US3929189A - Heat exchanger structure - Google Patents

Heat exchanger structure Download PDF

Info

Publication number
US3929189A
US3929189A US452859A US45285974A US3929189A US 3929189 A US3929189 A US 3929189A US 452859 A US452859 A US 452859A US 45285974 A US45285974 A US 45285974A US 3929189 A US3929189 A US 3929189A
Authority
US
United States
Prior art keywords
plate members
heat exchanger
rows
tubular heat
exchanger according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US452859A
Inventor
Andrew P Lecon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Babcock and Wilcox Co
Original Assignee
Babcock and Wilcox Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock and Wilcox Co filed Critical Babcock and Wilcox Co
Priority to US452859A priority Critical patent/US3929189A/en
Priority to CA212,934A priority patent/CA997232A/en
Priority to JP50021068A priority patent/JPS6020644B2/en
Priority to GB11196/75A priority patent/GB1496443A/en
Priority to BE154550A priority patent/BE826937A/en
Priority to DK116075AA priority patent/DK138088B/en
Priority to NL7503332A priority patent/NL7503332A/en
Priority to FI750833A priority patent/FI750833A/fi
Priority to ZA00751771A priority patent/ZA751771B/en
Priority to IT48695/75A priority patent/IT1032383B/en
Priority to IN562/CAL/75A priority patent/IN144993B/en
Priority to AU79345/75A priority patent/AU482813B2/en
Application granted granted Critical
Publication of US3929189A publication Critical patent/US3929189A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0132Auxiliary supports for elements for tubes or tube-assemblies formed by slats, tie-rods, articulated or expandable rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/20Supporting arrangements, e.g. for securing water-tube sets
    • F22B37/202Suspension and securing arrangements for contact heating surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • F28F9/0135Auxiliary supports for elements for tubes or tube-assemblies formed by grids having only one tube per closed grid opening

Definitions

  • the present invention relates to vibration resulting from combustion gases passing over a tubular heat exchanger and more particularly to a structural framework for suppressing vibration of the heat exchanger.
  • the present invention relates to a structural framework for suppressing vibration in tubular heat exchangers of the type having at least one bank of tube rows spaced across the gas stream in side-by-side parallel relation, with each row being formed of substantially coplanar return bend tube segments spaced in the direction of flow of the gas stream and wherein, in accordance with the invention, there are provided first and second retaining members, with the former being preferably in the shape of elongated flat bars and the latter being preferably flat bars of relatively short dimensions and having a T-shape configuration.
  • the first retaining members extend parallel to the flow of the gas stream, and are paired to contiguously straddle each of at least some of the heat exchanger tube rows, and have their respective ends projecting out from opposite sides of the tube bank.
  • the first retaining members are drawn tightly against the straddled tube sections and are fixedly maintained in that position by having the ends, which project out of the same side of the bank, rigidly interconnected by tying members, the latter being preferably shaped as elongated flat bars.
  • the second retaining members are disposed transversely of the flow of the gas stream, and extend between tube segments of the straddled rows and have their respective stem portions extending through corresponding slots formed in the pairs of first retaining members straddling the tube rows.
  • Each of the slots of first retaining members, located adjacent the head portion of second retaining members, and that segment of the stem portion which lies within the slot are sized to provide a press fit between at least one pair of mating surfaces.
  • the slots of the remaining first retaining members are preferably oversized with respect to the segment of the stem portion extending therethrough and have at least one pair of adjoining surfaces rigidly connected to one another.
  • FIG. 1 is a sectional side elevation of a vapor generating and superheating unit' including a heat exchanger embodying the present invention.
  • FIG. 2 is a side view of the heat exchanger and the vibration suppressing structural framework related thereto.
  • FIG. 3 is an enlarged sectional end view taken along line 33 of FIG. 2, and fragmented for clarity.
  • FIG. 4 is a fragmentary detailed end view of the arrangement of first and second retaining members with respect to heat exchanger tube sections.
  • FIG. 5 is a fragmentary detailed side view of a first retaining member disposed adjacent the respective head portions of related second retaining members.
  • FIG. 6 is a fragmentary detailed side view of a first retaining member disposed adjacent the distal end of respective stem portions of related second retaining members.
  • FIG. 7 is a plan view of a second retaining member in accordance with an embodiment of the invention.
  • FIG. 8 is a side view of the second retaining member of FIG. 7.
  • FIG. 9 is a plan view of an alternate embodiment of a second retaining member.
  • FIG. 10 is a side view of a further alternate embodiment of a second retaining member.
  • FIG. I there is shown a vapor generating and superheating unit 1(1 including water cooled walls 12 which define a furnace chamber or combustion space 14 to which a fuel and air mixture is supplied by burners as schematically shown at 16.
  • a fuel and air mixture is supplied by burners as schematically shown at 16.
  • the hot gases flow upwardly around the nose portion 18, over the secondary superheater 20, and thence downwardly through the convection pass 22 containing the primary superheater 24 and the economizer 26.
  • the gases leaving the convection pass 22 flow through an air heater (not shown) and :are thereafter discharged through a stack (not shown).
  • the superheaters and economizer include banked rows of return bend tube segments extending across the width of their corresponding gas pass and arranged for fluid flow therethrough and in indirect heat exchange with the combustion gases flowing through the pass.
  • the vapor generating surface is top supported by structuraltnembers including upright members 28 and cross beams 30, from which hangers 32, of which only a few are illustrated, support the walls, heat exchangers and other related par-ts of the vapor generating and superheating unit.
  • the economizer includes an. upper and a lower bank, both of which are upheld by support rods 34 which transmit the economizer weight load to primary superheater stringer tubes 36 which are in turn supported by hanger rods 32.
  • the economizer is provided with vibration suppressing 3 structural frameworks as shown at 38.
  • FIG. 2 there is shown a sectional side view of the heat exchanger in the form of economizer 26, and including an inlet and outlet header, 40 and 42, and a plurality of bent tubes 44 connected therebetween.
  • Each tube 44 includes generally upright inlet, intermediate and outlet leg segments, 46, 48 and 50, and vertically spaced, horizontally extending return bend segments 52 and 54 disposed therebetween and forming separate upper and lower banks, 56 and 58.
  • the economizer 26 is supported by rods 34 which may be in the form of bars 60 paired to straddle superposed tube rows of the upper and lower banks, 56 and 58 and including saddle supports (not shown) disposed between each pair of bars 60 to support one or more return bend tube segments 52 and 54.
  • the flat bars 60 are rigidly interconnected at their respective upper and lower ends by tie bars 62 and include support plates 64.
  • a plurality of flat bars 66 arranged in spaced groups wherein the bars 66 in each group are rigidly interconnected at their respective upper and lower ends by tie bars 68 to form the vibration suppressing structural framework 38 hereinafter described.
  • FIG. 3 there is shown a fragmented partial end view of the economizer bank 58 having a plurality of spaced tube rows 70 arranged in side-byside parallel relation, with each row being formed of spaced coplanar return bend tube segments 54, and including a vibration suppressing structural framework comprising pairs of first retaining members or elongated flat bars 66 straddling tube rows 70, and second retaining members or short flat bars 72 extending between tube segments 54 in the straddled rows.
  • the first retaining members 66 are drawn tightly against the tube segments 54 of the straddled tube rows and are fixedly maintained in that position by having the ends, which project out of the same side of the bank 58, rigidly interconnected by tying members of flat tie bars 68 which are preferably welded to respective ends of the members 66.
  • the second retaining members 72 are positioned in spaced relation to the straddled return bend tube segments 54 and extend through aligned slots formed in the pairs of first retaining members straddling the tube rows 70.
  • the second retaining members 72 are fixedly secured to corresponding pairs of first retaining members 66 to further insure that the latter remain tightly drawn against the straddled tube segments 54 and to form a framework therewith which preserves the spacing between tube segments 54 and prevents direct contact between adjoining tube surfaces.
  • first retaining members 66 drawn tightly against the tube segments 54 and slotted to receive respective stem portions 78 of second retaining members 72 which are press fitted thereinto at one end and welded thereto at the opposite end as shown at 74.
  • FIG. 5 there is shown a detailed side view of a typical first retaining member 66 situated adjacent respective head portions 76 of second retaining members 72 whose stem portions 78 extend through slots 80 in the member 66 and through the spacing between tube segments 54.
  • the slots 80 are formed with one or more of their dimensions being of lesser magnitude than a corresponding dimension of that segment of the stem portion 78 which extends therethrough. Mechanical force is applied when inserting the second retaining member 72 through the slot and a press fit is achieved between at least one pair of mating surfaces.
  • the slot 80 depicted in the drawing is of trapezoidal configuration and is sized so that the shorter of its parallel sides has a dimension of lesser magnitude than that of either of the longer parallel sides taken along the rectangular cross section of that segment of the stem portion 78 lying adjacent the head portion 76 of a second retaining member 72.
  • the longer of the parallel sides of slot 80 is substantially equal in magnitude to the longer parallel sides taken along the aforementioned cross section. It will be understood that the slot 80 configuration will vary so as to accommodate a particular stem 78 configuration while achieving a press fit therebetween.
  • FIG. 6 there is shown a detailed side view of a typical first retaining member 66 situated adjacent the distal end of respective stem portion 78 of second retaining members 72 which extend through the spacing between tube segments 54 and through slots 82 in the member 66.
  • the slots 82 are formed with their cross sectional dimensions being of greater magnitude than the corresponding dimensions of that segment of stem portion 78 which extends therethrough.
  • a weld .74 is effected between at least one pair of adjoining surfaces of the stem 78 and retaining member 66.
  • the cross sectional dimensions of the slots 82 are deliberately oversized in order to facilitate the assembly of the vibration suppressing framework.
  • FIG. 7 there is shown a plan view of an embodiment of a second retaining member 72 having a head portion 76 and a stern portion 78, and wherein the latter includes a shoulder 77 connected to or, merging with, the head portion 76, and a shank 79 extending from the distal end of the shoulder 77.
  • the cross section of shank 79 is sized and shaped to substantially match the corresponding dimensions and configuration of the slot 80 formed in the retaining member 66 situated adjacent the head portion 76.
  • the shoulder 77 has a cross section which may be of different configuration and whose one or more dimensions are of greater magnitude than the corresponding dimensions of the slot 80, so as to achieve a press fit between assembled first and second retaining members 66 and 72.
  • FIG. 8 there is a side view of the second retaining member 72 of FIG. 7 comprising the head portion 76 and the stem portion 78 with its shoulder 77 and shank 79.
  • FIG. 9 there is shown a plan view of an alternate embodiment of a second retaining member 72 having a head portion 76 and a stem portion 78A, the latter extends through a pair of first retaining members 66 tightly straddling a tube segment 54.
  • the instant retaining member 72 differs from the embodiment of FIGS. 7 and 8 in that the width of its stem portion 78A is uniformly tapered in the direction away from the head portion 76.
  • the stem width dimension adjacent the head portion 76 is greater than the corresponding dimension of the retaining member receiving slot 80, so as to achieve a press fit between assembled first and second retaining members 66 and 72.
  • the cross sectional dimensions of slot 82 of the retaining member 66, situated at the distal end of stem portion 78A, are
  • FIG. 10 there is shown a side view of a further alternate embodiment of a second retaining member 72 comprising a head portion 76 and a stem portion 78B.
  • the instant retaining member 72 differs from the embodiments of FIGS. 7, 8 and 9 in that the thickness of its stern portion 783 is uniformly tapered in the direction away from the head portion 76.
  • the stem thickness dimension adjacent the head portion 76 is greater than the corresponding slot dimension of the retaining member normally situated adjacent the head portion 76.
  • a tubular heat exchanger disposed within a passageway, means for conveying a heated fluid stream over the heat exchanger and means for passing a fluid to be heated through the heat exchanger, said heat exchanger having at least one bank of spaced tube rows arranged across the fluid stream in side-by-side parallel relation, each of the rows being formed of substantially coplanar return bend tube segments spaced in the direction of flow of the fluid stream, and means for suppressing vibration of the heat exchanger, said last named means including rigidly connected first and second intersecting plate members, wherein first plate members are paired to contiguously straddle each of at least some of said rows, and second plate members are spaced from and extend between return bend tube segments of said straddled rows, the first plate members being slotted to accommodate the substantially perpendicular extension there'through of intersecting second plate members, and said second plate members being press fit into respective slots of at least one of the first plate members intersecting therewith.
  • tubular heat exchanger according to claim 1 wherein respective ends of the first plate members protrude from opposite sides of the tube bank and including tying plate members rigidly interconnecting the ends protruding on the same side of said bank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A vibration suppressing structural framework for tubular heat exchangers including retaining members cooperating with one another to restrain movement of the tubes.

Description

ilnrted States Patent 11 1 1111 3,929,189 Lecon 1 Dec. 30, 1975 HEAT EXCHANGER STRUCTURE 3,420,297 1/1969 Romanos 122/510 x 3,545,534 12/1970 Coles 165/162 X [75] lnventor- Andrew Lem", Akron 3,575,236 4/1971 Romanos 165/162 [73] Assignee: The Babcock & Wilcox Company 3,677,339 7/1972 Perrin et a1, 122/510 X New York, FOREIGN PATENTS OR APPLICATIONS [22] Filed: Mar. 20, 1974 676,152 11/1929 France 248/68 R 21 A 1. No.: 452 859 1 pp Primary Examiner-Char1es .1. Myhre Assistant Examiner-Theophil W. Streule, Jr. [52] US. Cl. 165/69; 165/162; 122/510 Attorney, Agent, or Firm.]. Maguire; R. J. Edwards [51] Int. C1. F28F 7/00 [58] Field of Search 165/162, 678, 69, 81, 82;
122/510; 110/98 R; 248/68 R, 67 [57] ABSTRACT A vibration suppressing structural framework for tu- [56] References Cited bular heat exchangers including retaining members UNITED STATES PATENTS cooperating with one another to restrain movement of 1,430,769 10/1922 Thompson 165/162 the tubes 2,893,698 7/1959 Nunninghoff 122/510 6 Claims, 10 Drawing Figures Patent Dec. 30, 1975 Sheet 2 of 2 3,929,19
j FIG.4
HEAT EXCHANGER STRUCTURE BACKGROUND OF THE INVENTION The present invention relates to vibration resulting from combustion gases passing over a tubular heat exchanger and more particularly to a structural framework for suppressing vibration of the heat exchanger.
It is common practice in the design of a modern high capacity vapor generator to provide heat exchange surfaces in the form of closely spaced tubes positioned in a passage through which combustion gases at relatively high velocities are conveyed, with the tubes having portions thereof arranged in spaced parallel rows distributed transversely of the direction of gas flow. In this type of construction, it has been found that the passing of combustion gases over the transversely disposed tube portions causes gas flow instability that may give rise to large amplitude pulsations which are in acoustical resonance with the passage enclosure thereby causing severe vibration as well as intense noise. This condition has been aggravated by the present day trend toward high capacity vapor generators with its concomitants of increased gas mass flows and heat exchange surface which, coupled with the desirability for cost saving compact installations, have resulted in higher gas velocities and closer tube spacing, particularly for heat exchangers located in the lower gas temperature zones. The increase in gas velocities has given rise to vibrations of such severity as to cause the tubes of one row to oscillate and strike those of an adjacent row thereby endangering the physical structure of the heat exchanger.
SUMMARY OF THE INVENTION The present invention relates to a structural framework for suppressing vibration in tubular heat exchangers of the type having at least one bank of tube rows spaced across the gas stream in side-by-side parallel relation, with each row being formed of substantially coplanar return bend tube segments spaced in the direction of flow of the gas stream and wherein, in accordance with the invention, there are provided first and second retaining members, with the former being preferably in the shape of elongated flat bars and the latter being preferably flat bars of relatively short dimensions and having a T-shape configuration.
The first retaining members extend parallel to the flow of the gas stream, and are paired to contiguously straddle each of at least some of the heat exchanger tube rows, and have their respective ends projecting out from opposite sides of the tube bank. The first retaining members are drawn tightly against the straddled tube sections and are fixedly maintained in that position by having the ends, which project out of the same side of the bank, rigidly interconnected by tying members, the latter being preferably shaped as elongated flat bars.
The second retaining members are disposed transversely of the flow of the gas stream, and extend between tube segments of the straddled rows and have their respective stem portions extending through corresponding slots formed in the pairs of first retaining members straddling the tube rows. Each of the slots of first retaining members, located adjacent the head portion of second retaining members, and that segment of the stem portion which lies within the slot are sized to provide a press fit between at least one pair of mating surfaces. The slots of the remaining first retaining members are preferably oversized with respect to the segment of the stem portion extending therethrough and have at least one pair of adjoining surfaces rigidly connected to one another.
BRIEF DESCRIPTION OFTHE DRAWINGS FIG. 1 is a sectional side elevation of a vapor generating and superheating unit' including a heat exchanger embodying the present invention.
FIG. 2 is a side view of the heat exchanger and the vibration suppressing structural framework related thereto.
FIG. 3 is an enlarged sectional end view taken along line 33 of FIG. 2, and fragmented for clarity.
FIG. 4 is a fragmentary detailed end view of the arrangement of first and second retaining members with respect to heat exchanger tube sections.
FIG. 5 is a fragmentary detailed side view of a first retaining member disposed adjacent the respective head portions of related second retaining members.
FIG. 6 is a fragmentary detailed side view of a first retaining member disposed adjacent the distal end of respective stem portions of related second retaining members.
FIG. 7 is a plan view of a second retaining member in accordance with an embodiment of the invention.
FIG. 8 is a side view of the second retaining member of FIG. 7.
FIG. 9 is a plan view of an alternate embodiment of a second retaining member.
FIG. 10 is a side view of a further alternate embodiment of a second retaining member.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. I, there is shown a vapor generating and superheating unit 1(1 including water cooled walls 12 which define a furnace chamber or combustion space 14 to which a fuel and air mixture is supplied by burners as schematically shown at 16. After combustion has been completed in the furnace chamber 14, the hot gases flow upwardly around the nose portion 18, over the secondary superheater 20, and thence downwardly through the convection pass 22 containing the primary superheater 24 and the economizer 26. The gases leaving the convection pass 22 flow through an air heater (not shown) and :are thereafter discharged through a stack (not shown). It will be understood that in accordance with well known practice, the superheaters and economizer include banked rows of return bend tube segments extending across the width of their corresponding gas pass and arranged for fluid flow therethrough and in indirect heat exchange with the combustion gases flowing through the pass.
The vapor generating surface is top supported by structuraltnembers including upright members 28 and cross beams 30, from which hangers 32, of which only a few are illustrated, support the walls, heat exchangers and other related par-ts of the vapor generating and superheating unit.
The economizer includes an. upper and a lower bank, both of which are upheld by support rods 34 which transmit the economizer weight load to primary superheater stringer tubes 36 which are in turn supported by hanger rods 32. In accordance with the invention, the economizer is provided with vibration suppressing 3 structural frameworks as shown at 38.
Referring to FIG. 2, there is shown a sectional side view of the heat exchanger in the form of economizer 26, and including an inlet and outlet header, 40 and 42, and a plurality of bent tubes 44 connected therebetween. Each tube 44 includes generally upright inlet, intermediate and outlet leg segments, 46, 48 and 50, and vertically spaced, horizontally extending return bend segments 52 and 54 disposed therebetween and forming separate upper and lower banks, 56 and 58. The economizer 26 is supported by rods 34 which may be in the form of bars 60 paired to straddle superposed tube rows of the upper and lower banks, 56 and 58 and including saddle supports (not shown) disposed between each pair of bars 60 to support one or more return bend tube segments 52 and 54. The flat bars 60 are rigidly interconnected at their respective upper and lower ends by tie bars 62 and include support plates 64.
In accordance with the invention, there are provided a plurality of flat bars 66 arranged in spaced groups wherein the bars 66 in each group are rigidly interconnected at their respective upper and lower ends by tie bars 68 to form the vibration suppressing structural framework 38 hereinafter described.
Referring to FIG. 3 there is shown a fragmented partial end view of the economizer bank 58 having a plurality of spaced tube rows 70 arranged in side-byside parallel relation, with each row being formed of spaced coplanar return bend tube segments 54, and including a vibration suppressing structural framework comprising pairs of first retaining members or elongated flat bars 66 straddling tube rows 70, and second retaining members or short flat bars 72 extending between tube segments 54 in the straddled rows.
The first retaining members 66 are drawn tightly against the tube segments 54 of the straddled tube rows and are fixedly maintained in that position by having the ends, which project out of the same side of the bank 58, rigidly interconnected by tying members of flat tie bars 68 which are preferably welded to respective ends of the members 66.
The second retaining members 72 are positioned in spaced relation to the straddled return bend tube segments 54 and extend through aligned slots formed in the pairs of first retaining members straddling the tube rows 70. The second retaining members 72 are fixedly secured to corresponding pairs of first retaining members 66 to further insure that the latter remain tightly drawn against the straddled tube segments 54 and to form a framework therewith which preserves the spacing between tube segments 54 and prevents direct contact between adjoining tube surfaces.
Referring to FIG. 4, there is shown a detailed view of the assembled framework including first retaining members 66 drawn tightly against the tube segments 54 and slotted to receive respective stem portions 78 of second retaining members 72 which are press fitted thereinto at one end and welded thereto at the opposite end as shown at 74.
Referring to FIG. 5, there is shown a detailed side view of a typical first retaining member 66 situated adjacent respective head portions 76 of second retaining members 72 whose stem portions 78 extend through slots 80 in the member 66 and through the spacing between tube segments 54. In accordance with the invention, the slots 80 are formed with one or more of their dimensions being of lesser magnitude than a corresponding dimension of that segment of the stem portion 78 which extends therethrough. Mechanical force is applied when inserting the second retaining member 72 through the slot and a press fit is achieved between at least one pair of mating surfaces. The slot 80 depicted in the drawing is of trapezoidal configuration and is sized so that the shorter of its parallel sides has a dimension of lesser magnitude than that of either of the longer parallel sides taken along the rectangular cross section of that segment of the stem portion 78 lying adjacent the head portion 76 of a second retaining member 72. The longer of the parallel sides of slot 80 is substantially equal in magnitude to the longer parallel sides taken along the aforementioned cross section. It will be understood that the slot 80 configuration will vary so as to accommodate a particular stem 78 configuration while achieving a press fit therebetween.
Referring to FIG. 6, there is shown a detailed side view of a typical first retaining member 66 situated adjacent the distal end of respective stem portion 78 of second retaining members 72 which extend through the spacing between tube segments 54 and through slots 82 in the member 66. In accordance with the invention, the slots 82 are formed with their cross sectional dimensions being of greater magnitude than the corresponding dimensions of that segment of stem portion 78 which extends therethrough. A weld .74 is effected between at least one pair of adjoining surfaces of the stem 78 and retaining member 66. The cross sectional dimensions of the slots 82 are deliberately oversized in order to facilitate the assembly of the vibration suppressing framework.
Referring to FIG. 7, there is shown a plan view of an embodiment of a second retaining member 72 having a head portion 76 and a stern portion 78, and wherein the latter includes a shoulder 77 connected to or, merging with, the head portion 76, and a shank 79 extending from the distal end of the shoulder 77. The cross section of shank 79 is sized and shaped to substantially match the corresponding dimensions and configuration of the slot 80 formed in the retaining member 66 situated adjacent the head portion 76. In accordance with the invention, the shoulder 77 has a cross section which may be of different configuration and whose one or more dimensions are of greater magnitude than the corresponding dimensions of the slot 80, so as to achieve a press fit between assembled first and second retaining members 66 and 72.
Referring to FIG. 8, there is a side view of the second retaining member 72 of FIG. 7 comprising the head portion 76 and the stem portion 78 with its shoulder 77 and shank 79.
Referring to FIG. 9, there is shown a plan view of an alternate embodiment of a second retaining member 72 having a head portion 76 and a stem portion 78A, the latter extends through a pair of first retaining members 66 tightly straddling a tube segment 54. The instant retaining member 72 differs from the embodiment of FIGS. 7 and 8 in that the width of its stem portion 78A is uniformly tapered in the direction away from the head portion 76. The stem width dimension adjacent the head portion 76 is greater than the corresponding dimension of the retaining member receiving slot 80, so as to achieve a press fit between assembled first and second retaining members 66 and 72. The cross sectional dimensions of slot 82 of the retaining member 66, situated at the distal end of stem portion 78A, are
greater than the corresponding dimensions of the stem portion extending therethrough so as to facilitate assembly of the framework.
Referring to FIG. 10, there is shown a side view of a further alternate embodiment of a second retaining member 72 comprising a head portion 76 and a stem portion 78B. The instant retaining member 72 differs from the embodiments of FIGS. 7, 8 and 9 in that the thickness of its stern portion 783 is uniformly tapered in the direction away from the head portion 76. The stem thickness dimension adjacent the head portion 76 is greater than the corresponding slot dimension of the retaining member normally situated adjacent the head portion 76.
While in accordance with provisions of the statutes there is illustrated and described herein a specific embodiment of the invention, those skilled in the art will understand that changes may be made in the form of the invention covered by the claims, and that certain features of the invention may sometimes be used to advantage without a corresponding use of the other features.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A tubular heat exchanger disposed within a passageway, means for conveying a heated fluid stream over the heat exchanger and means for passing a fluid to be heated through the heat exchanger, said heat exchanger having at least one bank of spaced tube rows arranged across the fluid stream in side-by-side parallel relation, each of the rows being formed of substantially coplanar return bend tube segments spaced in the direction of flow of the fluid stream, and means for suppressing vibration of the heat exchanger, said last named means including rigidly connected first and second intersecting plate members, wherein first plate members are paired to contiguously straddle each of at least some of said rows, and second plate members are spaced from and extend between return bend tube segments of said straddled rows, the first plate members being slotted to accommodate the substantially perpendicular extension there'through of intersecting second plate members, and said second plate members being press fit into respective slots of at least one of the first plate members intersecting therewith.
2. The tubular heat exchanger according to claim 1 wherein respective ends of the first plate members protrude from opposite sides of the tube bank and including tying plate members rigidly interconnecting the ends protruding on the same side of said bank.
3. The tubular heat exchanger according to claim 1 wherein the slots in at least one of each of the paired first plate members are each formed with at least one dimension of lesser magnitude than the corresponding dimension of that portion of second plate member to lie within the slot.
4. The tubular heat exchanger according to claim 1 wherein said second plate members are weldably connected to at least one of the first plate members intersecting therewith.
5. The tubular heat exchanger according to claim 1 wherein said first and second plate members are of rectilinear configuration.
6. The tubular heat exchanger according to claim 1 wherein each of said second plate members is a T- shaped bar having a tapered stem. =l=

Claims (6)

1. A tubular heat exchanger disposed within a passageway, means for conveying a heated fluid stream over the heat exchanger and means for passing a fluid to be heated through the heat exchanger, said heat exchanger having at least one bank of spaced tube rows arranged across the fluid stream in side-by-side parallel relation, each of the rows being formed of substantially coplanar return bend tube segments spaced in the direction of flow of the fluid stream, and means for suppressing vibration of the heat exchanger, said last named means including rigidly connected first and second inTersecting plate members, wherein first plate members are paired to contiguously straddle each of at least some of said rows, and second plate members are spaced from and extend between return bend tube segments of said straddled rows, the first plate members being slotted to accommodate the substantially perpendicular extension therethrough of intersecting second plate members, and said second plate members being press fit into respective slots of at least one of the first plate members intersecting therewith.
2. The tubular heat exchanger according to claim 1 wherein respective ends of the first plate members protrude from opposite sides of the tube bank and including tying plate members rigidly interconnecting the ends protruding on the same side of said bank.
3. The tubular heat exchanger according to claim 1 wherein the slots in at least one of each of the paired first plate members are each formed with at least one dimension of lesser magnitude than the corresponding dimension of that portion of second plate member to lie within the slot.
4. The tubular heat exchanger according to claim 1 wherein said second plate members are weldably connected to at least one of the first plate members intersecting therewith.
5. The tubular heat exchanger according to claim 1 wherein said first and second plate members are of rectilinear configuration.
6. The tubular heat exchanger according to claim 1 wherein each of said second plate members is a T-shaped bar having a tapered stem.
US452859A 1974-03-20 1974-03-20 Heat exchanger structure Expired - Lifetime US3929189A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US452859A US3929189A (en) 1974-03-20 1974-03-20 Heat exchanger structure
CA212,934A CA997232A (en) 1974-03-20 1974-11-04 Heat exchanger structure
JP50021068A JPS6020644B2 (en) 1974-03-20 1975-02-21 Anti-vibration device for tubular heat exchanger
GB11196/75A GB1496443A (en) 1974-03-20 1975-03-18 Support of heat exchanger tubes
DK116075AA DK138088B (en) 1974-03-20 1975-03-20 Heat exchanger comprising a vertical gas draft in a steam boiler.
NL7503332A NL7503332A (en) 1974-03-20 1975-03-20 SUPPORT FOR PIPES IN GAS TRANSIT.
BE154550A BE826937A (en) 1974-03-20 1975-03-20 IMPROVEMENTS TO THE SUPPORT OF TUBES IN GAS PASSAGES
FI750833A FI750833A (en) 1974-03-20 1975-03-20
ZA00751771A ZA751771B (en) 1974-03-20 1975-03-20 Improvements in or relating to the support of tubes in gas passes
IT48695/75A IT1032383B (en) 1974-03-20 1975-03-20 IMPROVEMENT IN HEAT EXCHANGERS
IN562/CAL/75A IN144993B (en) 1974-03-20 1975-03-20
AU79345/75A AU482813B2 (en) 1974-03-20 1975-03-20 Heat exchanger structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US452859A US3929189A (en) 1974-03-20 1974-03-20 Heat exchanger structure

Publications (1)

Publication Number Publication Date
US3929189A true US3929189A (en) 1975-12-30

Family

ID=23798246

Family Applications (1)

Application Number Title Priority Date Filing Date
US452859A Expired - Lifetime US3929189A (en) 1974-03-20 1974-03-20 Heat exchanger structure

Country Status (11)

Country Link
US (1) US3929189A (en)
JP (1) JPS6020644B2 (en)
BE (1) BE826937A (en)
CA (1) CA997232A (en)
DK (1) DK138088B (en)
FI (1) FI750833A (en)
GB (1) GB1496443A (en)
IN (1) IN144993B (en)
IT (1) IT1032383B (en)
NL (1) NL7503332A (en)
ZA (1) ZA751771B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013024A (en) * 1976-01-07 1977-03-22 The Air Preheater Company, Inc. Slotted band type spacer for high temperature superheater tubes
EP0049038A2 (en) * 1980-10-01 1982-04-07 The Babcock & Wilcox Company Tube support structures
WO1983000371A1 (en) * 1981-07-15 1983-02-03 Babcock Power Ltd Waste heat boilers
US4415018A (en) * 1981-06-01 1983-11-15 Kaydee Engineering, Inc. Heat transfer apparatus for transportable liquid containers
US4445463A (en) * 1983-04-06 1984-05-01 Syngas Company Waste heat boiler
US4502392A (en) * 1981-06-01 1985-03-05 Kaydee Engineering, Inc. Heat transfer apparatus for transportable liquid containers
US4522157A (en) * 1982-09-30 1985-06-11 Lummus Crest Inc. Convection section assembly for process heaters
US5005637A (en) * 1986-11-05 1991-04-09 Phillips Petroleum Company Heat exchanger U-bend tube support
EP0748996A1 (en) * 1995-06-15 1996-12-18 GEC ALSTHOM Stein Industrie Device for securing a tube bundle particularly for a heat exchanger
US6244330B1 (en) 1998-11-16 2001-06-12 Foster Wheeler Corporation Anti-vibration ties for tube bundles and related method
US20050019233A1 (en) * 2003-07-25 2005-01-27 Brewer John R. Systems and apparatuses for stabilizing reactor furnace tubes
JP2013057468A (en) * 2011-09-09 2013-03-28 Babcock Hitachi Kk Exhaust heat recovery boiler
US20140123915A1 (en) * 2007-05-17 2014-05-08 Babcock & Wilcox Power Generation Group, Inc. Economizer arrangement for steam generator
CN105240619A (en) * 2015-11-02 2016-01-13 无锡华光锅炉股份有限公司 Pipe system hanging device of coal economizer
US20160178192A1 (en) * 2014-12-18 2016-06-23 Babcock & Wilcox Power Generation Group, Inc. System and device for supporting horizontal boiler tubes
WO2016127937A3 (en) * 2015-02-12 2016-12-15 安徽海螺川崎工程有限公司 Waste heat boiler
CN107709879A (en) * 2015-02-12 2018-02-16 安徽海螺川崎工程有限公司 Waste heat boiler

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598091U (en) * 1982-07-06 1984-01-19 三菱重工業株式会社 Heat exchanger
US4480594A (en) * 1984-02-21 1984-11-06 Combustion Engineering, Inc. Economizer support
JPS61228527A (en) * 1985-04-01 1986-10-11 Omron Tateisi Electronics Co Crt touch switch input device
JPS62140131A (en) * 1985-12-16 1987-06-23 Fujitsu Ltd Handwriting input board
IT1200308B (en) * 1986-10-29 1989-01-12 Ansaldo Spa APE NEST THERMAL SCREEN FOR HEAT EXCHANGERS
DK2088371T3 (en) * 2007-07-18 2014-08-04 Babcock & Wilcox Power Generat Support frame assembly for a pipe heat exchanger
CN101349525A (en) * 2007-07-19 2009-01-21 巴布考克及威尔考克斯公司 Frame of heat exchanger
CN116067194B (en) * 2023-04-06 2023-07-18 济南蓝辰能源技术有限公司 Automatic control system based on indirect air cooling shutter self-vibration suppression device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1430769A (en) * 1920-08-17 1922-10-03 Westinghouse Electric & Mfg Co Cooling coils for transformers
US2893698A (en) * 1957-03-18 1959-07-07 Babcock & Wilcox Co Superheater tube support
US3420297A (en) * 1967-04-25 1969-01-07 Combustion Eng Heat exchanger tube support and spacing structure
US3545534A (en) * 1967-12-01 1970-12-08 Atomic Power Constr Ltd Heat exchangers
US3575236A (en) * 1969-08-13 1971-04-20 Combustion Eng Formed plate tube spacer structure
US3677339A (en) * 1970-01-15 1972-07-18 Alfred J Perrin Coiled tube banks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1430769A (en) * 1920-08-17 1922-10-03 Westinghouse Electric & Mfg Co Cooling coils for transformers
US2893698A (en) * 1957-03-18 1959-07-07 Babcock & Wilcox Co Superheater tube support
US3420297A (en) * 1967-04-25 1969-01-07 Combustion Eng Heat exchanger tube support and spacing structure
US3545534A (en) * 1967-12-01 1970-12-08 Atomic Power Constr Ltd Heat exchangers
US3575236A (en) * 1969-08-13 1971-04-20 Combustion Eng Formed plate tube spacer structure
US3677339A (en) * 1970-01-15 1972-07-18 Alfred J Perrin Coiled tube banks

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013024A (en) * 1976-01-07 1977-03-22 The Air Preheater Company, Inc. Slotted band type spacer for high temperature superheater tubes
EP0049038A3 (en) * 1980-10-01 1983-03-16 The Babcock & Wilcox Company Tube support structures
EP0049038A2 (en) * 1980-10-01 1982-04-07 The Babcock & Wilcox Company Tube support structures
US4502392A (en) * 1981-06-01 1985-03-05 Kaydee Engineering, Inc. Heat transfer apparatus for transportable liquid containers
US4415018A (en) * 1981-06-01 1983-11-15 Kaydee Engineering, Inc. Heat transfer apparatus for transportable liquid containers
WO1983000371A1 (en) * 1981-07-15 1983-02-03 Babcock Power Ltd Waste heat boilers
US4522157A (en) * 1982-09-30 1985-06-11 Lummus Crest Inc. Convection section assembly for process heaters
US4445463A (en) * 1983-04-06 1984-05-01 Syngas Company Waste heat boiler
US5005637A (en) * 1986-11-05 1991-04-09 Phillips Petroleum Company Heat exchanger U-bend tube support
US5148598A (en) * 1986-11-05 1992-09-22 Phillips Petroleum Company Method of fabricating exchanger U-bend tube support
EP0748996A1 (en) * 1995-06-15 1996-12-18 GEC ALSTHOM Stein Industrie Device for securing a tube bundle particularly for a heat exchanger
FR2735566A1 (en) * 1995-06-15 1996-12-20 Gec Alsthom Stein Ind ARRANGEMENT FOR HOLDING A TUBE BEAM IN PARTICULAR FOR FORMING A HEAT EXCHANGER
US5697426A (en) * 1995-06-15 1997-12-16 Gec Alsthom Stein Industrie Rack for holding a set of tubes, in particular for forming a heat exchanger
US6244330B1 (en) 1998-11-16 2001-06-12 Foster Wheeler Corporation Anti-vibration ties for tube bundles and related method
US20050019233A1 (en) * 2003-07-25 2005-01-27 Brewer John R. Systems and apparatuses for stabilizing reactor furnace tubes
WO2005012861A2 (en) * 2003-07-25 2005-02-10 Stone & Webster Process Technology, Inc. Systems and apparatuses for stabilizing reactor furnace tubes
WO2005012861A3 (en) * 2003-07-25 2006-01-12 Stone & Webster Process Tech Systems and apparatuses for stabilizing reactor furnace tubes
US7048041B2 (en) * 2003-07-25 2006-05-23 Stone & Webster Process Technology, Inc. Systems and apparatuses for stabilizing reactor furnace tubes
US20140123915A1 (en) * 2007-05-17 2014-05-08 Babcock & Wilcox Power Generation Group, Inc. Economizer arrangement for steam generator
US9212816B2 (en) * 2007-05-17 2015-12-15 The Babcock & Wilcox Company Economizer arrangement for steam generator
JP2013057468A (en) * 2011-09-09 2013-03-28 Babcock Hitachi Kk Exhaust heat recovery boiler
US9683735B2 (en) * 2014-12-18 2017-06-20 The Babcock & Wilcox Company System and device for supporting horizontal boiler tubes
US20160178192A1 (en) * 2014-12-18 2016-06-23 Babcock & Wilcox Power Generation Group, Inc. System and device for supporting horizontal boiler tubes
WO2016127937A3 (en) * 2015-02-12 2016-12-15 安徽海螺川崎工程有限公司 Waste heat boiler
US20180023806A1 (en) * 2015-02-12 2018-01-25 Anhui Conch Kawasaki Engineering Company Limited Waste heat boiler
CN107709879A (en) * 2015-02-12 2018-02-16 安徽海螺川崎工程有限公司 Waste heat boiler
CN107709879B (en) * 2015-02-12 2020-06-09 安徽海螺川崎工程有限公司 Waste heat boiler
US10907822B2 (en) * 2015-02-12 2021-02-02 Anhui Conch Kawasaki Engineering Company Limited Waste heat boiler
CN105240619A (en) * 2015-11-02 2016-01-13 无锡华光锅炉股份有限公司 Pipe system hanging device of coal economizer
CN105240619B (en) * 2015-11-02 2018-05-15 无锡华光锅炉股份有限公司 A kind of economizer piping erecting by overhang

Also Published As

Publication number Publication date
BE826937A (en) 1975-09-22
ZA751771B (en) 1976-03-31
JPS50125102A (en) 1975-10-01
NL7503332A (en) 1975-09-23
DK116075A (en) 1975-09-21
IN144993B (en) 1978-08-12
CA997232A (en) 1976-09-21
GB1496443A (en) 1977-12-30
IT1032383B (en) 1979-05-30
DK138088C (en) 1978-12-04
FI750833A (en) 1975-09-21
AU7934575A (en) 1976-09-23
DK138088B (en) 1978-07-10
JPS6020644B2 (en) 1985-05-23

Similar Documents

Publication Publication Date Title
US3929189A (en) Heat exchanger structure
US4421070A (en) Steam cooled hanger tube for horizontal superheaters and reheaters
US4100889A (en) Band type tube support
KR840004563A (en) One drum boiler system
US2762635A (en) Tube and header connections
US3203376A (en) Buckstay arrangement for furnace walls
US3368534A (en) Multiple pass design for once-through steam generators
US3125995A (en) forced flow vapor generating unit
US3476180A (en) Studded heat exchanger tubes
US3556059A (en) Two-pass furnace circuit arrangement for once-through vapor generator
US4706614A (en) Device for suspending a bundle of horizontal tubes in a vertical plane and method of fabricating the device
US3665893A (en) Vapor generator tube arrangement
US3060909A (en) Support means for tubes or groups of tubes heated by hot gas
US3434531A (en) Semirigid tube supporting tie
US3545409A (en) Offset mix tubes
US2916263A (en) Fluid heat exchange apparatus
US2999483A (en) Furnace wall and support construction
US3055348A (en) Fluid heater tube platen supports
US3741174A (en) Tube supports
US1889861A (en) Baffle arrangement
US2962007A (en) Long span tubular heat exchange apparatus
US2512677A (en) Steam generator
JPH0826963B2 (en) Exhaust heat recovery boiler
US3685496A (en) Steam boiler having a water space traversed by a flue gas duct
US3880123A (en) Semi-rigid tube supporting tie