through the heat transfer tube, so that it is cooled, but the vibration isolating support is not cooled, so there is a large temperature difference between the heat transfer tube and the vibration isolating support. Is occurring. Since the vibration-isolating support is cooled by the heat-transfer tube at the part where the vibration-isolating support and the heat-transfer tube are in contact with each other, the temperature of the vibration-isolating support locally drops, and a difference in thermal expansion occurs at this part, which causes locally excessive thermal stress. Occurs.

【0018】本発明の伝熱管サポート構造では、防振サ
ポートと伝熱管との接触位置に防振サポートと板状サポ
ートとの間の溶接部を設けていないので、前記溶接部に
過大な熱応力が発生することがない。したがって、プラ
ントの起動停止によって溶接部が疲労損傷を受けて溶接
部が破断したり、許容できる起動停止回数が少なくなる
ようなことがない。
In the heat transfer tube support structure of the present invention, since no welded portion is provided between the vibration isolation support and the plate-shaped support at the contact position between the vibration isolation support and the heat transfer tube, excessive heat stress is applied to the welded portion. Does not occur. Therefore, the start and stop of the plant will not cause fatigue damage to the welded part, causing the welded part to break or reducing the allowable number of start and stop.

【0019】[0019]

【発明の実施の形態】本発明になる伝熱管パネルの伝熱
管サポート構造の実施の形態について図面と共に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a heat transfer tube support structure for a heat transfer tube panel according to the present invention will be described with reference to the drawings.

【0020】[0020]

【実施例】図1には本発明の一実施例の伝熱管パネルの
断面図を示すが、伝熱管31は図1のように排ガス33
の流れ方向に対して千鳥状に配置されており、伝熱管は
補強板21、30、伝熱管支持板22、23、25、2
6、28、29、スペース板24、27の合計10枚の
板を接合した構造の伝熱管サポートに支持されている。
伝熱管サポートを構成している10枚の板状部材21〜
30のうち、伝熱管支持板22、23、25、26、2
8、29の6枚の部材は折り曲げられた板であり、隣接
する2枚の伝熱管支持板で6角形状の空孔を作成し、こ
の空孔中に伝熱管31を収容して伝熱管31を固定する
構造である。それぞれの伝熱管31は板状部材22、2
3と6ヶ所で接触しており、各接触点には隙間ができな
いようになっている。隣接する板状部材同士が互いに点
溶接によって接合されており、溶接位置は伝熱管31と
板状部材が接触する位置から十分に離れた位置に設けら
れている。図1の実施例では、板状部材22と補強板2
1の接合のための溶接部は溶接部32a、32bの2ヶ
所に設けられているが、必ずしも2カ所設ける必要はな
く、例えば溶接部32aだけでも良い。
1 is a sectional view of a heat transfer tube panel according to an embodiment of the present invention, in which a heat transfer tube 31 has an exhaust gas 33 as shown in FIG.
Are arranged in a zigzag pattern in the flow direction of the heat transfer tubes, and the heat transfer tubes are reinforcement plates 21 and 30, heat transfer tube support plates 22, 23, 25, and 2.
It is supported by a heat transfer tube support having a structure in which a total of ten plates 6, 28, 29 and space plates 24, 27 are joined.
Ten plate-like members 21 to 21 that constitute the heat transfer tube support
Of the 30, heat transfer tube support plates 22, 23, 25, 26, 2
Six members 8 and 29 are bent plates, and hexagonal holes are created by two adjacent heat transfer tube support plates, and the heat transfer tubes 31 are accommodated in the holes. It is a structure for fixing 31. Each heat transfer tube 31 is a plate-shaped member 22, 2
There are 3 and 6 contact points, and no gap can be made at each contact point. Adjacent plate-shaped members are joined to each other by spot welding, and the welding position is provided at a position sufficiently distant from the position where the heat transfer tube 31 and the plate-shaped members are in contact with each other. In the embodiment of FIG. 1, the plate member 22 and the reinforcing plate 2
The welded portions for joining 1 are provided at two places of the welded portions 32a and 32b, but it is not always necessary to provide at two places, and for example, only the welded portion 32a may be provided.

【0021】排熱回収ボイラの運転中、伝熱管31及び
該伝熱管31の伝熱管サポートは高温の排ガス33によ
って温度上昇する。この時、伝熱管31には内部流体
(蒸気)が流れているので冷却されるが、10枚の板状
部材21〜30で構成されている伝熱管サポートは冷却
されないので、伝熱管31と伝熱管サポートには大きな
温度差が発生する。伝熱管サポートの各板状部材22、
23、25、26、28、29が伝熱管31と接する部
位では板状部材22、23、25、26、28、29が
伝熱管31に冷却されるが、本発明になる伝熱管サポー
ト構造では、隣接する板状部材22、23、25、2
6、28、29を接合するための溶接部32a、32b
を伝熱管31と板状部材22、23、25、26、2
8、29の接触部から十分に離した位置に配置している
ので、板状部材22、23、25、26、28、29の
伝熱管31との溶接部32a、32bが伝熱管31から
冷却されることはない。
During operation of the exhaust heat recovery boiler, the temperature of the heat transfer tube 31 and the heat transfer tube support of the heat transfer tube 31 rises due to the high temperature exhaust gas 33. At this time, the internal fluid (vapor) is flowing through the heat transfer tube 31, so that the heat transfer tube 31 is cooled, but the heat transfer tube support composed of the 10 plate-shaped members 21 to 30 is not cooled. A large temperature difference occurs in the heat pipe support. Each plate member 22 of the heat transfer tube support,
The plate-shaped members 22, 23, 25, 26, 28, 29 are cooled by the heat transfer tubes 31 at the portions where 23, 25, 26, 28, 29 are in contact with the heat transfer tubes 31, but in the heat transfer tube support structure according to the present invention, , Adjacent plate members 22, 23, 25, 2
Welds 32a, 32b for joining 6, 28, 29
The heat transfer tube 31 and the plate members 22, 23, 25, 26, 2
Since they are arranged at positions sufficiently separated from the contact portions of 8, 29, the welding portions 32a, 32b of the plate-shaped members 22, 23, 25, 26, 28, 29 with the heat transfer tubes 31 are cooled from the heat transfer tubes 31. It will not be done.

【0022】したがって、後述の図7、図8に示した従
来の伝熱管サポート構造のように、隣接する板状部材2
2、23、25、26、28、29を接合する溶接部3
2a、32bに温度差が生じ、過大な熱応力が発生する
ようなことはない。
Therefore, as in the conventional heat transfer tube support structure shown in FIGS. 7 and 8 which will be described later, adjacent plate members 2 are provided.
Weld 3 for joining 2, 23, 25, 26, 28, 29
There is no occurrence of excessive thermal stress due to the temperature difference between 2a and 32b.

【0023】図2に図1のA−A’線断面のメタル温度
の変化を示す。A−A’線上における伝熱管31と板状
部材22の間には空間があるので板状部材22及び板状
部材22と板状部材21の間の溶接部32aが伝熱管3
1から冷却されることはない。そのため溶接部32aが
板状部材22と板状部材21と接するA−A’線上の部
位間に生じる温度差ΔTは図8に示した従来構造のΔT
に比べて顕著に小さくなる。したがって温度差ΔTによ
って発生する熱応力も大きく低下するので、プラントの
起動停止により生じる溶接部の疲労損傷も従来構造に比
べて小さくなる。
FIG. 2 shows a change in metal temperature in the cross section taken along the line AA 'in FIG. Since there is a space between the heat transfer tube 31 and the plate member 22 on the AA ′ line, the plate member 22 and the welded portion 32 a between the plate member 22 and the plate member 21 are connected to each other by the heat transfer tube 3.
It is not cooled from 1. Therefore, the temperature difference ΔT generated between the portions on the line AA ′ where the welded portion 32a contacts the plate-shaped member 22 and the plate-shaped member 21 is ΔT of the conventional structure shown in FIG.
It becomes significantly smaller than. Therefore, the thermal stress generated by the temperature difference ΔT is also greatly reduced, and the fatigue damage of the welded portion caused by the start and stop of the plant is smaller than that of the conventional structure.

【0024】図3には本発明の他の実施例の伝熱管パネ
ルの断面図を示す。本実施例は伝熱管支持板41、4
2、44、45、47、48の形状を、伝熱管50を収
容するための空孔が四辺形状となるようにしたものであ
る。本実施例は図1の実施例に比べて溶接部の数が少な
くなるという特徴がある。その他の本実施例の作用、効
果は図1に示す実施例と同様である。
FIG. 3 shows a cross-sectional view of a heat transfer tube panel according to another embodiment of the present invention. In this embodiment, the heat transfer tube support plates 41 and 4 are used.
The shapes of 2, 44, 45, 47 and 48 are such that the holes for accommodating the heat transfer tubes 50 are quadrilateral. This embodiment is characterized in that the number of welded parts is smaller than that of the embodiment of FIG. Other functions and effects of this embodiment are similar to those of the embodiment shown in FIG.

【0025】[0025]

【比較例】図6のB−B’線断面の平面図を図7(a)
に示す。伝熱管サポート124は複数の板状の部材を溶
接で接合したものである。この例では、補強板140、
149、伝熱管123を収容するために折り曲げ加工を
施した伝熱管支持板141、142、144、145、
147、148、伝熱管123aと123b及び123
bと123cの間隔を確保するスペース板143、14
6の合計10枚で構成されている。これら10枚の板は
隣接する板を溶接部150で溶接することにより接合し
ている。伝熱管123と伝熱管支持板141、142、
144、145、147、148は隙間なしで接触する
ようになっている。
[Comparative Example] FIG. 7A is a plan view of a cross section taken along the line BB ′ of FIG.
Shown in. The heat transfer tube support 124 is formed by welding a plurality of plate-shaped members by welding. In this example, the reinforcing plate 140,
149, heat transfer tube support plates 141, 142, 144, 145 that are bent to accommodate the heat transfer tube 123,
147, 148, heat transfer tubes 123a and 123b and 123
Space plates 143, 14 that secure the space between b and 123c
It is composed of 6 sheets in total. These 10 plates are joined by welding adjacent plates at the welded portion 150. The heat transfer tube 123 and the heat transfer tube support plates 141, 142,
The 144, 145, 147, and 148 are designed to come into contact with each other without a gap.

【0026】図7(b)には、伝熱管サポート124の
各板のメタル温度の変化曲線153を示している。排ガ
ス152は伝熱管123によって冷却され徐々に温度が
低下する。また、補強板140、伝熱管支持板141は
火炎からの輻射熱を受けるため、排ガスの流れ上流側の
方が、それらを構成するメタル温度が高くなる。また、
図7(b)には伝熱管123のメタル温度曲線154も
示している。伝熱管123には内部に蒸気が流れており
冷却されるのに対して、伝熱管サポート124は冷却さ
れないため、伝熱管123に比べてメタル温度が高くな
っている。
FIG. 7B shows a metal temperature change curve 153 of each plate of the heat transfer tube support 124. The exhaust gas 152 is cooled by the heat transfer tube 123 and the temperature thereof gradually decreases. Further, since the reinforcing plate 140 and the heat transfer tube supporting plate 141 receive radiant heat from the flame, the temperature of the metal forming them becomes higher on the upstream side of the flow of the exhaust gas. Also,
FIG. 7B also shows a metal temperature curve 154 of the heat transfer tube 123. While steam is flowing inside the heat transfer tube 123 to be cooled, the heat transfer tube support 124 is not cooled, so that the metal temperature is higher than that of the heat transfer tube 123.

【0027】図8(a)に図7(a)の補強板140と
伝熱管支持板141の溶接部150付近の拡大図を示
し、図8(b)に 図7(a)及び図8(a)のC−
C’線断面のメタル温度の変化を示す。前述のように伝
熱管123aは蒸気によって冷却されるため、そのメタ
ル温度は低いので、伝熱管支持板141と補強板140
も伝熱管支持板141と伝熱管123aの接触部から冷
却されるので、前記C−C’線に沿った断面のメタル温
度は図8(b)に示すようになり、溶接部150に大き
な温度差ΔTが発生する。
FIG. 8 (a) is an enlarged view of the reinforcing plate 140 and the heat transfer tube supporting plate 141 in the vicinity of the welded portion 150 shown in FIG. 7 (a), and FIG. 8 (b) is shown in FIGS. a) C-
The change of the metal temperature of the C'line cross section is shown. Since the heat transfer tube 123a is cooled by steam as described above, the metal temperature thereof is low, and therefore the heat transfer tube support plate 141 and the reinforcing plate 140 are used.
Also, since the heat transfer tube support plate 141 and the heat transfer tube 123a are also cooled from the contact part, the metal temperature of the cross section along the line CC 'is as shown in FIG. A difference ΔT occurs.

【0028】図7(b)には伝熱管123のメタル温度
曲線154も示している。伝熱管123には内部に蒸気
が流れており冷却されるのに対して、伝熱管サポート1
24は冷却されないため、伝熱管123に比べてメタル
温度が高くなっている。
A metal temperature curve 154 of the heat transfer tube 123 is also shown in FIG. 7 (b). While steam is flowing inside the heat transfer tube 123 to be cooled, the heat transfer tube support 1
Since 24 is not cooled, the metal temperature is higher than that of the heat transfer tube 123.

【0029】このように伝熱管サポート124の溶接部
150に大きな温度差ΔTが発生すると過大な熱応力が
発生するので、プラントの起動停止によって溶接部15
0が疲労損傷を受け、溶接部150が破断する場合があ
る、また許容できる起動停止回数が少なくなる等の問題
点がある。
When a large temperature difference ΔT occurs in the welded portion 150 of the heat transfer tube support 124, an excessive thermal stress is generated.
0 is subject to fatigue damage, the welded part 150 may be broken, and the allowable number of start-stops is reduced.

【0030】[0030]

【発明の効果】本発明になる伝熱管サポート構造によれ
ば、ダクトバーナ後流側伝熱管パネルの伝熱管サポート
に発生する熱応力(温度差)、特に溶接部の熱応力(温
度差)を減少させて、伝熱管サポートの疲労寿命を増加
することができる。
According to the heat transfer tube support structure of the present invention, the heat stress (temperature difference) generated in the heat transfer tube support of the heat transfer tube panel on the downstream side of the duct burner, especially the heat stress (temperature difference) of the welded portion is reduced. Thus, the fatigue life of the heat transfer tube support can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例になる伝熱管パネルの平面図
である。
FIG. 1 is a plan view of a heat transfer tube panel according to an embodiment of the present invention.

【図2】 図1のA−A’線断面のメタル温度の変化を
示す図である。
FIG. 2 is a diagram showing changes in metal temperature in a cross section taken along the line AA ′ of FIG.

【図3】 本発明の他の実施例になる伝熱管パネルの平
面図である。
FIG. 3 is a plan view of a heat transfer tube panel according to another embodiment of the present invention.

【図4】 横型排熱回収ボイラの装置構成を示す図であ
る。
FIG. 4 is a diagram showing a device configuration of a horizontal exhaust heat recovery boiler.

【図5】 ダクトバーナの有無による排ガス温度変化の
比較を示す図である。
FIG. 5 is a diagram showing a comparison of changes in exhaust gas temperature with and without a duct burner.

【図6】 ダクトバーナ及び伝熱管パネルの詳細構造の
側面図である。
FIG. 6 is a side view of a detailed structure of a duct burner and a heat transfer tube panel.

【図7】 図6のB−B’面の平面図(図7(a))
と、該平面図における各部位の伝熱管サポートと伝熱管
のメタル温度を示す図(図7(b))である。
7 is a plan view of the BB 'plane of FIG. 6 (FIG. 7 (a)).
FIG. 9 is a diagram (FIG. 7 (b)) showing the heat transfer tube support of each part and the metal temperature of the heat transfer tube in the plan view.

【図8】 図7(a)の補強板と伝熱管支持板の溶接部
付近の拡大図(図8(a))と、図7(a)及び図8
(a)の図7のC−C’線断面のメタル温度を示す図
(図8(b))である。
8 is an enlarged view (FIG. 8 (a)) near the welded portion of the reinforcing plate and the heat transfer tube supporting plate of FIG. 7 (a), and FIG. 7 (a) and FIG.
It is a figure (FIG.8 (b)) which shows the metal temperature of CC 'line cross section of FIG. 7 of (a).

【符号の説明】[Explanation of symbols]

1 排ガス流れ方向 2 ケーシング 3 過熱器 4 高圧蒸発器 5 脱硝装置 6 高圧節炭器 7 低圧蒸発器 8 低圧節炭器 13 ダクトバーナ 14 火炎 21、30 補強板 22、23、25、26、28、29 伝熱管支持板 24、27 スペース板 31、50、12
3 伝熱管 32a、32b 溶接部 33 排ガス 41、42、44、45、47、48 伝熱管支持板 60、61 排熱回収ボイラの温度変化曲線 120 上部管寄せ 121 下部管寄
せ 122 伝熱管吊りサポート 124 伝熱管サ
ポート 131a〜131c バーナ 132a〜132
c 火炎 140、149 補強板 141、142、144、145、147、148 伝
熱管支持板 143、146 スペース板 150 溶接部 153、154 メタル温度の変化曲線
1 Exhaust gas flow direction 2 Casing 3 Superheater 4 High-pressure evaporator 5 Denitration device 6 High-pressure economizer 7 Low-pressure evaporator 8 Low-pressure economizer 13 Duct burner 14 Flame 21, 30 Reinforcing plate 22, 23, 25, 26, 28, 29 Heat transfer tube support plates 24, 27 Space plates 31, 50, 12
3 Heat Transfer Pipes 32a, 32b Welded Part 33 Exhaust Gas 41, 42, 44, 45, 47, 48 Heat Transfer Pipe Support Plates 60, 61 Temperature Change Curve 120 of Exhaust Heat Recovery Boiler 120 Upper Pipe Head 121 Lower Pipe Head 122 Heat Pipe Lifting Support 124 Heat Transfer Tube Supports 131a to 131c Burners 132a to 132
c Flame 140, 149 Reinforcement plates 141, 142, 144, 145, 147, 148 Heat transfer tube support plates 143, 146 Space plate 150 Welds 153, 154 Change curves of metal temperature

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河原 淳夫 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Atsushi Kawahara             Babcock Hitachi 6-9 Takaracho, Kure City, Hiroshima Prefecture             Kure Office Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱ガス流路内に配置した伝熱管と、長
手方向が伝熱管の管軸方向に直交して配置され、かつ複
数の伝熱管を束ねるように各伝熱管を空孔内部に収容し
て各伝熱管との接触部を固定する防振サポートを備えた
伝熱管サポート構造であって、 隣接する二つの前記防振サポートの間における伝熱管が
配置されない空間に板状サポートを配置し、前記防振サ
ポートと伝熱管との間の空隙がある部位に対応する防振
サポートと板状サポートの当接部位を溶接接続すること
を特徴とする伝熱管サポート構造。
1. A heat transfer tube arranged in a hot gas passage and a heat transfer tube whose longitudinal direction is arranged orthogonally to the tube axis direction of the heat transfer tube, and each heat transfer tube is provided inside a hole so as to bundle a plurality of heat transfer tubes. A heat transfer tube support structure having an anti-vibration support for accommodating and fixing the contact portion with each heat transfer tube, wherein a plate-shaped support is arranged in a space between two adjacent anti-vibration supports where no heat transfer tube is placed. Then, the heat transfer tube support structure is characterized in that the abutting parts of the vibration support and the plate-like support corresponding to the part having the gap between the vibration support and the heat transfer tube are connected by welding.
【請求項2】 複数の伝熱管の端部に各伝熱管内の流体
が集合する伝熱管管寄を設け、前記防振サポートの内、
伝熱管管寄せに近い部分の防振サポート以外の防振サポ
ートは、伝熱管の管軸に直交する方向に二つの折れ曲が
り板を張り合わせ、得られる空孔部に伝熱管を配置した
構造体であることを特徴とする請求項1記載の伝熱管サ
ポート構造。
2. A heat transfer tube near the plurality of heat transfer tubes, in which fluid in each heat transfer tube collects, is provided at an end portion of the heat transfer tube,
The anti-vibration support other than the anti-vibration support near the heat transfer tube is a structure in which two bent plates are pasted together in the direction orthogonal to the tube axis of the heat transfer tube, and the heat transfer tube is placed in the resulting hole. The heat transfer tube support structure according to claim 1, wherein:
【請求項3】 防振サポートの伝熱管を支持する部位が
熱ガスの流れ方向に対して千鳥状に配置されたことを特
徴とする請求項1又は2記載の伝熱管サポート構造。
3. The heat transfer tube support structure according to claim 1, wherein the portions of the vibration isolating support that support the heat transfer tube are arranged in a staggered manner with respect to the flow direction of the hot gas.
【請求項4】 二つの折れ曲がり板を張り合わせて得ら
れる防振サポートの空孔部の伝熱管管軸に直交する方向
の断面形状が六角形状または四角形状であることを特徴
とする請求項1ないし3のいずれかに記載の伝熱管サポ
ート構造。
4. A cross-sectional shape of a hole portion of a vibration-proof support obtained by laminating two bent plates in a direction orthogonal to a heat transfer tube tube axis is hexagonal or quadrangular. The heat transfer tube support structure according to any one of 3 above.
【請求項5】 請求項1ないし3のいずれかに記載の伝
熱管サポート構造をガスタービン燃焼排ガスからの熱を
回収して蒸気を発生させる伝熱管群を配置したガス流路
に備えたことを特徴とする排熱回収ボイラ。
5. The heat transfer tube support structure according to claim 1 is provided in a gas flow path in which a heat transfer tube group for recovering heat from a gas turbine combustion exhaust gas and generating steam is arranged. A characteristic exhaust heat recovery boiler.
JP2002024363A 2002-01-31 2002-01-31 Support structure of heat transfer tube panel and exhaust heat recovery boiler Withdrawn JP2003222304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002024363A JP2003222304A (en) 2002-01-31 2002-01-31 Support structure of heat transfer tube panel and exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002024363A JP2003222304A (en) 2002-01-31 2002-01-31 Support structure of heat transfer tube panel and exhaust heat recovery boiler

Publications (1)

Publication Number Publication Date
JP2003222304A true JP2003222304A (en) 2003-08-08

Family

ID=27746835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002024363A Withdrawn JP2003222304A (en) 2002-01-31 2002-01-31 Support structure of heat transfer tube panel and exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JP2003222304A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057468A (en) * 2011-09-09 2013-03-28 Babcock Hitachi Kk Exhaust heat recovery boiler
KR101727942B1 (en) * 2015-11-30 2017-04-18 비에이치아이 주식회사 Acoustic baffle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057468A (en) * 2011-09-09 2013-03-28 Babcock Hitachi Kk Exhaust heat recovery boiler
KR101727942B1 (en) * 2015-11-30 2017-04-18 비에이치아이 주식회사 Acoustic baffle

Similar Documents

Publication Publication Date Title
WO2013118527A1 (en) Heat exchanger
JP2003222304A (en) Support structure of heat transfer tube panel and exhaust heat recovery boiler
KR101465047B1 (en) Heat recovery steam generator and method of manufacturing the same
JP2857440B2 (en) Heat transfer tube support device
TWI640736B (en) Heat exchanger using waste heat and manufacturing method of the same
US8231445B2 (en) Apparatus and method for providing detonation damage resistance in ductwork
JP5780520B2 (en) Waste heat recovery boiler
JP7220992B2 (en) Heat transfer tube support structure and heat transfer tube support method
JP2006002622A (en) Regenerator for gas turbine
US11879691B2 (en) Counter-flow heat exchanger
JP3737186B2 (en) Waste heat recovery device
JP5787154B2 (en) Waste heat recovery boiler
JP5295747B2 (en) Heat exchanger
WO2012063661A1 (en) Method for producing steam generator
JP2007212074A (en) High temperature heat exchanger
JPS597890A (en) Supporting device for heat-transmitting pipe
JPH0467081B2 (en)
JP2012154615A (en) Boiler pipe configuration of heat recovery steam generator
JP6109715B2 (en) Finned tube heat exchanger
JP2753176B2 (en) Heat transfer tube panel
JP4244483B2 (en) Support structure for in-furnace placement pipes
JP2021139514A (en) Waste heat collection boiler, connecting tool and construction method of waste heat collection boiler
KR20000008421U (en) Fin Tube Fixing Device for Combined Gas Horizontal Flow Waste Heat Recovery Boiler
JP6108107B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JP2006214625A (en) Exhaust heat recovery boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041216

Free format text: JAPANESE INTERMEDIATE CODE: A621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060522