JP2004304205A - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
JP2004304205A
JP2004304205A JP2004199829A JP2004199829A JP2004304205A JP 2004304205 A JP2004304205 A JP 2004304205A JP 2004199829 A JP2004199829 A JP 2004199829A JP 2004199829 A JP2004199829 A JP 2004199829A JP 2004304205 A JP2004304205 A JP 2004304205A
Authority
JP
Japan
Prior art keywords
optical element
optical
silicon substrate
optical module
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004199829A
Other languages
Japanese (ja)
Inventor
Toshikazu Hashimoto
俊和 橋本
Ryoichi Kasahara
亮一 笠原
Kuniharu Kato
邦治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004199829A priority Critical patent/JP2004304205A/en
Publication of JP2004304205A publication Critical patent/JP2004304205A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the heat resistance of an optical module by enhancing the heat conduction in the optical module having an insulation layer in which an optical element is mounted on a substrate having a waveguide. <P>SOLUTION: In the optical module having an insulation layer 5 in which an optical element 7 is mounted on the substrate 1 having the waveguide, the heat generated from the optical element 7 is effectively and widely dissipated by using a transparent resin layer 8 and a high heat conductive resin 9. The optical element 7, mounted on the silicon substrate 1 with the insulation layer 5 therebetween, and the periphery of a part or all of electric wiring for driving the optical element are covered with the transparent (in the wavelength of the optical element) resin 8, and further it is covered with the resin 9 of a higher coefficient of heat conductivity by applying, etc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、平面光導波回路を用いた光回路部品であって、特に光素子搭載する基板の作製を容易にする構造を有する光モジュールに関する。   The present invention relates to an optical circuit component using a planar optical waveguide circuit, and more particularly to an optical module having a structure that facilitates manufacturing of a substrate on which an optical element is mounted.

レーザーダイオードのような大電流を流す光素子では放熱構造を考慮することが極めて重要である。光導波路基板を用いて基板平面上に光ハイブリッド集積した従来の光モジュールにおいては、光素子をシリコンの表面にフリップチップ実装してシリコン基板に熱を逃がす放熱構造をとってきた(例えば、非特許文献1参照)。   It is extremely important to consider a heat dissipation structure in an optical element such as a laser diode that flows a large current. In a conventional optical module in which an optical hybrid is integrated on a substrate plane using an optical waveguide substrate, a heat dissipation structure has been adopted in which an optical element is flip-chip mounted on the surface of silicon to release heat to the silicon substrate (for example, non-patented). Reference 1).

図3にその従来例の構造を示す。図3の(a)に示すように、凹凸に加工したシリコン基板1上に石英導波路を形成して、光導波路のクラッド2−1、2−2と光導波路コア部分3のガラスを取り除き、シリコン基板の凸面1−1を露出させる。この凸面1−1に、半田膜6−1と電気配線6−2を形成し、光素子搭載部4を有する光導波路基板ができる。その光素子搭載部4の上に光素子7をフリップチップボンディングにより実装する。これにより光素子7で発生した熱が効率良くシリコン基板1に拡散して、光素子7の温度上昇が抑制される。   FIG. 3 shows the structure of the conventional example. As shown in FIG. 3 (a), a quartz waveguide is formed on a silicon substrate 1 processed into irregularities, and the claddings 2-1 and 2-2 of the optical waveguide and the glass of the optical waveguide core 3 are removed. The convex surface 1-1 of the silicon substrate is exposed. By forming the solder film 6-1 and the electric wiring 6-2 on the convex surface 1-1, an optical waveguide substrate having the optical element mounting portion 4 is obtained. The optical element 7 is mounted on the optical element mounting section 4 by flip chip bonding. Thereby, the heat generated in the optical element 7 is efficiently diffused into the silicon substrate 1, and the temperature rise of the optical element 7 is suppressed.

図3の(b)は上記従来例の光モジュールの断面構造を示し、光素子7からシリコン基板1に熱が流れている様子を矢印30で示している。光素子7で発生した熱は、半田膜6−1、及びパッシベーション膜(ガラス)5を介してシリコン基板1へと流れる。   FIG. 3B shows a cross-sectional structure of the above-described conventional optical module, in which the flow of heat from the optical element 7 to the silicon substrate 1 is indicated by an arrow 30. The heat generated by the optical element 7 flows to the silicon substrate 1 via the solder film 6-1 and the passivation film (glass) 5.

橋本他、“PLCプラットフォーム上へパッシブアライメントによるLD,モニターPDの搭載”、1996年電子情報通信学会総合大会C−206、p206(1996)Hashimoto et al., "Mounting LD and Monitor PD by Passive Alignment on PLC Platform", 1996 IEICE General Conference C-206, p206 (1996)

上述したように、従来技術では、凹凸シリコン基板1の上に光導波路を形成して光素子7をフリップチップ搭載することにより、光素子7の放熱を行ってきたが、このような構造においても、光素子7と光導波路基板1の間に介在するパッシベーション膜5がガラスなどの物質でできているために、無視できない熱抵抗が発生する。このように、従来技術では、シリコン基板1上の絶縁層5が熱抵抗を高めてしまうという解決すべき課題があった。   As described above, in the conventional technology, the optical waveguide is formed on the concavo-convex silicon substrate 1 and the optical element 7 is flip-chip mounted to release the heat of the optical element 7. Since the passivation film 5 interposed between the optical element 7 and the optical waveguide substrate 1 is made of a material such as glass, a non-negligible thermal resistance occurs. Thus, in the related art, there is a problem to be solved in that the insulating layer 5 on the silicon substrate 1 increases the thermal resistance.

本発明の目的は、上述のような課題を解決し、導波路を有する基板上に光素子を搭載した絶縁層を有する光モジュールにおいて、光モジュールの熱抵抗を改善することにある。   An object of the present invention is to solve the above-described problems and to improve the thermal resistance of an optical module having an insulating layer in which an optical element is mounted on a substrate having a waveguide.

上記目的を達成するため、請求項1の光モジュールの発明は、導波路を有するシリコン基板上に絶縁層を介して光素子を搭載した光モジュールにおいて、前記光素子を透明樹脂層を介して高熱伝導性樹脂で覆うことを特徴とする。   In order to achieve the above object, the invention of an optical module according to claim 1 is an optical module in which an optical element is mounted on a silicon substrate having a waveguide via an insulating layer, wherein the optical element has a high heat via a transparent resin layer. It is characterized by being covered with a conductive resin.

ここで、前記透明樹脂層により前記光素子および該光素子を駆動するための電気配線の一部若しくは全部の周囲を覆い、さらに該透明樹脂層上に前記高熱伝導性樹脂を覆うことを特徴とすることができる。   Here, the transparent resin layer covers a part or the entire periphery of the optical element and electric wiring for driving the optical element, and further covers the high thermal conductive resin on the transparent resin layer. can do.

本発明では、導波路を有する基板上に光素子を搭載した絶縁層を有する光モジュールにおいて、透明樹脂層と高熱伝導性樹脂を用いて光素子から発生する熱を効率的に広く拡散するようにしたので、光モジュールの放熱を改善できる。   In the present invention, in an optical module having an insulating layer in which an optical element is mounted on a substrate having a waveguide, the heat generated from the optical element is diffused efficiently and widely using a transparent resin layer and a high thermal conductive resin. Therefore, the heat radiation of the optical module can be improved.

また、本発明によれば、絶縁層を介してシリコン基板上に搭載された光素子、および光素子を駆動するための電気配線の一部若しくは全部の周囲を透明(光素子の波長で)樹脂で覆い、さらにその上に熱伝導率の高い樹脂で塗布等により覆うようにしたので、光モジュールの放熱を改善することができる。   Further, according to the present invention, the optical element mounted on the silicon substrate via the insulating layer, and a resin (at the wavelength of the optical element) around part or all of the electric wiring for driving the optical element , And further coated thereon with a resin having a high thermal conductivity by coating or the like, so that the heat radiation of the optical module can be improved.

以下、図面を参照して本発明の実施の形態を詳細に説明する。
[参考例]
図1の(a)は比較のための従来例の断面構造を示し、図1の(b)と(c)は本発明の参考例の光モジュールの断面構造を示す。なお、図1は光素子搭載部上に光素子が搭載されている状態を示している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[Reference example]
FIG. 1A shows a sectional structure of a conventional example for comparison, and FIGS. 1B and 1C show sectional structures of an optical module of a reference example of the present invention. FIG. 1 shows a state where the optical element is mounted on the optical element mounting section.

図1の(b)と(c)に示すように、本参考例に用いた光導波路は、シリコン基板1上に形成した石英系光導波路である。光素子搭載部4は、シリコン基板1の全面を覆っていた光導波路のクラッド部分2−1、2−1の一部をエッチングにより除去して作製した。このとき、光素子搭載部4に利用されるシリコン表面はむき出しになり、光素子7とシリコン基板1とが絶縁できない状態になる。この絶縁をとるための構造として、本実施形態では、この光導波路基板全体の表面に約2μm程度のガラス膜5をパッシベーション膜として堆積した。   As shown in FIGS. 1B and 1C, the optical waveguide used in this embodiment is a quartz optical waveguide formed on a silicon substrate 1. The optical element mounting portion 4 was manufactured by removing a part of the clad portions 2-1 and 2-1 of the optical waveguide that covered the entire surface of the silicon substrate 1 by etching. At this time, the silicon surface used for the optical element mounting part 4 is exposed, and the optical element 7 and the silicon substrate 1 cannot be insulated. In this embodiment, a glass film 5 of about 2 μm is deposited as a passivation film on the entire surface of the optical waveguide substrate as a structure for obtaining the insulation.

図1の(a)に示す従来の構造では、互いに接合する側の半田膜6の面積と光素子7の電極の面積とを同程度にしていたため、光素子7の接合部の面積、約250μm×250μmを考慮すると、約20℃/Wの熱抵抗がこの接合部分に発生することになる。ここで使用した光素子7はレーザーダイオード(LD)で、この熱抵抗によって、100mAの注入電流で駆動した場合、活性層部分7−1の熱が約2℃程度上昇した。   In the conventional structure shown in FIG. 1A, the area of the solder film 6 on the side to be bonded to each other and the area of the electrode of the optical element 7 are almost the same. Considering × 250 μm, a thermal resistance of about 20 ° C./W will occur at this junction. The optical element 7 used here was a laser diode (LD). Due to this thermal resistance, when driven by an injection current of 100 mA, the heat of the active layer portion 7-1 increased by about 2 ° C.

そこで、本参考例では、図1の(b)に示すように、光素子7の大きさをそのままにして、使用している半田膜6の面積を1.5倍にした。従来では、半田膜6と光素子7の電極との面積を同程度にしていたので、従来に比べ、本実施形態の半田膜6の面積は光素子7の電極パッドよりも十分大きくなっている。   Therefore, in this embodiment, as shown in FIG. 1B, the area of the solder film 6 used is increased 1.5 times while the size of the optical element 7 is kept as it is. Conventionally, the area of the solder film 6 and the area of the electrode of the optical element 7 are almost the same, so that the area of the solder film 6 of the present embodiment is sufficiently larger than the electrode pad of the optical element 7 as compared with the related art. .

使用している半田膜6は4μmの厚さのAuSn半田であったので、半田膜6の断面積は約250μm×4μm×4辺程度であるが、半田膜6の熱伝導率が石英ガラスの約300倍なので、光素子7の直下のガラス5による熱抵抗の約1/20の値となって、図1の(c)に示すように、半田膜6を通じて、より広い面積に光素子7からの熱が拡散し、素子直下部分20のみならず、半田拡張部分21を加えた断面積(この場合、もとの面積の1.5倍の面積)のガラス5を通じてシリコン基板1に放熱される。光素子7の搭載後の熱抵抗を測定したところ、約2割程度、絶縁層部分5の熱抵抗が減少した。   Since the solder film 6 used was AuSn solder having a thickness of 4 μm, the cross-sectional area of the solder film 6 was about 250 μm × 4 μm × 4 sides, but the thermal conductivity of the solder film 6 was Since it is about 300 times, the value of the thermal resistance of the glass 5 immediately below the optical element 7 is about 1/20, and as shown in FIG. Is diffused, and is radiated to the silicon substrate 1 through the glass 5 having a sectional area (in this case, 1.5 times the original area) to which the solder expanded portion 21 is added, in addition to the portion 20 immediately below the element. You. When the thermal resistance after mounting the optical element 7 was measured, the thermal resistance of the insulating layer portion 5 was reduced by about 20%.

以上のように、本参考例では、電気配線の一部である半田膜6の面積を光素子7の電極面積よりも十分大きくとって、光素子搭載部4に配置するようにしたので、絶縁層5による熱抵抗を改善することが可能となる。   As described above, in the present reference example, the area of the solder film 6, which is a part of the electric wiring, is set to be sufficiently larger than the electrode area of the optical element 7 and is arranged in the optical element mounting section 4. It is possible to improve the thermal resistance by the layer 5.

[第1の実施形態]
図2は本発明の第1の実施形態の光モジュールの断面構造を示し、光素子搭載部4上に光素子7が搭載されている状態を示している。本実施形態に用いた光導波路はシリコン基板上に形成した石英系光導波路である。
[First Embodiment]
FIG. 2 shows a cross-sectional structure of the optical module according to the first embodiment of the present invention, and shows a state where the optical element 7 is mounted on the optical element mounting section 4. The optical waveguide used in the present embodiment is a quartz optical waveguide formed on a silicon substrate.

図2の本実施形態は前述の参考例と同様に作製し、光導波路基板1の全体の表面に約2μm程度ガラス膜5を堆積した。このため、本実施形態で用いた光素子としてのレーザーダイオード(LD)7の接合部の面積、約250μm×250μmを考慮すると、約20℃/Wの熱抵抗がこの部分に発生することになる。そこで、図2の(a)に示すように、本実施形態では、光素子7の周囲に透明シリコーン樹脂8を約2μm程度に薄く塗って、その外側にボロンナイトライドをフィラーとして含む約4W/(m・℃)のガラスと比較して高熱伝導性の樹脂9を塗布した。ここで、光素子7と光導波路端面2−3の間隙は約20μm程度あるが、シリコーン樹脂8の粘性によりこの間隙はシリコーン樹脂8により満たされ、光導波路コア3から出射した光が遮られることはなく、光素子活性層7−1へ入射する。高熱伝導性樹脂9の熱抵抗はガラスの約1/4程度であるから、高熱伝導性樹脂9で光素子7を覆うことにより、光素子7から発生する熱は図2の(b)の矢印30で示すような経路を通して高熱伝導性樹脂9側へも流れ、これにより放熱が改善される。   The embodiment of FIG. 2 was manufactured in the same manner as the above-described reference example, and a glass film 5 of about 2 μm was deposited on the entire surface of the optical waveguide substrate 1. For this reason, considering the area of the junction of the laser diode (LD) 7 as the optical element used in the present embodiment, about 250 μm × 250 μm, a thermal resistance of about 20 ° C./W occurs in this part. . Therefore, as shown in FIG. 2A, in the present embodiment, a transparent silicone resin 8 is thinly applied to the periphery of the optical element 7 to about 2 μm, and about 4 W / (M · ° C.) resin 9 having a higher thermal conductivity than that of glass was applied. Here, the gap between the optical element 7 and the end face 2-3 of the optical waveguide is about 20 μm. Instead, the light enters the optical element active layer 7-1. Since the thermal resistance of the high thermal conductive resin 9 is about 1/4 of that of glass, when the optical element 7 is covered with the high thermal conductive resin 9, the heat generated from the optical element 7 is reduced by the arrow shown in FIG. The heat flows to the high thermal conductive resin 9 through the path indicated by reference numeral 30, thereby improving heat radiation.

この光モジュールの熱抵抗を測定したところ、光素子7からシリコン基板1にかけての熱抵抗が約2割減少した。   When the thermal resistance of this optical module was measured, the thermal resistance from the optical element 7 to the silicon substrate 1 was reduced by about 20%.

ここでは、光素子7の周囲を高熱伝導率の樹脂9で覆ったが、光素子7および電気配線を透明な樹脂8で覆い、その上にメタル層(図示しない)を蒸着などで設けても同様の効果が得られる。   Here, the periphery of the optical element 7 is covered with the resin 9 having high thermal conductivity. However, the optical element 7 and the electric wiring may be covered with the transparent resin 8 and a metal layer (not shown) may be provided thereon by vapor deposition or the like. Similar effects can be obtained.

以上のように、本実施形態によれば、光素子7の周囲を透明な樹脂8で覆い、さらにその外側を熱伝導の高い樹脂9で覆うことにより、光モジュールの熱抵抗を簡便に、かつ効率的に下げることが可能となる。   As described above, according to the present embodiment, the periphery of the optical element 7 is covered with the transparent resin 8 and the outside thereof is covered with the resin 9 having high thermal conductivity, so that the thermal resistance of the optical module can be easily and easily achieved. It becomes possible to lower efficiently.

[他の実施形態]
本発明は、上述の実施形態に限定されるものではなく、例えば、本実施形態と上記の参考例を必要に応じて自在に組み合わせてもよい。また、上述の絶縁膜、透明樹脂、高熱伝導性樹脂等の具体的材質も上述の実施形態に限定されるものではない。また、本発明の光モジュールを構成する光素子は、レーザーダイオードに限定されず、発熱作用のため放熱が必要な光素子を有する光モジュールに対して本発明は好適である。
[Other embodiments]
The present invention is not limited to the above-described embodiment. For example, the present embodiment and the above-described reference example may be freely combined as needed. Further, specific materials such as the above-described insulating film, transparent resin, and high heat conductive resin are not limited to the above-described embodiments. Further, the optical element constituting the optical module of the present invention is not limited to a laser diode, and the present invention is suitable for an optical module having an optical element that requires heat radiation due to a heat generating action.

本発明の参考例の原理を説明する図で、(a)は従来の光素子搭載部の構造を示す縦断面図、(b)は本発明の参考例の光モジュールにおける光素子搭載部と放熱構造を示す正面側の縦断面図、(c)は本発明の参考例の光素子搭載部において光素子で発生した熱がシリコン基板に放熱される際の経路を波線矢印で示す側面側の縦断面図である。7A and 7B are diagrams for explaining the principle of a reference example of the present invention, in which FIG. 7A is a longitudinal sectional view showing the structure of a conventional optical element mounting part, and FIG. FIG. 4C is a longitudinal sectional view on the front side showing the structure, and FIG. 4C is a longitudinal sectional view on the side shown by a wavy arrow showing a path when heat generated in the optical element in the optical element mounting portion of the present invention is radiated to the silicon substrate. FIG. 本発明の第1の実施形態の光モジュールにおける光素子搭載部と放熱構造を示す図で、(a)はその光素子搭載部の構造を示す正面側の縦断面図、(b)は光素子搭載部において、光素子で発生した熱がシリコン基板に放熱される際の経路を波線矢印で示す側面側の縦断面図である。FIGS. 2A and 2B are diagrams showing an optical element mounting portion and a heat dissipation structure in the optical module according to the first embodiment of the present invention, wherein FIG. 1A is a front vertical sectional view showing the structure of the optical element mounting portion, and FIG. FIG. 6 is a vertical cross-sectional view of a side surface of the mounting section, in which heat generated by the optical element is dissipated to the silicon substrate by a wavy arrow. 従来技術による光モジュールの構成例を示す図で、(a)はその光素子搭載部の構造を示す斜視図、(b)はその光素子で発生した熱がシリコン基板に放熱される際の経路を波線矢印で示す正面側の縦断面図である。FIGS. 2A and 2B are diagrams showing a configuration example of an optical module according to a conventional technique, wherein FIG. 1A is a perspective view showing the structure of an optical element mounting portion, and FIG. 2B is a path through which heat generated by the optical element is radiated to a silicon substrate. Is a longitudinal sectional view on the front side, which is indicated by a wavy arrow.

符号の説明Explanation of reference numerals

1 シリコン基板
1−1 シリコン基板凸部
2 クラッド
2−1 アンダークラッド
2−2 オーバークラッド
2−3 光導波路端面
3 光導波路コア
4 光素子搭載部
5 ガラス(パッシベーション)膜、絶縁層
6 半田膜または電気配線
6−1 AuSn半田膜
6−2 電気配線
7 光素子
7−1 光素子活性層
7−2 光素子表面
8 透明樹脂
9 高熱伝導樹脂
10 光軸
20 光素子直下部分
21 半田拡張部分
30 熱の流れ
DESCRIPTION OF SYMBOLS 1 Silicon substrate 1-1 Silicon substrate convex part 2 Cladding 2-1 Under cladding 2-2 Over cladding 2-3 Optical waveguide end surface 3 Optical waveguide core 4 Optical element mounting part 5 Glass (passivation) film, insulating layer 6 Solder film or Electrical wiring 6-1 AuSn solder film 6-2 Electrical wiring 7 Optical element 7-1 Optical element active layer 7-2 Optical element surface 8 Transparent resin 9 High heat conductive resin 10 Optical axis 20 Optical element direct portion 21 Solder expansion portion 30 Heat Flow of

Claims (2)

導波路を有するシリコン基板上に絶縁層を介して光素子を搭載した光モジュールにおいて、前記光素子を透明樹脂層を介して高熱伝導性樹脂で覆うことを特徴とする光モジュール。   An optical module comprising an optical element mounted on a silicon substrate having a waveguide via an insulating layer, wherein the optical element is covered with a high thermal conductive resin via a transparent resin layer. 前記透明樹脂層により前記光素子および該光素子を駆動するための電気配線の一部若しくは全部の周囲を覆い、さらに該透明樹脂層上に前記高熱伝導性樹脂を覆うことを特徴とする請求項1に記載の光モジュール。   The transparent resin layer covers a part or all of the optical element and electric wiring for driving the optical element, and further covers the high thermal conductive resin on the transparent resin layer. 2. The optical module according to 1.
JP2004199829A 2004-07-06 2004-07-06 Optical module Pending JP2004304205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199829A JP2004304205A (en) 2004-07-06 2004-07-06 Optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199829A JP2004304205A (en) 2004-07-06 2004-07-06 Optical module

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28833599A Division JP3688162B2 (en) 1999-10-08 1999-10-08 Optical module

Publications (1)

Publication Number Publication Date
JP2004304205A true JP2004304205A (en) 2004-10-28

Family

ID=33411396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199829A Pending JP2004304205A (en) 2004-07-06 2004-07-06 Optical module

Country Status (1)

Country Link
JP (1) JP2004304205A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006323192A (en) * 2005-05-19 2006-11-30 Nippon Telegr & Teleph Corp <Ntt> Plane optical circuit assembly and its manufacturing method
JP2008304611A (en) * 2007-06-06 2008-12-18 Fujikura Ltd Optical transmitter/receiver
WO2023084610A1 (en) * 2021-11-09 2023-05-19 日本電信電話株式会社 Optical module and creation method for same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006323192A (en) * 2005-05-19 2006-11-30 Nippon Telegr & Teleph Corp <Ntt> Plane optical circuit assembly and its manufacturing method
JP4498978B2 (en) * 2005-05-19 2010-07-07 日本電信電話株式会社 Planar optical circuit assembly and manufacturing method thereof
JP2008304611A (en) * 2007-06-06 2008-12-18 Fujikura Ltd Optical transmitter/receiver
WO2023084610A1 (en) * 2021-11-09 2023-05-19 日本電信電話株式会社 Optical module and creation method for same

Similar Documents

Publication Publication Date Title
US8134231B2 (en) Semiconductor chip and semiconductor device
JP5622721B2 (en) Heat transfer device having at least one semiconductor element, in particular a laser element or a light emitting diode element, and a method for assembling the same
US8513530B2 (en) Package carrier and manufacturing method thereof
JP5707810B2 (en) Manufacturing method of semiconductor module
TW200529458A (en) Holder of optical transmission lines and multi-core optical wave-guide
KR20080039904A (en) Method for the production of a semiconductor component comprising a planar contact, and semiconductor component
JP4258367B2 (en) Optical component mounting package and manufacturing method thereof
JP3688162B2 (en) Optical module
US20180233880A1 (en) Bonded laser with solder-free laser active stripe in facing relationship with submount
WO2021145376A1 (en) Photoelectric transmission composite module and photoelectric hybrid substrate
US20120043639A1 (en) Fabricating method and structure of submount
JP2004304205A (en) Optical module
JP4961733B2 (en) Semiconductor laser device manufacturing method and semiconductor laser device
JP2009267420A (en) Element with vertical electrode structure
KR20100102661A (en) Semiconductor laser device
JP6423161B2 (en) Optical integrated circuit device
JP2011191214A (en) Thermopile type infrared sensor and method for manufacturing the same
JP2768852B2 (en) Semiconductor optical device and method of assembling the same
JP2000091692A (en) Optical element mounting part structure
JP5935330B2 (en) Semiconductor device, manufacturing method thereof, and electronic device
JP2010021224A (en) Laser device
JP2007242842A (en) Semiconductor laser device and manufacturing method thereof
JP2016115720A (en) Method of manufacturing optical module
JP2002372647A (en) Light source device
JP5294913B2 (en) Device mounting board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050617