JP2001111156A - Optical module - Google Patents

Optical module

Info

Publication number
JP2001111156A
JP2001111156A JP28833599A JP28833599A JP2001111156A JP 2001111156 A JP2001111156 A JP 2001111156A JP 28833599 A JP28833599 A JP 28833599A JP 28833599 A JP28833599 A JP 28833599A JP 2001111156 A JP2001111156 A JP 2001111156A
Authority
JP
Japan
Prior art keywords
optical element
silicon substrate
optical
solder
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28833599A
Other languages
Japanese (ja)
Other versions
JP3688162B2 (en
Inventor
Toshikazu Hashimoto
俊和 橋本
Ryoichi Kasahara
亮一 笠原
Kuniharu Kato
邦治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28833599A priority Critical patent/JP3688162B2/en
Publication of JP2001111156A publication Critical patent/JP2001111156A/en
Application granted granted Critical
Publication of JP3688162B2 publication Critical patent/JP3688162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve thermal resistance of an optical module by a method wherein, in the optical module having an insulation layer mounting an optical element on a substrate having a wave guide path, thermal resistance by the insulation layer is decreased and a thermal conduction in the other parts is increased. SOLUTION: An area of a solder or an electric wiring part 6 for fixing or driving an optical element 7 is greater than the area of the optical element 7, thereby diffusing heat from the optical element. A grounded silicon substrate 1 is electrically connected to the optical element 7 with a solder part 6, and an insulation layer 5 is provided between the optical element of an optical element mounting part 4 and the silicon substrate. In the other parts, the insulation layer is thinned, or eliminated, and a radiation solder is drawn around on the silicon substrate. Furthermore, the optical element mounted on the silicon substrate via the insulation layer 5 and the periphery of any or all of electric wirings for driving the optical element are coated with a transparent resin (with a wavelength of the optical element), and further coated with a resin of a high conductivity thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、平面光導波回路を
用いた光回路部品であって、特に光素子搭載する基板の
作製を容易にする構造を有する光モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical circuit component using a planar optical waveguide circuit, and more particularly to an optical module having a structure for facilitating the manufacture of a substrate on which an optical element is mounted.

【0002】[0002]

【従来の技術】レーザーダイオードのような大電流を流
す光素子では放熱構造を考慮することが極めて重要であ
る。光導波路基板を用いて基板平面上に光ハイブリッド
集積した従来の光モジュールにおいては、光素子をシリ
コンの表面にフリップチップ実装してシリコン基板に熱
を逃がす放熱構造をとってきた(例えば、橋本他、“P
LCプラットフォーム上へパッシブアライメントによる
LD,モニターPDの搭載”、1996年電子情報通信
学会総合大会C−206、p206(1996))。
2. Description of the Related Art It is very important to consider a heat dissipation structure in an optical element such as a laser diode that flows a large current. In a conventional optical module in which an optical hybrid is integrated on a substrate plane using an optical waveguide substrate, a heat dissipation structure has been adopted in which an optical element is flip-chip mounted on a silicon surface to release heat to the silicon substrate (for example, Hashimoto et al. , "P
Mounting of LD and monitor PD on LC platform by passive alignment ", 1996 IEICE General Conference C-206, p206 (1996)).

【0003】図4にその従来例の構造を示す。図4の
(a)に示すように、凹凸に加工したシリコン基板1上
に石英導波路を形成して、光導波路のクラッド2−1、
2−2と光導波路コア部分3のガラスを取り除き、シリ
コン基板の凸面1−1を露出させる。この凸面1−1
に、半田膜6−1と電気配線6−2を形成し、光素子搭
載部4を有する光導波路基板ができる。その光素子搭載
部4の上に光素子7をフリップチップボンディングによ
り実装する。これにより光素子7で発生した熱が効率良
くシリコン基板1に拡散して、光素子7の温度上昇が抑
制される。
FIG. 4 shows the structure of the conventional example. As shown in FIG. 4A, a quartz waveguide is formed on a silicon substrate 1 processed into irregularities, and a clad 2-1 of an optical waveguide is formed.
2-2 and the glass of the optical waveguide core portion 3 are removed to expose the convex surface 1-1 of the silicon substrate. This convex surface 1-1
Then, the solder film 6-1 and the electric wiring 6-2 are formed, and an optical waveguide substrate having the optical element mounting portion 4 is obtained. The optical element 7 is mounted on the optical element mounting section 4 by flip chip bonding. Thereby, the heat generated in the optical element 7 is efficiently diffused into the silicon substrate 1 and the temperature rise of the optical element 7 is suppressed.

【0004】図4の(b)は上記従来例の光モジュール
の断面構造を示し、光素子7からシリコン基板1に熱が
流れている様子を矢印30で示している。光素子7で発
生した熱は、半田膜6−1、及びパッシベーション膜
(ガラス)5を介してシリコン基板1へと流れる。
FIG. 4B shows a cross-sectional structure of the above-mentioned conventional optical module, in which heat flows from the optical element 7 to the silicon substrate 1 by an arrow 30. The heat generated by the optical element 7 flows to the silicon substrate 1 via the solder film 6-1 and the passivation film (glass) 5.

【0005】[0005]

【発明が解決しようとする課題】上述したように、従来
技術では、凹凸シリコン基板1の上に光導波路を形成し
て光素子7をフリップチップ搭載することにより、光素
子7の放熱を行ってきたが、このような構造において
も、光素子7と光導波路基板1の間に介在するパッシベ
ーション膜5がガラスなどの物質でできているために、
無視できない熱抵抗が発生する。このように、従来技術
では、シリコン基板1上の絶縁層が5熱抵抗を高めてし
まうという解決すべき課題があった。
As described above, in the prior art, the optical element 7 is radiated by forming an optical waveguide on the uneven silicon substrate 1 and mounting the optical element 7 on a flip chip. However, even in such a structure, the passivation film 5 interposed between the optical element 7 and the optical waveguide substrate 1 is made of a material such as glass.
Generates thermal resistance that cannot be ignored. As described above, in the related art, there is a problem to be solved that the insulating layer on the silicon substrate 1 increases the thermal resistance.

【0006】本発明の目的は、上述のような課題を解決
し、導波路を有する基板上に光素子を搭載した絶縁層を
有する光モジュールにおいて、絶縁層による熱抵抗を削
減し、もしくは、その他の部分の熱伝導を高めること
で、光モジュールの熱抵抗を改善することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to reduce the thermal resistance due to an insulating layer in an optical module having an insulating layer in which an optical element is mounted on a substrate having a waveguide. Is to improve the thermal resistance of the optical module by increasing the heat conduction of the portion.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の光モジュールの発明は、導波路を有する
シリコン基板上に絶縁層を介して光素子を搭載した光モ
ジュールにおいて、前記光素子を固定および駆動するた
めの半田または電気配線部分が該光素子と前記絶縁層間
に介在し、該半田または電気配線部分の面積が前記光素
子の面積より大きいことを特徴とする。
According to a first aspect of the present invention, there is provided an optical module in which an optical element is mounted on a silicon substrate having a waveguide through an insulating layer via an insulating layer. A solder or electric wiring portion for fixing and driving the element is interposed between the optical element and the insulating layer, and an area of the solder or electric wiring portion is larger than an area of the optical element.

【0008】上記目的を達成するため、請求項2の光モ
ジュールの発明は、導波路を有するシリコン基板上に絶
縁層を介して光素子を搭載した光モジュールにおいて、
接地された前記シリコン基板と前記光素子が半田で電気
的に接続され、前記光素子と前記シリコン基板の間には
前記絶縁層があることを特徴とする。
In order to achieve the above object, an optical module according to a second aspect of the present invention is an optical module in which an optical element is mounted on a silicon substrate having a waveguide via an insulating layer.
The grounded silicon substrate and the optical element are electrically connected by solder, and the insulating layer is provided between the optical element and the silicon substrate.

【0009】ここで、前記光素子と前記シリコン基板間
以外の部分では前記絶縁層を薄くするか、または該記絶
縁層を取除き、前記半田の一部を放熱のために前記シリ
コン基板上に延在させていることを特徴とすることがで
きる。
Here, in a portion other than between the optical element and the silicon substrate, the insulating layer is thinned or the insulating layer is removed, and a part of the solder is placed on the silicon substrate for heat radiation. It can be characterized by being extended.

【0010】上記目的を達成するため、請求項4の光モ
ジュールの発明は、導波路を有するシリコン基板上に絶
縁層を介して光素子を搭載した光モジュールにおいて、
前記光素子を透明樹脂層を介して高熱伝導性樹脂で覆う
ことを特徴とする。
In order to achieve the above object, an optical module according to a fourth aspect of the present invention is an optical module in which an optical element is mounted on a silicon substrate having a waveguide via an insulating layer.
The optical element is covered with a high thermal conductive resin via a transparent resin layer.

【0011】ここで、前記透明樹脂層により前記光素子
および該光素子を駆動するための電気配線の一部若しく
は全部の周囲を覆い、さらに該透明樹脂層上に前記高熱
伝導性樹脂を覆うことを特徴とすることができる。
Here, the transparent resin layer covers a part or the whole of the optical element and electric wiring for driving the optical element, and further covers the high thermal conductive resin on the transparent resin layer. Can be characterized.

【0012】[作用]本発明では、導波路を有する基板
上に光素子を搭載した絶縁層を有する光モジュールにお
いて、半田膜や電気配線などを用いて、光素子から発生
する熱を効率的に光導波路基板に伝える。もしくは、広
い面積に拡散させることによって熱抵抗を引き下げるこ
とを可能とする。あるいは、透明樹脂層と高熱伝導性樹
脂を用いて光素子から発生する熱を効率的に広く拡散さ
せる。
[Operation] According to the present invention, in an optical module having an insulating layer in which an optical element is mounted on a substrate having a waveguide, heat generated from the optical element can be efficiently used by using a solder film or electric wiring. Transmit to the optical waveguide substrate. Alternatively, the thermal resistance can be reduced by diffusing it over a wide area. Alternatively, the heat generated from the optical element is efficiently diffused widely using the transparent resin layer and the high thermal conductive resin.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0014】[第1の実施形態]図1の(a)は比較の
ための従来例の断面構造を示し、図1の(b)と(c)
は本発明の第1の実施形態の光モジュールの断面構造を
示す。なお、図1は光素子搭載部上に光素子が搭載され
ている状態を示している。
[First Embodiment] FIG. 1A shows a cross-sectional structure of a conventional example for comparison, and FIG. 1B and FIG.
1 shows a cross-sectional structure of the optical module according to the first embodiment of the present invention. FIG. 1 shows a state where the optical element is mounted on the optical element mounting portion.

【0015】図1の(b)と(c)に示すように、本実
施形態に用いた光導波路は、シリコン基板1上に形成し
た石英系光導波路である。光素子搭載部4は、シリコン
基板1の全面を覆っていた光導波路のクラッド部分2−
1、2−1の一部をエッチングにより除去して作製し
た。このとき、光素子搭載部4に利用されるシリコン表
面はむき出しになり、光素子7とシリコン基板1とが絶
縁できない状態になる。この絶縁をとるための構造とし
て、本実施形態では、この光導波路基板全体の表面に約
2μm程度のガラス膜5をパッシベーション膜として堆
積した。
As shown in FIGS. 1B and 1C, the optical waveguide used in the present embodiment is a silica-based optical waveguide formed on a silicon substrate 1. The optical element mounting portion 4 has a clad portion 2-2 of the optical waveguide covering the entire surface of the silicon substrate 1.
Parts 1 and 2-1 were removed by etching. At this time, the silicon surface used for the optical element mounting portion 4 is exposed, and the optical element 7 and the silicon substrate 1 cannot be insulated. In this embodiment, a glass film 5 of about 2 μm is deposited as a passivation film on the entire surface of the optical waveguide substrate as a structure for obtaining the insulation.

【0016】図1の(a)に示す従来の構造では、互い
に接合する側の半田膜6の面積と光素子7の電極の面積
とを同程度にしていたため、光素子7の接合部の面積、
約250μm×250μmを考慮すると、約20℃/W
の熱抵抗がこの接合部分に発生することになる。ここで
使用した光素子7はレーザーダイオード(LD)で、こ
の熱抵抗によって、100mAの注入電流で駆動した場
合、活性層部分7−1の熱が約2℃程度上昇した。
In the conventional structure shown in FIG. 1A, the area of the solder film 6 on the side to be joined to the area of the electrode of the optical element 7 is substantially the same. ,
Considering about 250 μm × 250 μm, about 20 ° C./W
Will occur at this junction. The optical element 7 used here was a laser diode (LD). Due to this thermal resistance, when driven by an injection current of 100 mA, the heat of the active layer portion 7-1 increased by about 2 ° C.

【0017】そこで、本実施形態では、図1の(b)に
示すように、光素子7の大きさをそのままにして、使用
している半田膜6の面積を1.5倍にした。従来では、
半田膜6と光素子7の電極との面積を同程度にしていた
ので、従来に比べ、本実施形態の半田膜6の面積は光素
子7の電極パッドよりも十分大きくなっている。
Therefore, in this embodiment, as shown in FIG. 1B, the area of the solder film 6 used is increased 1.5 times while keeping the size of the optical element 7 as it is. Traditionally,
Since the area of the solder film 6 and the area of the electrode of the optical element 7 are substantially the same, the area of the solder film 6 of the present embodiment is sufficiently larger than the electrode pad of the optical element 7 as compared with the related art.

【0018】使用している半田膜6は4μmの厚さのA
uSn半田であったので、半田膜6の断面積は約250
μm×4μm×4辺程度であるが、半田膜6の熱伝導率
が石英ガラスの約300倍なので、光素子7の直下のガ
ラス5による熱抵抗の約1/20の値となって、図1の
(c)に示すように、半田膜6を通じて、より広い面積
に光素子7からの熱が拡散し、素子直下部分20のみな
らず、半田拡張部分21を加えた断面積(この場合、も
との面積の1.5倍の面積)のガラス5を通じてシリコ
ン基板1に放熱される。光素子7の搭載後の熱抵抗を測
定したところ、約2割程度、絶縁層部分5の熱抵抗が減
少した。
The solder film 6 used is a 4 μm thick A
Since it was uSn solder, the cross-sectional area of the solder film 6 was about 250
It is about μm × 4 μm × 4 sides, but since the thermal conductivity of the solder film 6 is about 300 times that of quartz glass, it becomes about 1/20 of the thermal resistance of the glass 5 immediately below the optical element 7, As shown in FIG. 1 (c), the heat from the optical element 7 diffuses through the solder film 6 to a larger area through the solder film 6, so that not only the part 20 immediately below the element but also the cross-sectional area including the solder expansion part 21 (in this case, Heat is radiated to the silicon substrate 1 through the glass 5 having an area 1.5 times the original area. When the thermal resistance after mounting the optical element 7 was measured, the thermal resistance of the insulating layer portion 5 was reduced by about 20%.

【0019】以上のように、本実施形態では、電気配線
の一部である半田膜6の面積を光素子7の電極面積より
も十分大きくとって、光素子搭載部4に配置するように
したので、絶縁層5による熱抵抗を改善することが可能
となる。
As described above, in the present embodiment, the area of the solder film 6, which is a part of the electric wiring, is set to be sufficiently larger than the electrode area of the optical element 7, and is arranged in the optical element mounting section 4. Therefore, it is possible to improve the thermal resistance of the insulating layer 5.

【0020】[第2の実施形態]図2は本発明の第2の
実施形態の光モジュールの断面構造を示し、光素子搭載
部4上に光素子7が搭載されている状態を示している。
[Second Embodiment] FIG. 2 shows a cross-sectional structure of an optical module according to a second embodiment of the present invention, and shows a state in which an optical element 7 is mounted on an optical element mounting section 4. .

【0021】本実施形態に用いた光導波路はシリコン基
板1上に形成した石英系光導波路である。光素子搭載部
4はシリコン基板1の全面を覆って形成した光導波路の
クラッド部分2−1、2−2の一部をエッチングにより
除去して作製した。このとき、光素子搭載部4に利用さ
れるシリコン基板1の表面はむき出しになる。シリコン
基板1を接地することにより基板1をグラントとして光
素子7を駆動すれば、光素子7は電気配線などと直接シ
リコン基板1上に形成することが可能となる。
The optical waveguide used in this embodiment is a quartz optical waveguide formed on the silicon substrate 1. The optical element mounting portion 4 was manufactured by removing a part of the clad portions 2-1 and 2-2 of the optical waveguide formed so as to cover the entire surface of the silicon substrate 1 by etching. At this time, the surface of the silicon substrate 1 used for the optical element mounting portion 4 is exposed. If the optical element 7 is driven using the substrate 1 as a ground by grounding the silicon substrate 1, the optical element 7 can be formed directly on the silicon substrate 1 with electric wiring and the like.

【0022】しかしながら、シリコン基板1上に作製さ
れた光導波路の電界の分布は光導波路コア3よりも広が
っているため、光導波路コア3の位置をシリコン基板1
よりも十分に離しておく必要がある。そこで、本実施形
態では、光導波路コア3の位置を光素子7の光素子基板
表面7−2から光素子活性層7−1までの距離よりも大
きくとっていた。
However, since the electric field distribution of the optical waveguide formed on the silicon substrate 1 is wider than that of the optical waveguide core 3, the position of the optical waveguide core 3 is
Need to be farther apart. Therefore, in the present embodiment, the position of the optical waveguide core 3 is set larger than the distance from the optical element substrate surface 7-2 of the optical element 7 to the optical element active layer 7-1.

【0023】光素子7の光素子基板表面7−2から光素
子活性層7−1までの距離(高さ)と、光導波路のコア
3の高さを一致させるため、本実施形態では、光素子搭
載部分4に絶縁層となるガラス膜5を8μm堆積した。
このため、光素子7として本実施形態で使用した接合面
積約250μm×250μmを有するレーザーダイオー
ド(LD)を利用した場合、約80℃/W程度の熱抵抗
が発生し、100mAで駆動した場合、レーザーダイオ
ードの活性層7−1の温度を約8℃程度上昇させる。そ
こで、本実施形態では、図2の(a),(b)に示すよ
うに、光素子直下部分20以外のガラス5を除去して、
さらに第1の実施形態と同様に半田膜6の面積を2倍程
度にして半田拡張部分21まで半田膜6を広げることに
した。
In order to make the distance (height) from the optical element substrate surface 7-2 of the optical element 7 to the optical element active layer 7-1 coincide with the height of the core 3 of the optical waveguide, in this embodiment, the light A glass film 5 serving as an insulating layer was deposited on the element mounting portion 4 to a thickness of 8 μm.
For this reason, when a laser diode (LD) having a junction area of about 250 μm × 250 μm used in the present embodiment is used as the optical element 7, a thermal resistance of about 80 ° C./W is generated, and when driven at 100 mA, The temperature of the active layer 7-1 of the laser diode is raised by about 8 ° C. Therefore, in the present embodiment, as shown in FIGS. 2A and 2B, the glass 5 other than the portion 20 immediately below the optical element is removed,
Further, similarly to the first embodiment, the area of the solder film 6 is about doubled so that the solder film 6 is extended to the solder extension 21.

【0024】使用している半田膜6は4μmの厚さのA
uSn半田であったので、半田膜6の断面方向の熱抵抗
は、この場合、光素子直下20のガラス5による熱抵抗
の約1/80の値となって、図2(b)に矢印30で示
すように、ガラス5を伝わるよりも、圧倒的に半田層6
を伝わってシリコン基板1側へ拡散する熱が多くなる。
さらに、その熱が拡散した先は、直接シリコン基板1に
接触しているので、効率的に熱を逃がすことができる。
The solder film 6 used is a 4 μm thick A
Since it was uSn solder, the thermal resistance in the cross-sectional direction of the solder film 6 was about 1/80 of the thermal resistance of the glass 5 immediately below the optical element 20 in this case, and the arrow 30 in FIG. As shown by, the solder layer 6 is overwhelmingly transmitted over the glass 5.
, And the heat that diffuses toward the silicon substrate 1 increases.
Furthermore, since the point where the heat is diffused is in direct contact with the silicon substrate 1, the heat can be efficiently released.

【0025】本実施形態の光モジュールの熱抵抗を測定
したところ、半田接合部分から基板にかけての熱抵抗が
約4割程度少なくなり、熱特性上問題の無い光モジュー
ルとなった。
When the thermal resistance of the optical module of this embodiment was measured, the thermal resistance from the solder joint to the substrate was reduced by about 40%, and the optical module had no problem in thermal characteristics.

【0026】ここで、本実施形態では、光素子直下部分
以外のガラス膜を除去したが、ガラス膜の一部のみを除
去して、そこに、半田膜もしくは電気配線を引き込んで
放熱させてもよい。また、光素子直下であっても、発熱
部分以外であればその部分のガラスを除去して光素子直
下の絶縁層を半田膜もしくは電気配線を引き込んで放熱
させても良い。さらに、本実施形態では光素子直下部分
以外のガラスを全て取り除いたが、取り除くガラスの量
を調整して、電気配線と基板との絶縁をとってもよい。
Here, in this embodiment, the glass film other than the portion immediately below the optical element is removed. However, it is also possible to remove only a part of the glass film and draw in a solder film or electric wiring there to radiate heat. Good. Further, even under the optical element, if it is other than the heat generating portion, the glass may be removed from that part, and the insulating layer immediately below the optical element may be radiated by drawing in the solder film or electric wiring. Further, in the present embodiment, all the glass except for the portion immediately below the optical element is removed, but the amount of glass to be removed may be adjusted to insulate the electric wiring and the substrate.

【0027】以上のように、本実施形態によれば、接地
されたシリコン基板1と光素子7が半田層6で電気的に
接続され、光素子7とシリコン基板1間には絶縁層5が
ある構成において、光素子直下20以外の絶縁層を取り
除く、または薄くするようにしたので、光素子直下20
の極端に放熱の悪い部分がある場合でも、効率的に熱抵
抗を下げることが可能となる。
As described above, according to this embodiment, the grounded silicon substrate 1 and the optical element 7 are electrically connected by the solder layer 6, and the insulating layer 5 is provided between the optical element 7 and the silicon substrate 1. In a certain configuration, the insulating layer other than the portion immediately below the optical element 20 is removed or made thinner.
It is possible to efficiently lower the thermal resistance even when there is a part where heat radiation is extremely poor.

【0028】[第3の実施形態]図3は本発明の第3の
実施形態の光モジュールの断面構造を示し、光素子搭載
部4上に光素子7が搭載されている状態を示している。
本実施形態に用いた光導波路はシリコン基板上に形成し
た石英系光導波路である。
[Third Embodiment] FIG. 3 shows a cross-sectional structure of an optical module according to a third embodiment of the present invention, and shows a state where an optical element 7 is mounted on an optical element mounting section 4. .
The optical waveguide used in the present embodiment is a quartz optical waveguide formed on a silicon substrate.

【0029】図3の本実施形態は前述の第1の実施形態
と同様に作製し、光導波路基板1の全体の表面に約2μ
m程度ガラス膜5を堆積した。このため、本実施形態で
用いた光素子としてのレーザーダイオード(LD)7の
接合部の面積、約250μm×250μmを考慮する
と、約20℃/Wの熱抵抗がこの部分に発生することに
なる。そこで、図3の(a)に示すように、本実施形態
では、光素子7の周囲に透明シリコーン樹脂8を約2μ
m程度に薄く塗って、その外側にボロンナイトライドを
フィラーとして含む約4W/(m・℃)のガラスと比較
して高熱伝導性の樹脂9を塗布した。ここで、光素子7
と光導波路端面2−3の間隙は約20μm程度あるが、
シリコーン樹脂8の粘性によりこの間隙はシリコーン樹
脂8により満たされ、光導波路コア3から出射した光が
遮られることはなく、光素子活性層7−1へ入射する。
高熱伝導性樹脂9の熱抵抗はガラスの約1/4程度であ
るから、高熱伝導性樹脂9で光素子7を覆うことによ
り、光素子7から発生する熱は図3の(b)の矢印30
で示すような経路を通して高熱伝導性樹脂9側へも流
れ、これにより放熱が改善される。
The present embodiment shown in FIG. 3 is manufactured in the same manner as the first embodiment, and the entire surface of the optical waveguide substrate 1 is about 2 μm.
A glass film 5 having a thickness of about m was deposited. Therefore, considering the area of the junction of the laser diode (LD) 7 as the optical element used in the present embodiment, about 250 μm × 250 μm, a thermal resistance of about 20 ° C./W is generated in this part. . Therefore, as shown in FIG. 3A, in the present embodiment, a transparent silicone resin 8 is coated around the optical element 7 by about 2 μm.
m, and a resin 9 having a higher heat conductivity than that of glass of about 4 W / (m · ° C.) containing boron nitride as a filler was applied to the outside thereof. Here, the optical element 7
And the gap between the optical waveguide end face 2-3 is about 20 μm,
This gap is filled with the silicone resin 8 due to the viscosity of the silicone resin 8, so that the light emitted from the optical waveguide core 3 is not blocked and enters the optical element active layer 7-1.
Since the thermal resistance of the high thermal conductive resin 9 is about 1/4 of that of glass, when the optical element 7 is covered with the high thermal conductive resin 9, the heat generated from the optical element 7 is reduced by the arrow shown in FIG. 30
The flow also flows to the high thermal conductive resin 9 through the path shown by the arrow, thereby improving the heat radiation.

【0030】この光モジュールの熱抵抗を測定したとこ
ろ、光素子7からシリコン基板1にかけての熱抵抗が約
2割減少した。
When the thermal resistance of this optical module was measured, the thermal resistance from the optical element 7 to the silicon substrate 1 was reduced by about 20%.

【0031】ここでは、光素子7の周囲を高熱伝導率の
樹脂9で覆ったが、光素子7および電気配線を透明な樹
脂8で覆い、その上にメタル層(図示しない)を蒸着な
どで設けても同様の効果が得られる。
Here, the periphery of the optical element 7 is covered with a resin 9 having a high thermal conductivity. However, the optical element 7 and electric wiring are covered with a transparent resin 8, and a metal layer (not shown) is deposited thereon by vapor deposition or the like. The same effect can be obtained even if it is provided.

【0032】以上のように、本実施形態によれば、光素
子7の周囲を透明な樹脂8で覆い、さらにその外側を熱
伝導の高い樹脂9で覆うことにより、光モジュールの熱
抵抗を簡便に、かつ効率的に下げることが可能となる。
As described above, according to the present embodiment, the thermal resistance of the optical module is simplified by covering the optical element 7 with the transparent resin 8 and further covering the outside with the resin 9 having high thermal conductivity. , And efficiently.

【0033】[他の実施形態]本発明は、上述の実施形
態に限定されるものではなく、例えば、上記第1〜第3
の実施形態を必要に応じて自在に組み合わせてもよい。
また、上述の絶縁膜、透明樹脂、高熱伝導性樹脂等の具
体的材質も上述の実施形態に限定されるものではない。
また、本発明の光モジュールを構成する光素子は、レー
ザーダイオードに限定されず、発熱作用のため放熱が必
要な光素子を有する光モジュールに対して本発明は好適
である。
[Other Embodiments] The present invention is not limited to the above-described embodiment.
May be freely combined as necessary.
Further, specific materials such as the above-described insulating film, transparent resin, and high thermal conductive resin are not limited to the above-described embodiments.
Further, the optical element constituting the optical module of the present invention is not limited to a laser diode, and the present invention is suitable for an optical module having an optical element that requires heat radiation due to heat generation.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
光導波路基板に光素子搭載部を設け、光素子をハイブリ
ッド集積する光モジュールにおいて、光素子を固定およ
び駆動するための半田または電気配線部分の面積が光素
子の面積より大きくするようにしたので、光素子からの
熱をより拡散させることができ、光モジュールの放熱を
改善できる。
As described above, according to the present invention,
In the optical module in which the optical element mounting portion is provided on the optical waveguide substrate and the optical element is hybrid-integrated, the area of the solder or electric wiring portion for fixing and driving the optical element is made larger than the area of the optical element. The heat from the optical element can be further diffused, and the heat radiation of the optical module can be improved.

【0035】また、本発明によれば、接地されたシリコ
ン基板と光素子を半田部分で電気的に接続し、光素子搭
載部分の光素子とシリコン基板間に絶縁層を設け、それ
以外の部分では絶縁層を薄くするか、または、取除いて
放熱用の半田をシリコン基板上に引き回すようにしたの
で、効率的にシリコン基板に放熱させることにより、光
モジュールの放熱を改善できる。
Further, according to the present invention, the grounded silicon substrate and the optical element are electrically connected by a solder portion, an insulating layer is provided between the optical element on the optical element mounting portion and the silicon substrate, and other portions are provided. In this case, since the insulating layer is thinned or removed and solder for heat dissipation is routed on the silicon substrate, heat dissipation of the optical module can be improved by efficiently dissipating heat to the silicon substrate.

【0036】また、本発明によれば、絶縁層を介してシ
リコン基板上に搭載された光素子、および光素子を駆動
するための電気配線の一部若しくは全部の周囲を透明
(光素子の波長で)樹脂で覆い、さらにその上に熱伝導
率の高い樹脂で塗布等により覆うようにしたので、光モ
ジュールの放熱を改善することができる。
Further, according to the present invention, the optical element mounted on the silicon substrate via the insulating layer, and a part or the whole of the electric wiring for driving the optical element are transparent (the wavelength of the optical element). Since the optical module is covered with a resin and further coated thereon with a resin having high thermal conductivity by coating or the like, the heat radiation of the optical module can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の原理を説明する図
で、(a)は従来の光素子搭載部の構造を示す縦断面
図、(b)は本発明の第1の実施形態の光モジュールに
おける光素子搭載部と放熱構造を示す正面側の縦断面
図、(c)は本発明の第1の実施形態の光素子搭載部に
おいて光素子で発生した熱がシリコン基板に放熱される
際の経路を波線矢印で示す側面側の縦断面図である。
FIGS. 1A and 1B are diagrams for explaining the principle of a first embodiment of the present invention. FIG. 1A is a longitudinal sectional view showing the structure of a conventional optical element mounting portion, and FIG. 1B is a first embodiment of the present invention. FIG. 4C is a vertical cross-sectional view of the front side showing the optical element mounting portion and the heat dissipation structure in the optical module of FIG. FIG. 4 is a vertical cross-sectional view on the side surface side showing a path when the arrow is shown by a wavy arrow.

【図2】本発明の第2の実施形態の光モジュールにおけ
る光素子搭載部と放熱構造を示す図で、(a)はその光
素子搭載部の構造を示す正面側の縦断面図、(b)はそ
の光素子搭載部において、光素子で発生した熱がシリコ
ン基板に放熱される際の経路を波線矢印で示す正面側の
縦断面図である。
FIGS. 2A and 2B are diagrams showing an optical element mounting portion and a heat dissipation structure in an optical module according to a second embodiment of the present invention. FIG. 2A is a front vertical sectional view showing the structure of the optical element mounting portion. 2) is a vertical cross-sectional view on the front side showing a path when heat generated in the optical element is radiated to the silicon substrate in the optical element mounting portion by a wavy arrow.

【図3】本発明の第3の実施形態の光モジュールにおけ
る光素子搭載部と放熱構造を示す図で、(a)はその光
素子搭載部の構造を示す正面側の縦断面図、(b)は光
素子搭載部において、光素子で発生した熱がシリコン基
板に放熱される際の経路を波線矢印で示す側面側の縦断
面図である。
FIGS. 3A and 3B are diagrams showing an optical element mounting portion and a heat radiation structure in an optical module according to a third embodiment of the present invention, wherein FIG. 3A is a front longitudinal sectional view showing the structure of the optical element mounting portion; () Is a vertical cross-sectional view on the side of the optical element mounting portion, where the path generated when the heat generated by the optical element is radiated to the silicon substrate is indicated by a wavy arrow.

【図4】従来技術による光モジュールの構成例を示す図
で、(a)はその光素子搭載部の構造を示す斜視図、
(b)はその光素子で発生した熱がシリコン基板に放熱
される際の経路を波線矢印で示す正面側の縦断面図であ
る。
4A and 4B are diagrams showing a configuration example of an optical module according to a conventional technique, in which FIG. 4A is a perspective view showing the structure of an optical element mounting portion;
(B) is a vertical cross-sectional view on the front side showing a path when heat generated by the optical element is radiated to the silicon substrate by a wavy arrow.

【符号の説明】[Explanation of symbols]

1 シリコン基板 1−1 シリコン基板凸部 2 クラッド 2−1 アンダークラッド 2−2 オーバークラッド 2−3 光導波路端面 3 光導波路コア 4 光素子搭載部 5 ガラス(パッシベーション)膜、絶縁層 6 半田膜または電気配線 6−1 AuSn半田膜 6−2 電気配線 7 光素子 7−1 光素子活性層 7−2 光素子表面 8 透明樹脂 9 高熱伝導樹脂 10 光軸 20 光素子直下部分 21 半田拡張部分 30 熱の流れ DESCRIPTION OF SYMBOLS 1 Silicon substrate 1-1 Silicon substrate convex part 2 Cladding 2-1 Under cladding 2-2 Over cladding 2-3 Optical waveguide end face 3 Optical waveguide core 4 Optical element mounting part 5 Glass (passivation) film, insulating layer 6 Solder film or Electric wiring 6-1 AuSn solder film 6-2 Electric wiring 7 Optical element 7-1 Optical element active layer 7-2 Optical element surface 8 Transparent resin 9 High heat conductive resin 10 Optical axis 20 Direct part under optical element 21 Solder extended part 30 Heat Flow of

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 邦治 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 2H037 AA01 BA02 BA11 CA00 DA03 DA06 DA36 DA38 2H047 KA04 MA07 QA02 RA08 TA05 TA11 5F041 AA33 DA09 DA12 DA20 DA45 DA46 DA55 EE25 FF14 5F073 AB25 EA29 FA13 FA22 FA29 5F088 BA16 BA20 BB01 JA03 JA06 JA14  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kuniharu Kato 2-3-1 Otemachi, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation F-term (reference) 2H037 AA01 BA02 BA11 CA00 DA03 DA06 DA36 DA38 2H047 KA04 MA07 QA02 RA08 TA05 TA11 5F041 AA33 DA09 DA12 DA20 DA45 DA46 DA55 EE25 FF14 5F073 AB25 EA29 FA13 FA22 FA29 5F088 BA16 BA20 BB01 JA03 JA06 JA14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導波路を有するシリコン基板上に絶縁層
を介して光素子を搭載した光モジュールにおいて、 前記光素子を固定および駆動するための半田または電気
配線部分が該光素子と前記絶縁層間に介在し、該半田ま
たは電気配線部分の面積が前記光素子の面積より大きい
ことを特徴とする光モジュール。
1. An optical module in which an optical element is mounted on a silicon substrate having a waveguide via an insulating layer via an insulating layer, wherein a solder or an electric wiring portion for fixing and driving the optical element is provided between the optical element and the insulating layer. Wherein the area of the solder or electric wiring portion is larger than the area of the optical element.
【請求項2】 導波路を有するシリコン基板上に絶縁層
を介して光素子を搭載した光モジュールにおいて、 接地された前記シリコン基板と前記光素子が半田で電気
的に接続され、前記光素子と前記シリコン基板の間には
前記絶縁層があることを特徴とする光モジュール。
2. An optical module in which an optical element is mounted on a silicon substrate having a waveguide via an insulating layer via an insulating layer, wherein the grounded silicon substrate and the optical element are electrically connected by solder, and An optical module comprising the insulating layer between the silicon substrates.
【請求項3】 前記光素子と前記シリコン基板間以外の
部分では前記絶縁層を薄くするか、または該記絶縁層を
取除き、前記半田の一部を放熱のために前記シリコン基
板上に延在させていることを特徴とする請求項2に記載
の光モジュール。
3. In a portion other than between the optical element and the silicon substrate, the insulating layer is thinned or the insulating layer is removed, and a part of the solder is spread on the silicon substrate for heat radiation. The optical module according to claim 2, wherein the optical module is provided.
【請求項4】 導波路を有するシリコン基板上に絶縁層
を介して光素子を搭載した光モジュールにおいて、 前記光素子を透明樹脂層を介して高熱伝導性樹脂で覆う
ことを特徴とする光モジュール。
4. An optical module in which an optical element is mounted on a silicon substrate having a waveguide via an insulating layer, wherein the optical element is covered with a high thermal conductive resin via a transparent resin layer. .
【請求項5】 前記透明樹脂層により前記光素子および
該光素子を駆動するための電気配線の一部若しくは全部
の周囲を覆い、さらに該透明樹脂層上に前記高熱伝導性
樹脂を覆うことを特徴とする請求項4に記載の光モジュ
ール。
5. The method according to claim 5, wherein the transparent resin layer covers a part or the entirety of the optical element and an electric wiring for driving the optical element, and further covers the high thermal conductive resin on the transparent resin layer. The optical module according to claim 4, wherein:
JP28833599A 1999-10-08 1999-10-08 Optical module Expired - Fee Related JP3688162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28833599A JP3688162B2 (en) 1999-10-08 1999-10-08 Optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28833599A JP3688162B2 (en) 1999-10-08 1999-10-08 Optical module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004199829A Division JP2004304205A (en) 2004-07-06 2004-07-06 Optical module

Publications (2)

Publication Number Publication Date
JP2001111156A true JP2001111156A (en) 2001-04-20
JP3688162B2 JP3688162B2 (en) 2005-08-24

Family

ID=17728870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28833599A Expired - Fee Related JP3688162B2 (en) 1999-10-08 1999-10-08 Optical module

Country Status (1)

Country Link
JP (1) JP3688162B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105527A1 (en) * 2007-03-01 2008-09-04 Nec Lighting, Ltd. Led device and illuminating apparatus
JP2009522608A (en) * 2006-10-02 2009-06-11 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Method and system for integrated DWDM transmitter
US7567599B2 (en) 2005-01-03 2009-07-28 Samsung Electro-Mechanics Co., Ltd. Semiconductor laser diode device with thermal conductive encapsulating resin and method for manufacturing the same
US8050525B2 (en) 2006-10-11 2011-11-01 Futurewei Technologies, Inc. Method and system for grating taps for monitoring a DWDM transmitter array integrated on a PLC platform
US8285150B2 (en) 2006-10-02 2012-10-09 Futurewei Technologies, Inc. Method and system for integrated DWDM transmitters
US8285151B2 (en) 2006-10-20 2012-10-09 Futurewei Technologies, Inc. Method and system for hybrid integrated 1XN DWDM transmitter
JP2013115240A (en) * 2011-11-29 2013-06-10 Nichia Chem Ind Ltd Laser device
JP2014060452A (en) * 2013-12-18 2014-04-03 Seiko Epson Corp Solid light source device, projector, and monitoring device
JP2015099388A (en) * 2015-02-02 2015-05-28 セイコーエプソン株式会社 Solid light source device, projector, and monitoring device
WO2019117035A1 (en) * 2017-12-12 2019-06-20 日東電工株式会社 Photoelectric mixed substrate
WO2023084610A1 (en) * 2021-11-09 2023-05-19 日本電信電話株式会社 Optical module and creation method for same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306402A (en) * 1987-06-08 1988-12-14 Nippon Telegr & Teleph Corp <Ntt> Method for packaging optical element
JPH0560952A (en) * 1991-08-30 1993-03-12 Nec Corp Optical semiconductor unit
JPH0878657A (en) * 1993-08-09 1996-03-22 Nippon Telegr & Teleph Corp <Ntt> Opto-electric hybrid mounting board, manufacturing method and opto-electric hybrid integrated circuit
JPH095547A (en) * 1995-06-19 1997-01-10 Nippon Telegr & Teleph Corp <Ntt> Optical hybrid circuit
JPH0961676A (en) * 1995-08-30 1997-03-07 Hitachi Ltd Optical assembly
JPH09199804A (en) * 1996-01-16 1997-07-31 Olympus Optical Co Ltd Optical device
JPH09223846A (en) * 1996-02-16 1997-08-26 Nichia Chem Ind Ltd Nitride semiconductor laser device
JPH1048449A (en) * 1996-07-31 1998-02-20 Nippon Telegr & Teleph Corp <Ntt> Production of package board for hybrid photoelectronic integrated circuit
JPH11149019A (en) * 1997-06-25 1999-06-02 Matsushita Electric Ind Co Ltd Optical transmitting and receiving device and its manufacturing method, and optical semiconductor module
JP2000002817A (en) * 1998-06-15 2000-01-07 Nec Corp Optical waveguide platform and its production
JP2000162460A (en) * 1998-11-27 2000-06-16 Sharp Corp Organic optical waveguide, manufacture thereof, and optical part using it
JP2000294809A (en) * 1999-02-04 2000-10-20 Hitachi Ltd Optical module, transmitter, receiver, optical switch, light communication apparatus, add-drop multiplexer, and manufacture of optical module

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306402A (en) * 1987-06-08 1988-12-14 Nippon Telegr & Teleph Corp <Ntt> Method for packaging optical element
JPH0560952A (en) * 1991-08-30 1993-03-12 Nec Corp Optical semiconductor unit
JPH0878657A (en) * 1993-08-09 1996-03-22 Nippon Telegr & Teleph Corp <Ntt> Opto-electric hybrid mounting board, manufacturing method and opto-electric hybrid integrated circuit
JPH095547A (en) * 1995-06-19 1997-01-10 Nippon Telegr & Teleph Corp <Ntt> Optical hybrid circuit
JPH0961676A (en) * 1995-08-30 1997-03-07 Hitachi Ltd Optical assembly
JPH09199804A (en) * 1996-01-16 1997-07-31 Olympus Optical Co Ltd Optical device
JPH09223846A (en) * 1996-02-16 1997-08-26 Nichia Chem Ind Ltd Nitride semiconductor laser device
JPH1048449A (en) * 1996-07-31 1998-02-20 Nippon Telegr & Teleph Corp <Ntt> Production of package board for hybrid photoelectronic integrated circuit
JPH11149019A (en) * 1997-06-25 1999-06-02 Matsushita Electric Ind Co Ltd Optical transmitting and receiving device and its manufacturing method, and optical semiconductor module
JP2000002817A (en) * 1998-06-15 2000-01-07 Nec Corp Optical waveguide platform and its production
JP2000162460A (en) * 1998-11-27 2000-06-16 Sharp Corp Organic optical waveguide, manufacture thereof, and optical part using it
JP2000294809A (en) * 1999-02-04 2000-10-20 Hitachi Ltd Optical module, transmitter, receiver, optical switch, light communication apparatus, add-drop multiplexer, and manufacture of optical module

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7567599B2 (en) 2005-01-03 2009-07-28 Samsung Electro-Mechanics Co., Ltd. Semiconductor laser diode device with thermal conductive encapsulating resin and method for manufacturing the same
US8285149B2 (en) 2006-10-02 2012-10-09 Futurewei Technologies, Inc. Method and system for integrated DWDM transmitters
JP2009522608A (en) * 2006-10-02 2009-06-11 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Method and system for integrated DWDM transmitter
US8285150B2 (en) 2006-10-02 2012-10-09 Futurewei Technologies, Inc. Method and system for integrated DWDM transmitters
JP4938027B2 (en) * 2006-10-02 2012-05-23 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Method and system for integrated DWDM transmitter
US8050525B2 (en) 2006-10-11 2011-11-01 Futurewei Technologies, Inc. Method and system for grating taps for monitoring a DWDM transmitter array integrated on a PLC platform
US8285151B2 (en) 2006-10-20 2012-10-09 Futurewei Technologies, Inc. Method and system for hybrid integrated 1XN DWDM transmitter
WO2008105527A1 (en) * 2007-03-01 2008-09-04 Nec Lighting, Ltd. Led device and illuminating apparatus
JP2013115240A (en) * 2011-11-29 2013-06-10 Nichia Chem Ind Ltd Laser device
JP2014060452A (en) * 2013-12-18 2014-04-03 Seiko Epson Corp Solid light source device, projector, and monitoring device
JP2015099388A (en) * 2015-02-02 2015-05-28 セイコーエプソン株式会社 Solid light source device, projector, and monitoring device
WO2019117035A1 (en) * 2017-12-12 2019-06-20 日東電工株式会社 Photoelectric mixed substrate
JP2019105718A (en) * 2017-12-12 2019-06-27 日東電工株式会社 Photoelectric mixed substrate
JP7176842B2 (en) 2017-12-12 2022-11-22 日東電工株式会社 opto-electric hybrid board
WO2023084610A1 (en) * 2021-11-09 2023-05-19 日本電信電話株式会社 Optical module and creation method for same

Also Published As

Publication number Publication date
JP3688162B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
US8134231B2 (en) Semiconductor chip and semiconductor device
JPH06204566A (en) Package for coupling optical fiber and optical device and optical fiber/optical device module
TW200529458A (en) Holder of optical transmission lines and multi-core optical wave-guide
JP2001111156A (en) Optical module
WO2007088584A1 (en) Optical module and method for manufacturing same
JP2022062119A (en) Carrier mounting structure
JPH087288B2 (en) Method for manufacturing hybrid optical integrated circuit
JPH10242383A (en) Semiconductor device
JPH073903B2 (en) Optical element mounting board
JP2678944B2 (en) Method for bonding a semiconductor chip to a substrate
US6184560B1 (en) Photosemiconductor device mounted structure
JP3508990B2 (en) Optical element mounting structure
JPH11233877A (en) Array-type laser diode
JP2004304205A (en) Optical module
JP2001201672A (en) Conversion module having optical semiconductor and method for manufacturing such conversion module
JP6423161B2 (en) Optical integrated circuit device
JP7132073B2 (en) optical device
US20210057884A1 (en) Semiconductor laser and projector
JP2002094170A (en) Optical module
JP2004014659A (en) Semiconductor laser equipment
JP2002372647A (en) Light source device
JPH09307018A (en) Semiconductor element and manufacture thereof
JP6262551B2 (en) Optical module
JPH0642357Y2 (en) Optical semiconductor device
JP6204177B2 (en) Optical device substrate and optical device including the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees