JP5780520B2 - Waste heat recovery boiler - Google Patents

Waste heat recovery boiler Download PDF

Info

Publication number
JP5780520B2
JP5780520B2 JP2011196723A JP2011196723A JP5780520B2 JP 5780520 B2 JP5780520 B2 JP 5780520B2 JP 2011196723 A JP2011196723 A JP 2011196723A JP 2011196723 A JP2011196723 A JP 2011196723A JP 5780520 B2 JP5780520 B2 JP 5780520B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
horizontal support
support
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011196723A
Other languages
Japanese (ja)
Other versions
JP2013057468A (en
Inventor
宏昭 細井
宏昭 細井
眞一 岩田
眞一 岩田
義樹 北橋
義樹 北橋
譲 吉元
譲 吉元
清 相田
清 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2011196723A priority Critical patent/JP5780520B2/en
Publication of JP2013057468A publication Critical patent/JP2013057468A/en
Application granted granted Critical
Publication of JP5780520B2 publication Critical patent/JP5780520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Description

本発明は、排熱回収ボイラ(HRSG)に関し、特にガスタービンからの高温高速の排ガス流により励振される排熱回収ボイラの伝熱管パネルのサポート構造に関する。   The present invention relates to an exhaust heat recovery boiler (HRSG), and more particularly to a support structure for a heat transfer tube panel of an exhaust heat recovery boiler excited by a high-temperature and high-speed exhaust gas flow from a gas turbine.

急増する電力需要に応えるために、高効率発電の一環として、最近複合発電プラントが注目されている。この複合発電プラントはまず、ガスタービンによる発電を行うとともに、ガスタービンから排出される排ガス中の熱を排熱回収装置(排熱回収ボイラ)によって回収し、この排熱回収ボイラで発生した蒸気により、蒸気タービンを駆動させて発電するものである。   Recently, combined power plants have attracted attention as part of high-efficiency power generation in order to meet the rapidly increasing power demand. This combined power plant first generates power by a gas turbine, recovers heat in exhaust gas discharged from the gas turbine by an exhaust heat recovery device (exhaust heat recovery boiler), and uses steam generated in the exhaust heat recovery boiler. The steam turbine is driven to generate electricity.

この複合発電プラントは、ガスタービンによる発電と蒸気タービンによる発電を同時に行うことができるために、発電効率が高い上にガスタービンは負荷応答性に優れており、急激な電力需要の上昇、下降にも充分対応し得る負荷追従性に優れた利点もあり、特にいわゆる毎日起動停止(Daily Start Stop)運転や、週末起動停止(Weekly Start Stop)運転を行うプラントには有効である。   Since this combined power plant can perform power generation using a gas turbine and power generation using a steam turbine at the same time, the power generation efficiency is high and the gas turbine has excellent load responsiveness. There is also an advantage of excellent load followability that can be sufficiently handled, and it is particularly effective for a plant that performs a so-called daily start / stop operation or a weekend start / stop operation.

ところが、この複合発電プラントにおいては、LNG、灯油などのクリーンな燃料を使用するので、SOx量やダスト量は少なくなるが、ガスタービンの燃焼においては酸素量が多く、高温燃焼を行うために、排ガス中のNOx量が増加するので、脱硝装置を内蔵した排熱回収ボイラが用いられている。   However, in this combined power plant, since clean fuel such as LNG and kerosene is used, the amount of SOx and the amount of dust are reduced, but in the combustion of the gas turbine, the amount of oxygen is large and high temperature combustion is performed. Since the amount of NOx in the exhaust gas increases, an exhaust heat recovery boiler with a built-in denitration device is used.

図7には脱硝装置が配置された複合発電プラントの概略系統図を示す。図7において、ガスタービン1からの高温高速の排ガス11は排熱回収ボイラ(HRSG)ダクト12に設置された過熱器3、第1の蒸発器4、脱硝装置5、第2の蒸発器6、節炭器7に順次に接触して熱交換される。また第1の蒸発器4と第2の蒸発器6からの蒸気を含む水が管路28aと管路28bから汽水分離ドラム8にそれぞれ送られ、該汽水分離ドラム8から分離された蒸気は飽和蒸気管37を経て過熱器3でさらに過熱された後、主蒸気管31を経由して蒸気タービン9を駆動する過熱蒸気として利用される。蒸気タービン9で用いられた蒸気は復水器10で水Wに戻され、給水管路32に配置された給水ポンプ30により節炭器7に循環され、節炭器7でガスタービン1からの排ガス11より予熱されてドラム8内に供給される。ドラム8内の水は降水管33を通って下降し、管路35a、35bを経て蒸発器4、6へ導入され、その後、管路28a、28bを経てドラム8内に戻る。主蒸気管31に接続されたタービンバイパス管38は、蒸気タービン9をバイパスして蒸気を直接復水器10に導いても良い。   FIG. 7 shows a schematic system diagram of a combined power plant in which a denitration device is arranged. In FIG. 7, the high-temperature and high-speed exhaust gas 11 from the gas turbine 1 includes a superheater 3, a first evaporator 4, a denitration device 5, a second evaporator 6, installed in an exhaust heat recovery boiler (HRSG) duct 12. Heat is exchanged by sequentially contacting the economizer 7. Further, water containing the steam from the first evaporator 4 and the second evaporator 6 is sent to the brackish water separation drum 8 from the pipes 28a and 28b, respectively, and the steam separated from the brackish water separation drum 8 is saturated. After being further heated by the superheater 3 via the steam pipe 37, it is used as superheated steam for driving the steam turbine 9 via the main steam pipe 31. The steam used in the steam turbine 9 is returned to the water W by the condenser 10 and circulated to the economizer 7 by the feed water pump 30 arranged in the feed water line 32, and from the gas turbine 1 by the economizer 7. Preheated from the exhaust gas 11 and supplied into the drum 8. The water in the drum 8 descends through the downpipe 33 and is introduced into the evaporators 4 and 6 through the pipes 35a and 35b, and then returns to the drum 8 through the pipes 28a and 28b. The turbine bypass pipe 38 connected to the main steam pipe 31 may bypass the steam turbine 9 and guide the steam directly to the condenser 10.

また、図7には、蒸気タービン9への蒸気の流量を調節する蒸気タービン加減弁39、蒸気タービン9への蒸気の供給により蒸気のバイパス量を調節するタービンバイパス弁40および排ガスダクト12のダンパ41が設けられている。   7 shows a steam turbine control valve 39 for adjusting the flow rate of steam to the steam turbine 9, a turbine bypass valve 40 for adjusting the amount of steam bypass by supplying steam to the steam turbine 9, and a damper for the exhaust gas duct 12. 41 is provided.

以上の説明は、複合発電プラントにおける高温高速の排ガス11、給水W及び蒸気の各流れの概要を説明したものであるが、一般に、排熱回収ボイラ(HRSG)内には、過熱器3、蒸発器4、6及び節炭器7等の熱交換器が組み込まれて、排ガス11の排熱を回収するとともに排ガス11の脱硝を行うために脱硝装置5が配置されている。   Although the above description has explained the outline of each flow of the high-temperature and high-speed exhaust gas 11, feed water W, and steam in the combined power plant, generally, in the exhaust heat recovery boiler (HRSG), the superheater 3, the evaporation Heat exchangers such as the units 4 and 6 and the economizer 7 are incorporated, and a denitration device 5 is arranged to recover exhaust heat of the exhaust gas 11 and denitrate the exhaust gas 11.

図8には排熱回収ボイラ(HRSG)内に配置される熱交換器を構成する伝熱管パネル13の斜視図を示している。該伝熱管パネル13は、前記図7の過熱器3、第1の蒸発器4、第2の蒸発器6及び節炭器7等の伝熱面を構成する熱交換器であり、上部、下部管寄せ17、17とそれらの間に多数の伝熱管25を接続し、伝熱管25の外周には排ガス11からの熱を吸収し易くしたフィン26が螺旋状に巻き付けられ、溶接接続されたフィンチューブ24からなる。このような伝熱管パネル13が図8に示す例では、パネル面をガス流れに直交する方向に向けて3つ伝熱管パネル13を一ユニットとして、このユニットを複数並べて配置し、これらをガス流れに直交するボイラ左右方向の水平サポート19とガス流れ方向に沿った連結金具18で束ねている。   In FIG. 8, the perspective view of the heat exchanger tube panel 13 which comprises the heat exchanger arrange | positioned in an exhaust heat recovery boiler (HRSG) is shown. The heat transfer tube panel 13 is a heat exchanger that constitutes a heat transfer surface such as the superheater 3, the first evaporator 4, the second evaporator 6, and the economizer 7 of FIG. The headers 17 and 17 and a large number of heat transfer tubes 25 are connected between them, and fins 26 that are easy to absorb heat from the exhaust gas 11 are spirally wound around the outer periphery of the heat transfer tubes 25 and are welded. It consists of a tube 24. In the example in which such a heat transfer tube panel 13 is shown in FIG. 8, three heat transfer tube panels 13 are arranged as a unit with the panel surface facing in a direction orthogonal to the gas flow, and a plurality of these units are arranged side by side. Are bundled by a horizontal support 19 in the left-right direction of the boiler and a connecting fitting 18 along the gas flow direction.

3列の伝熱管25を千鳥配置する伝熱管パネル13の横断面図を図9に示し、図10に図9の伝熱管パネルの側面図と図11に図9の伝熱管パネル13の上下に管寄せを接続する前の状態の側面図を示している。   FIG. 9 shows a cross-sectional view of the heat transfer tube panel 13 in which the three rows of heat transfer tubes 25 are arranged in a staggered manner. FIG. 10 is a side view of the heat transfer tube panel of FIG. 9 and FIG. The side view of the state before connecting a header is shown.

これら図9、図10及び図11の断面図、側面図及び組み立て前の側面図に示す構成からなるフィンチューブ24(伝熱管25とフィン26からなる)をハニカムサポート29で束ね、さらにハニカムサポート29の外側を水平サポート19で束ねて一つの伝熱管パネル13として用いる例である。ここでは、各伝熱管パネル13は伝熱管25とその回りに螺旋状に溶接されるフィン26からなるフィンチューブ24を備え、このフィンチューブ24を2列また3列千鳥配置した例を示している。   The fin tubes 24 (consisting of the heat transfer tubes 25 and the fins 26) having the configurations shown in the cross-sectional views, the side views, and the side view before assembly in FIG. 9, FIG. 10, and FIG. This is an example in which the outside is bundled with a horizontal support 19 and used as one heat transfer tube panel 13. Here, each heat transfer tube panel 13 includes a heat transfer tube 25 and a fin tube 24 including fins 26 spirally welded around the heat transfer tube 25, and an example in which the fin tubes 24 are arranged in two or three rows in a staggered manner is shown. .

図9〜図11に示す、3列の伝熱管群を一伝熱管パネルユニットとして製造する場合には、上部、下部管寄せ17、17の間のフィンチューブ24の上下にそれぞれ波板からなるハニカムサポート29a、29b、29cの互いに接触する部分の要所を溶接接続して溶接部Yとする。   When the three rows of heat transfer tube groups shown in FIG. 9 to FIG. 11 are manufactured as one heat transfer tube panel unit, a honeycomb made of corrugated plates above and below the fin tube 24 between the upper and lower headers 17, 17. The important portions of the supports 29a, 29b, and 29c that are in contact with each other are welded to form a welded portion Y.

また、図12にHRSGの鳥瞰図を示す。HRSGはダクト12の内部に図8に示す伝熱管パネル13を収納した蒸気発生器である。従来のHRSGでは、ダクト12の内部には、ガスタービン1からの約650℃で約20m/sの高温高速の排ガス11が流入し、伝熱管パネル13で熱吸収され比較的低温になったガスが煙突14から排出される。   FIG. 12 shows a bird's-eye view of HRSG. HRSG is a steam generator in which a heat transfer tube panel 13 shown in FIG. In the conventional HRSG, the high-temperature and high-speed exhaust gas 11 of about 20 m / s from the gas turbine 1 flows into the duct 12 at a temperature of about 650 ° C. and is absorbed by the heat transfer tube panel 13 to a relatively low temperature. Is discharged from the chimney 14.

図13はHRSGの排ガス入口部分の内部に配置される伝熱管パネル構造を示す側面図である。ダクト12は架構16を介して地面15に支持されている。伝熱管パネル13A、13B、13Cは、各々ヘッダ17A、17B、17Cに吊下げ支持されている。伝熱管パネル13A、13B、13Cには、約650℃で約20m/sの排ガス11が作用し、伝熱管パネル13A、13B、13Cがガス流れに対し前後方向及び左右方向にも揺動する。   FIG. 13 is a side view showing a heat transfer tube panel structure arranged inside the exhaust gas inlet portion of HRSG. The duct 12 is supported on the ground 15 via a frame 16. The heat transfer tube panels 13A, 13B, and 13C are suspended and supported by the headers 17A, 17B, and 17C, respectively. Exhaust gas 11 of about 20 m / s acts at about 650 ° C. on the heat transfer tube panels 13A, 13B, and 13C, and the heat transfer tube panels 13A, 13B, and 13C swing in the front-rear direction and the left-right direction with respect to the gas flow.

この伝熱管パネル13A、13B、13Cの振動を抑制するため、図13に示す伝熱管パネル13A、13B、13Cに複数の水平サポート19で束ねて伝熱管パネル13A、13B、13Cの固有振動数を高めることにより、伝熱管群を通過する排ガスに対する振動を抑制してきた(特許第3625948号公報参照)。   In order to suppress the vibration of the heat transfer tube panels 13A, 13B, and 13C, the heat transfer tube panels 13A, 13B, and 13C shown in FIG. By increasing the frequency, the vibration of the exhaust gas passing through the heat transfer tube group has been suppressed (see Japanese Patent No. 3625948).

しかし、近年、ガスタービンが大型化し、高温高流速からなる排ガス11のダクト12内での偏流が拡大し、高温高速の排ガス11による伝熱管パネル13の振動揺動が増幅され、パネル端部のガス流れに直交するボイラ左右方向の水平サポート19に損傷が生じることが問題視されるようになってきた。   However, in recent years, gas turbines have become larger in size, and the drift of exhaust gas 11 having a high temperature and high flow rate in the duct 12 has increased, and the vibration fluctuation of the heat transfer tube panel 13 due to the high temperature and high speed exhaust gas 11 has been amplified. It has become a problem that the horizontal support 19 in the left-right direction of the boiler orthogonal to the gas flow is damaged.

下記特許文献1記載の発明では、フィン付きの伝熱管(フィンチューブ)を水平サポートにより挟持固定した構成で伝熱管パネルの振動揺動を無くすような対策を講じている。   In the invention described in Patent Document 1 below, a measure is taken to eliminate vibration fluctuation of the heat transfer tube panel in a configuration in which a heat transfer tube (fin tube) with fins is sandwiched and fixed by a horizontal support.

特許第3625948号公報Japanese Patent No. 3625948

前述のように、特許文献1記載の発明では、伝熱管パネルの振動揺動を解決するために水平サポートの段数を増加させて設置しているが、旋回成分の偏流による振動は抑制出来ないことが問題であった。   As described above, in the invention described in Patent Document 1, the horizontal support is installed with an increased number of stages in order to solve the vibration fluctuation of the heat transfer tube panel, but vibration due to swirling component drift cannot be suppressed. Was a problem.

ガスタービンが大型化することで、排熱回収ボイラ(HRSG) に流入する排ガスは、従来の約20m/sの流速に比べて遥かに高温高速流である約50m/s以上で、しかも約650℃という高温ガスとなっている。そのため、HRSG内で高速高温の排ガスに偏流が生じると、局所的には約100m/sの高温高速の排ガスの流れが部分的に発生する場合があり、従来の水平サポートでは伝熱管パネルの振動をとても抑制できなく、伝熱管パネルがHRSGのダクト壁面に接触して、伝熱管パネルだけでなくダクトを損傷させることもあった。   By increasing the size of the gas turbine, the exhaust gas flowing into the exhaust heat recovery boiler (HRSG) is about 50 m / s, which is a much higher temperature and higher speed than the conventional flow rate of about 20 m / s, and about 650. It is a hot gas of ℃. Therefore, if drift occurs in the high-speed and high-temperature exhaust gas in the HRSG, a flow of high-temperature and high-speed exhaust gas of about 100 m / s may partially occur locally, and the conventional horizontal support vibrates the heat transfer tube panel. The heat transfer tube panel contacted the duct wall surface of the HRSG and damaged not only the heat transfer tube panel but also the duct.

このため、単純に水平サポートを補強するために補強用の部材を増加させても、伝熱管の伝熱面積を塞ぐために熱回収効率が低下し、さらに水平サポートの補強部材の質量が数倍に増加するといった解決すべき問題があった。   For this reason, even if the number of reinforcing members is simply increased to reinforce the horizontal support, the heat recovery efficiency is reduced to block the heat transfer area of the heat transfer tube, and the mass of the horizontal support reinforcing member is several times larger. There was a problem to be solved such as an increase.

そこで、本発明の課題は、上記従来技術における問題点を解決し、約650℃で約50m/s、場合によっては100m/sとなる高温高速のガスタービン排ガスの旋回流によって励起される伝熱管パネルの振動による応力を低減し、安定運用を可能とする排熱回収ボイラを提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems in the prior art, and a heat transfer tube excited by a swirling flow of a high-temperature and high-speed gas turbine exhaust gas at about 650 ° C., which is about 50 m / s, and in some cases 100 m / s An object of the present invention is to provide an exhaust heat recovery boiler that reduces stress due to panel vibration and enables stable operation.

本発明の上記課題は次の解決手段により達成される。
請求項1記載の発明は、ガスタービンからの排ガスを流入させるダクト内に複数の伝熱管を束ねた伝熱管パネルを吊り下げて配置してガスタービンからの排ガスの熱を伝熱管内に回収して蒸気を生成させる排熱回収ボイラにおいて、排ガスの流れ方向に直交する水平方向に伝熱管パネルを束ねる所定幅の水平サポートを上下方向に複数段設け、伝熱管パネルの両側の数本の伝熱管部分における各段の水平サポートの幅を前記所定幅より広くしたことを特徴とする排熱回収ボイラである。
The above object of the present invention is achieved by the following means.
According to the first aspect of the present invention, a heat transfer tube panel in which a plurality of heat transfer tubes are bundled in a duct into which the exhaust gas from the gas turbine flows is suspended and arranged to recover the heat of the exhaust gas from the gas turbine in the heat transfer tube. In a heat recovery steam generator that generates steam, a plurality of horizontal supports with a predetermined width are installed in the vertical direction to bundle the heat transfer tube panels in the horizontal direction perpendicular to the flow direction of the exhaust gas, and several heat transfer tubes on both sides of the heat transfer tube panel In the exhaust heat recovery boiler, the width of the horizontal support at each stage in the portion is wider than the predetermined width.

請求項2記載の発明は、各伝熱管パネルの両側の数本の伝熱管部分は、所定幅の水平サポートの略3倍の幅としたことを特徴とする請求項1記載の排熱回収ボイラである。   The invention according to claim 2 is characterized in that the several heat transfer tube portions on both sides of each heat transfer tube panel are approximately three times as wide as the horizontal support with a predetermined width. It is.

請求項3記載の発明は、伝熱管は外周部にフィンを巻き付けたフィン付き伝熱管からなり、該フィン付き伝熱管の左右からフィン付き伝熱管を挟持して固定する波形バッフル板からなるハニカムサポートを設け、該ハニカムサポートの外側に水平サポートを設け、各伝熱管パネルの両側の数本の伝熱管部分は、ハニカムサポートと水平サポートの幅を共に前記水平サポートの所定幅より広くしたことを特徴とする請求項1又は2記載の排熱回収ボイラである。   According to a third aspect of the present invention, the heat transfer tube comprises a finned heat transfer tube having fins wound around the outer periphery thereof, and a honeycomb support comprising a corrugated baffle plate that sandwiches and fixes the finned heat transfer tube from the left and right of the finned heat transfer tube A horizontal support is provided outside the honeycomb support, and the heat transfer tube portions on both sides of each heat transfer tube panel have both the honeycomb support and the horizontal support wider than the predetermined width of the horizontal support. The exhaust heat recovery boiler according to claim 1 or 2.

請求項4記載の発明は、ガスタービンからの排ガスを流入させるダクト内に複数の伝熱管を束ねた伝熱管パネルを吊り下げて配置してガスタービンからの排ガスの熱を伝熱管内に回収して蒸気を生成させる既設の排熱回収ボイラにおいて、排ガスの流れ方向に直交する水平方向に伝熱管パネルを束ねる所定幅の水平サポートを上下方向に複数段設け、各段の水平サポートとして各伝熱管パネルの両側の数本の伝熱管部分は、前記水平サポートの上下に前記水平サポートと略同一幅の補強水平サポートを配置し、該補強水平サポートを取り付けた伝熱管パネルの補強水平サポートの外側から補強水平サポートを挟み込んで補強水平サポートを支持する開き防止板を設けたことを特徴とする排熱回収ボイラである。   According to a fourth aspect of the present invention, a heat transfer tube panel in which a plurality of heat transfer tubes are bundled in a duct into which the exhaust gas from the gas turbine flows is suspended and arranged to recover the heat of the exhaust gas from the gas turbine in the heat transfer tubes. In the existing exhaust heat recovery boiler that generates steam, multiple stages of horizontal support with a predetermined width that bundles the heat transfer tube panels in the horizontal direction perpendicular to the flow direction of the exhaust gas are provided in the vertical direction, and each heat transfer tube as a horizontal support for each stage Several heat transfer tube portions on both sides of the panel are arranged on the top and bottom of the horizontal support with reinforcing horizontal supports having substantially the same width as the horizontal support, and from the outside of the reinforcing horizontal support of the heat transfer tube panel to which the reinforcing horizontal support is attached. An exhaust heat recovery boiler comprising an opening prevention plate that sandwiches a reinforcing horizontal support and supports the reinforcing horizontal support.

請求項5記載の発明は、補強水平サポートは、その外側の中央にはリブを有する構成として配置し、該リブで開き防止板を支持させた構成からなる請求項4記載の排熱回収ボイラである。   According to a fifth aspect of the present invention, in the exhaust heat recovery boiler according to the fourth aspect, the reinforcing horizontal support has a structure in which a rib is provided at the center of the outer side, and an opening prevention plate is supported by the rib. is there.

請求項6記載の発明は、伝熱管が外周部にフィンを巻き付けたフィン付き伝熱管からなり、該フィン付き伝熱管の左右から挟持して固定する波形バッフル板からなるハニカムサポートを設け、該ハニカムサポートの外側に水平サポートを設け、各伝熱管パネルの両側の数本の伝熱管部分は、ハニカムサポートの上下に該ハニカムサポートと略同一幅の補強ハニカムサポートを設け、さらに前記水平サポートの上下に該水平サポートと略同一幅の補強水平サポートを配置したことを特徴とする請求項4又は5記載の排熱回収ボイラである。   According to a sixth aspect of the present invention, there is provided a honeycomb support comprising a corrugated baffle plate which is composed of a heat transfer tube with fins in which fins are wound around an outer peripheral portion, and is sandwiched and fixed from the left and right of the heat transfer tube with fins. A horizontal support is provided outside the support, and several heat transfer tube portions on both sides of each heat transfer tube panel are provided with a reinforced honeycomb support having a width substantially the same as the honeycomb support above and below the honeycomb support, and further above and below the horizontal support. The exhaust heat recovery boiler according to claim 4 or 5, wherein a reinforcing horizontal support having substantially the same width as the horizontal support is disposed.

(作用)
図1に、本発明によるHRSGの全体で伝熱管パネル13の防振構造を示す。複数の伝熱管25(伝熱管25の外周にフィン26を巻いたフィンチューブ24でも良い)の質量Mと水平サポート19(水平サポート19とハニカムサポート29でも良い)を水平サポート19によって束ねた伝熱管パネル13は排ガス11の流れ方向に対して直交する方向(左右方向)の全伝熱管数(図1に示す例では32本)に対し、約20%の管数分(図1に示す例では6本)の範囲(図1中の幅L1×2の範囲)におけるパネル端部の水平サポート19の幅Hを従来の3倍である3Hにしている。具体的には、水平サポート19の上部にサポート19U、下部に19Dを追設している。従って、水平サポート19は、ガス流れ方向に直交する方向(左右方向)に全長Lからなり、その内でパネル両端部に長さL1×2、幅3Hの水平サポート構造(サポート19U、水平サポート19及び下部サポート19D)とその間にある幅H、長さL2の水平サポート19からなる。
(Function)
FIG. 1 shows a vibration isolation structure of the heat transfer tube panel 13 as a whole of the HRSG according to the present invention. A heat transfer tube in which a mass M of a plurality of heat transfer tubes 25 (or fin tubes 24 in which fins 26 are wound around the outer periphery of the heat transfer tube 25) and a horizontal support 19 (or horizontal support 19 and honeycomb support 29) may be bundled by the horizontal support 19 The panel 13 is about 20% of the total number of heat transfer tubes (32 in the example shown in FIG. 1) in the direction orthogonal to the flow direction of the exhaust gas 11 (left and right direction) (in the example shown in FIG. 1). The width H of the horizontal support 19 at the end of the panel in the range of 6) (the range of width L1 × 2 in FIG. 1) is 3H, which is three times that of the prior art. Specifically, a support 19U is additionally provided at the upper part of the horizontal support 19, and 19D is additionally provided at the lower part. Accordingly, the horizontal support 19 has a total length L in a direction (left-right direction) orthogonal to the gas flow direction, and a horizontal support structure (support 19U, horizontal support 19 having a length L1 × 2 and a width 3H at both ends of the panel. And a lower support 19D) and a horizontal support 19 having a width H and a length L2 therebetween.

上記上下サポート19U、19Dを追設することが、パネル13の左右方向の振動変位の低減、及びパネル13の衝突時の応力低減に有効であることを、パネル13の振動系を用いて以下に説明する。   It will be described below using the vibration system of the panel 13 that the addition of the upper and lower supports 19U and 19D is effective for reducing the vibration displacement in the left-right direction of the panel 13 and reducing the stress at the time of collision of the panel 13. explain.

まず、パネル13の左右方向(ガス流れに直交する方向)の振動の低減について説明する。図2に示す従来構造、及び図1に示す本発明によるパネル構造の振動系を、各々図4及び図3に示す。図4に示す従来構造の振動系において、図2中のパネル13内の32本の伝熱管25の質量Mと水平サポート19の剛性Kは次式(1)及び(2)に示すように、質量Mは長さLに比例し、剛性Kはヤング率Eと水平サポート19の幅Hに比例し、長さLに反比例する。   First, the reduction of the vibration of the panel 13 in the left-right direction (direction orthogonal to the gas flow) will be described. The vibration system of the conventional structure shown in FIG. 2 and the panel structure according to the present invention shown in FIG. 1 are shown in FIGS. 4 and 3, respectively. In the vibration system of the conventional structure shown in FIG. 4, the mass M of the 32 heat transfer tubes 25 in the panel 13 in FIG. 2 and the rigidity K of the horizontal support 19 are as shown in the following equations (1) and (2): The mass M is proportional to the length L, and the stiffness K is proportional to the Young's modulus E and the width H of the horizontal support 19 and inversely proportional to the length L.

この振動系の固有振動数fは、式(3)に示すように(K/M)の1/2乗に比例する。
M∝L (1)
K∝E×H/L (2)
f∝(K/M)1/2 (3)
図2と図4に示すように、従来構造においては、水平サポート19によって束ねられる32本の伝熱管25の振動方向は同方向(いわゆる同位相の振動)となり、パネル13全体の振動変位が大きくなる。
The natural frequency f of this vibration system is proportional to the 1/2 power of (K / M) as shown in Equation (3).
M∝L (1)
K∝E × H / L (2)
f∝ (K / M) 1/2 (3)
2 and 4, in the conventional structure, the vibration direction of the 32 heat transfer tubes 25 bundled by the horizontal support 19 is the same direction (so-called in-phase vibration), and the vibration displacement of the entire panel 13 is large. Become.

これに対し、本発明による伝熱管パネル13の構造の振動系は、図3に示す三つの振動系を連結した系である。図3において、各々パネル13の両端部における約20%の伝熱管25の本数分(実施例では3本×2)の質量M1及び剛性K1と各々パネル13の両端部以外のパネル13における約60%の伝熱管数分(本実施例では20本)の質量M2及び剛性K1との間には次式(4)、(5)及び(6)で表される関係がある。
M1∝M/L×L1=M/5.3 (4)
K1∝E×3H/L1=16E×H/L=16K (5)
M2=M/L×L2=M/1.6 (6)
K2=E×H/L2=1.6×E×H/L=1.6K (7)
また、M1−K1振動系及びM2−K2振動系の固有振動数f1及びf2は、各々式(8)及び(9)で表される。
f1∝(K1/M1)1/2=9.2×f (8)
f2∝(K2/M2)1/2=1.6×f (9)
式(8)を式(9)で割ることで、式(10)のように、f2に対するf1の比が求まる。
f1/f2=5.73 (10)
式(10)に示すように、M1−K1振動系の固有振動数f1は、M2−K2振動系の固有振動数f2の5.73倍になる。このように、固有振動数が異なる三つの振動系(パネル左端のM1−K1振動系、パネル中央のM2−K2振動系、パネル右端のM1−K1振動系)を形成することで、各振動系の振動方向の違い(いわゆる位相の違い)を利用することで、パネル13全体の振動変位δを低減でき、ひいては隣接するパネル13の端部同士の衝突荷重及びパネル13の端部とケーシング(ダクト12のケーシング)の衝突荷重の低減が可能となる。
On the other hand, the vibration system of the structure of the heat transfer tube panel 13 according to the present invention is a system in which three vibration systems shown in FIG. 3 are connected. In FIG. 3, the mass M1 and the rigidity K1 of the number of the heat transfer tubes 25 of about 20% at each end of the panel 13 (3 × 2 in the embodiment) and about 60 in the panel 13 other than the both ends of the panel 13 respectively. There is a relationship represented by the following equations (4), (5), and (6) between the mass M2 and the rigidity K1 corresponding to the number of heat transfer tubes of% (20 in this embodiment).
M1∝M / L × L1 = M / 5.3 (4)
K1∝E × 3H / L1 = 16E × H / L = 16K (5)
M2 = M / L × L2 = M / 1.6 (6)
K2 = E * H / L2 = 1.6 * E * H / L = 1.6K (7)
In addition, the natural frequencies f1 and f2 of the M1-K1 vibration system and the M2-K2 vibration system are expressed by equations (8) and (9), respectively.
f1∝ (K1 / M1) 1/2 = 9.2 × f (8)
f2∝ (K2 / M2) 1/2 = 1.6 × f (9)
By dividing equation (8) by equation (9), the ratio of f1 to f2 is obtained as in equation (10).
f1 / f2 = 5.73 (10)
As shown in Expression (10), the natural frequency f1 of the M1-K1 vibration system is 5.73 times the natural frequency f2 of the M2-K2 vibration system. In this way, each vibration system is formed by forming three vibration systems having different natural frequencies (the M1-K1 vibration system at the left end of the panel, the M2-K2 vibration system at the center of the panel, and the M1-K1 vibration system at the right end of the panel). By utilizing the difference in vibration direction (so-called phase difference), the vibration displacement δ of the entire panel 13 can be reduced. As a result, the collision load between the ends of adjacent panels 13 and the end of the panel 13 and the casing (duct) 12) can be reduced.

次に、パネル13の衝突時の応力低減について説明する。図2に示す従来構造の水平サポート19の幅Hに対して図1に示す本実施例による構造では、幅3Hの水平サポート構造(上部の補強用サポート19U、水平サポート19及び下部の補強用サポート19D)は3倍になる。このことより、本実施例によるサポート構造では、パネル13の衝突荷重を受ける面積が従来の3倍となり、伝熱管パネル13の衝突時の応力を低減できる。   Next, the stress reduction at the time of collision of the panel 13 will be described. In the structure according to this embodiment shown in FIG. 1 with respect to the width H of the conventional horizontal support 19 shown in FIG. 2, the horizontal support structure having a width of 3H (upper reinforcing support 19U, horizontal support 19 and lower reinforcing support). 19D) is tripled. Thus, in the support structure according to the present embodiment, the area of the panel 13 that receives the collision load is three times that of the conventional structure, and the stress during the collision of the heat transfer tube panel 13 can be reduced.

なお、上記説明において、伝熱管パネル13の端部の幅を従来の水平サポート19の幅Hの3倍とした例、あるいは補強用の補強上部サポート19U、水平サポート19及び補強下部サポート19D)を用いて水平サポート19に幅Hの略3倍とした例を説明したが、本発明では、伝熱管パネル13の端部に設ける補強上部サポート19U及び補強下部サポート19Dの幅は、水平サポート19の幅Hと同じとは限らず、必要に応じてさらに広い幅としても良い。   In the above description, an example in which the width of the end portion of the heat transfer tube panel 13 is three times the width H of the conventional horizontal support 19, or the reinforcing upper support 19U, the horizontal support 19 and the reinforcing lower support 19D for reinforcement) In the present invention, the horizontal support 19 has been described as being approximately three times as wide as the width H. In the present invention, the width of the reinforcing upper support 19U and the reinforcing lower support 19D provided at the end of the heat transfer tube panel 13 is the same as that of the horizontal support 19. It is not necessarily the same as the width H, and may be a wider width if necessary.

上記したように本発明によれば、伝熱管パネル13の両端部における水平サポート19の幅を、パネル13の中央部における水平サポート19の幅(H)と違えることで、三つの振動系(パネル左端部振動系、パネル中央部振動系、パネル右端部振動系)を形成でき、これら三つの振動系での振動の位相差を利用してパネル13の左右方向振動を低減することで、隣接するパネル13の端部同士あるいはパネル13の端部とケーシングの衝突荷重を低減することができる。また、パネル13の端部の水平サポート19の幅を従来の略3倍にすることで、伝熱管パネル13端部の衝突時に発生する応力を低減することもできる。これらの作用により、排熱回収ボイラの安定運用に寄与する排熱回収ボイラ防振構造が得られる。   As described above, according to the present invention, the width of the horizontal support 19 at both ends of the heat transfer tube panel 13 is different from the width (H) of the horizontal support 19 at the center of the panel 13, thereby Left end vibration system, panel center vibration system, panel right end vibration system), and by using the phase difference of vibration in these three vibration systems to reduce the left-right vibration of the panel 13, it is adjacent The collision load between the end portions of the panels 13 or between the end portions of the panel 13 and the casing can be reduced. Moreover, the stress which generate | occur | produces at the time of the collision of the end part of the heat exchanger tube panel 13 can also be reduced by making the width | variety of the horizontal support 19 of the edge part of the panel 13 into about 3 times the conventional. By these actions, an exhaust heat recovery boiler vibration isolation structure that contributes to stable operation of the exhaust heat recovery boiler is obtained.

請求項1記載の発明によれば、約50m/s以上、局所的には約100m/sの高温高速のガスタービン排ガスが排熱回収ボイラのダクト内に導入されて、該排ガスが旋回流となっても、伝熱管パネルの振動変位を伝熱管パネルの水平サポートの簡易構造からなる補強により低減することができ、隣接する伝熱管パネル端部同士あるいは伝熱管パネル端部と排熱回収ボイラケーシングの衝突力を低減でき、排熱回収ボイラの安定運用に寄与する防振構造が得られる。   According to the first aspect of the present invention, high-temperature and high-speed gas turbine exhaust gas of about 50 m / s or more, locally about 100 m / s is introduced into the duct of the exhaust heat recovery boiler, and the exhaust gas is swirled. Even so, the vibration displacement of the heat transfer tube panel can be reduced by reinforcement consisting of a simple structure of the horizontal support of the heat transfer tube panel, and the adjacent heat transfer tube panel ends or between the heat transfer tube panel ends and the exhaust heat recovery boiler casing The anti-vibration structure that contributes to the stable operation of the exhaust heat recovery boiler can be obtained.

請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、伝熱管パネル端部の水平サポートの幅を従来の略3倍にすることで、パネル端部の衝突時に発生する応力を低減できることから排熱回収ボイラの安定運用に寄与する防振構造が得られる。   According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, the width of the horizontal support at the end of the heat transfer tube panel is approximately three times that of the conventional one, so that it occurs when the end of the panel collides. Since the stress to be reduced can be reduced, a vibration isolation structure that contributes to stable operation of the exhaust heat recovery boiler can be obtained.

請求項3記載の発明は、請求項1又は2記載の発明の効果に加えて、伝熱管が外周部にフィンを巻き付けたフィン付き伝熱管からなる場合には、フィン付き伝熱管の左右から挟持して固定する波形バッフル板からなるハニカムサポートを設け、該ハニカムサポートの外側に水平サポートを設け、各伝熱管パネルの両側の数本の伝熱管部分は、ハニカムサポートと水平サポートの幅を共に前記水平サポートの所定幅より広くしたことで伝熱管パネルの振動変位を低減することかでき、隣接する伝熱管パネル端部同士あるいは伝熱管パネル端部と排熱回収ボイラケーシングの衝突力を低減できる。   In addition to the effect of the invention of claim 1 or 2, the invention described in claim 3 is sandwiched from the left and right of the finned heat transfer tube when the heat transfer tube is composed of a finned heat transfer tube in which fins are wound around the outer periphery. A honeycomb support made of a corrugated baffle plate to be fixed, and a horizontal support is provided outside the honeycomb support, and several heat transfer tube portions on both sides of each heat transfer tube panel have both the honeycomb support and the horizontal support having the same width. By making it wider than the predetermined width of the horizontal support, the vibration displacement of the heat transfer tube panels can be reduced, and the collision force between adjacent heat transfer tube panel ends or between the heat transfer tube panel ends and the exhaust heat recovery boiler casing can be reduced.

請求項4記載の発明によれば、既設の排熱回収ボイラにおいて水平サポートを溶接により補強できない場合にも補強水平サポートの外側から補強水平サポートを支持する開き防止板により保持することで、伝熱管パネル端部の水平サポートの幅を従来の約3倍にすることができ、高温高速流のガスタービン排ガスが排熱回収ボイラのダクト内に導入されて当該排ガスが旋回流になっても、該伝熱管パネルの振動変位を低減することができ、隣接する伝熱管パネル端部同士あるいは伝熱管パネル端部と排熱回収ボイラケーシングの衝突力を低減でき、排熱回収ボイラの安定運用に寄与する防振構造が得られる。   According to the invention of claim 4, even when the horizontal support cannot be reinforced by welding in the existing heat recovery steam generator, the heat transfer tube is held by the opening prevention plate that supports the reinforced horizontal support from the outside of the reinforced horizontal support. The width of the horizontal support at the end of the panel can be approximately three times that of the conventional one, and even if the high-temperature high-speed gas turbine exhaust gas is introduced into the duct of the exhaust heat recovery boiler and the exhaust gas turns into a swirl flow, The vibration displacement of the heat transfer tube panels can be reduced, and the collision force between adjacent heat transfer tube panel ends or between the heat transfer tube panel ends and the exhaust heat recovery boiler casing can be reduced, contributing to stable operation of the exhaust heat recovery boiler. An anti-vibration structure is obtained.

請求項5記載の発明によれば、請求項4記載の発明の効果に加えて、補強水平サポートの外側の中央にはリブを有する構成として、該リブで開き防止板を支持させるので補強水平サポートを溶接なしで容易に保持できる効果がある。   According to the fifth aspect of the present invention, in addition to the effect of the fourth aspect of the invention, the reinforcing horizontal support has a rib at the center of the outer side of the reinforcing horizontal support, and the opening preventing plate is supported by the rib. Can be easily retained without welding.

請求項6記載の発明は、請求項4又は5記載の発明の効果に加えて、伝熱管の外周部にフィンを巻き付けたフィン付き伝熱管を用いる場合には、フィン付き伝熱管の左右から挟持して固定する波形バッフル板からなるハニカムサポートを設け、該ハニカムサポート外側に水平サポートを設け、各伝熱管パネルの両側の数本の伝熱管部分は、ハニカムサポートの上下に該ハニカムサポートと略同一幅の補強ハニカムサポートを設け、さらに前記水平サポートの上下に該水平サポートと略同一幅の補強水平サポートを設けることで伝熱管パネルの振動変位を低減することができ、伝熱管パネル端部同士あるいは伝熱管パネル端部と排熱回収ボイラケーシングの衝突力を低減できる。   In addition to the effect of the invention of claim 4 or 5, the invention of claim 6 is sandwiched from the left and right of the finned heat transfer tube when using a finned heat transfer tube with fins wound around the outer periphery of the heat transfer tube. A honeycomb support made of corrugated baffle plates to be fixed is provided, a horizontal support is provided outside the honeycomb support, and several heat transfer tube portions on both sides of each heat transfer tube panel are substantially the same as the honeycomb support above and below the honeycomb support. By providing a reinforcing honeycomb support having a width, and further providing a reinforcing horizontal support having the same width as the horizontal support above and below the horizontal support, vibration displacement of the heat transfer tube panels can be reduced. The collision force between the heat transfer tube panel end and the exhaust heat recovery boiler casing can be reduced.

本発明によるHRSGの全体で伝熱管パネルの防振構造を示す側面図である。It is a side view which shows the vibration isolating structure of a heat exchanger tube panel in the whole HRSG by this invention. 従来技術によるHRSGの全体で伝熱管パネルの防振構造を示す側面図である。It is a side view which shows the vibration isolating structure of a heat exchanger tube panel in the whole HRSG by a prior art. 図1に示す本発明によるHRSGのパネル構造の振動系を示す。2 shows a vibration system of the panel structure of the HRSG according to the present invention shown in FIG. 図2に示す従来技術によるHRSGのパネル構造の振動系を示す。3 shows a vibration system of the HRSG panel structure according to the prior art shown in FIG. 本発明の一実施例の伝熱管パネルの水平サポートの補強を行った場合の構成を示す一部斜視図である。It is a partial perspective view which shows the structure at the time of reinforcing the horizontal support of the heat exchanger tube panel of one Example of this invention. 本発明の一実施例の伝熱管パネルの水平サポートの補強を行った場合の構成を示す一部斜視図である。It is a partial perspective view which shows the structure at the time of reinforcing the horizontal support of the heat exchanger tube panel of one Example of this invention. 脱硝装置が配置された複合発電プラントの概略系統図を示すA schematic system diagram of a combined power plant with a denitration system is shown 排熱回収ボイラ(HRSG)内に配置される熱交換器を構成する伝熱管パネルの斜視図を示している。The perspective view of the heat exchanger tube panel which comprises the heat exchanger arrange | positioned in an exhaust heat recovery boiler (HRSG) is shown. 排熱回収ボイラ内に配置される伝熱管パネルの断面図である。It is sectional drawing of the heat exchanger tube panel arrange | positioned in an exhaust heat recovery boiler. 図9の伝熱管パネルの側面図である。It is a side view of the heat exchanger tube panel of FIG. 図9の伝熱管パネルの組み立て前の側面図である。It is a side view before the assembly of the heat exchanger tube panel of FIG. 本発明の実施例のHRSGの鳥瞰図である。It is a bird's-eye view of HRSG of the Example of this invention. 図12のHRSGの入口部分の側面図である。It is a side view of the inlet_port | entrance part of HRSG of FIG. 図13のA−A線断面図である。It is AA sectional view taken on the line of FIG.

本発明の実施例を図面とともに説明する。
図12に示す排熱回収ボイラ(HRSG)の鳥瞰図と図13のHRSG入口側の伝熱管パネルを配置したダクト内部の側面図は本発明の実施例にも適合し、図14には図13のA−A線断面図を示す。
Embodiments of the present invention will be described with reference to the drawings.
The bird's-eye view of the exhaust heat recovery boiler (HRSG) shown in FIG. 12 and the side view of the inside of the duct in which the heat transfer tube panel on the inlet side of the HRSG in FIG. 13 is also adapted to the embodiment of the present invention. AA line sectional drawing is shown.

本発明の実施例の伝熱管パネル13A、13B、13Cをガスタービンからの排ガス11の流れ方向に沿って順次配置する。また図14には、例えば伝熱管パネル13Aは排ガス11のガス流れに直交する方向に左、中央、右と3列並列配置された例を示しており、伝熱管パネル13AL、伝熱管パネル13AM、伝熱管パネル13ARからなる。   The heat transfer tube panels 13A, 13B, and 13C according to the embodiment of the present invention are sequentially arranged along the flow direction of the exhaust gas 11 from the gas turbine. FIG. 14 shows an example in which, for example, the heat transfer tube panel 13A is arranged in three rows in parallel in the direction orthogonal to the gas flow of the exhaust gas 11, left, center, and right, and the heat transfer tube panel 13AL, the heat transfer tube panel 13AM, It consists of a heat transfer tube panel 13AR.

また各伝熱管パネル13AL、伝熱管パネル13AM、伝熱管パネル13ARはダクト12の前後方向の連結金具18とダクト12の横断方向に水平サポート19(ハニカムサポート29を設けることもできるが、図示していない)がそれぞれ複数段配置されている。連結金具18は水平サポート19の端部に設けられている。   The heat transfer tube panel 13AL, the heat transfer tube panel 13AM, and the heat transfer tube panel 13AR are provided with a connecting bracket 18 in the front-rear direction of the duct 12 and a horizontal support 19 (honeycomb support 29 in the transverse direction of the duct 12, although illustrated. Are not arranged). The connecting fitting 18 is provided at the end of the horizontal support 19.

また各伝熱管パネル13AL、伝熱管パネル13AM、伝熱管パネル13ARは上部、下部管寄せ17A、17B、17Cにそれぞれ接続している。   Each heat transfer tube panel 13AL, heat transfer tube panel 13AM, and heat transfer tube panel 13AR are connected to upper and lower headers 17A, 17B, and 17C, respectively.

図5には本実施例で用いる2列の伝熱管25とフィン26からなるフィンチューブ24を一つの伝熱管パネル13としてハニカムサポート29と水平サポート19で束ねた場合の防振補強構造を斜視図で示す。なお、図5にはフィンチューブ24は一部だけを点線で示しており、図5はハニカムサポート29とその外側に設けた水平サポート19の一端部側の部分斜視図である。また、水平サポート19の端部同士は水平サポート端部補強板20で接続している。なお、ハニカムサポート29を備えていない伝熱管構造は図示していないが、ハニカムサポート29とフィンチューブ24が無く、水平サポート19で伝熱管25を束ねた構造にも、本実施例の防振補強構造を適用できる。   FIG. 5 is a perspective view of an anti-vibration reinforcing structure when the fin tube 24 composed of two rows of heat transfer tubes 25 and fins 26 used in this embodiment is bundled as a single heat transfer tube panel 13 with a honeycomb support 29 and a horizontal support 19. It shows with. 5 shows only a part of the fin tube 24 by a dotted line, and FIG. 5 is a partial perspective view of one end side of the honeycomb support 29 and the horizontal support 19 provided outside thereof. The ends of the horizontal support 19 are connected to each other by a horizontal support end reinforcing plate 20. Although the heat transfer tube structure not provided with the honeycomb support 29 is not shown, the vibration-proof reinforcement of the present embodiment is also applied to a structure in which the honeycomb support 29 and the fin tube 24 are not provided and the heat transfer tube 25 is bundled by the horizontal support 19. Structure can be applied.

図5には一つのハニカムサポート29と一つの水平サポート19で約32本×2列のフィンチューブ24を束ねた例を図示している。そして図5に示すように所定幅(H)の波形バッフル板からなるハニカムサポート29と水平サポート19の両端部の上下に約同一幅(H)の波形バッフル板からなる上方補強用ハニカムサポート29Uと上方水平サポート19Uと下方ハニカムサポート29Dと下方水平サポート19Dをそれぞれフィンチューブ24の6本×2列分に相当する部分に設けて互いに溶接接続する。従ってハニカムサポート29と水平サポート19の上下の両端部では約3倍の幅のサポート構造体で伝熱管25とフィン26からなるフィンチューブ24を支持することができる。   FIG. 5 shows an example in which about 32 × 2 rows of fin tubes 24 are bundled by one honeycomb support 29 and one horizontal support 19. Then, as shown in FIG. 5, a honeycomb support 29 made of a corrugated baffle plate having a predetermined width (H) and an upward reinforcing honeycomb support 29U made of a corrugated baffle plate having approximately the same width (H) above and below both ends of the horizontal support 19. The upper horizontal support 19U, the lower honeycomb support 29D, and the lower horizontal support 19D are provided in portions corresponding to 6 × 2 rows of the fin tubes 24, and are connected to each other by welding. Therefore, the fin tube 24 including the heat transfer tubes 25 and the fins 26 can be supported by the support structure having a width about three times at the upper and lower ends of the honeycomb support 29 and the horizontal support 19.

なお、水平サポート19と水平サポート端部補強板20とハニカムサポート29で囲まれた空間部には充填部材43を埋め込む。   A filling member 43 is embedded in the space surrounded by the horizontal support 19, the horizontal support end reinforcing plate 20, and the honeycomb support 29.

前記所定幅(H)は30〜50mmとする。また、水平サポート19と水平サポート端部補強板20とハニカムサポート29の互いの接触部分は熱交換器製造工場での作製時に適宜溶接することができる。   The predetermined width (H) is 30 to 50 mm. Moreover, the mutual contact part of the horizontal support 19, the horizontal support edge part reinforcement board 20, and the honeycomb support 29 can be suitably welded at the time of manufacture in a heat exchanger manufacturing factory.

この場合の応力が強く掛かる箇所は図5のハニカムサポート29のコーナー部S1と上方ハニカムサポート29Uと下方ハニカムサポート29Dがなくなり、ハニカムサポート29だけの幅Hになるコーナー部S2で、有限要素法による解析では、その値は従来の一倍幅の水平サポート19を使用する場合の約40%であった。   In this case, the portion where the stress is strongly applied is the corner portion S2 of the honeycomb support 29 of FIG. 5 where the corner portion S1, the upper honeycomb support 29U, and the lower honeycomb support 29D are eliminated, and the width H of the honeycomb support 29 alone. In the analysis, the value was about 40% of that when using the conventional single-width horizontal support 19.

次に本発明の第2実施例として既設の排熱回収ボイラ(HRSG)の2列のフィンチューブ24をハニカムサポート29と水平サポート19で束ねた場合の防振補強構造の斜視図を図6に示す。また、水平サポート19の端部同士は水平サポート端部補強板20で接続している。なお、図6にはフィンチューブ24は一部だけを点線で示しており、また、ハニカムサポート29を備えていない伝熱管構造は図示していないが、ハニカムサポート29とフィンチューブ24が無く、水平サポート19で伝熱管25を束ねた構造にも、本実施例の防振補強構造を適用できる。   Next, as a second embodiment of the present invention, FIG. 6 is a perspective view of an anti-vibration reinforcing structure when two rows of fin tubes 24 of an existing exhaust heat recovery boiler (HRSG) are bundled by a honeycomb support 29 and a horizontal support 19. Show. The ends of the horizontal support 19 are connected to each other by a horizontal support end reinforcing plate 20. In FIG. 6, only a part of the fin tube 24 is indicated by a dotted line, and a heat transfer tube structure not provided with the honeycomb support 29 is not shown, but the honeycomb support 29 and the fin tube 24 are not provided, and the horizontal structure is horizontal. The anti-vibration reinforcing structure of this embodiment can also be applied to a structure in which the heat transfer tubes 25 are bundled by the support 19.

既設の排熱回収ボイラ(HRSG)ではハニカムサポート29と水平サポート19を補強する場合に伝熱管パネル13は取り外すことができなく、また図5に示すようなハニカムサポート29と水平サポート19の伝熱管パネル13への取り付け時のように、上方ハニカムサポート29Uと上方水平サポート19Uと下方ハニカムサポート29Dと下方水平サポート19Dをそれぞれ溶接接続することが不可能であるので、上方ハニカムサポート29Uと下方ハニカムサポート29D及び上方水平サポート19Uと下方水平サポート19Dをそれぞれハニカムサポート29と水平サポート19の上下に取り付けて、約32本×2列のフィンチューブ24を束ねた例を図6に示している。   In the existing heat recovery steam generator (HRSG), when the honeycomb support 29 and the horizontal support 19 are reinforced, the heat transfer tube panel 13 cannot be removed, and the heat transfer tubes of the honeycomb support 29 and the horizontal support 19 as shown in FIG. Since the upper honeycomb support 29U, the upper horizontal support 19U, the lower honeycomb support 29D, and the lower horizontal support 19D cannot be welded to each other as in the case of the attachment to the panel 13, the upper honeycomb support 29U and the lower honeycomb support FIG. 6 shows an example in which 29D and an upper horizontal support 19U and a lower horizontal support 19D are attached to the top and bottom of the honeycomb support 29 and the horizontal support 19, respectively, and about 32 × 2 rows of fin tubes 24 are bundled.

そして図6に示すように所定幅(H)の波形バッフル板からなるハニカムサポート29と水平サポート19の両端部の上下に約同一幅(H)の波形バッフル板からなる補強用の上方ハニカムサポート29Uと上方水平サポート19Uと下方ハニカムサポート29Dと下方水平サポート19Dをそれぞれフィンチューブ24の6本×2列分に相当する部分に設けて、補強用のハニカムサポート29U,29Dと水平サポート19U、19Dを複数の開き防止板22で支持する構造とする。   Then, as shown in FIG. 6, a honeycomb support 29 made of a corrugated baffle plate having a predetermined width (H) and an upper honeycomb support 29U for reinforcement made of a corrugated baffle plate having approximately the same width (H) above and below both ends of the horizontal support 19 are provided. The upper horizontal support 19U, the lower honeycomb support 29D, and the lower horizontal support 19D are provided in portions corresponding to 6 × 2 rows of the fin tubes 24, respectively, and the reinforcing honeycomb supports 29U and 29D and the horizontal supports 19U and 19D are provided. The structure is supported by a plurality of opening prevention plates 22.

既設の所定幅(H)の波形バッフル板からなる補強用のハニカムサポート29U,29Dを既設ハニカムサポート29の上下に取り付け、さらにその外側に補強用の水平サポート19U、19Dを既設水平サポート19の上下に取り付ける。この補強用の水平サポート19Uと水平サポート19Dの幅は既設の水平サポート19と略同一幅とし、また32本からなるフィンチューブ24を用いる伝熱管パネル13において両端部のフィンチューブ24の6本×2列分の外周に取り付ける。   Reinforcing honeycomb supports 29U and 29D made of corrugated baffle plates having a predetermined width (H) are attached to the top and bottom of the existing honeycomb support 29, and reinforcing horizontal supports 19U and 19D are attached to the outside of the top and bottom of the existing horizontal support 19. Attach to. The reinforcing horizontal support 19U and horizontal support 19D have substantially the same width as that of the existing horizontal support 19, and in the heat transfer tube panel 13 using 32 fin tubes 24, six fin tubes 24 at both end portions × Attach to the outer circumference of two rows.

その後、既設の水平サポート19の外周には、フィンチューブ24の6本×2列分のリブ19aを取り付け、水平サポート19の外側から両端のフィンチューブ24の6本×2列分の一対の門型の開き防止板22を上下方向から挿し込み、門型の開き防止板22の底部を前記リブ19aで支持させる。   After that, ribs 19a for 6 × 2 rows of fin tubes 24 are attached to the outer periphery of the existing horizontal support 19, and a pair of gates for 6 × 2 rows of fin tubes 24 at both ends from the outside of the horizontal support 19 are attached. The mold opening prevention plate 22 is inserted from above and below, and the bottom of the portal opening prevention plate 22 is supported by the rib 19a.

図6に示すように千鳥配置の2列のフィンチューブ24からなる伝熱管パネル13の場合は、既設の水平サポート19の長手方向に対して門型の開き防止板22を傾斜させて補強用のサポート19Uとサポート19Dの外側から差し込むことで、溶接接続されていない補強用のサポート19Uとサポート19Dを安定的に保持することができる。   As shown in FIG. 6, in the case of the heat transfer tube panel 13 composed of two rows of fin tubes 24 arranged in a staggered manner, the portal-shaped opening prevention plate 22 is inclined with respect to the longitudinal direction of the existing horizontal support 19 for reinforcement. By inserting from the outside of the support 19U and the support 19D, the support 19U and the support 19D for reinforcement that are not welded can be stably held.

千鳥配置でない並列配置のフィンチューブ24からなる伝熱管パネル13の場合は、門型の開き防止板22を既設の水平サポート19の長手方向に対して直交する方向に補強用のサポート19Uとサポート19Dの外側から差し込むことで、溶接接続されていない補強用のサポート19Uとサポート19Dを安定的に保持することができる。   In the case of the heat transfer tube panel 13 including the fin tubes 24 arranged in parallel rather than the staggered arrangement, the support 19U and the support 19D for reinforcing the portal-shaped opening prevention plate 22 in a direction orthogonal to the longitudinal direction of the existing horizontal support 19 are provided. By inserting from the outside, the support 19U for reinforcement and the support 19D which are not welded can be stably held.

補強用のハニカムサポート29U,29Dと水平サポート19U,Dの長手方向に対して傾斜させて門型の開き防止板22で保持する場合の有限要素法解析によると、図6のハニカムサポート29U,29Dのコーナー部S3で示す一番応力が掛かる箇所が従来の一倍幅のハニカムサポート29と水平サポート19を使用する場合の応力の70%であった。   According to the finite element method analysis when the reinforcing honeycomb support 29U and 29D and the horizontal support 19U and D are held by the gate-shaped opening prevention plate 22 while being inclined with respect to the longitudinal direction, the honeycomb supports 29U and 29D of FIG. The most stressed portion indicated by the corner portion S3 was 70% of the stress when the conventional single-width honeycomb support 29 and the horizontal support 19 were used.

上記本発明の実施例において伝熱管25の回りにフィン26を設けたフィンチューブ24を用いる伝熱管パネル13を例示して説明したが、伝熱管25の回りにフィン26を配置していない伝熱管パネル13にも本発明の水平サポート19の補強構造を適用することもできる。   In the embodiment of the present invention, the heat transfer tube panel 13 using the fin tube 24 provided with the fins 26 around the heat transfer tubes 25 is illustrated and described. However, the heat transfer tubes in which the fins 26 are not arranged around the heat transfer tubes 25 are described. The reinforcing structure of the horizontal support 19 of the present invention can also be applied to the panel 13.

上記実施例で説明した伝熱管パネル13の端部に設ける補強上部サポート19U及び補強下部サポート19D及びハニカムサポート29U,29Dの幅は、水平サポート19の幅H及びハニカムサポート29U,29Dの幅Hと同じとは限らず、必要に応じてさらに広い幅としても良い。   The widths of the reinforcing upper support 19U, the reinforcing lower support 19D, and the honeycomb supports 29U and 29D provided at the ends of the heat transfer tube panel 13 described in the above embodiment are the width H of the horizontal support 19 and the width H of the honeycomb supports 29U and 29D. The width is not necessarily the same, and may be wider if necessary.

本発明による伝熱管パネルの水平サポートの補強構造は、ガスタービンが大型化する傾向にあるので、ますます排ガス偏流が増加することが予想され、本発明による伝熱管パネルの水平サポートの補強構造の利用可能性がさらに増えるものと考えられる。   The horizontal support reinforcement structure of the heat transfer tube panel according to the present invention tends to increase the size of the gas turbine. The availability is expected to increase further.

1 ガスタービン 3 過熱器
4 第1の蒸発器 5 脱硝装置
6 第2の蒸発器 7 節炭器
8 汽水分離ドラム 9 蒸気タービン
10 復水器 11 排ガス
12 排熱回収ボイラ(HRSG)ダクト
13A ガス流れ前側の伝熱管パネル
13B、ガス流れ中央部の伝熱管パネル
13C ガス流れ後側伝熱管パネル
13AL、13BL、13CL 左側の伝熱管パネル
13AM、13BM、13CM 中央の伝熱管パネル
13AR、13BR、13CR 右側の伝熱管パネル
14 煙突 15 地面
16 架構
17A、17B、17C 上部、下部管寄せ
18 連結金具 19 水平サポート
19U、19D 補強用の水平サポート
19a リブ
20 水平サポート端部補強板
22 開き防止板 24 フィンチューブ
25 伝熱管 26 フィン
28a、28b 管路 29 ハニカムサポート
29U、29D 補強用ハニカムサポート
30 給水ポンプ 31 主蒸気管
32 給水管路 33 降水管
35a、35b 管路 37 飽和蒸気管
38 タービンバイパス管 39 蒸気タービン加減弁
40 タービンバイパス弁 41 ダンパ
43 充填部材 W 水
Y 溶接部
DESCRIPTION OF SYMBOLS 1 Gas turbine 3 Superheater 4 1st evaporator 5 Denitration apparatus 6 2nd evaporator 7 Carbon-saving device 8 Brackish water separation drum 9 Steam turbine 10 Condenser 11 Exhaust gas 12 Waste heat recovery boiler (HRSG) duct 13A Gas flow Front heat transfer tube panel 13B, gas flow center heat transfer tube panel 13C Gas flow rear heat transfer tube panel 13AL, 13BL, 13CL Left heat transfer tube panel 13AM, 13BM, 13CM Central heat transfer tube panel 13AR, 13BR, 13CR Right side heat transfer tube panel Heat transfer tube panel 14 Chimney 15 Ground 16 Frame 17A, 17B, 17C Upper, lower header 18 Connecting bracket 19 Horizontal support 19U, 19D Horizontal support 19a Rib for reinforcement
20 Horizontal support end reinforcing plate 22 Opening prevention plate 24 Fin tube 25 Heat transfer tube 26 Fin 28a, 28b Pipe line 29 Honeycomb support 29U, 29D Reinforcing honeycomb support 30 Water supply pump 31 Main steam pipe 32 Water supply line 33 Rain pipe 35a, 35b Pipeline 37 Saturated steam pipe 38 Turbine bypass pipe 39 Steam turbine control valve 40 Turbine bypass valve 41 Damper 43 Filling member W Water Y Welded part

Claims (6)

ガスタービンからの排ガスを流入させるダクト内に複数の伝熱管を束ねた伝熱管パネルを吊り下げて配置してガスタービンからの排ガスの熱を伝熱管内に回収して蒸気を生成させる排熱回収ボイラにおいて、排ガスの流れ方向に直交する水平方向に伝熱管パネルを束ねる所定幅の水平サポートを上下方向に複数段設け、伝熱管パネルの両側の数本の伝熱管部分における各段の水平サポートの幅を前記所定幅より広くしたことを特徴とする排熱回収ボイラ。   Exhaust heat recovery in which a heat transfer tube panel that bundles a plurality of heat transfer tubes is suspended in a duct through which the exhaust gas from the gas turbine flows, and the heat of the exhaust gas from the gas turbine is recovered in the heat transfer tube to generate steam. In the boiler, a horizontal support with a predetermined width that bundles the heat transfer tube panels in the horizontal direction perpendicular to the flow direction of the exhaust gas is provided in multiple stages in the vertical direction, and the horizontal support of each stage in several heat transfer tube parts on both sides of the heat transfer tube panel is provided. An exhaust heat recovery boiler having a width wider than the predetermined width. 各伝熱管パネルの両側の数本の伝熱管部分は、所定幅の水平サポートの略3倍の幅としたことを特徴とする請求項1記載の排熱回収ボイラ。   2. The exhaust heat recovery boiler according to claim 1, wherein several heat transfer tube portions on both sides of each heat transfer tube panel have a width approximately three times that of a horizontal support having a predetermined width. 伝熱管は外周部にフィンを巻き付けたフィン付き伝熱管からなり、該フィン付き伝熱管の左右からフィン付き伝熱管を挟持して固定する波形バッフル板からなるハニカムサポートを設け、該ハニカムサポートの外側に水平サポートを設け、各伝熱管パネルの両側の数本の伝熱管部分は、ハニカムサポートと水平サポートの幅を共に前記水平サポートの所定幅より広くしたことを特徴とする請求項1又は2記載の排熱回収ボイラ。   The heat transfer tube is composed of a finned heat transfer tube with fins wound around the outer periphery, and provided with a honeycomb support made of a corrugated baffle plate that sandwiches and fixes the finned heat transfer tube from the left and right sides of the finned heat transfer tube. 3. A horizontal support is provided on each of the heat transfer tube panels, and the width of the honeycomb support and the horizontal support of both of the heat transfer tube portions on both sides of each heat transfer tube panel is made wider than a predetermined width of the horizontal support. Waste heat recovery boiler. ガスタービンからの排ガスを流入させるダクト内に複数の伝熱管を束ねた伝熱管パネルを吊り下げて配置してガスタービンからの排ガスの熱を伝熱管内に回収して蒸気を生成させる既設の排熱回収ボイラにおいて、排ガスの流れ方向に直交する水平方向に伝熱管パネルを束ねる所定幅の水平サポートを上下方向に複数段設け、各段の水平サポートとして各伝熱管パネルの両側の数本の伝熱管部分は、前記水平サポートの上下に前記水平サポートと略同一幅の補強水平サポートを配置し、該補強水平サポートを取り付けた伝熱管パネルの補強水平サポートの外側から補強水平サポートを挟み込んで補強水平サポートを支持する開き防止板を設けたことを特徴とする排熱回収ボイラ。   A heat transfer tube panel in which a plurality of heat transfer tubes are bundled in a duct through which the exhaust gas from the gas turbine flows is suspended and arranged so that the heat of the exhaust gas from the gas turbine is collected in the heat transfer tube to generate steam. In the heat recovery boiler, a plurality of horizontal supports with a predetermined width are bundled in the vertical direction to bundle the heat transfer tube panels in the horizontal direction perpendicular to the flow direction of the exhaust gas, and several heat transfer tubes on both sides of each heat transfer tube panel are provided as horizontal supports in each step. The heat pipe portion is provided with reinforcing horizontal supports having substantially the same width as the horizontal support above and below the horizontal support, and the reinforcing horizontal support is sandwiched from outside the reinforcing horizontal support of the heat transfer tube panel to which the reinforcing horizontal support is attached. An exhaust heat recovery boiler provided with an opening prevention plate for supporting a support. 補強水平サポートは、その外側の中央にはリブを有する構成として配置し、該リブで開き防止板を支持させた構成からなる請求項4記載の排熱回収ボイラ。   The exhaust heat recovery boiler according to claim 4, wherein the reinforcing horizontal support has a configuration in which a rib is provided at a center of the outer side thereof, and an opening prevention plate is supported by the rib. 伝熱管が外周部にフィンを巻き付けたフィン付き伝熱管からなり、該フィン付き伝熱管の左右から挟持して固定する波形バッフル板からなるハニカムサポートを設け、該ハニカムサポートの外側に水平サポートを設け、各伝熱管パネルの両側の数本の伝熱管部分は、ハニカムサポートの上下に該ハニカムサポートと略同一幅の補強ハニカムサポートを設け、さらに前記水平サポートの上下に該水平サポートと略同一幅の補強水平サポートを配置したことを特徴とする請求項4又は5記載の排熱回収ボイラ。   The heat transfer tube is composed of a finned heat transfer tube with fins wound around the outer periphery, provided with a honeycomb support made of corrugated baffle plates that are sandwiched and fixed from the left and right of the finned heat transfer tube, and a horizontal support is provided outside the honeycomb support The several heat transfer tube portions on both sides of each heat transfer tube panel are provided with reinforcing honeycomb supports having substantially the same width as the honeycomb support above and below the honeycomb support, and further having substantially the same width as the horizontal support above and below the horizontal support. The exhaust heat recovery boiler according to claim 4 or 5, wherein a reinforced horizontal support is arranged.
JP2011196723A 2011-09-09 2011-09-09 Waste heat recovery boiler Active JP5780520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011196723A JP5780520B2 (en) 2011-09-09 2011-09-09 Waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011196723A JP5780520B2 (en) 2011-09-09 2011-09-09 Waste heat recovery boiler

Publications (2)

Publication Number Publication Date
JP2013057468A JP2013057468A (en) 2013-03-28
JP5780520B2 true JP5780520B2 (en) 2015-09-16

Family

ID=48133498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011196723A Active JP5780520B2 (en) 2011-09-09 2011-09-09 Waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JP5780520B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6233077B2 (en) * 2014-02-07 2017-11-22 株式会社Ihi Boiler heat transfer tube support structure and exhaust heat recovery boiler having the heat transfer tube support structure
CN107976236B (en) * 2018-01-24 2023-08-18 广州能源检测研究院 Steady flow structure and steady flow method of sonic nozzle gas flow standard device
JP7220992B2 (en) * 2018-04-18 2023-02-13 三菱重工業株式会社 Heat transfer tube support structure and heat transfer tube support method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929189A (en) * 1974-03-20 1975-12-30 Babcock & Wilcox Co Heat exchanger structure
JP3625948B2 (en) * 1996-03-15 2005-03-02 バブコック日立株式会社 HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JP2003222304A (en) * 2002-01-31 2003-08-08 Babcock Hitachi Kk Support structure of heat transfer tube panel and exhaust heat recovery boiler

Also Published As

Publication number Publication date
JP2013057468A (en) 2013-03-28

Similar Documents

Publication Publication Date Title
TWI345027B (en)
JP5780520B2 (en) Waste heat recovery boiler
US20090178779A1 (en) Heat exchanger
JP6718525B2 (en) Gas gas heat exchanger
WO2015001666A1 (en) Waste-heat boiler
JP2006292265A (en) Dust removing device for heat transfer tube
JP5787154B2 (en) Waste heat recovery boiler
JP2857440B2 (en) Heat transfer tube support device
JP7272852B2 (en) boiler equipment
TWI757942B (en) gas to gas heat exchanger
JP7220992B2 (en) Heat transfer tube support structure and heat transfer tube support method
JP2000018501A (en) Heat-transfer pipe structure of waste heat recovery boiler
EP3889501B1 (en) Heat transmission pipe block, waste heat recovery boiler, and method for constructing waste heat recovery boiler
CN207439235U (en) A kind of MGGH heat exchangers for preventing resonance
JP3625948B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JP2753176B2 (en) Heat transfer tube panel
JPH02126001A (en) Anti-vibration structure for large sized economizer
JP2021139514A (en) Waste heat collection boiler, connecting tool and construction method of waste heat collection boiler
JPH09243002A (en) Exhaust heat recovery heat exchanger
JP6109716B2 (en) Finned tube heat exchanger
JPS597890A (en) Supporting device for heat-transmitting pipe
JP2003222304A (en) Support structure of heat transfer tube panel and exhaust heat recovery boiler
JP2009222304A (en) Once-through exhaust heat recovery boiler
JPH09257202A (en) Waste heat recovery device
JPH0565761B2 (en)

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150707

R150 Certificate of patent or registration of utility model

Ref document number: 5780520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350