JP7220992B2 - Heat transfer tube support structure and heat transfer tube support method - Google Patents

Heat transfer tube support structure and heat transfer tube support method Download PDF

Info

Publication number
JP7220992B2
JP7220992B2 JP2018080156A JP2018080156A JP7220992B2 JP 7220992 B2 JP7220992 B2 JP 7220992B2 JP 2018080156 A JP2018080156 A JP 2018080156A JP 2018080156 A JP2018080156 A JP 2018080156A JP 7220992 B2 JP7220992 B2 JP 7220992B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
reinforcing plate
support
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018080156A
Other languages
Japanese (ja)
Other versions
JP2019190672A (en
Inventor
雅之 石川
宏昭 細井
正憲 西村
譲 吉元
重行 入木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2018080156A priority Critical patent/JP7220992B2/en
Priority to CN201980026020.7A priority patent/CN111989531B/en
Priority to SG11202009941UA priority patent/SG11202009941UA/en
Priority to PCT/JP2019/016613 priority patent/WO2019203300A1/en
Publication of JP2019190672A publication Critical patent/JP2019190672A/en
Application granted granted Critical
Publication of JP7220992B2 publication Critical patent/JP7220992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/20Supporting arrangements, e.g. for securing water-tube sets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、排熱回収ボイラ等に備えられる伝熱管パネルに千鳥配列した伝熱管の支持構造、および、そのような伝熱管の支持方法に関する。 TECHNICAL FIELD The present invention relates to a support structure for heat transfer tubes arranged in a staggered manner in a heat transfer tube panel provided in an exhaust heat recovery boiler or the like, and a support method for such heat transfer tubes.

高効率発電の一環として注目されている複合発電プラントは、まず、ガスタービンによる発電を行うと共に、ガスタービンから排出される排ガス中の熱を排熱回収ボイラ(HRSG)において回収し、この排熱回収ボイラで発生した蒸気によって蒸気タービンを駆動させて発電するものである。この複合発電プラントは、ガスタービンによる発電と蒸気タービンによる発電を同時に行うことができるため、発電効率が高い上にガスタービンは負荷応答性に優れており、急激な電力需要の上昇にも十分対応し得るという利点もある。 Combined cycle power plants, which are attracting attention as part of high-efficiency power generation, first generate power with a gas turbine, and recover the heat in the exhaust gas emitted from the gas turbine in a heat recovery steam generator (HRSG). The steam generated by the recovery boiler drives a steam turbine to generate electricity. This combined power plant can simultaneously generate power with gas turbines and steam turbines, so power generation efficiency is high and gas turbines have excellent load responsiveness. There is also the advantage of being able to

この種の複合発電プラントにおいて、一般的に、排熱回収ボイラ内には、ガスタービンの排ガスの熱を回収する過熱器、蒸発器、節炭器などの熱交換器が配置されていると共に、排ガスの脱硝を行うために脱硝装置が配置されている。熱交換器は上下方向に直立した多数の伝熱管を千鳥状に配列した伝熱管パネルによって構成されており、排ガスからの熱を吸収し易くするために、フィンを螺旋状に巻き付けたフィン付き伝熱管が広く採用されている。 In this type of combined cycle power plant, heat exchangers such as a superheater, an evaporator, and an economizer are generally arranged in the heat recovery boiler for recovering the heat of exhaust gas from the gas turbine. A denitration device is arranged to denitrate the exhaust gas. The heat exchanger consists of heat transfer tube panels in which a large number of heat transfer tubes are arranged in a zigzag pattern. Hot tubes are widely used.

伝熱管パネルに対して排ガスが水平方向に流れるように構成された横型と呼ばれる排熱回収ボイラでは、ガスタービンの大型化に伴うボイラの大型化によって、ダクトの高さが20mもしくはそれ以上に大型のものになっており、それに応じて内部のフィン付き伝熱管の長さも長尺なものとなっている。 In the so-called horizontal heat recovery boiler, which is configured so that the exhaust gas flows horizontally through the heat transfer tube panel, the duct height is 20m or more due to the increase in size of the boiler due to the increase in size of the gas turbine. The length of the internal finned heat transfer tubes is correspondingly long.

フィン付き伝熱管は、排ガスの流体力やフィン付き伝熱管の後流に発生するカルマン渦流等によって振動することが知られており、特に、フィン付き伝熱管が長尺化してくると、隣接する伝熱管のフィン同士が振動によって損傷し易くなる。そこで従来より、千鳥配置したフィン付き伝熱管をサポート部材によって水平方向に束ね、このサポート部材を伝熱管パネルの垂直方向に所定間隔を存して複数段設けることにより、フィン付き伝熱管の振動を抑制するようにした技術が提案されている。 Finned heat transfer tubes are known to vibrate due to fluid force of exhaust gas, Karman vortices generated in the wake of the finned heat transfer tubes, and the like. The fins of the heat transfer tubes are easily damaged by vibration. Therefore, conventionally, heat transfer tubes with fins arranged in a staggered manner are bundled in the horizontal direction by support members, and these support members are provided in a plurality of stages at predetermined intervals in the vertical direction of the heat transfer tube panel, thereby suppressing the vibration of the heat transfer tubes with fins. Techniques for suppressing this have been proposed.

例えば、特許文献1には、千鳥配置したフィン付き伝熱管をフィンとフィンの間に挿入した板状のサポート部材によって支持すると共に、フィン付き伝熱管の斜め方向への間隙に連結板を挿入し、この連結板の両端を排ガスの流れ方向に沿って前後方向に隣接する各伝熱管パネルのサポート部材にそれぞれ固定することにより、複数の伝熱管パネル全体の剛性を高めるようにした伝熱管支持構造が記載されている。 For example, in Patent Document 1, heat transfer tubes with fins arranged in a staggered manner are supported by a plate-like support member inserted between the fins, and a connecting plate is inserted into a gap between the heat transfer tubes with fins in an oblique direction. , a heat transfer tube support structure in which the rigidity of the entire plurality of heat transfer tube panels is increased by fixing both ends of the connecting plate to the support members of the heat transfer tube panels adjacent in the front-rear direction along the flow direction of the exhaust gas. is described.

また、特許文献2には、千鳥配置したフィン付き伝熱管をハニカム形状のサポート部材で支持すると共に、水平方向の両端側に位置する数本分のフィン付き伝熱管を短尺の補強用サポート部材で支持し、フィン付き伝熱管の斜め方向の間隙に挿入した門型の開き防止板によってサポート部材と補強用サポート部材を連結することにより、伝熱管パネルの振動変位を低減するようにした伝熱管支持構造が記載されている。 In addition, in Patent Document 2, heat transfer tubes with fins arranged in a staggered manner are supported by honeycomb-shaped support members, and several heat transfer tubes with fins located at both ends in the horizontal direction are supported by short reinforcing support members. A heat transfer tube support that reduces the vibration displacement of the heat transfer tube panel by connecting the support member and the reinforcing support member with a gate-shaped anti-opening plate that is supported and inserted into the diagonal gap of the heat transfer tube with fins. structure is described.

特許第2857440号公報Japanese Patent No. 2857440 特開2013-57468号公報JP 2013-57468 A

ところで、近年のガスタービン仕様では、排熱回収ボイラに到達する排ガスが高温・高流速かつ旋回を伴うものとなっており、これにより伝熱管パネルの振動が激しくなってきているため、フィン付き伝熱管を水平方向に束ねているサポート部材の損傷、および伝熱管フィンの損傷を引き起こす可能性が高くなっている。 By the way, in recent gas turbine specifications, the exhaust gas that reaches the heat recovery steam generator is hot, has a high flow velocity, and is accompanied by swirling. There is an increased possibility of damage to the support members that bundle the heat tubes in the horizontal direction and damage to the heat transfer tube fins.

しかし、特許文献1に記載の伝熱管支持構造は、水平方向の両端側に位置するフィン付き伝熱管の斜め方向への間隙に連結板を挿入し、この連結板の両端を各伝熱管パネルのサポート部材に固定してパネルの剛性を高めるという技術であり、連結板によってサポート部材の両端側の剛性はある程度だけ高められるが、サポート部材全体の剛性が高められるわけではないため、サポート部材の損傷および伝熱管フィンの損傷を全範囲に亘って抑制することは困難であった。 However, in the heat transfer tube support structure described in Patent Document 1, a connecting plate is inserted into a diagonal gap between heat transfer tubes with fins positioned at both ends in the horizontal direction, and both ends of the connecting plate are attached to each heat transfer tube panel. It is a technique to increase the rigidity of the panel by fixing it to the support members. Although the connecting plate increases the rigidity of both ends of the support member to some extent, it does not increase the rigidity of the support member as a whole. And it was difficult to suppress damage to the heat transfer tube fins over the entire range.

また、特許文献2に記載の伝熱管支持構造は、補強用サポート部材を追加してサポート部材の両端側の幅を中央部よりも広くすることにより、三つの振動系(パネル左端部振動系、パネル中央部振動系、パネル右端部振動系)での位相差を利用して伝熱管パネルの振動変位を低減させるという技術であり、フィン付き伝熱管の斜め方向の間隙に挿入した開き防止板は補強用サポート部材とサポート部材が分離しないようにするためのものであって、開き防止板によってサポート部材全体の剛性が高められるわけではないため、サポート部材の損傷および伝熱管フィンの損傷を全範囲に亘って抑制することは困難であった。 Further, in the heat transfer tube support structure described in Patent Document 2, by adding a reinforcing support member and making the width of both end sides of the support member wider than the central portion, three vibration systems (panel left end vibration system, It is a technology to reduce the vibration displacement of the heat transfer tube panel by using the phase difference between the vibration system at the center of the panel and the vibration system at the right end of the panel. This is to prevent the separation of the reinforcing support member and the support member, and the opening prevention plate does not increase the rigidity of the support member as a whole. It has been difficult to suppress over time.

本発明は、このような従来技術の実情からなされたもので、その目的は、伝熱管パネルの振動に起因するサポート部材の損傷および伝熱管フィンの損傷を全範囲に亘って抑制することができる伝熱管支持構造を提供することにあり、他の目的は、そのような伝熱管支持構造の支持方法を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the actual situation of the prior art, and an object thereof is to be able to suppress damage to support members and damage to heat-conducting tube fins caused by vibration of heat-conducting tube panels over the entire range. Another object of the present invention is to provide a heat transfer tube support structure, and to provide a method for supporting such a heat transfer tube support structure.

上記目的を達成するために、代表的な本発明は、垂直方向に延びる複数の伝熱管を千鳥状に配列した伝熱管パネルと、前記伝熱管を水平方向に束ねるサポート部材とを備え、前記サポート部材が前記伝熱管パネルの垂直方向に所定間隔を存して複数段設けられている伝熱管支持構造において、複数の前記伝熱管の間隙に斜め方向に配置された第1の補強板と、前記第1の補強板と交差するように前記間隙に斜め方向に配置された第2の補強板と、前記第1の補強板および前記第2の補強板のそれぞれの一端側を前記サポート部材に固定する連結部材とを備え、前記伝熱管が外周部にフィンを装着したフィン付き伝熱管からなり、前記フィン付き伝熱管を包囲する円筒状の保護部材を備えており、前記保護部材が前記サポート部材に固定され、前記保護部材は、前記サポート部材を挟んで上下に分割して設けられ、取付片により上下一対の構造となっていることを特徴とする。 In order to achieve the above object, a typical present invention comprises a heat transfer tube panel in which a plurality of heat transfer tubes extending in the vertical direction are arranged in a zigzag pattern, and a support member for bundling the heat transfer tubes in the horizontal direction, and the support In a heat transfer tube support structure in which members are provided in a plurality of stages at predetermined intervals in the vertical direction of the heat transfer tube panel , a first reinforcing plate obliquely arranged in a gap between the plurality of heat transfer tubes; A second reinforcing plate obliquely arranged in the gap so as to cross the first reinforcing plate, and one end sides of each of the first reinforcing plate and the second reinforcing plate are fixed to the support member. and a connecting member, wherein the heat transfer tube is a finned heat transfer tube having fins attached to the outer peripheral portion, and a cylindrical protective member surrounding the finned heat transfer tube, wherein the protective member is the support member. and the protective member is divided into upper and lower parts with the support member interposed therebetween, and the mounting pieces form a pair of upper and lower structures.

本発明によれば、伝熱管パネルの振動に起因するサポート部材の損傷および伝熱管フィンの損傷を全範囲に亘って抑制することができる。なお、上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, damage to the support member and damage to the heat transfer tube fins due to vibration of the heat transfer tube panel can be suppressed over the entire range. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

複合発電プラントの概略系統を示す説明図である。1 is an explanatory diagram showing a schematic system of a combined cycle power plant; FIG. 排熱回収ボイラの外観斜視図である。1 is an external perspective view of an exhaust heat recovery boiler; FIG. 排熱回収ボイラの入口部分の内部構造を示す側面図である。FIG. 3 is a side view showing the internal structure of the inlet portion of the heat recovery boiler; 排熱回収ボイラに備えられる伝熱管パネルの斜視図である。FIG. 3 is a perspective view of a heat transfer tube panel provided in the heat recovery boiler. 伝熱管パネルの横断面図である。FIG. 4 is a cross-sectional view of a heat transfer tube panel; 本発明の実施形態に係る伝熱管支持構造の斜視図である。1 is a perspective view of a heat transfer tube support structure according to an embodiment of the present invention; FIG. 該伝熱管支持構造の正面図である。It is a front view of the heat transfer tube support structure. 該伝熱管支持構造の平面図である。It is a top view of this heat-transfer-tube support structure. 該伝熱管支持構造の要部説明図である。FIG. 4 is an explanatory diagram of the main part of the heat transfer tube support structure; 該伝熱管支持構造の組立手順を示す説明図である。It is explanatory drawing which shows the assembly procedure of this heat-transfer-tube support structure. 本発明の他の実施形態に係る伝熱管支持構造の斜視図である。FIG. 5 is a perspective view of a heat transfer tube support structure according to another embodiment of the present invention; 本発明の他の実施形態に係る伝熱管支持構造の斜視図である。FIG. 5 is a perspective view of a heat transfer tube support structure according to another embodiment of the present invention;

以下、本発明の実施の形態を図1~図12を参照しつつ説明する。 Embodiments of the present invention will be described below with reference to FIGS. 1 to 12. FIG.

図1は、複合発電プラントの概略系統を示す説明図である。図1に示すように、ガスタービン1からの高温高速の排ガス11は、排熱回収ボイラ(HRSG)2のダクト12内に設置された過熱器3、第1の蒸発器4、脱硝装置5、第2の蒸発器6、節炭器7の順に接触して熱交換される。また、第1の蒸発器4と第2の蒸発器6からの蒸気を含む水が管路9aと管路9bから汽水分離ドラム8にそれぞれ送られ、該汽水分離ドラム8から分離された蒸気は、飽和蒸気管10を経て過熱器3でさらに過熱された後、主蒸気管13を経由して蒸気タービン14を駆動する過熱蒸気として利用される。 FIG. 1 is an explanatory diagram showing a schematic system of a combined cycle power plant. As shown in FIG. 1, a high-temperature, high-speed exhaust gas 11 from a gas turbine 1 passes through a superheater 3, a first evaporator 4, a denitrification device 5, and a superheater 3 installed in a duct 12 of a heat recovery steam generator (HRSG) 2. The second evaporator 6 and the economizer 7 are brought into contact with each other in order for heat exchange. Further, water containing steam from the first evaporator 4 and the second evaporator 6 is sent to the steam separation drum 8 from the pipeline 9a and the pipeline 9b, respectively, and the steam separated from the steam separation drum 8 is , and after being further superheated by the superheater 3 via the saturated steam pipe 10 , it is utilized as superheated steam that drives the steam turbine 14 via the main steam pipe 13 .

蒸気タービン14で用いられた蒸気は、復水器15で水Wに戻され、給水管路16に配置された給水ポンプ17により節炭器7に循環され、節炭器7でガスタービン1からの排ガス11より予熱されて汽水分離ドラム8内に供給される。汽水分離ドラム8内の水は、降水管18を通って下降し、管路19a、19bを経て蒸発器4、6へ導入され、その後、管路9a、9bを経て汽水分離ドラム8内に戻る。主蒸気管13に接続されたタービンバイパス管20は、蒸気タービン14をバイパスして蒸気を直接復水器15に導いても良い。また、蒸気タービン14への蒸気の流量を調節する蒸気タービン加減弁21、蒸気タービン14への蒸気の供給により蒸気のバイパス量を調節するタービンバイパス弁22、およびダクト12のダンパ23が設けられている。 The steam used in the steam turbine 14 is returned to water W in the condenser 15, circulated to the economizer 7 by the feedwater pump 17 arranged in the feedwater pipeline 16, and discharged from the gas turbine 1 in the economizer 7. is preheated from exhaust gas 11 and supplied to steam separation drum 8 . The water in the steam separation drum 8 descends through the downcomer 18 and is introduced via lines 19a, 19b into the evaporators 4, 6 and then back into the steam separation drum 8 via lines 9a, 9b. . A turbine bypass pipe 20 connected to the main steam pipe 13 may bypass the steam turbine 14 and guide the steam directly to the condenser 15 . Also provided are a steam turbine control valve 21 for adjusting the flow rate of steam to the steam turbine 14, a turbine bypass valve 22 for adjusting the steam bypass amount by supplying steam to the steam turbine 14, and a damper 23 for the duct 12. there is

以上の説明は、複合発電プラントにおける高温高速の排ガス11、給水及び蒸気の各流れの概要を説明したものであるが、一般に、排熱回収ボイラ2のダクト12内には、過熱器3、蒸発器4、6及び節炭器7等の熱交換器が組み込まれて、排ガス11の排熱を回収するとともに排ガス11の脱硝を行うために脱硝装置5が配置されている。 The above description is an overview of the flow of the high-temperature and high-speed exhaust gas 11, feed water, and steam in the combined power plant. Heat exchangers such as the vessels 4 and 6 and the economizer 7 are incorporated, and a denitrification device 5 is arranged to recover exhaust heat of the exhaust gas 11 and denitrify the exhaust gas 11 .

図2は、排熱回収ボイラ2の外観斜視図であり、内部構造が見えるようにダクト12の一部を破断して示してある。図3は、排熱回収ボイラ2の入口部分の内部構造を示す側面図である。 FIG. 2 is an external perspective view of the heat recovery boiler 2, with a part of the duct 12 cut away so that the internal structure can be seen. FIG. 3 is a side view showing the internal structure of the inlet portion of the heat recovery boiler 2. As shown in FIG.

図2と図3に示すように、排熱回収ボイラ2のダクト12は架構24を介して地面25に支持されており、このダクト12の内部にガスタービン1からの高温高速の排ガス11が流入する。ダクト12内に流入した排ガス11は伝熱管パネル30で熱吸収され、比較的低温になったガスが煙突26からダクト12の外部に排出される。伝熱管パネル30は、図1に示す過熱器3、第1の蒸発器4、第2の蒸発器6及び節炭器7等の伝熱面を構成する熱交換器であり、ヘッダ27に吊り下げ支持されている。伝熱管パネル30には高温高速の排ガス11が作用するため、ガス流れに対して伝熱管パネル30が前後方向および左右方向にも振動する。 As shown in FIGS. 2 and 3, the duct 12 of the heat recovery boiler 2 is supported on the ground 25 via a frame 24, and the high-temperature, high-speed exhaust gas 11 from the gas turbine 1 flows into the duct 12. do. The exhaust gas 11 that has flowed into the duct 12 is heat-absorbed by the heat transfer tube panel 30 , and the relatively low-temperature gas is discharged from the chimney 26 to the outside of the duct 12 . The heat transfer tube panel 30 is a heat exchanger constituting a heat transfer surface of the superheater 3, the first evaporator 4, the second evaporator 6, the economizer 7, etc. shown in FIG. supported downwards. Since the high-temperature and high-speed exhaust gas 11 acts on the heat transfer tube panel 30, the heat transfer tube panel 30 vibrates in the longitudinal direction and the lateral direction with respect to the gas flow.

図4は伝熱管パネル30の斜視図、図5は伝熱管パネル30の横断面図である。図4と図5に示すように、伝熱管パネル30は、上下の各ヘッダ27間に多数の伝熱管31を接続したものであり、伝熱管31の外周面には排ガス11からの熱を吸収し易くするためのフィン32が螺旋状に巻き付けられている。本実施形態では、パネル面をガス流れに直交する方向に向けて3つの伝熱管パネル30を1ユニットとし、このようなユニットを複数並べて配置してある。 4 is a perspective view of the heat transfer tube panel 30, and FIG. 5 is a cross-sectional view of the heat transfer tube panel 30. As shown in FIG. As shown in FIGS. 4 and 5, the heat transfer tube panel 30 has a large number of heat transfer tubes 31 connected between the upper and lower headers 27, and the heat from the exhaust gas 11 is absorbed by the outer peripheral surface of the heat transfer tubes 31. A fin 32 is helically wrapped to facilitate In this embodiment, three heat transfer tube panels 30 are formed as one unit with the panel surface facing the direction orthogonal to the gas flow, and a plurality of such units are arranged side by side.

フィン32付きの伝熱管31(以下、フィン付き伝熱管と呼ぶ)は3列に千鳥配置されており、各フィン付き伝熱管31はハニカムサポート33と水平サポート34を用いて水平方向に束ねられている。ハニカムサポート33はフィン32を挟持するように配置された波状板を付き合わせてハニカム形状に一体化したものであり、このハニカムサポート33によって千鳥配置された各フィン付き伝熱管31は水平方向に連結されている。水平サポート34はハニカムサポート33の周囲に溶接接続されたものであり、これらハニカムサポート33と水平サポート34によって1つのサポート部材35が構成されている。サポート部材35は伝熱管パネル30の垂直方向に所定間隔を存して複数段(例えば9段)設けられており、これらサポート部材35により例えば33本×3列のフィン付き伝熱管31における上下方向の複数箇所を水平方向に束ねている。 Heat transfer tubes 31 with fins 32 (hereinafter referred to as finned heat transfer tubes) are arranged in three rows in a staggered manner, and each finned heat transfer tube 31 is horizontally bundled using a honeycomb support 33 and a horizontal support 34. there is The honeycomb support 33 is formed by combining corrugated plates arranged so as to sandwich the fins 32 and integrating them into a honeycomb shape. It is The horizontal support 34 is welded to the periphery of the honeycomb support 33 , and the honeycomb support 33 and the horizontal support 34 constitute one support member 35 . The support members 35 are provided in a plurality of stages (for example, 9 stages) at predetermined intervals in the vertical direction of the heat transfer tube panel 30, and these support members 35 allow the heat transfer tubes 31 with fins of, for example, 33 x 3 rows to be vertically arranged. are bundled horizontally.

このようにサポート部材35で束ねられた伝熱管パネル30が排熱回収ボイラ2のダクト12内に設置されているが、前述したように、伝熱管パネル30には高温高速の排ガス11が作用するため、ガス流れに対して伝熱管パネル30が前後方向および左右方向にも激しく振動し、それによってサポート部材35の損傷およびフィン32の損傷を引き起こすおそれがある。その対策構造として、本発明は、以下に説明するような伝熱管支持構造を採用している。 The heat transfer tube panels 30 bundled by the support member 35 in this manner are installed in the duct 12 of the heat recovery steam generator 2. As described above, the heat transfer tube panels 30 are exposed to the high-temperature, high-speed exhaust gas 11. Therefore, the heat transfer tube panel 30 vibrates violently in the front-rear direction and the left-right direction with respect to the gas flow, which may damage the support members 35 and the fins 32 . As a countermeasure structure, the present invention employs a heat transfer tube support structure as described below.

図6は本発明の実施形態に係る伝熱管支持構造の斜視図、図7は該伝熱管支持構造の正面図、図8は該伝熱管支持構造の平面図、図9は該伝熱管支持構造の要部説明図である。なお、図6と図7において、フィン付き伝熱管31はフィン32を省略して模式的に示してある。 6 is a perspective view of the heat transfer tube support structure according to the embodiment of the present invention, FIG. 7 is a front view of the heat transfer tube support structure, FIG. 8 is a plan view of the heat transfer tube support structure, and FIG. 9 is the heat transfer tube support structure. 1 is an explanatory diagram of a main part of FIG. 6 and 7, the finned heat transfer tube 31 is schematically shown with the fins 32 omitted.

図6~図9に示すように、3列に千鳥配置されたフィン付き伝熱管31のうち、ダクト12の入口に対面する手前側(ガス流れの最も上流側)に配置されたフィン付き伝熱管31には、サポート部材35を挟んだ上下2箇所にそれぞれ円筒状の保護部材36が装着されている。この保護部材36は、複数の分割片をフィン32の周囲に配置して円筒状に溶接接合したものであり、保護部材36は、上下それぞれにハニカムサポート33に接している部位を溶接接合し、取付片37により上下一対の構造としている。このような保護部材36を既設の伝熱管パネル30に取付けることにより、仮にフィン32がハニカムサポート33の振動によって欠損していたとしても、伝熱管31がハニカムサポート33に接触しないように保護される。 As shown in FIGS. 6 to 9, among the finned heat transfer tubes 31 arranged in three staggered rows, the finned heat transfer tube arranged on the front side facing the inlet of the duct 12 (the most upstream side of the gas flow) Cylindrical protective members 36 are attached to 31 at two upper and lower positions with a support member 35 interposed therebetween. The protective member 36 is formed by arranging a plurality of split pieces around the fins 32 and welding them into a cylindrical shape. The mounting piece 37 forms a pair of upper and lower parts. By attaching such a protective member 36 to the existing heat transfer tube panel 30, even if the fins 32 are lost due to the vibration of the honeycomb support 33, the heat transfer tubes 31 are protected from coming into contact with the honeycomb support 33. .

千鳥配置されたフィン付き伝熱管31の間隙には、第1の補強板38が斜め左方向に挿入されると共に、第1の補強板38と交差するように第2の補強板39が斜め右方向に挿入されている。第1の補強板38はハニカムサポート33上に支持されており、第2の補強板39は第1の補強板38上に交差状態で支持されている。 A first reinforcing plate 38 is inserted obliquely to the left into the gaps between the finned heat transfer tubes 31 arranged in a staggered manner, and a second reinforcing plate 39 is inserted obliquely to the right so as to cross the first reinforcing plate 38 . inserted in the direction A first reinforcing plate 38 is supported on the honeycomb support 33 and a second reinforcing plate 39 is supported on the first reinforcing plate 38 in a crossed manner.

図9に示すように、第1の補強板38は一対の切欠き38aを有するT型に形成されており、一方の切欠き38aが保護部材36との当接を避けた状態でハニカムサポート33上に載置されるため、第1の補強板38をハニカムサポート33上に安定的に支持することができる。なお、第1の補強板38は切欠き38aを1つだけ有する形状であっても良いが、2つの切欠き38aを有するT型形状であると、第1の補強板38を前後いずれの向きから挿入した場合でも、必ず一方の切欠き38a内に保護部材36を収めることができるため、組立作業性を向上させることができる。 As shown in FIG. 9, the first reinforcing plate 38 is formed in a T shape having a pair of cutouts 38a. Since the first reinforcing plate 38 is placed on the honeycomb support 33, the first reinforcing plate 38 can be stably supported on the honeycomb support 33. The first reinforcing plate 38 may have a shape having only one notch 38a. Even when the protective member 36 is inserted from the front, the protective member 36 can always be accommodated in one of the cutouts 38a, so that the assembling workability can be improved.

第2の補強板39は均一幅のI型に形成されており、第2の補強板39の長さは第1の補強板38とほぼ同じである。本実施形態の場合、3列に千鳥配置されたフィン付き伝熱管31の全ての間隙に第1の補強板38と第2の補強板39が交差状態で挿入されているため、1つの第1の補強板38は3つの第2の補強板39と交差し、1つの第2の補強板39は3つの第1の補強板38と交差している。 The second reinforcing plate 39 is formed in an I-shape with a uniform width, and the length of the second reinforcing plate 39 is substantially the same as that of the first reinforcing plate 38 . In the case of this embodiment, since the first reinforcing plate 38 and the second reinforcing plate 39 are inserted in all the gaps of the finned heat transfer tubes 31 arranged in three rows in a staggered manner, one first reinforcing plate 38 and the second reinforcing plate 39 are inserted in a crossed state. The reinforcing plate 38 crosses three second reinforcing plates 39 and one second reinforcing plate 39 crosses three first reinforcing plates 38 .

第1の補強板38と第2の補強板39の一端側は水平サポート34の外方へ交差した状態で突出しており、これら第1の補強板38と第2の補強板39の間に平板状の連結部材40が挿入されている。そして、第1の補強板38と第2の補強板39を連結部材40の両側部に溶接接続すると共に、連結部材40を水平サポート34に溶接接合することにより、隣接する第1の補強板38と第2の補強板39の一端側が共通の連結部材40を介してサポート部材35(水平サポート34)に固定されている。 One end sides of the first reinforcing plate 38 and the second reinforcing plate 39 protrude outward from the horizontal support 34 in a crossed state, and a flat plate is provided between the first reinforcing plate 38 and the second reinforcing plate 39 . shaped connecting member 40 is inserted. The first reinforcing plate 38 and the second reinforcing plate 39 are welded to both sides of the connecting member 40, and the connecting member 40 is welded to the horizontal support 34 so that the adjacent first reinforcing plate 38 and the second reinforcing plate 39 are fixed to the support member 35 (horizontal support 34) through a common connecting member 40. As shown in FIG.

以上説明したように、本実施形態に係る伝熱管支持構造では、第1の補強板38と第2の補強板39および連結部材40を三角形状に結合した構造がサポート部材35の全範囲に亘って形成されるため、各列全てのフィン付き伝熱管31を剛体化することができ、伝熱管パネル30が前後方向および左右方向に激しく振動した場合でも、サポート部材35の損傷およびフィン32の損傷を抑制することができる。なお、このような伝熱管支持構造は、伝熱管パネル30の上下方向に複数段設けられた全てのサポート部材35に対して施されていることが好ましいが、任意段のサポート部材35、例えば上下両端側のサポート部材35については省略しても良い。また、保護部材36を省略することも可能であり、その場合、第1の補強板38と第2の補強板39は両方共にI型形状とすれば良い。 As described above, in the heat transfer tube support structure according to the present embodiment, the structure in which the first reinforcing plate 38, the second reinforcing plate 39, and the connecting member 40 are joined in a triangular shape extends over the entire range of the support member 35. Therefore, all the finned heat transfer tubes 31 in each row can be made rigid, and even if the heat transfer tube panel 30 vibrates violently in the front-back direction and the left-right direction, the support member 35 and the fins 32 are damaged. can be suppressed. It should be noted that such a heat transfer tube support structure is preferably applied to all the support members 35 provided in a plurality of stages in the vertical direction of the heat transfer tube panel 30. The support members 35 on both ends may be omitted. Moreover, it is possible to omit the protective member 36, in which case both the first reinforcing plate 38 and the second reinforcing plate 39 may be I-shaped.

次に、上記のごとく構成された伝熱管支持構造の組立手順について、図10を参照しつつ説明する。 Next, the procedure for assembling the heat transfer tube support structure configured as described above will be described with reference to FIG.

ダクト12内に配置された既設の伝熱管パネル30においては、3列に千鳥配置されたフィン付き伝熱管31がハニカムサポート33と水平サポート34からなるサポート部材35によって水平方向へ束ねられており、このようなサポート部材35が伝熱管パネル30の上下方向に複数段設けられている。 In the existing heat transfer tube panel 30 arranged in the duct 12, the finned heat transfer tubes 31 staggered in three rows are bundled in the horizontal direction by a support member 35 consisting of a honeycomb support 33 and a horizontal support 34, A plurality of such support members 35 are provided in the vertical direction of the heat transfer tube panel 30 .

本実施形態に係る伝熱管支持方法では、図10(a)に示すように、まず、伝熱管パネル30の前面側(ガス流れの最も上流側)に配置された一列目のフィン付き伝熱管31に対し、サポート部材35を挟んだ上下2箇所にそれぞれ保護部材36を装着した後、これら保護部材36がハニカムサポート33に接している部位を溶接接合し、取付片37により上下一対構造とする。 In the heat transfer tube support method according to the present embodiment, as shown in FIG. 10( a ), first, the first row of finned heat transfer tubes 31 arranged on the front side of the heat transfer tube panel 30 (the most upstream side of the gas flow) On the other hand, after the protective members 36 are attached to the two upper and lower positions with the support member 35 interposed therebetween, the portions where the protective members 36 are in contact with the honeycomb support 33 are welded to form a pair of upper and lower mounting pieces 37 .

次に、図10(b)に示すように、伝熱管パネル30の前面側からフィン付き伝熱管31の間隙に第1の補強板38を挿入し、この第1の補強板38を千鳥配置されたフィン付き伝熱管31の間隙に斜め左方向に配置する。第1の補強板38には一対の切欠き38aが形成されているため、一方の切欠き38a内に保護部材36を収めることにより、第1の補強板38をハニカムサポート33上に安定的に載置することができる。また、切欠き38aと保護部材36によって第1の補強板38の挿入量が規定されるため、第1の補強板38の一端側を水平サポート34の外方から所定量だけ突出させることができる。 Next, as shown in FIG. 10(b), the first reinforcing plate 38 is inserted into the gaps between the finned heat transfer tubes 31 from the front side of the heat transfer tube panel 30, and the first reinforcing plate 38 is arranged in a zigzag manner. It is arranged obliquely to the left in the gap between the finned heat transfer tubes 31 . Since a pair of notches 38a are formed in the first reinforcing plate 38, the first reinforcing plate 38 can be stably placed on the honeycomb support 33 by accommodating the protective member 36 in one of the notches 38a. can be placed. In addition, since the insertion amount of the first reinforcing plate 38 is defined by the notch 38a and the protective member 36, one end side of the first reinforcing plate 38 can be protruded from the outside of the horizontal support 34 by a predetermined amount. .

次に、図10(c)に示すように、第1の補強板38と交差するようにフィン付き伝熱管31の間隙に第2の補強板39を挿入し、この第2の補強板39を第1の補強板38上に重ねてフィン付き伝熱管31の間隙に斜め右方向に配置する。その際、第2の補強板39の一端側を第1の補強板38と同量だけ水平サポート34の外方へ突出させておく。 Next, as shown in FIG. 10(c), a second reinforcing plate 39 is inserted into the gap between the finned heat transfer tubes 31 so as to cross the first reinforcing plate 38, and this second reinforcing plate 39 is It is laid on the first reinforcing plate 38 and arranged obliquely to the right in the gap between the finned heat transfer tubes 31 . At that time, one end side of the second reinforcing plate 39 is projected outward of the horizontal support 34 by the same amount as the first reinforcing plate 38 .

次に、水平サポート34から突出する第1の補強板38と第2の補強板39の間に連結部材40を嵌め込み、この連結部材40に第1の補強板38と第2の補強板39を溶接接続すると共に、連結部材40を水平サポート34に溶接接合することにより、図7に示すように、第1の補強板38と第2の補強板39の一端側を連結部材40を介してサポート部材35に固定する。 Next, the connecting member 40 is fitted between the first reinforcing plate 38 and the second reinforcing plate 39 projecting from the horizontal support 34, and the first reinforcing plate 38 and the second reinforcing plate 39 are attached to the connecting member 40. By welding and joining the connecting member 40 to the horizontal support 34, one end sides of the first reinforcing plate 38 and the second reinforcing plate 39 are supported via the connecting member 40 as shown in FIG. It is fixed to member 35 .

以上説明したように、本実施形態に係る伝熱管支持方法によれば、サポート部材35で水平方向に束ねられた既設の伝熱管パネル30に対して、作業空間が確保されたパネル前面側からフィン付き伝熱管31の間隙に第1の補強板38と第2の補強板39を挿入することにより、第1の補強板38と第2の補強板39および連結部材40を三角形状に結合した構造をサポート部材35の全範囲に亘って容易に形成することができる。その結果、各列全てのフィン付き伝熱管31を剛体化することができるため、伝熱管パネル30が前後方向および左右方向に激しく振動した場合でも、サポート部材35の損傷およびフィン32の損傷を抑制することができる。 As described above, according to the heat transfer tube support method according to the present embodiment, the existing heat transfer tube panels 30 bundled in the horizontal direction by the support members 35 are installed with the fins from the panel front side where the work space is secured. A structure in which the first reinforcing plate 38 and the second reinforcing plate 39 are inserted into the gap between the attached heat transfer tubes 31 to connect the first reinforcing plate 38, the second reinforcing plate 39 and the connecting member 40 in a triangular shape. can be easily formed over the entire range of the support member 35 . As a result, all the finned heat transfer tubes 31 in each row can be made rigid, so even if the heat transfer tube panel 30 vibrates violently in the front-back direction and in the left-right direction, damage to the support member 35 and damage to the fins 32 can be suppressed. can do.

なお、上記の実施形態では、フィン付き伝熱管31が3列に千鳥配置された伝熱管パネル30について説明したが、フィン付き伝熱管31の千鳥配置は2列または4列以上であって良い。また、第1の補強板38と第2の補強板39の形状や固定方法は、上記の実施形態に限定されず、フィン付き伝熱管31の千鳥配列や保護部材36の有無等に応じて適宜変更することが可能である。 In the above embodiment, the heat transfer tube panel 30 in which the heat transfer tubes 31 with fins are staggered in three rows has been described, but the heat transfer tubes 31 with fins may be staggered in two rows or four or more rows. In addition, the shape and fixing method of the first reinforcing plate 38 and the second reinforcing plate 39 are not limited to the above-described embodiment, and may be appropriately adjusted according to the staggered arrangement of the finned heat transfer tubes 31, the presence or absence of the protective member 36, and the like. It is possible to change.

図11は本発明の他の実施形態に係る伝熱管支持構造の斜視図であり、フィン付き伝熱管31が2列の千鳥配置であると共に、保護部材36が装着されていない伝熱管パネルへの適用例を示している。 FIG. 11 is a perspective view of a heat transfer tube support structure according to another embodiment of the present invention. An application example is shown.

図11に示すように、2列に千鳥配置されたフィン付き伝熱管31におけるハニカムサポート33の下方の間隙には、手前側を湾曲形状とした第1の補強板41が斜め方向に挿入されており、この第1の補強板41の手前側は連結部材42を介してハニカムサポート33に固定されている。また、フィン付き伝熱管31におけるハニカムサポート33の上方の間隙には、奥側を湾曲形状とした第2の補強板43が第1の補強板41と交差するように斜め方向に挿入されており、この第2の補強板43の手前側は別の連結部材44を介してハニカムサポート33に固定されている。 As shown in FIG. 11, a first reinforcing plate 41 having a curved front side is obliquely inserted into a gap below the honeycomb support 33 of the heat transfer tubes 31 with fins arranged in two staggered rows. The front side of the first reinforcing plate 41 is fixed to the honeycomb support 33 via a connecting member 42 . In addition, a second reinforcing plate 43 having a curved back side is inserted obliquely into the gap above the honeycomb support 33 in the finned heat transfer tube 31 so as to intersect with the first reinforcing plate 41 . , the front side of the second reinforcing plate 43 is fixed to the honeycomb support 33 via another connecting member 44 .

図12は本発明のさらに他の実施形態に係る伝熱管支持構造の斜視図であり、フィン付き伝熱管31が2列の千鳥配置であると共に、保護部材36が装着されている伝熱管パネルへの適用例を示している。 FIG. 12 is a perspective view of a heat transfer tube support structure according to still another embodiment of the present invention. shows an example of the application of

図12に示すように、2列に千鳥配置されたフィン付き伝熱管31には円筒状の保護部材36が装着されており、この保護部材36はハニカムサポート33に溶接接続されている。そして、フィン付き伝熱管31におけるハニカムサポート33の下方の間隙には、手前側を湾曲形状とした第1の補強板41が斜め方向に挿入されており、この第1の補強板41の手前側は連結部材42を介して保護部材36の外周面に固定されている。また、フィン付き伝熱管31におけるハニカムサポート33の上方の間隙には、奥側を湾曲形状とした第2の補強板43が第1の補強板41と交差するように斜め方向に挿入されており、この第2の補強板43の手前側は別の連結部材44を介して保護部材36の外周面に固定されている。 As shown in FIG. 12 , the finned heat transfer tubes 31 arranged in two rows in a staggered manner are fitted with a cylindrical protective member 36 , which is welded to the honeycomb support 33 . A first reinforcing plate 41 having a curved front side is inserted obliquely into the gap below the honeycomb support 33 in the heat transfer tube 31 with fins. is fixed to the outer peripheral surface of the protection member 36 via the connecting member 42 . In addition, a second reinforcing plate 43 having a curved back side is inserted obliquely into the gap above the honeycomb support 33 in the finned heat transfer tube 31 so as to intersect with the first reinforcing plate 41 . , the front side of the second reinforcing plate 43 is fixed to the outer peripheral surface of the protective member 36 via another connecting member 44 .

なお、本発明は上記した各実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した各実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 In addition, the present invention is not limited to each embodiment described above, and includes various modifications. For example, each of the above-described embodiments has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.

1 ガスタービン
2 排熱回収ボイラ
11 排ガス
12 ダクト
27 ヘッダ
30 伝熱管パネル
31 伝熱管(フィン付き伝熱管)
32 フィン
33 ハニカムサポート(サポート部材)
34 水平サポート(サポート部材)
35 サポート部材
36 保護部材
37 取付片
38,41 第1の補強板
38a 切欠き
39,43 第2の補強板
40,42,44 連結部材
REFERENCE SIGNS LIST 1 gas turbine 2 heat recovery boiler 11 exhaust gas 12 duct 27 header 30 heat transfer tube panel 31 heat transfer tube (finned heat transfer tube)
32 Fin 33 Honeycomb support (support member)
34 horizontal support (support member)
35 Support member 36 Protection member 37 Mounting piece 38, 41 First reinforcing plate 38a Notch 39, 43 Second reinforcing plate 40, 42, 44 Connecting member

Claims (4)

垂直方向に延びる複数の伝熱管を千鳥状に配列した伝熱管パネルと、前記伝熱管を水平方向に束ねるサポート部材とを備え、前記サポート部材が前記伝熱管パネルの垂直方向に所定間隔を存して複数段設けられている伝熱管支持構造において、 複数の前記伝熱管の間隙に斜め方向に配置された第1の補強板と、前記第1の補強板と交差するように前記間隙に斜め方向に配置された第2の補強板と、前記第1の補強板および前記第2の補強板のそれぞれの一端側を前記サポート部材に固定する連結部材とを備え、 前記伝熱管が外周部にフィンを装着したフィン付き伝熱管からなり、前記フィン付き伝熱管を包囲する円筒状の保護部材を備えており、前記保護部材が前記サポート部材に固定され、 前記保護部材は、前記サポート部材を挟んで上下に分割して設けられ、取付片により上下一対の構造となっていることを特徴とする伝熱管支持構造。 A heat transfer tube panel in which a plurality of heat transfer tubes extending in the vertical direction are arranged in a zigzag pattern, and a support member for bundling the heat transfer tubes in the horizontal direction, wherein the support members are spaced apart in the vertical direction of the heat transfer tube panel. In the heat transfer tube support structure provided in a plurality of stages, a first reinforcing plate arranged in a diagonal direction in a gap between the plurality of heat transfer tubes, and a diagonal direction in the gap so as to intersect the first reinforcing plate and a connecting member that fixes one end side of each of the first reinforcing plate and the second reinforcing plate to the support member, and the heat transfer tube is provided with fins on the outer peripheral portion A cylindrical protective member surrounding the finned heat transfer tube is provided, the protective member is fixed to the support member , and the protective member sandwiches the support member 1. A heat transfer tube support structure, characterized in that it is divided into upper and lower parts and has a pair of upper and lower structure with attachment pieces . 請求項に記載の伝熱管支持構造において、 前記第1の補強板と前記第2の補強板が共通の前記連結部材を介して前記サポート部材に固定されていることを特徴とする伝熱管支持構造。 2. The heat transfer tube support structure according to claim 1 , wherein the first reinforcing plate and the second reinforcing plate are fixed to the support member via the common connecting member. structure. 請求項1に記載の伝熱管支持構造において、 前記第1の補強板と前記第2の補強板のいずれか一方に、前記保護部材との当接を避ける切欠きが形成されていることを特徴とする伝熱管支持構造。 2. The heat transfer tube support structure according to claim 1 , wherein one of the first reinforcing plate and the second reinforcing plate is formed with a notch for avoiding contact with the protective member. A heat transfer tube support structure. ガスタービンからの排ガスを流入させるダクト内に、垂直方向に延びる複数の伝熱管を千鳥状に配列した伝熱管パネルが配設されており、前記伝熱管がサポート部材で水平方向に束ねられていると共に、前記サポート部材が前記伝熱管パネルの垂直方向に所定間隔を存して複数段設けられている排熱回収ボイラに対して行われる伝熱管支持方法であって、 複数の前記伝熱管の間隙に第1の補強板を斜め方向に挿入する工程と、 前記第1の補強板と交差するように前記間隙に第2の補強板を斜め方向に挿入する工程と、 前記第1の補強板および前記第2の補強板のそれぞれの一端側を前記サポート部材に連結部材を介して固定する工程と、
を含み、
前記伝熱管が外周部にフィンを装着したフィン付き伝熱管からなり、前記フィン付き伝熱管を包囲する円筒状の保護部材を備えており、前記保護部材が前記サポート部材に固定され
前記保護部材は、前記サポート部材を挟んで上下に分割して設けられ、取付片により上下一対の構造となっていることを特徴とする伝熱管支持方法。
A heat transfer tube panel in which a plurality of vertically extending heat transfer tubes are arranged in a zigzag pattern is arranged in a duct into which exhaust gas from a gas turbine flows, and the heat transfer tubes are horizontally bundled with support members. In addition, a heat transfer tube supporting method for a heat recovery boiler in which the support members are provided in a plurality of stages at predetermined intervals in the vertical direction of the heat transfer tube panels, wherein the gaps between the plurality of heat transfer tubes obliquely inserting a first reinforcing plate into the gap; obliquely inserting a second reinforcing plate into the gap so as to intersect with the first reinforcing plate; a step of fixing one end side of each of the second reinforcing plates to the support member via a connecting member;
including
The heat transfer tube is a finned heat transfer tube with fins attached to the outer peripheral portion, and is provided with a cylindrical protective member surrounding the finned heat transfer tube, the protective member is fixed to the support member ,
The heat transfer tube support method , wherein the protective member is provided by being divided into upper and lower parts with the support member interposed therebetween, and is formed into a pair of upper and lower structures by a mounting piece.
JP2018080156A 2018-04-18 2018-04-18 Heat transfer tube support structure and heat transfer tube support method Active JP7220992B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018080156A JP7220992B2 (en) 2018-04-18 2018-04-18 Heat transfer tube support structure and heat transfer tube support method
CN201980026020.7A CN111989531B (en) 2018-04-18 2019-04-18 Heat transfer tube support structure and heat transfer tube support method
SG11202009941UA SG11202009941UA (en) 2018-04-18 2019-04-18 Heat-transfer-tube support structure, and method for supporting heat transfer tube
PCT/JP2019/016613 WO2019203300A1 (en) 2018-04-18 2019-04-18 Heat-transfer-tube support structure, and method for supporting heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018080156A JP7220992B2 (en) 2018-04-18 2018-04-18 Heat transfer tube support structure and heat transfer tube support method

Publications (2)

Publication Number Publication Date
JP2019190672A JP2019190672A (en) 2019-10-31
JP7220992B2 true JP7220992B2 (en) 2023-02-13

Family

ID=68240050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018080156A Active JP7220992B2 (en) 2018-04-18 2018-04-18 Heat transfer tube support structure and heat transfer tube support method

Country Status (4)

Country Link
JP (1) JP7220992B2 (en)
CN (1) CN111989531B (en)
SG (1) SG11202009941UA (en)
WO (1) WO2019203300A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057468A (en) 2011-09-09 2013-03-28 Babcock Hitachi Kk Exhaust heat recovery boiler

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981456U (en) * 1972-11-02 1974-07-15
US3820594A (en) * 1972-12-15 1974-06-28 Westinghouse Electric Corp Tube support system for heat exchanger
JPS6014242B2 (en) * 1981-12-15 1985-04-12 ザ・バブコツク・アンド・ウイルコツクス・カンパニ− Steam generator tube support structure
JPS60159594A (en) * 1984-01-30 1985-08-21 Hitachi Ltd Heat transfer tube supporting structure
JP2857440B2 (en) * 1990-01-16 1999-02-17 バブコツク日立株式会社 Heat transfer tube support device
JPH04100680U (en) * 1991-01-23 1992-08-31
JP5829597B2 (en) * 2012-11-22 2015-12-09 三菱重工業株式会社 Finned tube heat exchanger
CN203501884U (en) * 2013-07-03 2014-03-26 自贡鑫泰机电设备有限公司 Protective structure of finned tube of air cooler
JP6361196B2 (en) * 2014-03-18 2018-07-25 宇部興産株式会社 Piping support
CN204944274U (en) * 2015-09-11 2016-01-06 烟台龙源换热设备有限公司 Nonmetallic heat exchanger heat exchanger tube supporting construction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057468A (en) 2011-09-09 2013-03-28 Babcock Hitachi Kk Exhaust heat recovery boiler

Also Published As

Publication number Publication date
CN111989531A (en) 2020-11-24
SG11202009941UA (en) 2020-11-27
WO2019203300A1 (en) 2019-10-24
JP2019190672A (en) 2019-10-31
CN111989531B (en) 2022-01-14

Similar Documents

Publication Publication Date Title
KR910002110B1 (en) Hrsg sidewall baffle
JP7220992B2 (en) Heat transfer tube support structure and heat transfer tube support method
JP5780520B2 (en) Waste heat recovery boiler
JP2857440B2 (en) Heat transfer tube support device
TWI757942B (en) gas to gas heat exchanger
JP5787154B2 (en) Waste heat recovery boiler
JPH0826963B2 (en) Exhaust heat recovery boiler
JP7272852B2 (en) boiler equipment
JP7316238B2 (en) Exhaust heat recovery boiler, connector, construction method of exhaust heat recovery boiler
KR101394952B1 (en) Assembling device of center baffle for harp module of hrsg
WO2022113484A1 (en) Support mechanism for exhaust heat recovery boilers
JP7090492B2 (en) Exhaust heat recovery boiler
JP3625948B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JPS597890A (en) Supporting device for heat-transmitting pipe
JPH0467081B2 (en)
JP3737186B2 (en) Waste heat recovery device
JP2753176B2 (en) Heat transfer tube panel
EP4160091A1 (en) Heat exchanger tube bundle and related heat recovery steam generator
JP6109716B2 (en) Finned tube heat exchanger
JP2835226B2 (en) Heat transfer tube support device
JP2003222304A (en) Support structure of heat transfer tube panel and exhaust heat recovery boiler
JPH0740805Y2 (en) Waste heat recovery equipment
JPH0443682Y2 (en)
JP2009222304A (en) Once-through exhaust heat recovery boiler
JPH0311524Y2 (en)

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230201

R150 Certificate of patent or registration of utility model

Ref document number: 7220992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150