JPH0467081B2 - - Google Patents

Info

Publication number
JPH0467081B2
JPH0467081B2 JP58133615A JP13361583A JPH0467081B2 JP H0467081 B2 JPH0467081 B2 JP H0467081B2 JP 58133615 A JP58133615 A JP 58133615A JP 13361583 A JP13361583 A JP 13361583A JP H0467081 B2 JPH0467081 B2 JP H0467081B2
Authority
JP
Japan
Prior art keywords
exhaust gas
heat transfer
heat
flue
drift prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58133615A
Other languages
Japanese (ja)
Other versions
JPS6026201A (en
Inventor
Tatsuichi Kusube
Masakatsu Imamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58133615A priority Critical patent/JPS6026201A/en
Publication of JPS6026201A publication Critical patent/JPS6026201A/en
Publication of JPH0467081B2 publication Critical patent/JPH0467081B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は煙道内での排ガスのバイパス量を少
なくして熱回収効率を高めた廃熱回収装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waste heat recovery device that increases heat recovery efficiency by reducing the amount of exhaust gas bypassed in a flue.

例えば高効率発電の一環として、最近複合発電
プラントが注目されている。この複合発電プラン
トはまず、ガスタービンによる発電を行うと共
に、ガスタービンから排出された排ガス中の熱を
廃熱回収装置によつて回収し、この廃熱回収装置
(廃熱回収ボイラ)で発生した蒸気により蒸気タ
ービンを作動させて発電するものである。この複
合発電プラントはガスタービンによる発電と蒸気
タービンによる発電を行なうために発電効率を高
いうえ、ガスタービンの特性である負荷応答性が
高く、このために急激な電力需要の上昇にも十分
対応し得る負荷追従性に優れた利点もある。
For example, combined cycle power plants have recently been attracting attention as a part of high-efficiency power generation. This combined power generation plant first generates electricity using a gas turbine, and also recovers the heat in the exhaust gas discharged from the gas turbine using a waste heat recovery device (waste heat recovery boiler). Steam is used to operate a steam turbine to generate electricity. This combined power generation plant has high power generation efficiency because it generates electricity with a gas turbine and a steam turbine, and also has high load responsiveness, which is a characteristic of gas turbines, and is therefore able to adequately respond to sudden increases in electricity demand. There is also the advantage of excellent load followability.

第1図から第4図は従来の廃熱回収ボイラを示
すもので、第1図は廃熱回収ボイラの概略系統
図、第2図は第1図の保温構造の断面図、第3図
は第1図のA部を拡大した側断面図、第4図は第
3図のB−B線断面図を示す。
Figures 1 to 4 show conventional waste heat recovery boilers. Figure 1 is a schematic system diagram of the waste heat recovery boiler, Figure 2 is a cross-sectional view of the heat insulation structure shown in Figure 1, and Figure 3 is a schematic diagram of the waste heat recovery boiler. FIG. 4 is an enlarged side sectional view of part A in FIG. 1, and FIG. 4 is a sectional view taken along the line B--B in FIG.

第1図において図示していないガスタービンか
らの排ガスGは矢印で示す如く煙道内の上流側
(第1図の左)から下流側(第1図の右)へ向つ
て流れ、この煙道100内には、過熱器1、第一
段高圧蒸発器2、第二段高圧蒸発器4、高圧節炭
器7、低圧蒸発器8および低圧節炭器11等の伝
熱管群によつて構成された廃熱回収ボイラが配置
されている。
Exhaust gas G from a gas turbine (not shown in FIG. 1) flows from the upstream side (left side in FIG. 1) to the downstream side (right side in FIG. 1) in the flue as shown by the arrow. The inside is composed of a group of heat transfer tubes such as a superheater 1, a first-stage high-pressure evaporator 2, a second-stage high-pressure evaporator 4, a high-pressure economizer 7, a low-pressure evaporator 8, and a low-pressure economizer 11. A waste heat recovery boiler is installed.

排ガスGは過熱器1、第一段高圧蒸発器2を経
て脱硝装置3に至り、排ガス中の窒素酸化物
(NOx)を除去する。続いて排ガスGは第二段高
圧蒸発器4、高圧節炭器7、低圧蒸発器8、低圧
節炭器11を経て排出され排ガス中の廃熱が回収
される。この間に発生した高圧蒸気S1及び低圧蒸
気S2は蒸気タービンの動力源、所内熱源として利
用される。図中符号5及び9は各々高圧ドラム、
低圧ドラムを、符号6及び10は降水管を示す。
The exhaust gas G passes through a superheater 1 and a first-stage high-pressure evaporator 2 to reach a denitrification device 3, where nitrogen oxides (NOx) in the exhaust gas are removed. Subsequently, the exhaust gas G is discharged through the second-stage high-pressure evaporator 4, the high-pressure economizer 7, the low-pressure evaporator 8, and the low-pressure economizer 11, and the waste heat in the exhaust gas is recovered. The high-pressure steam S 1 and low-pressure steam S 2 generated during this time are used as a power source for the steam turbine and as an internal heat source. Symbols 5 and 9 in the figure are high-pressure drums, respectively;
The low pressure drum is indicated by 6 and 10, downcomer pipes.

以上述べたように廃熱回収ボイラはガスタービ
ンからの排ガスを通過させる煙道100内に配置
されているが、この煙道100は外部に対する熱
の放散を防止し、廃熱回収ボイラの熱効率を高め
るため、第2図に示すような保温構造となつてい
る。第2図の符号17a,17bは側部外部ケー
シング、16は保温材、20a,20bは側部内
部ケーシングを示す。なお、排ガスGは各伝熱管
12(第3図および第4図参照)を通過するに従
つて排ガス温度が低下するので、この排ガス温度
に対応して第2図に示す如く保温材16の厚さを
変化させており、高温部(上流側)ほど保温材1
6の厚さを厚くして断熱性を高め、低温部(下流
側)では保温材16の厚さを薄くしている。
As described above, the waste heat recovery boiler is placed in the flue 100 through which exhaust gas from the gas turbine passes, but this flue 100 prevents heat from dissipating to the outside and improves the thermal efficiency of the waste heat recovery boiler. In order to increase the temperature, a heat-retaining structure as shown in Fig. 2 has been adopted. In FIG. 2, reference numerals 17a and 17b indicate side outer casings, 16 indicates a heat insulating material, and 20a and 20b indicate side inner casings. Note that as the exhaust gas G passes through each heat exchanger tube 12 (see FIGS. 3 and 4), the exhaust gas temperature decreases, so the thickness of the heat insulating material 16 is adjusted as shown in FIG. 2 in response to this exhaust gas temperature. The temperature of the insulation material 1 is changed as the temperature increases (upstream side).
The thickness of the heat insulating material 16 is increased to improve the heat insulation properties, and the thickness of the heat insulating material 16 is decreased in the low temperature section (downstream side).

第3図は従来の廃熱回収ボイラにおける第1図
のA部を拡大した側断面図を示し、第4図は第3
図のB−B線断面図を示す。
Figure 3 shows an enlarged side sectional view of part A in Figure 1 of a conventional waste heat recovery boiler, and Figure 4 shows the 3rd section of a conventional waste heat recovery boiler.
A sectional view taken along line B-B in the figure is shown.

なお第3図および第4図においてH2,W2は煙
道100内の伝熱空間を示し、H1,H3,W1
W3は非伝熱空間を示す。
In addition, in FIG. 3 and FIG. 4, H 2 and W 2 indicate the heat transfer space in the flue 100, and H 1 , H 3 , W 1 ,
W 3 indicates non-heat transfer space.

廃熱回収ボイラの伝熱管群は第3図および第4
図に示す如く伝熱管12、上部及び下部管寄せ1
9,13、上部連絡管18、下部連絡管21、に
よつて構成され、伝熱管12は底部で管寄せサポ
ート14によつて支持され、その外周は第4図に
示す如く外部ケーシング17a,17b,24,
25、保温材16、内部ケーシング20a,20
b,22,23によつて被われ全体が管寄せサポ
ートビーム15上に底部支持構造で支持されてい
る。廃熱回収ボイラの伝熱管群はタービンからの
排ガスの熱回収率を高めるために、伝熱管12の
配列は千鳥状に配置され、伝熱空間H2,W2に位
置する伝熱管12にはフインが取り付けられたフ
イン付伝熱管12aが使用されている。
The heat transfer tube group of the waste heat recovery boiler is shown in Figures 3 and 4.
As shown in the figure, heat exchanger tubes 12, upper and lower headers 1
9, 13, an upper connecting pipe 18, and a lower connecting pipe 21, the heat transfer tube 12 is supported at the bottom by a header support 14, and its outer periphery is surrounded by outer casings 17a, 17b as shown in FIG. ,24,
25, heat insulating material 16, internal casing 20a, 20
b, 22, 23 and is entirely supported on the header support beam 15 with a bottom support structure. In the heat transfer tube group of the waste heat recovery boiler, the heat transfer tubes 12 are arranged in a staggered manner in order to increase the heat recovery rate of the exhaust gas from the turbine . A finned heat exchanger tube 12a to which fins are attached is used.

一方、第4図に示す如く、非伝熱空間H1,H3
に位置する伝熱管12の上部および下部管寄せ1
9,13の近傍では、伝熱管12が上部および下
部管寄せ19,13に集合させるために、あるい
は上部および下部管寄せ19,13と伝熱管12
との取合上、フイン付伝熱管12aに代えて裸伝
熱管12bが用いられている。
On the other hand, as shown in Fig. 4, non-heat transfer spaces H 1 and H 3
The upper and lower headers 1 of the heat exchanger tubes 12 located at
In the vicinity of 9 and 13, the heat exchanger tubes 12 are arranged in order to collect them in the upper and lower headers 19 and 13, or to combine the upper and lower headers 19 and 13 with the heat exchanger tubes
For the purpose of connection, a bare heat exchanger tube 12b is used in place of the finned heat exchanger tube 12a.

このためにガスタービンからの排ガスGが煙道
100内を通過する場合、煙道の上、下方向にお
いては伝熱空間H2に位置するフイン付伝熱管1
2a部分を通過する通気抵抗は、非伝熱空間H1
H3に位置する裸伝熱管12b部分に比べて大き
くなる。
For this reason, when the exhaust gas G from the gas turbine passes through the flue 100, the finned heat exchanger tube 1 is located in the heat transfer space H2 in the upper and lower directions of the flue.
The ventilation resistance passing through the part 2a is the non-heat transfer space H 1 ,
It is larger than the bare heat exchanger tube 12b portion located at H3 .

従つて第3図に示す煙道でみれば上部内部ケー
シング22、下部内部ケーシング23の近傍に上
下の熱交換に関与しない非伝熱空間H1,H3がで
き、排ガスGは通気抵抗の小さい非伝熱空間H1
H3を流れ、通気抵抗の大きい伝熱空間H2には流
れにくくなる。
Therefore, in the flue shown in Fig. 3, there are non-heat transfer spaces H 1 and H 3 near the upper internal casing 22 and lower internal casing 23 that do not participate in upper and lower heat exchange, and the exhaust gas G has low ventilation resistance. Non-heat transfer space H 1 ,
It flows through H 3 and becomes difficult to flow into the heat transfer space H 2 where ventilation resistance is large.

このように第3図の煙道100の上、下方向に
は熱交換に関与する伝熱空間H2と熱交換に直接
関与しない非伝熱空間H1,H3が形成されてしま
う。
In this way, a heat transfer space H 2 that participates in heat exchange and non-heat transfer spaces H 1 and H 3 that do not directly participate in heat exchange are formed above and below the flue 100 in FIG. 3 .

次に第4図に示すように廃熱回収ボイラの幅方
向においても、上部および下部管寄せ19,13
と伝熱管12との取合上、伝熱管12と側部内部
ケーシング20a,20bとの間にはやはり熱交
換に直接関与しない非伝熱空間W1,W3ができて
しまう。この場合、第2図の如く、煙道の下流に
行くほど保温材16の厚さが薄く、かつ上下ケー
シング17a,17bの外形寸法は上流から下流
まで一定であるので、煙道の下流へ行くほど非伝
熱空間W1,W3は実質的に広くなる。この非伝熱
空間W1,W3は排ガスGが通過する際に抵抗とな
るべきものが伝熱空間W2に比べて少ないために
伝熱空間W2に比較して圧力損失が少く、このた
めに大量の排ガスGがこの非伝熱空間W1,W3
バイパスしてしまい、ボイラ全体の熱回収効率が
大幅に低下してしまうことになる。
Next, as shown in Fig. 4, in the width direction of the waste heat recovery boiler, the upper and lower headers 19, 13
Due to the connection between the heat exchanger tubes 12 and the heat exchanger tubes 12, non-heat transfer spaces W 1 and W 3 that do not directly participate in heat exchange are created between the heat exchanger tubes 12 and the side internal casings 20a and 20b. In this case, as shown in FIG. 2, the thickness of the heat insulating material 16 becomes thinner as it goes downstream of the flue, and the external dimensions of the upper and lower casings 17a, 17b are constant from upstream to downstream. The non-heat transfer spaces W 1 and W 3 become substantially wider. These non-heat transfer spaces W 1 and W 3 have less resistance when the exhaust gas G passes through them than in the heat transfer space W 2 , so the pressure loss is smaller than in the heat transfer space W 2 . Therefore, a large amount of exhaust gas G bypasses these non-heat transfer spaces W 1 and W 3 , and the heat recovery efficiency of the entire boiler is significantly reduced.

またこの排ガスGのバイパスにより、元来熱交
換に直接関与しない非伝熱空間H1,H3に配置さ
れた管寄せ19,13等が大量のバイパスした排
ガス流によつて加熱され、メタル温度が上昇する
ことになる。このためこの部分に配置すべき部材
の設計温度を高く設定しなければならず、材料費
がかさむ欠点がある。
In addition, due to the bypass of this exhaust gas G, the headers 19, 13, etc., which are arranged in the non-heat transfer spaces H 1 and H 3 , which are not directly involved in heat exchange, are heated by the large amount of bypassed exhaust gas flow, and the metal temperature increases. will rise. For this reason, the design temperature of the members to be placed in this area must be set high, which has the disadvantage of increasing material costs.

さらに非伝熱空間H1,H3,W1,W3に配置さ
れた部材の一つである管寄せサポート14は一方
的にバイパスした排ガスGによつて加熱されるた
めそのメタル温度は当然上昇するが、このサポー
ト14と接触する下部管寄せ13自体は内部流体
によつて冷却されるため、両者の間には必然的に
温度差が生じ応力が発生する。このために温度差
による応力を吸収する構造を採用しなければなら
ず、底部支持構造自体も一段と複雑な構造とな
る。
Furthermore, since the header support 14, which is one of the members arranged in the non-heat transfer spaces H 1 , H 3 , W 1 , W 3 , is heated by the exhaust gas G that is unilaterally bypassed, the metal temperature naturally increases. However, since the lower header 13 itself, which is in contact with the support 14, is cooled by the internal fluid, a temperature difference inevitably occurs between the two, which generates stress. For this reason, it is necessary to adopt a structure that absorbs stress due to temperature differences, and the bottom support structure itself becomes even more complex.

さらにまた非伝熱空間H1,H3,W1,W3はバ
イパスした大量のガス流によつて流速が上昇する
が、非伝熱空間H1,H3,W1,W3に配置された
部材がこの高速のガス流によつて振動を生ずる虞
れもある。
Furthermore, the flow velocity increases in the non-heat transfer spaces H 1 , H 3 , W 1 , W 3 due to the bypassed large amount of gas flow; There is also a risk that the high-speed gas flow may cause vibrations in the parts that have been exposed.

この発明の目的は上述した問題点を除去し、熱
回収効率が高く、熱応力の発生が少く、振動等も
生じることのない廃熱回収装置を提供することに
ある。
An object of the present invention is to eliminate the above-mentioned problems and provide a waste heat recovery device that has high heat recovery efficiency, generates little thermal stress, and does not generate vibrations.

要するにこの発明は、燃焼排ガスを通過させる
煙道中に、伝熱管群を配置し排ガス中の熱を回収
する装置において、煙道中に配した伝熱管の両端
部を除く中央部はフイン付き伝熱管、両端部はフ
インなし管部とし、かつ、フインなし管部に、排
ガスの偏流を防止する偏流防止板を設け、該偏流
防止板は、複数個に分割して煙道もしくは伝熱管
ヘツダ部との熱による膨張、収縮差を吸収する構
成としたことを特徴とする廃熱回収装置である。
In short, the present invention provides an apparatus for disposing a group of heat transfer tubes in a flue through which combustion exhaust gas passes and recovering heat in the exhaust gas, in which the central portion of the heat transfer tubes disposed in the flue, excluding both ends, is a finned heat transfer tube; Both ends are finless tube portions, and the finless tube portion is provided with a drift prevention plate for preventing uneven flow of exhaust gas, and the drift prevention plate is divided into a plurality of pieces and connected to the flue or heat exchanger tube header. This is a waste heat recovery device characterized by a structure that absorbs differences in expansion and contraction due to heat.

以下この発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第5図〜第7図は本発明の一実施例を示したも
ので、第5図は従来構造の第3図に相当する側断
面図、第6図は第5図のC−C線断面図、第7図
は第5図のD−D線断面図である。
5 to 7 show an embodiment of the present invention, FIG. 5 is a side sectional view corresponding to FIG. 3 of the conventional structure, and FIG. 6 is a sectional view taken along the line C--C in FIG. 5. FIG. 7 is a sectional view taken along the line DD in FIG. 5.

第5図〜第7図の実施例においては、煙道の
上、下および左、右に形成される非伝熱空間H3
H1,W3,W1にそれぞれ偏流防止部材26を配
置したのである。
In the embodiments shown in FIGS. 5 to 7, non-heat transfer spaces H 3 ,
A drift prevention member 26 is arranged at each of H 1 , W 3 , and W 1 .

すなわち、煙道の上、下に形成された非伝熱空
間H1,H3には第5図〜第7図に示すように排ガ
スGが非伝熱空間H1,H3をバイパスすることを
防ぐために上部偏流防止部材26a、下部偏流防
止部材26bを煙道を横切る方向に配置し、煙道
の左、右に形成された非伝熱空間W1,W3には第
6図および第7図に示すように側部内部ケーシン
グ20a,20bにそつて側部偏流防止部材26
cおよび26dを配置したのである。
That is, the exhaust gas G bypasses the non-heat transfer spaces H 1 and H 3 formed above and below the flue as shown in FIGS. 5 to 7 . In order to prevent this, the upper drift prevention member 26a and the lower drift prevention member 26b are arranged in the direction across the flue. As shown in FIG.
c and 26d.

このように非伝熱空間H1,H3,W1,W3に偏
流防止部材26a〜dを配置することによつて排
ガスGの偏流が防止でき、フイン付伝熱管12a
での熱回収効率が向上する。
By arranging the drift prevention members 26a to 26d in the non-heat transfer spaces H 1 , H 3 , W 1 , W 3 in this way, the drift of the exhaust gas G can be prevented, and the finned heat exchanger tubes 12 a
Improves heat recovery efficiency.

また、非伝熱空間H1,H3には第5図および第
7図に示す如く、排ガスGの流れ方向に距離L1
ごとに上部偏流防止部材26aおよび下部偏流防
止部材26bが配置され、非伝熱空間W1,W3
は第7図に示す如く排ガスGの流れ方向に距離
L2ごとに側部偏流防止部材26c,dを配置し
たので、上部偏流防止部材26a,26a、下部
偏流防止部材26b,26bおよび側部偏流防止
部材26c,26cおよび26d,26d同志の
間には排ガスGのよどみ部28が形成されるため
に排ガスGが非伝熱空間H1,H3,W1,W3をバ
イパスすることは防止できる。
In addition, as shown in FIGS. 5 and 7, the non-heat transfer spaces H 1 and H 3 have a distance L 1 in the flow direction of the exhaust gas G.
An upper drift prevention member 26a and a lower drift prevention member 26b are arranged for each of the non-heat transfer spaces W 1 and W 3 at a distance in the flow direction of the exhaust gas G as shown in FIG.
Since the side drift prevention members 26c, d are arranged for each L2 , there are Since the exhaust gas G stagnation portion 28 is formed, the exhaust gas G can be prevented from bypassing the non-heat transfer spaces H 1 , H 3 , W 1 , and W 3 .

なお、第5図から第7図においては上部、下部
および側部偏流防止部材26a,26b,26
c,26dが排ガスGの流れに対してほぼ直交す
るように取付けられているので、これらの偏流防
止部材26a,26b,26c,26dの背面に
は補強リブ27が配置されて補強されている。
In addition, in FIGS. 5 to 7, the upper, lower and side drift prevention members 26a, 26b, 26
c and 26d are installed so as to be substantially orthogonal to the flow of the exhaust gas G, reinforcing ribs 27 are arranged on the back surfaces of these drift prevention members 26a, 26b, 26c, and 26d to reinforce them.

第8図は下部偏流防止部材26bの煙道への取
り付け状態の詳細を示す。先ず、煙道を構成する
下部内部ケーシング23は熱応力を吸収するため
次の構造となつている。例えば煙道の下部内部ケ
ーシング23を例に説明すれば符号23と38で
示す様に煙道の幅方向に分割形成してあり、各内
部ケーシング23,38は各々スタツドボルト2
9、ナツト42、ワツシヤ44によつて外部ケー
シング24に接続してある。(下部内部ケーシン
グ38側のボルト接続は図示していない。)41
はスライドプレートであり、下部内部ケーシング
23側に対してのみ接続してあり、各内部ケーシ
ング23,38がこのスライドプレート41の取
り付け部において相対的に移動し得るよう構成す
ることにより、下部内部ケーシング23,38同
志下部の内部外部のケーシング23と24,38
と24間の温度差による変位を吸収し得るよう構
成してある。従つて下部偏流防止部材26bも下
部内部ケーシング23,38と同様に符号26
b,26bに示す如く煙道100の幅方向に分割
して形成し、排ガスGによる熱変位を吸収し得る
よう構成することによつて、ケーシング同志、偏
流防止部材同志の熱吸収による伸び差をスライド
プレート41によつて吸収できる。
FIG. 8 shows details of how the lower drift prevention member 26b is attached to the flue. First, the lower internal casing 23 constituting the flue has the following structure in order to absorb thermal stress. For example, if we take the lower internal casing 23 of the flue as an example, it is divided into parts in the width direction of the flue, as shown by numerals 23 and 38, and each internal casing 23, 38 has a stud bolt 2.
9, is connected to the outer casing 24 by a nut 42 and a washer 44. (The bolt connection on the lower inner casing 38 side is not shown.) 41
is a slide plate, which is connected only to the lower internal casing 23 side, and is configured so that each internal casing 23, 38 can move relatively at the attachment part of this slide plate 41, so that the lower internal casing 23, 38 Comrades lower internal and external casings 23 and 24, 38
The structure is such that it can absorb the displacement caused by the temperature difference between and 24. Therefore, the lower drift prevention member 26b is also designated by the reference numeral 26 like the lower internal casings 23 and 38.
By dividing the flue 100 in the width direction as shown in b and 26b and configuring it to absorb thermal displacement caused by the exhaust gas G, the difference in elongation due to heat absorption between the casings and the drift prevention members can be reduced. It can be absorbed by the slide plate 41.

なお、第5図〜第7図の実施例においては、非
伝熱空間H1,H3と非伝熱空間W1,W3に上部と
下部の偏流防止部材26a,26bと側部偏流防
止部材26c,26dを別々に配置したが、前述
したようにスライドプレート(第8図参照)を縦
方向、横方向へ挿入して上部と下部の偏流防止部
材26a,26bを側部偏流防止部材26c,2
6dによつて一体構造にすれば、偏流防止部材2
6を製作する手間、取付のための手間は省け、ス
ライドプレート41の大きさを任意に選ぶことに
よつて偏流防止部材26自体の製作誤差をも吸収
できる構造となる。
In the embodiments shown in FIGS. 5 to 7, upper and lower drift prevention members 26a, 26b and side drift prevention members are provided in the non-heat transfer spaces H1 , H3 and the non-heat transfer spaces W1, W3 . Although the members 26c and 26d are arranged separately, as described above, by inserting the slide plate (see FIG. 8) in the vertical and horizontal directions, the upper and lower drift prevention members 26a and 26b are connected to the side drift prevention member 26c. ,2
If it is made into an integral structure by 6d, the drift prevention member 2
The manufacturing process and the installation process can be saved, and by arbitrarily selecting the size of the slide plate 41, the structure can absorb manufacturing errors in the drift prevention member 26 itself.

第9図および第10図のものは偏流防止部材2
6の他の実施例を示したもので、第5図〜第7図
に示した偏流防止部材26と異る点は、第5図〜
第7図の偏流防止部材26は排ガスGの流れ方向
に対して非伝熱空間H1,H3,W1,W3へ垂直に
上部、下部および側部偏流防止部材26a,26
b,26c,26dを配置したが、第9図および
第10図の偏流防止部材26は上部および下部の
偏流防止部材26a,26bのみ排ガスGの流れ
方向に対して傾斜して配置した点である。
The one in FIGS. 9 and 10 is the drift prevention member 2.
6 shows another embodiment of the present invention, and the differences from the drift prevention member 26 shown in FIGS. 5 to 7 are as shown in FIGS. 5 to 7.
The drift prevention member 26 in FIG. 7 is arranged vertically to the non-heat transfer spaces H 1 , H 3 , W 1 , W 3 with respect to the flow direction of the exhaust gas G.
b, 26c, and 26d are arranged, but in the case of the drift prevention members 26 in FIGS. 9 and 10, only the upper and lower drift prevention members 26a and 26b are arranged at an angle with respect to the flow direction of the exhaust gas G. .

この第9図の実施例においては、上部および下
部偏流防止部材26a,26bを排ガスGの流れ
方向に対して所定の角度αをもつて斜めに取り付
け、さらにその上端部をほぼ水平に屈曲させて水
平部を形成して排ガスGの通過抵抗を減少させる
と共に整流効果をも高め、全体として排ガスの圧
力損失を大幅に減少させるようにしたものであ
る。
In the embodiment shown in FIG. 9, the upper and lower drift prevention members 26a and 26b are mounted obliquely at a predetermined angle α with respect to the flow direction of the exhaust gas G, and their upper ends are bent approximately horizontally. By forming a horizontal portion, the passage resistance of the exhaust gas G is reduced, and the rectification effect is also enhanced, thereby significantly reducing the pressure loss of the exhaust gas as a whole.

第10図は下部ヘツダ13近傍を下部偏流防止
部材26bによつて覆つた構造を示すもので、第
9図の補強リブ27に代えて、別の支持部材45
を介して下部偏流防止部材26bを下部管寄せ1
3により支持する構造としたものである。
FIG. 10 shows a structure in which the vicinity of the lower header 13 is covered with a lower drift prevention member 26b, and instead of the reinforcing rib 27 in FIG.
The lower drift prevention member 26b is connected to the lower header 1 through the
The structure is supported by 3.

このように、下部ヘツダ13の近傍を、第10
図に示すような下部偏流防止部材26bによつて
覆うことによつて、ヘツダ近傍を低温に保つこと
ができ、特に下部ヘツダ13の管寄せサポート1
4は低温になつて、その支持構造を高温の排ガス
Gから開放することができる。
In this way, the vicinity of the lower header 13 is
By covering the header support 1 of the lower header 13 with the lower drift prevention member 26b as shown in the figure, the vicinity of the header can be kept at a low temperature.
4 becomes colder and its support structure can be released from the hot exhaust gas G.

第11図から第13図のものは他の実施例を示
すもので、第11図は煙道の側断面図、第12図
は第11図のF−F線断面図、第13図は煙道の
コーナ部における偏流防止部材の斜視図である。
Figures 11 to 13 show other embodiments. Figure 11 is a side sectional view of the flue, Figure 12 is a sectional view taken along the line F--F in Figure 11, and Figure 13 is a smoke pipe. It is a perspective view of the drift prevention member in the corner part of the road.

第5図〜第7図、および第9図、第10図のも
のと異なる点は、第5図〜第7図のものにおいて
は偏流防止部材26の全てが平板状の上部、下部
および側部の偏流防止部材26a,26b,26
c,26dによつて構成されたものであり、第9
図および第10図のものにおいては、偏流防止部
材26が上部および下部偏流防止部材26a,2
6bのみが第9図および第10図に示すように排
ガスGの流れ方向にそつて角度αだけ傾斜し、側
部偏流防止部材26c,26dは平板状のものを
組合せたものである。
The difference from the ones in FIGS. 5 to 7, and FIGS. 9 and 10 is that in the ones shown in FIGS. Unbalanced flow prevention members 26a, 26b, 26
c, 26d, and the ninth
10, the drift prevention member 26 includes upper and lower drift prevention members 26a, 2
As shown in FIGS. 9 and 10, only the member 6b is inclined at an angle α along the flow direction of the exhaust gas G, and the side drift prevention members 26c and 26d are a combination of flat plate-like members.

これに対し、第11図〜第13図のものは、上
部下部および側部偏流防止部材26a,26b,
26c,26dによつて、全ての非伝熱空間H1
H3,W1,W3を被つたのである。
On the other hand, those in FIGS. 11 to 13 have upper lower part and side drift prevention members 26a, 26b,
26c and 26d, all non-heat transfer spaces H 1 ,
H 3 , W 1 , and W 3 were affected.

第11図ないし第13図のものは、非伝熱空間
H1,H3には上部偏流防止部材26a,26a同
志および下部偏流防止部材26b,26b同志を
第11図に示す如く接続部偏流防止部材26e,
26eによつて接続して非伝熱空間H1,H3を被
い、非伝熱空間W1,W3には側部偏流防止部材2
6c,26c同志、あるいは側部偏流防止部材2
6d,26d同志を接続部偏流防止部材26e,
26eによつて接続して非伝熱空間W1,W3を被
つたものである。
The ones in Figures 11 to 13 are non-heat transfer spaces.
As shown in FIG. 11, upper drift prevention members 26a and 26a and lower drift prevention members 26b and 26b are connected to H 1 and H 3 , as shown in FIG.
26e to cover the non-heat transfer spaces H 1 and H 3 , and the non-heat transfer spaces W 1 and W 3 are provided with side drift prevention members 2
6c, 26c comrades or side drift prevention member 2
6d and 26d are connected by the unbalanced current prevention member 26e,
26e to cover the non-heat transfer spaces W 1 and W 3 .

このように煙道内の上下左右には偏流防止部材
26によつて被われるために、排ガスGの偏流は
防止でき、上部ヘツダ19の近傍および下部ヘツ
ダ13の近傍は、偏流防止部材26によつて被わ
れているために、低温に保持することができ、排
ガスG中に多少ダストが含まれていてもヘツダ1
9,13の近傍にダストが付着することは防止で
きる。
In this way, the upper, lower, left, and right sides of the flue are covered by the drift prevention members 26, so that the drift of the exhaust gas G can be prevented. Because it is covered, the header 1 can be kept at a low temperature even if the exhaust gas G contains some dust.
It is possible to prevent dust from adhering to the vicinity of 9 and 13.

なお、上部、下部偏流防止部材26a,26
a,26b,26b間には接続部偏流防止部材2
6e,26eが接続されているが、この接続部偏
流防止部材26eには第13図に示す如く伝熱管
12の裸伝熱管12bが貫通する裸伝熱管12b
の貫通用孔があけられ、この貫通用孔は裸伝熱管
12bの外径寸法よりも大きく形成してあり、排
ガスGによる熱応力や伸び差を吸収するよう構成
されている。この場合、接続部偏流防止部材26
eの貫通用孔から排ガスGの一部がよどみ部28
に流入してある程度排ガスGがバイパスするの
で、よどみ部28にバツフル43を適宜配置し
て、さらに効果的にバイパス流を防止できる。
Note that the upper and lower drift prevention members 26a, 26
Between a, 26b, and 26b is a connecting part drift prevention member 2.
6e and 26e are connected to each other, and as shown in FIG.
A through hole is formed, and this through hole is formed to have a larger outer diameter than the bare heat exchanger tube 12b, and is configured to absorb thermal stress and elongation difference caused by the exhaust gas G. In this case, the connection part drift prevention member 26
A part of the exhaust gas G flows through the through hole e into the stagnation part 28.
Since the exhaust gas G is bypassed to some extent by flowing into the stagnation part 28, the bypass flow can be more effectively prevented by appropriately arranging the baffle 43 in the stagnation part 28.

以上、本発明の実施例においては、複合発電プ
ラントの廃熱ボイラについてのみ説明したが本発
明は本実施例に限定されるものではなく、広く煙
道内に伝熱管が配置された節炭器などにも応用で
きるものである。
As described above, in the embodiments of the present invention, only the waste heat boiler of a combined cycle power plant has been described, but the present invention is not limited to the present embodiments, and can be broadly applied to energy saving devices in which heat exchanger tubes are arranged in the flue, etc. It can also be applied to

この発明を実施することにより、熱交換に直接
関与しない非伝熱空間で排ガスのバイパスを大幅
に低減できるので、装置の熱交換効率を大幅に向
上させることができる。
By implementing this invention, bypass of exhaust gas can be significantly reduced in a non-heat transfer space that is not directly involved in heat exchange, so the heat exchange efficiency of the device can be significantly improved.

また非伝熱空間の部材の温度上昇が少ないの
で、この部分に設置すべき部材の設計温度を低減
でき装置の製造費を低減させることができる。さ
らに非伝熱空間での熱応力の発生が低減できるの
で応力除去用の複雑な構造を採用する必要がない
等種々の効果を発揮する。
Furthermore, since the temperature rise of the members in the non-heat transfer space is small, the design temperature of the members to be installed in this area can be reduced, and the manufacturing cost of the device can be reduced. Furthermore, since the generation of thermal stress in a non-heat transfer space can be reduced, there is no need to employ a complicated structure for stress relief, and various other effects are exhibited.

既設のものでも偏流防止部材を設置することで
容易に改造することができる。
Even existing ones can be easily modified by installing drift prevention members.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は廃熱回収ボイラの全体概要図、第2図
は保温構造部の側部断面図、第3図は第1図のA
部を拡大した詳細断面図、第4図は第3図のB−
B線断面図、第5図はこの発明の第1の実施例を
示すボイラ装置の側面図、第6図は第5図のC−
C線断面図、第7図は第5図のD−D線断面図、
第8図は第5図のE−E線断面拡大図、第9図は
第2の実施例を示す偏流防止部材の断面図、第1
0図は第9図の変形例を示す偏流防止部材の断面
図、第11図は第3の実施例を示す偏流防止部材
の断面図、第12図は第11図のF−F線断面
図、第13図は第11図および第12図の煙道の
コーナ部における偏流防止部材の斜視部分図であ
る。 100…煙道、12…伝熱管、26,26a,
26b,26c,26d,26e…偏流防止部
材、H1,H3,W1,W3…非伝熱空間。
Figure 1 is an overall schematic diagram of the waste heat recovery boiler, Figure 2 is a side sectional view of the heat retention structure, and Figure 3 is A in Figure 1.
Figure 4 is a detailed cross-sectional view of the enlarged section of the section B- in Figure 3.
5 is a side view of a boiler device showing the first embodiment of the present invention, and FIG. 6 is a sectional view taken along line C-- in FIG.
A sectional view taken along the line C, FIG. 7 is a sectional view taken along the line D-D in FIG. 5,
FIG. 8 is an enlarged cross-sectional view taken along the line E-E in FIG. 5, and FIG. 9 is a cross-sectional view of the drift prevention member showing the second embodiment.
0 is a sectional view of a drift prevention member showing a modification of FIG. 9, FIG. 11 is a sectional view of a drift prevention member showing a third embodiment, and FIG. 12 is a sectional view taken along the line FF in FIG. 11. , FIG. 13 is a perspective partial view of the drift prevention member at the corner portion of the flue shown in FIGS. 11 and 12. 100... Flue, 12... Heat exchanger tube, 26, 26a,
26b, 26c, 26d, 26e...Difference prevention member, H1 , H3 , W1 , W3 ...Non-heat transfer space.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼排ガスを通過させる煙道中に、伝熱管群
を配置し排ガス中の熱を回収する装置において、
煙道中に配した伝熱管の両端部を除く中央部はフ
イン付き伝熱管、両端部はフインなし管部とし、
かつ、フインなし管部に、排ガスの偏流を防止す
る偏流防止板を設け、該偏流防止板は、複数個に
分割して煙道もしくは伝熱管ヘツダ部との熱によ
る膨張、収縮差を吸収する構成としたことを特徴
とする廃熱回収装置。
1. In a device that collects heat from exhaust gas by arranging a group of heat transfer tubes in a flue through which combustion exhaust gas passes,
The center part of the heat exchanger tube placed in the flue, excluding both ends, is a heat exchanger tube with fins, and both ends are tubes without fins,
In addition, a drift prevention plate is provided in the finless pipe section to prevent drift of exhaust gas, and the drift prevention plate is divided into a plurality of pieces to absorb the difference in thermal expansion and contraction with the flue or the heat exchanger tube header. A waste heat recovery device characterized by having the following configuration.
JP58133615A 1983-07-23 1983-07-23 Recovery device for waste heat Granted JPS6026201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58133615A JPS6026201A (en) 1983-07-23 1983-07-23 Recovery device for waste heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58133615A JPS6026201A (en) 1983-07-23 1983-07-23 Recovery device for waste heat

Publications (2)

Publication Number Publication Date
JPS6026201A JPS6026201A (en) 1985-02-09
JPH0467081B2 true JPH0467081B2 (en) 1992-10-27

Family

ID=15108952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58133615A Granted JPS6026201A (en) 1983-07-23 1983-07-23 Recovery device for waste heat

Country Status (1)

Country Link
JP (1) JPS6026201A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3708499A1 (en) * 1987-03-16 1988-10-20 Sgs Halbleiterbauelemente Gmbh DIGITAL PRACTICAL DRIVER CIRCUIT
US4938452A (en) * 1988-12-10 1990-07-03 Aisan Kogyo Kabushiki Kaisha Air control device for internal combustion engine
JPH1151303A (en) * 1997-07-31 1999-02-26 Mitsubishi Heavy Ind Ltd Boiler
JP2006214625A (en) * 2005-02-02 2006-08-17 Babcock Hitachi Kk Exhaust heat recovery boiler
JP6373058B2 (en) * 2014-05-19 2018-08-15 株式会社サムソン Tube group boiler

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382901A (en) * 1976-12-28 1978-07-21 Ebara Corp Waste heat boiler
JPS5827602U (en) * 1981-08-18 1983-02-22 三菱重工業株式会社 fluid heating device
JPS5827602B2 (en) * 1972-08-04 1983-06-10 ユナイテッド キングドム アトミック エナ↓−ヂイ オ↓−ソリテイ Seizouhouhou

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827602B2 (en) * 1972-08-04 1983-06-10 ユナイテッド キングドム アトミック エナ↓−ヂイ オ↓−ソリテイ Seizouhouhou
JPS5382901A (en) * 1976-12-28 1978-07-21 Ebara Corp Waste heat boiler
JPS5827602U (en) * 1981-08-18 1983-02-22 三菱重工業株式会社 fluid heating device

Also Published As

Publication number Publication date
JPS6026201A (en) 1985-02-09

Similar Documents

Publication Publication Date Title
SK287649B6 (en) Steam generator
US4427058A (en) HRSG Sidewall baffle
JPH0467081B2 (en)
JPH0418205B2 (en)
JP2857440B2 (en) Heat transfer tube support device
JP5780520B2 (en) Waste heat recovery boiler
JP3883689B2 (en) Waste heat recovery boiler
JPH0740805Y2 (en) Waste heat recovery equipment
JP7220992B2 (en) Heat transfer tube support structure and heat transfer tube support method
JPH09137906A (en) Exhaust heat recovery device
JP2873045B2 (en) Exhaust heat recovery heating device
JPH085001A (en) Supporting device for group of heat transfer tubes
JPH0443682Y2 (en)
JPS597890A (en) Supporting device for heat-transmitting pipe
US6718915B1 (en) Horizontal spiral tube boiler convection pass enclosure design
JP3921766B2 (en) Curvature prevention structure of boiler radial superheater.
JP3581928B2 (en) Small once-through boiler
RU2229655C2 (en) Loop-type platen heating surface
JP2020003192A (en) Exhaust heat recovery boiler
JPH09257202A (en) Waste heat recovery device
JPS597820A (en) Reinforcement for duct
JPH0311524Y2 (en)
JP2003222304A (en) Support structure of heat transfer tube panel and exhaust heat recovery boiler
JPH0645121Y2 (en) Relative arrangement structure of finned water pipe in multi-tube boiler
JP2000028101A (en) Heating tube structure for exhaust heat recovery boiler