JP2001111041A - Super-junction semiconductor device and manufacturing method thereof - Google Patents

Super-junction semiconductor device and manufacturing method thereof

Info

Publication number
JP2001111041A
JP2001111041A JP23728699A JP23728699A JP2001111041A JP 2001111041 A JP2001111041 A JP 2001111041A JP 23728699 A JP23728699 A JP 23728699A JP 23728699 A JP23728699 A JP 23728699A JP 2001111041 A JP2001111041 A JP 2001111041A
Authority
JP
Japan
Prior art keywords
region
conductivity type
drift
state
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23728699A
Other languages
Japanese (ja)
Other versions
JP3799888B2 (en
Inventor
Yasushi Miyasaka
靖 宮坂
Tatsuhiko Fujihira
龍彦 藤平
Yasuhiko Onishi
泰彦 大西
Katsunori Ueno
勝典 上野
Susumu Iwamoto
進 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23728699A priority Critical patent/JP3799888B2/en
Publication of JP2001111041A publication Critical patent/JP2001111041A/en
Application granted granted Critical
Publication of JP3799888B2 publication Critical patent/JP3799888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures

Abstract

PROBLEM TO BE SOLVED: To ease realization of mass production by clarifying the effect of parameters of a super-junction semiconductor device having a drift layer comprising parallel pn layers which depletes in OFF state while conducting current in ON state. SOLUTION: The impurity amount in an (n) drift region 12a is in the range of 100-150% or of 110-150% of the impurity amount in a (p) partitioning region. Or, the impurity concentration in either of the (n) drift region 12a or the (p) partitioning region 12b is in the range of 92-108% of the impurity concentration in the other region. Besides, width of the one is in the range of 94-106% of the width of the other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、オン状態では電流
を流すとともに、オフ状態では空乏化する並列pn層か
らなる特別な構造を備えるMOSFET(絶縁ゲート型
電界効果トランジスタ)、IGBT(絶縁ゲートバイポ
ーラトランジスタ)、バイポーラトランジスタ、ダイオ
ード等の半導体素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOSFET (insulated gate type field effect transistor) and an IGBT (insulated gate bipolar transistor) each having a special structure including a parallel pn layer which is depleted in an off state while a current flows in an on state. Transistors), bipolar transistors, diodes and the like.

【0002】[0002]

【従来の技術】相対向する二つの主面に設けられた電極
間に電流が流される縦型半導体素子において、高耐圧化
を図るには、両電極間の高抵抗層の厚さを厚くしなけれ
ばならず、一方そのように厚い高抵抗層をもつ素子で
は、必然的に両電極間のオン抵抗が大きくなり、損失が
増すことになることが避けられなかった。すなわちオン
抵抗(電流容量)と耐圧間にはトレードオフ関係があ
る。このトレードオフ関係は、IGBT、バイポーラト
ランジスタ、ダイオード等の半導体素子においても同様
に成立することが知られている。またこの問題は、オン
時にドリフト電流が流れる方向と、オフ時の逆バイアス
による空乏層の延びる方向とが異なる横型半導体素子に
ついても共通である。
2. Description of the Related Art In a vertical semiconductor device in which a current flows between electrodes provided on two opposing main surfaces, the thickness of a high resistance layer between the two electrodes is increased in order to increase the breakdown voltage. On the other hand, in an element having such a thick high-resistance layer, it is inevitable that the on-resistance between both electrodes is inevitably increased, and the loss is increased. That is, there is a trade-off relationship between the on-resistance (current capacity) and the withstand voltage. It is known that this trade-off relationship is similarly established in semiconductor devices such as IGBTs, bipolar transistors, and diodes. This problem is also common to a lateral semiconductor element in which the direction in which a drift current flows when turned on is different from the direction in which a depletion layer extends due to a reverse bias when turned off.

【0003】この問題に対する解決法として、ドリフト
層を、不純物濃度を高めたn型の領域とp型の領域とを
交互に積層した並列pn層で構成し、オフ状態のとき
は、空乏化して耐圧を負担するようにした構造の半導体
装置が、EP0053854、USP5216275、
USP5438215および本発明の発明者らによる特
開平9−266311号公報に開示されている。
As a solution to this problem, the drift layer is constituted by a parallel pn layer in which an n-type region and a p-type region with an increased impurity concentration are alternately stacked. Semiconductor devices having a structure designed to bear the withstand voltage are disclosed in EP0053854, USP 5,216,275,
It is disclosed in US Pat. No. 5,438,215 and Japanese Patent Application Laid-Open No. 9-26631 by the inventors of the present invention.

【0004】なお本発明の発明者らは、オン状態では電
流を流すとともに、オフ状態では空乏化する並列pn層
からなるドリフト層を備える半導体素子を超接合半導体
素子と称することとした。
[0004] The inventors of the present invention have called a semiconductor element having a drift layer composed of a parallel pn layer that is depleted in the off state while allowing current to flow in the on state, as a superjunction semiconductor element.

【0005】[0005]

【発明が解決しようとする課題】しかし、前記の発明は
いずれも、試作的な段階で、量産化のための検討がなさ
れているとは言えない。例えば、並列pn層は、同じ不
純物濃度、同じ幅とされている。しかし、実際の素子の
製造過程では必ずばらつきを生じる。
However, none of the above-mentioned inventions has been considered for mass production at the trial stage. For example, the parallel pn layers have the same impurity concentration and the same width. However, variations always occur in the actual manufacturing process of the device.

【0006】また、量産化および製品化において重要で
あるL負荷アバランシェ破壊電流に関する具体的な数値
がこれまで規定されていない。製品化のためには定格電
流以上のL負荷アバランシェ破壊電流であることが望ま
れる。
[0006] Further, no specific numerical value relating to the L load avalanche breakdown current, which is important in mass production and commercialization, has not been specified so far. For commercialization, an L load avalanche breakdown current higher than the rated current is desired.

【0007】このような状況に鑑み本発明の目的は、不
純物濃度、幅等について許容される範囲を明らかにする
ことによって、オン抵抗と耐圧とのトレードオフ関係を
大幅に改善しつつ高耐圧を実現し、しかも量産に適した
超接合半導体素子を提供することにある。
[0007] In view of such a situation, an object of the present invention is to clarify an allowable range of impurity concentration, width, and the like, thereby greatly improving a trade-off relationship between on-resistance and withstand voltage and improving high withstand voltage. It is an object of the present invention to provide a super-junction semiconductor device which is realized and suitable for mass production.

【0008】[0008]

【課題を解決するための手段】上記の課題解決のため本
発明は、第一と第二の主面と、主面に設けられた二つの
主電極と、その主電極間に、オン状態では電流を流すと
ともにオフ状態では空乏化する第一導電型ドリフト領域
と第二導電型仕切り領域とを交互に配置した並列pn層
とを備える超接合半導体素子において、第一導電型ドリ
フト領域の不純物量が第二導電型仕切り領域の不純物量
の100〜150%の範囲内にあるものとする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides first and second main surfaces, two main electrodes provided on the main surfaces, and an on-state between the main electrodes. In a super-junction semiconductor device including a parallel pn layer in which a first conductivity type drift region and a second conductivity type partition region that are depleted in an off state while flowing a current are provided, an impurity amount of the first conductivity type drift region Is within the range of 100 to 150% of the impurity amount of the second conductivity type partition region.

【0009】特に、第一導電型ドリフト領域の不純物量
が第二導電型仕切り領域の不純物量の110〜150%
の範囲内にあるのがよい。
In particular, the amount of impurities in the drift region of the first conductivity type is 110 to 150% of the amount of impurities in the partition region of the second conductivity type.
Should be within the range.

【0010】また、第一導電型ドリフト領域と第二導電
型仕切り領域とがそれぞれほぼ同じ幅のストライプ状で
あることが有効である。
[0010] It is effective that the first conductivity type drift region and the second conductivity type partition region are each in the form of stripes having substantially the same width.

【0011】また、これとは別に、第一と第二の主面
と、主面に設けられた二つの電極と、その主電極間に、
オン状態では電流を流すとともにオフ状態では空乏化す
る第一導電型ドリフト領域と第二導電型仕切り領域とを
交互に配置した並列pn層とを備える超接合半導体素子
において、第一導電型ドリフト領域と第二導電型仕切り
領域との内の一方の領域の不純物量が、他方の領域の不
純物量の92〜108%の範囲内にあるものとする。
[0011] Separately from this, the first and second main surfaces, two electrodes provided on the main surface, and between the main electrodes,
In a super-junction semiconductor device including a parallel pn layer in which a first conductivity type drift region and a second conductivity type partition region that flow current in an on state and are depleted in an off state are alternately arranged, the first conductivity type drift region It is assumed that the impurity amount of one of the partition region and the second conductive type partition region is in the range of 92 to 108% of the impurity amount of the other region.

【0012】特に、第一導電型ドリフト領域と第二導電
型仕切り領域とがそれぞれほぼ同じ幅でありその内の一
方の領域の平均不純物濃度が、他方の領域の平均不純物
濃度の92〜108%の範囲内にあってもよいし、ま
た、第一導電型ドリフト領域と第二導電型仕切り領域と
の内の一方の領域の不純物濃度が、他方の領域の不純物
濃度の92〜108%の範囲内にあってもよい。
In particular, the first conductivity type drift region and the second conductivity type partition region have substantially the same width, and the average impurity concentration in one of the regions is 92 to 108% of the average impurity concentration in the other region. And the impurity concentration of one of the first conductivity type drift region and the second conductivity type partition region is in the range of 92 to 108% of the impurity concentration of the other region. May be inside.

【0013】また、第一導電型ドリフト領域と第二導電
型仕切り領域とがそれぞれほぼ同じ濃度でありその内の
一方の領域の幅が、他方の領域の幅の94〜106%の
範囲内にあるものとする。
Further, the first conductivity type drift region and the second conductivity type partition region have substantially the same concentration, and the width of one of the regions is within the range of 94 to 106% of the width of the other region. There is.

【0014】第一導電型ドリフト領域と第二導電型仕切
り領域とを交互に配置した並列pn層とをオフ状態で空
乏化するためには、両領域の不純物量がほぼ等量である
ことが必要である。仮に一方の不純物濃度が他方の不純
物濃度の半分であれば、倍の幅としなければならないこ
とになる。従って、両領域は同じ不純物濃度とすると、
同じ幅ですむので、半導体表面の利用効率の点から最も
良いことになる。
In order to deplete the parallel pn layers in which the first conductivity type drift regions and the second conductivity type partition regions are alternately arranged in the off state, the impurity amounts in both regions must be substantially equal. is necessary. If one impurity concentration is half that of the other, the width must be doubled. Therefore, if both regions have the same impurity concentration,
Since the width is the same, it is the best in terms of the utilization efficiency of the semiconductor surface.

【0015】その同じ不純物濃度、同じ幅として、上記
のようにすれば、双方の領域がほぼ均等に空乏層化する
ので、空乏化しない部分が残ることによる耐圧低下が、
後述するように理想的な場合の10%程度に抑えられ
る。
With the same impurity concentration and the same width, as described above, both regions are almost uniformly depleted, so that a decrease in breakdown voltage due to the remaining undepleted portion remains.
As described later, it is suppressed to about 10% of the ideal case.

【0016】製造方法としては、第一導電型ドリフト領
域と第二導電型仕切り領域との内の一方の領域の不純物
量の92〜108%の範囲内にある不純物量の他方の領
域をエピタキシャル成長により形成しても、一方の領域
を形成するための不純物量の92〜108%の範囲内に
ある不純物量を導入した後、熱拡散により他方の領域を
形成してもよい。
As a manufacturing method, one of the first conductivity type drift region and the second conductivity type partition region has an impurity amount in the range of 92 to 108% of the impurity amount in the other region by epitaxial growth. Even if it is formed, the other region may be formed by thermal diffusion after introducing an impurity amount in the range of 92 to 108% of the impurity amount for forming one region.

【0017】[0017]

【発明の実施の形態】以下に本発明のためにおこなった
実験とその結果について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The experiments performed for the present invention and the results thereof will be described below.

【0018】[実施例1]先ず、図3は実験に用いた縦
型のnチャネル型の超接合MOSFETの基本的な部分
の部分断面図である。他に、主に周縁部分に耐圧を保持
するための部分が設けられるが、その部分は、例えばガ
ードリング構造のような一般的な方法で形成される。な
お以下でnまたはpを冠記した層や領域は、それぞれ電
子、正孔を多数キャリアとする層、領域を意味してい
る。また添字の+は比較的高不純物濃度の、―は比較的
低不純物濃度の領域をそれぞれ意味している。
Embodiment 1 First, FIG. 3 is a partial cross-sectional view of a basic portion of a vertical n-channel super-junction MOSFET used in an experiment. In addition, a portion for maintaining the withstand voltage is provided mainly in the peripheral portion, and the portion is formed by a general method such as a guard ring structure. In the following, a layer or a region with an abbreviation of n or p means a layer or a region using electrons and holes as majority carriers, respectively. The suffix “ +” means a region with a relatively high impurity concentration, and the sign “−” means a region with a relatively low impurity concentration.

【0019】図3において、11は低抵抗のn+ドレイ
ン層、12はnドリフト領域12a、p仕切り領域12
bとからなる並列pn層のドリフト層である。ドリフト
層12のうちドリフト電流が流れるのは、nドリフト領
域12aであるが、ここではp仕切り領域12bを含め
た並列pn層をドリフト層12と呼ぶことにする。表面
層には、nドリフト領域12aに接続してnチャネル領
域12dが、p仕切り領域12bに接続してpウェル領
域13aがそれぞれ形成されている。pウェル領域13
aの内部にn+ソース領域14と高濃度のp+コンタクト
領域13bとが形成されている。n+ソース領域14と
nドリフト領域12aとに挟まれたpウェル領域13a
の表面上には、ゲート絶縁膜15を介して多結晶シリコ
ンのゲート電極層16が、また、n+ソース領域14と
高濃度のp+コンタクト領域13bの表面に共通に接触
するソース電極17が設けられている。n+ドレイン層
11の裏面にはドレイン電極18が設けられている。1
9は表面保護および安定化のための絶縁膜であり、例え
ば、熱酸化膜と燐シリカガラス(PSG)からなる。ソ
ース電極17は、図のように絶縁膜19を介してゲート
電極層16の上に延長されることが多い。n型分割領域
1とp型分割領域2の交互配置は、ストライプ状でも、
一方を格子状とした他の方法でも良い。nドリフト領域
12aは、例えばエピタキシャル成長により形成され
る。p仕切り領域12bは、nドリフト領域12aに設
けられた掘り下げ部にエピタキシャル成長により充填し
て形成する。この製造方法に関しては特願平10―20
9267号で詳細に説明している。
In FIG. 3, reference numeral 11 denotes a low-resistance n + drain layer, 12 denotes an n drift region 12a, and a p partition region 12.
b is a drift layer of a parallel pn layer composed of b. In the drift layer 12, the drift current flows in the n drift region 12a. Here, the parallel pn layer including the p partition region 12b is referred to as the drift layer 12. In the surface layer, an n-channel region 12d connected to the n-drift region 12a and a p-well region 13a connected to the p-partition region 12b are formed. p well region 13
An n + source region 14 and a high concentration p + contact region 13b are formed inside a. P well region 13a sandwiched between n + source region 14 and n drift region 12a
A gate electrode layer 16 of polycrystalline silicon via a gate insulating film 15 and a source electrode 17 which is in common contact with the surface of the n + source region 14 and the surface of the high concentration p + contact region 13b. Is provided. On the back surface of the n + drain layer 11, a drain electrode 18 is provided. 1
Reference numeral 9 denotes an insulating film for protecting and stabilizing the surface, and is made of, for example, a thermal oxide film and phosphor silica glass (PSG). The source electrode 17 is often extended on the gate electrode layer 16 via the insulating film 19 as shown in the figure. The alternate arrangement of the n-type divided region 1 and the p-type divided region 2 may be a stripe shape.
Another method in which one is in a lattice shape may be used. N drift region 12a is formed, for example, by epitaxial growth. The p partition region 12b is formed by filling a dug portion provided in the n drift region 12a by epitaxial growth. Regarding this manufacturing method, refer to Japanese Patent Application No. Hei 10-20
This is described in detail in No. 9267.

【0020】例えば、400VクラスのMOSFETと
して、各部の基準的な寸法および不純物濃度等は次のよ
うな値をとる。n+ドレイン層11の比抵抗は0.01
Ω・cm、厚さ350μm、ドリフト層12の厚さ32
μm、nドリフト領域12aおよびp仕切り領域12b
の幅8μm(すなわち、同じ領域の中心間間隔16μ
m)、不純物濃度3.0×1015cm―3、pウェル領
域13aの拡散深さ3μm、表面不純物濃度2×1017
cm―3、n+ソース領域14の拡散深さ0.3μm、表
面不純物濃度3×1020cm―3である。
For example, as a 400V class MOSFET, the standard dimensions and impurity concentrations of the respective parts take the following values. The specific resistance of the n + drain layer 11 is 0.01
Ω · cm, thickness 350 μm, thickness 32 of drift layer 12
μm, n drift region 12a and p partition region 12b
8 μm (that is, 16 μm between centers of the same region)
m), the impurity concentration is 3.0 × 10 15 cm −3 , the diffusion depth of the p-well region 13 a is 3 μm, and the surface impurity concentration is 2 × 10 17
cm −3 , the diffusion depth of the n + source region 14 is 0.3 μm, and the surface impurity concentration is 3 × 10 20 cm −3 .

【0021】例えば、800VクラスのMOSFETと
して、各部の基準的な寸法および不純物濃度等は次のよ
うな値をとる。n+ドレイン層11の比抵抗は0.01
Ω・cm、厚さ350μm、ドリフト層12の厚さ48
μm、nドリフト領域12aおよびp仕切り領域12b
の幅5μm(すなわち、同じ領域の中心間間隔10μ
m)、不純物濃度3.5×1015cm―3、pウェル領
域13aの拡散深さ1μm、表面不純物濃度3×1018
cm―3、n+ソース領域14の拡散深さ0.3μm、表
面不純物濃度1×1020cm―3である。
For example, as an 800V class MOSFET, the standard dimensions and impurity concentrations of the respective parts take the following values. The specific resistance of the n + drain layer 11 is 0.01
Ω · cm, thickness 350 μm, thickness 48 of the drift layer 12
μm, n drift region 12a and p partition region 12b
5 μm (that is, 10 μm between centers of the same region)
m), an impurity concentration of 3.5 × 10 15 cm −3 , a diffusion depth of the p-well region 13 a of 1 μm, and a surface impurity concentration of 3 × 10 18
cm −3 , the diffusion depth of the n + source region 14 is 0.3 μm, and the surface impurity concentration is 1 × 10 20 cm −3 .

【0022】図3の超接合MOSFETの動作は、次の
ようにおこなわれる。ゲート電極層16に所定の正の電
圧が印加されると、ゲート電極層16直下のpウェル領
域13aの表面層に反転層が誘起され、n+ソース領域
14から反転層を通じてnチャネル領域13dに電子が
注入される。その注入された電子がnドリフト領域12
aを通じてn+ドレイン層11に達し、ドレイン電極1
8、ソース電極17間が導通する。
The operation of the super-junction MOSFET shown in FIG. 3 is performed as follows. When a predetermined positive voltage is applied to gate electrode layer 16, an inversion layer is induced in the surface layer of p well region 13 a immediately below gate electrode layer 16, and is transferred from n + source region 14 to n channel region 13 d through the inversion layer. Electrons are injected. The injected electrons form the n drift region 12
a to reach the n + drain layer 11 and the drain electrode 1
8, conduction between the source electrodes 17 is established.

【0023】ゲート電極層16への正の電圧が取り去ら
れると、pウェル領域13aの表面層に誘起された反転
層がが消滅し、ドレイン電極18、ソース電極17間が
遮断される。更に、逆バイアス電圧を大きくすると、各
p仕切り領域12bはpウェル領域13aを介してソー
ス電極17で連結されているので、pウェル領域13a
とnチャネル領域12dとの間のpn接合Ja、nドリ
フト領域12aとp仕切り領域12bとの間のpn接合
Jbからそれぞれ空乏層がnドリフト領域12a、p仕
切り領域12b内に広がってこれらが空乏化される。
When the positive voltage is removed from the gate electrode layer 16, the inversion layer induced on the surface layer of the p-well region 13a disappears, and the drain electrode 18 and the source electrode 17 are cut off. When the reverse bias voltage is further increased, the p-partition regions 12b are connected to each other by the source electrode 17 via the p-well region 13a.
Depletion layers spread from the pn junction Ja between the N channel region 12d and the n drift region 12a and the p partition region 12b into the n drift region 12a and the p partition region 12b. Be transformed into

【0024】pn接合Jbからの空乏端は、nドリフト
領域12aの幅方向に広がり、しかも両側のp仕切り領
域12bから空乏層が広がるので空乏化が非常に早ま
る。従って、nドリフト領域12aの不純物濃度を高め
ることができる。またp仕切り領域12bも同時に空乏
化される。p仕切り領域12bも両側のpn接合から空
乏層が広がるので空乏化が非常に早まる。p仕切り領域
12bとnドリフト領域12aとを交互に形成すること
により、隣接するnドリフト領域12aの双方へ空乏端
が進入するようになっているので、空乏層形成のための
p仕切り領域12bの総占有幅を半減でき、その分、n
ドリフト領域12aの断面積の拡大を図ることができ
る。 [実施例2]p仕切り領域12bのボロンの不純物量
(ドーズ量)を1×1013cm-2に固定して、これに対
するnドリフト領域12aのリンの不純物量(ドーズ
量)を80〜150%の範囲で変えてnチャネル型MO
SFETをシミュレーションし、また実際に試作して確
認した。
The depletion edge from the pn junction Jb extends in the width direction of the n drift region 12a, and the depletion layer extends from the p partition regions 12b on both sides, so that depletion is greatly accelerated. Therefore, the impurity concentration of n drift region 12a can be increased. The p partition region 12b is also depleted at the same time. Since the depletion layer also extends from the pn junctions on both sides of the p-partition region 12b, depletion is greatly accelerated. By forming the p-partition region 12b and the n-drift region 12a alternately, the depletion end enters both adjacent n-drift regions 12a, so that the p-partition region 12b for forming the depletion layer is formed. The total occupation width can be halved, and n
The cross-sectional area of drift region 12a can be increased. [Embodiment 2] The impurity amount (dose amount) of boron in the p partition region 12b is fixed at 1 × 10 13 cm −2, and the impurity amount (dose amount) of phosphorus in the n drift region 12a is 80 to 150 with respect to this. % N-channel type MO
The SFET was simulated and prototyped and confirmed.

【0025】図5は、オン抵抗(Ron・A)と発生耐圧
(VDSS)の不純物量依存性を示す特性図である。横軸
は、発生耐圧(VDSS)、縦軸はオン抵抗(Ron・A)
である。 p仕切り領域12bの不純物量(ドーズ量)
は1×1013cm-2に固定し、幅はともに8μmとし、
ドリフト層12の深さは32μmとした。
FIG. 5 is a characteristic diagram showing the dependence of the on-resistance (Ron · A) and the withstand voltage (V DSS ) on the amount of impurities. The horizontal axis is the breakdown voltage (V DSS ), and the vertical axis is the on-resistance (Ron · A).
It is. Impurity amount (dose amount) of p partition region 12b
Is fixed to 1 × 10 13 cm −2 , the width is 8 μm,
The depth of the drift layer 12 was 32 μm.

【0026】例えば、 nドリフト領域12aの不純物
量を1.0×1013cm-2(100%)のとき、発生耐圧
は445Vで、オン抵抗は38mΩ・cm2となるが、
1.3×1013cm-2(130%)とすると発生耐圧は3
65Vでオン抵抗は24mΩ・cm2に、1.5×10
13cm-2(150%)とすると発生耐圧は280Vでオン
抵抗は20mΩ・cm2に低下する。
For example, when the impurity amount of the n drift region 12a is 1.0 × 10 13 cm −2 (100%), the generated breakdown voltage is 445 V and the on-resistance is 38 mΩ · cm 2 .
If 1.3 × 10 13 cm -2 (130%), the generated breakdown voltage is 3
At 65V, the ON resistance is 24 mΩ · cm 2 , 1.5 × 10
If it is 13 cm -2 (150%), the generated breakdown voltage is 280 V, and the on-resistance drops to 20 mΩ · cm 2 .

【0027】図から、 nドリフト領域12aの不純物
量がp仕切り領域12bの不純物量に対して100〜1
50%になるに従い、発生耐圧(VDSS)は低下するも
のの、オン抵抗(Ron・A)が低減されることがわか
る。また、この100〜150%の範囲での製品毎のオ
ン抵抗(Ron・A)のばらつきは小さいので、量産時に
は発生耐圧のばらつきのみを考慮して製造すればよくな
るので、製造や工程管理が容易となる。また、この実施
例は400Vクラスとしたが、どの耐圧クラスでも同じ
ことが言える。
From the figure, it can be seen that the impurity amount of the n drift region 12a is 100 to 1 with respect to the impurity amount of the p partition region 12b.
It can be seen that as the voltage increases to 50%, the on-resistance (Ron · A) decreases, although the withstand voltage (V DSS ) decreases. Further, since the variation of the on-resistance (Ron · A) of each product in the range of 100 to 150% is small, it is only necessary to consider the variation of the generated withstand voltage in mass production, so that the production and the process management are easy. Becomes In this embodiment, the 400 V class is used, but the same can be said for any withstand voltage class.

【0028】[実施例3]図6は、L負荷アバランシェ
破壊電流(A)の不純物量依存性を示す特性図である。
横軸は、 nドリフト領域12aのリンの不純物量(ド
ーズ量)、縦軸はL負荷アバランシェ破壊電流(A)で
ある。 p仕切り領域12bのボロンの不純物量(ドー
ズ量)を1×1013cm-2に固定して、これに対するn
ドリフト領域12aのリンの不純物量(ドーズ量)を8
0〜150%の範囲で変えた。設定条件は実施例1と同
じである。
[Embodiment 3] FIG. 6 is a characteristic diagram showing an impurity amount dependency of an L load avalanche breakdown current (A).
The horizontal axis represents the impurity amount (dose amount) of phosphorus in the n drift region 12a, and the vertical axis represents the L load avalanche breakdown current (A). The impurity amount (dose amount) of boron in the p partition region 12b is fixed at 1 × 10 13 cm −2, and n
The impurity amount (dose amount) of phosphorus in drift region 12a is set to 8
It varied in the range of 0-150%. The setting conditions are the same as in the first embodiment.

【0029】例えば、 nドリフト領域12aの不純物
量を1.0×1013cm-2(100%)のとき、アバラン
シェ破壊電流(A)は約7Aとなるが、1.3×1013
cm-2(130%)とするとアバランシェ破壊電流(A)
は約63Aに、1.5×10 13cm-2(150%)とする
とアバランシェ破壊電流(A)は約72Aとなる。
For example, impurities in the n drift region 12a
1.0 × 1013cm-2(100%) when Avalan
The shear breakdown current (A) is about 7 A, but 1.3 × 1013
cm-2(130%), avalanche breakdown current (A)
Is about 63A, 1.5 × 10 13cm-2(150%)
And the avalanche breakdown current (A) is about 72A.

【0030】図から、L負荷アバランシェ破壊電流が定
格電流以上、好ましくは2倍以上要求される場合には、
nドリフト領域12aの不純物量(ドーズ量)を11
0%以上にすればよいことがわかる。また、140%以
上でのL負荷アバランシェ破壊電流は飽和傾向であるの
で、図1での発生耐圧の低下を考慮すると150%以下
であることが望ましい。また、このL負荷アバランシェ
破壊電流に関してもどの耐圧クラスでも同じことが言え
る。
From the figure, when the L load avalanche breakdown current is required to be higher than the rated current, preferably more than twice,
The impurity amount (dose amount) of n drift region 12a is set to 11
It can be seen that the content should be set to 0% or more. Further, since the L load avalanche breakdown current at 140% or more tends to be saturated, it is preferable to be 150% or less in consideration of the decrease in the withstand voltage in FIG. The same can be said for the L load avalanche breakdown current in any withstand voltage class.

【0031】以上の実験により並列pn層のnドリフト
領域12aおよびp仕切り領域12bの不純物量の許容
される範囲が明らかになったので、これを基に超接合半
導体素子を設計すれば、オン抵抗と耐圧とのトレードオ
フ関係を大幅に改善しつつ、更にL負荷アバランシェ破
壊の保証をした、高耐圧の超接合半導体素子の量産化が
容易にできる。 [実施例4]p仕切り領域12bの不純物濃度CPを変
えてnチャネル型MOSFETをシミュレーションし、
また実際に試作して確認した。
From the above experiment, the allowable range of the impurity amount of the n drift region 12a and the p partition region 12b of the parallel pn layer has been clarified. It is possible to easily mass-produce a high-breakdown-voltage super-junction semiconductor element that greatly guarantees the L-load avalanche destruction while significantly improving the trade-off relationship between the semiconductor device and the breakdown voltage. Simulating the n-channel type MOSFET by changing the impurity concentration C P of Example 4] p partition regions 12b,
In addition, it was actually manufactured and confirmed.

【0032】図1は、耐圧(VDSS)の不純物濃度CP
存性を示す特性図である。横軸は、p仕切り領域12b
の不純物濃度CP、縦軸は耐圧(VDSS)である。nドリ
フト領域12aの不純物濃度Cnは3.5×1015cm
-3に固定し、幅はともに5μmとし、ドリフト層12の
深さは48μmとした。
[0032] Figure 1 is a characteristic diagram showing an impurity concentration C P dependence of breakdown voltage (V DSS). The horizontal axis is the p partition area 12b
Impurity concentration C P of the vertical axis represents the breakdown voltage (V DSS). The impurity concentration C n of the n drift region 12a is 3.5 × 10 15 cm
−3 , the width was 5 μm, and the depth of the drift layer 12 was 48 μm.

【0033】例えば、Cn=CP=3.5×1015cm-3
のとき、耐圧は最大値960Vとなるが、CP=3×1
15cm-3とすると耐圧は約750Vに、2×1015
-3とすると更に約380Vに低下する。
For example, C n = C P = 3.5 × 10 15 cm -3
, The breakdown voltage reaches a maximum value of 960 V, but C P = 3 × 1
With 0 15 cm -3 , the withstand voltage is about 750 V and 2 × 10 15 c
When it is set to m -3 , the voltage further decreases to about 380V.

【0034】これは、nドリフト領域12aに十分空乏
化しきれない部分を生じるためである。逆にp仕切り領
域12bの不純物濃度をnドリフト領域12aより高く
したときは、p仕切り領域12bに十分空乏化しきれな
い部分を生じて、やはり耐圧が低下する。
This is because there is a portion in the n drift region 12a that cannot be sufficiently depleted. Conversely, when the impurity concentration of the p-partition region 12b is higher than that of the n-drift region 12a, a portion that cannot be sufficiently depleted is generated in the p-partition region 12b, and the breakdown voltage is also reduced.

【0035】図から、p仕切り領域12bの不純物濃度
Pが、nドリフト領域12aの不純物濃度Cnに対して
上下8%以内にあるならば、耐圧の低下は10%程度で
すむことがわかる。
[0035] From FIG., P impurity concentration C P of the partition region 12b is, if with respect to the impurity concentration C n of the n drift region 12a is within 8% above and below, a reduction in the breakdown voltage is found to live in 10% .

【0036】この実施例は、p仕切り領域12bの不純
物濃度CPを変えた場合であるが、同じことは当然nド
リフト領域12aの不純物濃度Cnを変えた場合につい
ても言える。また、設定耐圧に関してもどの耐圧クラス
でも同じことが言える。 [実施例5]次に、nドリフト領域12aの幅Lnを5
μm一定とし、p仕切り領域12bの幅LPを変えてn
チャネル型MOSFETをシミュレーションし、また実
際に試作して確認した。
[0036] This embodiment is the case of changing the impurity concentration C P of the p partition regions 12b, same is true of the case where naturally changed impurity concentration C n of the n drift region 12a. The same can be said for the set withstand voltage in any withstand voltage class. [Example 5] Next, 5 width L n in the n drift region 12a
and μm constant, n by changing the width L P of p partition regions 12b
A channel-type MOSFET was simulated and actually manufactured and confirmed.

【0037】図1は、耐圧(VDSS)の寸法依存性を示
す特性図である。横軸は、p仕切り領域12bの幅
P、縦軸は耐圧(VDSS)である。不純物濃度は3.5
×1015cm-3に固定し、ドリフト層12の深さは48
μmとした。
FIG. 1 is a characteristic diagram showing the dimensional dependence of the breakdown voltage (V DSS ). The horizontal axis is the width L P of the p partition region 12b, and the vertical axis is the breakdown voltage (V DSS ). The impurity concentration is 3.5
X 10 15 cm -3 and the drift layer 12 has a depth of 48
μm.

【0038】例えば、Ln=LP=5μmのとき、耐圧は
最大値960Vとなるが、LP=4μmとすると耐圧は
約550Vに低下する。
For example, when L n = L P = 5 μm, the withstand voltage reaches a maximum value of 960 V, but when L P = 4 μm, the withstand voltage decreases to about 550 V.

【0039】これは、nドリフト領域12aに十分空乏
化しきれない部分を生じるためである。逆にp仕切り領
域12bをnドリフト領域12aより厚くしたときは、
p仕切り領域12bに十分空乏化しきれない部分を生じ
て、やはり耐圧が低下する。
This is because there is a portion in the n drift region 12a that cannot be sufficiently depleted. Conversely, when the p partition region 12b is made thicker than the n drift region 12a,
A portion that cannot be fully depleted is generated in the p partition region 12b, and the breakdown voltage is also reduced.

【0040】図から、p仕切り領域12bの幅LPが、
nドリフト領域12aの幅Lnに対して上下6%以内に
あるならば、耐圧の低下は10%程度ですむことがわか
る。
[0040] from the figure, the width L P of the p partition regions 12b is,
If the width L n in the n drift region 12a is within 6% above and below, a reduction in the breakdown voltage is found to be need about 10%.

【0041】この実施例は、p仕切り領域12bの幅L
Pを変えた場合であるが、同じことは当然nドリフト領
域12aの幅Lnを変えた場合についても言える。ま
た、設定耐圧に関してもどの耐圧クラスでも同じことが
言える。
In this embodiment, the width L of the p partition region 12b is
It is a case of changing the P, same is true of the case where naturally changed width L n in the n drift region 12a. The same can be said for the set withstand voltage in any withstand voltage class.

【0042】以上の実験により並列pn層のnドリフト
領域12aおよびp仕切り領域12bの不純物濃度や寸
法等の許容される範囲が明らかになったので、これを基
に超接合半導体素子を設計すれば、オン抵抗と耐圧との
トレードオフ関係を大幅に改善しつつ、高耐圧の超接合
半導体素子の量産化が容易にできる。 [実施例6]他の製造方法として、エピタキシャル成長
の前に部分的に不純物の埋め込み領域を形成しておいて
から、高抵抗層をエピタキシャル成長する工程を数回繰
り返した後、熱処理により拡散させて並列pn層を形成
することもできる。
The above experiments have clarified the allowable ranges of the impurity concentration and dimensions of the n drift region 12a and the p partition region 12b of the parallel pn layer. Based on this, it is possible to design a super junction semiconductor device. In addition, it is possible to easily mass-produce a high-breakdown-voltage super junction semiconductor element while significantly improving the trade-off relationship between the on-resistance and the breakdown voltage. [Embodiment 6] As another manufacturing method, a step of epitaxially growing a high-resistance layer is repeated several times after partially forming a buried region of an impurity before epitaxial growth, and then diffused by heat treatment to form a parallel structure. A pn layer can also be formed.

【0043】図4はそのような方法で製造した縦型のn
チャネル型超接合MOSFETの基本的な部分の部分断
面図である。
FIG. 4 shows a vertical type n manufactured by such a method.
FIG. 3 is a partial cross-sectional view of a basic portion of a channel type super junction MOSFET.

【0044】図3の超接合MOSFETの断面図と殆ど
変わらないが、nドリフト領域22a、p仕切り領域2
2bが均一な不純物濃度でなく、内部に不純物濃度分布
があることが違っている。分かり易くするため、点線で
等しい不純物濃度の線を示した。等しい不純物濃度の線
は、曲線(三次元的には曲面)となっている。これは不
純物の埋め込み領域を形成しておいてから、高抵抗層を
エピタキシャル成長する工程を数回繰り返した後、熱処
理により埋め込まれ不純物源から拡散したためである。
十分な拡散時間を経れば、nドリフト領域22aとp仕
切り領域22bとの境界は図のような直線(三次元的に
は平面)となる。
Although not much different from the cross-sectional view of the super-junction MOSFET of FIG. 3, the n drift region 22a and the p partition region 2
The difference is that 2b is not a uniform impurity concentration but has an impurity concentration distribution inside. For the sake of simplicity, the dotted lines show lines with the same impurity concentration. Lines having the same impurity concentration are curves (three-dimensionally curved surfaces). This is because the step of epitaxially growing the high-resistance layer is repeated several times after forming the buried region of the impurity, and then buried by the heat treatment and diffused from the impurity source.
After a sufficient diffusion time, the boundary between the n drift region 22a and the p partition region 22b becomes a straight line (three-dimensionally flat) as shown.

【0045】このような場合に、nドリフト領域22
a、p仕切り領域22bが十分空乏化しきれない部分を
生じることが無いようにするには、両領域に埋め込まれ
た不純物量がほぼ等しいことが重要である。
In such a case, n drift region 22
In order to prevent the a and p partition regions 22b from having a portion that cannot be fully depleted, it is important that the impurity amounts buried in both regions are substantially equal.

【0046】特に、先に述べたように、nドリフト領域
22a、p仕切り領域22bの幅が等しい時に、半導体
結晶面の利用率が大きくなることから、nドリフト領域
22a、p仕切り領域22bの平均不純物濃度がほぼ等
しいことが重要である。
In particular, as described above, when the widths of the n drift region 22a and the p partition region 22b are equal, the utilization rate of the semiconductor crystal plane increases, so that the average of the n drift region 22a and the p partition region 22b is increased. It is important that the impurity concentrations are approximately equal.

【0047】そして、この例の場合も、実施例3と全く
同じく、第一導電型ドリフト領域と第二導電型仕切り領
域との内の一方の領域の不純物量が、他方の領域の不純
物量の92〜108%の範囲内にあれば、耐圧の低下は
10%程度に抑えられる。
In this case, the impurity amount of one of the first conductivity type drift region and the second conductivity type partition region is the same as that of the third embodiment. If it is in the range of 92 to 108%, the decrease in withstand voltage can be suppressed to about 10%.

【0048】幅が等しいとすれば、第一導電型ドリフト
領域と第二導電型仕切り領域との内の一方の領域の平均
不純物濃度が、他方の領域の平均不純物濃度の92〜1
08%の範囲内にあればよいことになる。
If the widths are equal, the average impurity concentration of one of the first conductivity type drift region and the second conductivity type partition region is 92 to 1 of the average impurity concentration of the other region.
It suffices to be within the range of 08%.

【0049】また、nドリフト領域22a、p仕切り領
域22bの幅の許容範囲としても、94〜106%の範
囲内にあればよいことになる。
Further, the allowable range of the width of the n drift region 22a and the p partition region 22b may be within the range of 94 to 106%.

【0050】なお、nドリフト領域12aおよびp仕切
り領域12bの幅を狭くし、不純物濃度を高くすれば、
より一層のオン抵抗の低減、オン抵抗と耐圧とのトレー
ドオフ関係の改善が可能である。
If the widths of the n drift region 12a and the p partition region 12b are reduced and the impurity concentration is increased,
It is possible to further reduce the on-resistance and improve the trade-off relationship between the on-resistance and the withstand voltage.

【0051】なお、実施例は縦型のMOSFETの例を
掲げたが、この問題は、オン時にドリフト電流が流れる
方向と、オフ時の逆バイアスによる空乏層の延びる方向
とが異なる横型半導体素子についても共通である。更
に、IGBTやpnダイオード、ショットキーバリアダ
イオード、バイポーラトランジスタでも同様の効果が得
られる。
Although the embodiment has been described with reference to an example of a vertical MOSFET, this problem is caused by a lateral semiconductor element in which the direction in which a drift current flows during ON and the direction in which a depletion layer extends due to a reverse bias during OFF are different. Is also common. Further, the same effect can be obtained with IGBTs, pn diodes, Schottky barrier diodes, and bipolar transistors.

【0052】[0052]

【発明の効果】以上説明したように本発明は、オン状態
では電流を流すとともにオフ状態では空乏化する第一導
電型ドリフト領域と第二導電型仕切り領域とを交互に配
置した並列pn層とを備える超接合半導体素子におい
て、並列pn層の第一導電型ドリフト領域と第二導電型
仕切り領域との不純物濃度や寸法等の許容される範囲を
明らかにすることによって、オン抵抗と耐圧とのトレー
ドオフ関係を大幅に改善しつつ、更にL負荷アバランシ
ェ破壊の保証をして、高耐圧の超接合半導体素子の量産
化を容易にした。
As described above, the present invention relates to a parallel pn layer in which a first conductivity type drift region and a second conductivity type partition region, which flow a current in an on state and are depleted in an off state, are alternately arranged. In the super-junction semiconductor device comprising: the allowable range of the on-resistance and the withstand voltage is determined by clarifying the allowable range such as the impurity concentration and the size between the first conductivity type drift region and the second conductivity type partition region of the parallel pn layer. While significantly improving the trade-off relationship, the L load avalanche destruction is further guaranteed, and mass production of a high breakdown voltage super junction semiconductor device is facilitated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超接合MOSFETにおける耐圧(V
DSS)のLP幅依存性を示す特性図
FIG. 1 shows a breakdown voltage (V) of a super junction MOSFET of the present invention.
Characteristic diagram showing the L P width dependence of DSS)

【図2】耐圧(VDSS)の不純物濃度CP依存性を示す特
性図
[Figure 2] characteristic diagram showing an impurity concentration C P dependence of breakdown voltage (V DSS)

【図3】実施例1の超接合MOSFETの基本的な構造
部分の部分断面図
FIG. 3 is a partial cross-sectional view of a basic structure of the super junction MOSFET according to the first embodiment.

【図4】実施例2の超接合MOSFETの基本的な構造
部分の部分断面図
FIG. 4 is a partial cross-sectional view of a basic structure of a super-junction MOSFET according to a second embodiment.

【図5】本発明の超接合MOSFETにおけるオン抵抗
(Ron・A)と発生耐圧(VDS S)の不純物量依存性を
示す特性図
FIG. 5 shows the on-resistance of the super-junction MOSFET of the present invention.
(Ron · A) and the withstand voltage (VDS S)
Characteristic diagram shown

【図6】L負荷アバランシェ破壊電流(A)の不純物量
依存性を示す特性図
FIG. 6 is a characteristic diagram showing an impurity amount dependency of an L-load avalanche breakdown current (A).

【符号の説明】[Explanation of symbols]

11、21 n+ドレイン層 12、22 ドリフト層 12a、22a nドリフト領域 12b、22b p仕切り領域 13a、23a pウェル領域 13b、23b p+コンタクト領域 14、24 n+ソース領域 15 ゲート絶縁膜 16 ゲート電極層 17 ソース電極 18 ドレイン電極 19 絶縁膜11, 21 n + drain layer 12, 22 drift layer 12a, 22an n drift region 12b, 22b p partition region 13a, 23a p well region 13b, 23b p + contact region 14, 24 n + source region 15 gate insulating film 16 gate Electrode layer 17 Source electrode 18 Drain electrode 19 Insulating film

フロントページの続き (72)発明者 大西 泰彦 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式 会社内 (72)発明者 上野 勝典 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式 会社内 (72)発明者 岩本 進 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式 会社内Continued on the front page (72) Inventor Yasuhiko Onishi 1-1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Katsunori Ueno 1-1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Inside Electric Machinery Company (72) Inventor Susumu Iwamoto 1-1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】第一と第二の主面と、主面に設けられた二
つの主電極と、その主電極間に、オン状態では電流を流
すとともにオフ状態では空乏化する第一導電型ドリフト
領域と第二導電型仕切り領域とを交互に配置した並列p
n層を備える超接合半導体素子において、第一導電型ド
リフト領域の不純物量が第二導電型仕切り領域の不純物
量の100〜150%の範囲内にあることを特徴とする
超接合半導体素子。
1. A first conductivity type in which current flows in an on state and depletes in an off state between a first and a second main surface, two main electrodes provided on the main surface, and the main electrodes. Parallel p in which drift regions and second conductivity type partition regions are alternately arranged
A super-junction semiconductor device comprising an n-layer, wherein the amount of impurities in the drift region of the first conductivity type is in the range of 100 to 150% of the amount of impurities in the partition region of the second conductivity type.
【請求項2】第一と第二の主面と、主面に設けられた二
つの主電極と、その主電極間に、オン状態では電流を流
すとともにオフ状態では空乏化する第一導電型ドリフト
領域と第二導電型仕切り領域とを交互に配置した並列p
n層を備える超接合半導体素子において、第一導電型ド
リフト領域の不純物量が第二導電型仕切り領域の不純物
量の110〜150%の範囲内にあることを特徴とする
超接合半導体素子。
2. A first conductivity type in which current flows in an on state and depletes in an off state between a first and a second main surface, two main electrodes provided on the main surface, and the main electrodes. Parallel p in which drift regions and second conductivity type partition regions are alternately arranged
1. A super-junction semiconductor device comprising an n-layer, wherein the amount of impurities in the drift region of the first conductivity type is in the range of 110 to 150% of the amount of impurities in the partition region of the second conductivity type.
【請求項3】第一と第二の主面と、主面に設けられた二
つの主電極と、その主電極間に、オン状態では電流を流
すとともにオフ状態では空乏化する第一導電型ドリフト
領域と第二導電型仕切り領域とを交互に配置した並列p
n層を備える超接合半導体素子において、第一導電型ド
リフト領域と第二導電型仕切り領域との内の一方の領域
の不純物量が、他方の領域の不純物量の92〜108%
の範囲内にあることを特徴とする超接合半導体素子。
3. A first conductivity type in which current flows in an on state and depletes in an off state between a first and a second main surface, two main electrodes provided on the main surface, and the main electrodes. Parallel p in which drift regions and second conductivity type partition regions are alternately arranged
In a superjunction semiconductor device having an n-layer, the impurity amount in one of the first conductivity type drift region and the second conductivity type partition region is 92 to 108% of the impurity amount in the other region.
A super-junction semiconductor device, wherein
【請求項4】第一導電型ドリフト領域と第二導電型仕切
り領域とがそれぞれストライプ状であることを特徴とす
る請求項1乃至請求項3のいずれか1項に記載の超接合
半導体素子。
4. The super-junction semiconductor device according to claim 1, wherein each of the first conductivity type drift region and the second conductivity type partition region has a stripe shape.
【請求項5】第一と第二の主面と、主面に設けられた二
つの主電極と、その主電極間に、オン状態では電流を流
すとともにオフ状態では空乏化する第一導電型ドリフト
領域と第二導電型仕切り領域とを交互に配置した並列p
n層を備える超接合半導体素子において、第一導電型ド
リフト領域と第二導電型仕切り領域とがそれぞれほぼ同
じ幅であり、第一導電型ドリフト領域と第二導電型仕切
り領域との内の一方の領域の平均不純物濃度が、他方の
領域の平均不純物濃度の92〜108%の範囲内にある
ことを特徴とする超接合半導体素子。
5. A first conductivity type in which current flows in an on state and depletes in an off state between a first and a second main surface, two main electrodes provided on the main surface, and the main electrodes. Parallel p in which drift regions and second conductivity type partition regions are alternately arranged
In the super-junction semiconductor device having the n-layer, the first conductivity type drift region and the second conductivity type partition region are substantially the same width, and one of the first conductivity type drift region and the second conductivity type partition region Wherein the average impurity concentration of the region is in the range of 92 to 108% of the average impurity concentration of the other region.
【請求項6】第一と第二の主面と、主面に設けられた二
つの主電極と、その主電極間に、オン状態では電流を流
すとともにオフ状態では空乏化する第一導電型ドリフト
領域と第二導電型仕切り領域とを交互に配置した並列p
n層を備える超接合半導体素子において、第一導電型ド
リフト領域と第二導電型仕切り領域とがそれぞれほぼ同
じ幅であり、第一導電型ドリフト領域と第二導電型仕切
り領域との内の一方の領域の不純物濃度が、他方の領域
の不純物濃度の92〜108%の範囲内にあることを特
徴とする超接合半導体素子。
6. A first conductivity type in which a current flows in an on state and depletes in an off state between a first and a second main surface, two main electrodes provided on the main surface, and the main electrode. Parallel p in which drift regions and second conductivity type partition regions are alternately arranged
In the super-junction semiconductor device having the n-layer, the first conductivity type drift region and the second conductivity type partition region are substantially the same width, and one of the first conductivity type drift region and the second conductivity type partition region Wherein the impurity concentration of the region is in the range of 92 to 108% of the impurity concentration of the other region.
【請求項7】第一と第二の主面と、主面に設けられた二
つの主電極と、その主電極間に、オン状態では電流を流
すとともにオフ状態では空乏化する第一導電型ドリフト
領域と第二導電型仕切り領域とを交互に配置した並列p
n層を備える超接合半導体素子において、第一導電型ド
リフト領域と第二導電型仕切り領域とがそれぞれほぼ同
じ濃度であり、第一導電型ドリフト領域と第二導電型仕
切り領域との内の一方の領域の幅が、他方の領域の幅の
94〜106%の範囲内にあることを特徴とする超接合
半導体素子。
7. A first conductivity type in which current flows in an on state and depletes in an off state between a first and second main surface, two main electrodes provided on the main surface, and the main electrode. Parallel p in which drift regions and second conductivity type partition regions are alternately arranged
In the super-junction semiconductor device including the n-layer, the first conductivity type drift region and the second conductivity type partition region have substantially the same concentration, respectively, and one of the first conductivity type drift region and the second conductivity type partition region Wherein the width of the region is in the range of 94 to 106% of the width of the other region.
【請求項8】二つの主電極が、それぞれ第一、第二の主
面に設けられていることを特徴とする請求項1ないし請
求項7のいずれか1項に記載の超接合半導体素子。
8. A super-junction semiconductor device according to claim 1, wherein two main electrodes are provided on the first and second main surfaces, respectively.
【請求項9】第一と第二の主面と、主面に設けられた二
つの主電極と、その主電極間に、オン状態では電流を流
すとともにオフ状態では空乏化する、第一導電型ドリフ
ト領域と第二導電型仕切り領域とを交互に配置した並列
pn層とを備える超接合半導体素子の製造方法におい
て、第一導電型ドリフト領域と第二導電型仕切り領域と
の内の一方の領域の不純物量の92〜108%の範囲内
にある不純物量の他方の領域をエピタキシャル成長によ
り形成することを特徴とする超接合半導体素子の製造方
法。
9. A first conductive material, comprising: a first main surface, a second main electrode provided on the main surface, and a current flowing between the main electrodes in an on state and being depleted in an off state. A method of manufacturing a super junction semiconductor device including a parallel pn layer in which a mold drift region and a second conductivity type partition region are alternately arranged, wherein one of the first conductivity type drift region and the second conductivity type partition region is provided. A method for manufacturing a super-junction semiconductor device, characterized in that the other region having an impurity amount within the range of 92 to 108% of the impurity amount of the region is formed by epitaxial growth.
【請求項10】第一と第二の主面と、主面に設けられた
二つの主電極と、その主電極間に、オン状態では電流を
流すとともにオフ状態では空乏化する、第一導電型ドリ
フト領域と第二導電型仕切り領域とを交互に配置した並
列pn層とを備える超接合半導体素子の製造方法におい
て、第一導電型ドリフト領域と第二導電型仕切り領域と
の内の一方の領域を形成するための不純物量の92〜1
08%の範囲内にある不純物量を導入した後、熱拡散に
より他方の領域を形成することを特徴とする超接合半導
体素子の製造方法。
10. A first conductive material, comprising: a first main surface, a second main electrode provided on the main surface, and a current flowing between the main electrodes in an on state and depletion in an off state. A method of manufacturing a super junction semiconductor device including a parallel pn layer in which a mold drift region and a second conductivity type partition region are alternately arranged, wherein one of the first conductivity type drift region and the second conductivity type partition region is provided. 92 to 1 of an impurity amount for forming a region
A method for manufacturing a super junction semiconductor device, comprising: introducing an impurity amount in a range of 08%, and then forming the other region by thermal diffusion.
JP23728699A 1998-11-12 1999-08-24 Superjunction semiconductor device and method for manufacturing the same Expired - Lifetime JP3799888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23728699A JP3799888B2 (en) 1998-11-12 1999-08-24 Superjunction semiconductor device and method for manufacturing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP10-321567 1998-11-12
JP32156798 1998-11-12
JP22186199 1999-08-05
JP11-221861 1999-08-05
JP23728699A JP3799888B2 (en) 1998-11-12 1999-08-24 Superjunction semiconductor device and method for manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005377001A Division JP4927401B2 (en) 1998-11-12 2005-12-28 Super junction semiconductor device

Publications (2)

Publication Number Publication Date
JP2001111041A true JP2001111041A (en) 2001-04-20
JP3799888B2 JP3799888B2 (en) 2006-07-19

Family

ID=27330592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23728699A Expired - Lifetime JP3799888B2 (en) 1998-11-12 1999-08-24 Superjunction semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3799888B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065459A1 (en) * 2002-01-28 2003-08-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
JP2004119982A (en) * 2002-09-27 2004-04-15 Xerox Corp High-output mosfet semiconductor device
US6740931B2 (en) 2002-04-17 2004-05-25 Kabushiki Kaisha Toshiba Semiconductor device
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US6878989B2 (en) 2001-05-25 2005-04-12 Kabushiki Kaisha Toshiba Power MOSFET semiconductor device and method of manufacturing the same
JP2006222444A (en) * 2006-03-27 2006-08-24 Toshiba Corp Manufacturing method of semiconductor device
DE10120030B4 (en) * 2000-04-27 2007-09-06 Fuji Electric Co., Ltd., Kawasaki Lateralhalbleiterbauelement
US7535059B2 (en) 2005-11-28 2009-05-19 Fuji Electric Holdings Co., Ltd. Semiconductor device and manufacturing method of the semiconductor device
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7655981B2 (en) 2003-11-28 2010-02-02 Fairchild Korea Semiconductor Ltd. Superjunction semiconductor device
US7713822B2 (en) 2006-03-24 2010-05-11 Fairchild Semiconductor Corporation Method of forming high density trench FET with integrated Schottky diode
US7732876B2 (en) 2004-08-03 2010-06-08 Fairchild Semiconductor Corporation Power transistor with trench sinker for contacting the backside
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US7799636B2 (en) 2003-05-20 2010-09-21 Fairchild Semiconductor Corporation Power device with trenches having wider upper portion than lower portion
JP2010239160A (en) * 2003-01-16 2010-10-21 Fuji Electric Systems Co Ltd Semiconductor device
US7859047B2 (en) 2006-06-19 2010-12-28 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes connected together in non-active region
US7936008B2 (en) 2003-12-30 2011-05-03 Fairchild Semiconductor Corporation Structure and method for forming accumulation-mode field effect transistor with improved current capability
US8084327B2 (en) 2005-04-06 2011-12-27 Fairchild Semiconductor Corporation Method for forming trench gate field effect transistor with recessed mesas using spacers
US8198677B2 (en) 2002-10-03 2012-06-12 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
WO2013081089A1 (en) * 2011-11-30 2013-06-06 ローム株式会社 Semiconductor device
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
JP2015170698A (en) * 2014-03-06 2015-09-28 新日本無線株式会社 Semiconductor device and manufacturing method and inspection method of semiconductor device
US9431481B2 (en) 2008-09-19 2016-08-30 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10120030B4 (en) * 2000-04-27 2007-09-06 Fuji Electric Co., Ltd., Kawasaki Lateralhalbleiterbauelement
US8101484B2 (en) 2000-08-16 2012-01-24 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US8710584B2 (en) 2000-08-16 2014-04-29 Fairchild Semiconductor Corporation FET device having ultra-low on-resistance and low gate charge
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US9368587B2 (en) 2001-01-30 2016-06-14 Fairchild Semiconductor Corporation Accumulation-mode field effect transistor with improved current capability
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
US8829641B2 (en) 2001-01-30 2014-09-09 Fairchild Semiconductor Corporation Method of forming a dual-trench field effect transistor
US6818513B2 (en) 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US6878989B2 (en) 2001-05-25 2005-04-12 Kabushiki Kaisha Toshiba Power MOSFET semiconductor device and method of manufacturing the same
US7226841B2 (en) 2001-05-25 2007-06-05 Kabushiki Kaisha Toshiba Power MOSFET semiconductor device and method of manufacturing the same
US6949798B2 (en) 2002-01-28 2005-09-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
WO2003065459A1 (en) * 2002-01-28 2003-08-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US6740931B2 (en) 2002-04-17 2004-05-25 Kabushiki Kaisha Toshiba Semiconductor device
US7977744B2 (en) 2002-07-18 2011-07-12 Fairchild Semiconductor Corporation Field effect transistor with trench filled with insulating material and strips of semi-insulating material along trench sidewalls
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
JP2004119982A (en) * 2002-09-27 2004-04-15 Xerox Corp High-output mosfet semiconductor device
US8198677B2 (en) 2002-10-03 2012-06-12 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
JP2010239160A (en) * 2003-01-16 2010-10-21 Fuji Electric Systems Co Ltd Semiconductor device
JP2013102213A (en) * 2003-01-16 2013-05-23 Fuji Electric Co Ltd Semiconductor element
US8143123B2 (en) 2003-05-20 2012-03-27 Fairchild Semiconductor Corporation Methods of forming inter-poly dielectric (IPD) layers in power semiconductor devices
US8013391B2 (en) 2003-05-20 2011-09-06 Fairchild Semiconductor Corporation Power semiconductor devices with trenched shielded split gate transistor and methods of manufacture
US8143124B2 (en) 2003-05-20 2012-03-27 Fairchild Semiconductor Corporation Methods of making power semiconductor devices with thick bottom oxide layer
US8034682B2 (en) 2003-05-20 2011-10-11 Fairchild Semiconductor Corporation Power device with trenches having wider upper portion than lower portion
US8889511B2 (en) 2003-05-20 2014-11-18 Fairchild Semiconductor Corporation Methods of manufacturing power semiconductor devices with trenched shielded split gate transistor
US7855415B2 (en) 2003-05-20 2010-12-21 Fairchild Semiconductor Corporation Power semiconductor devices having termination structures and methods of manufacture
US7982265B2 (en) 2003-05-20 2011-07-19 Fairchild Semiconductor Corporation Trenched shield gate power semiconductor devices and methods of manufacture
US7799636B2 (en) 2003-05-20 2010-09-21 Fairchild Semiconductor Corporation Power device with trenches having wider upper portion than lower portion
US8013387B2 (en) 2003-05-20 2011-09-06 Fairchild Semiconductor Corporation Power semiconductor devices with shield and gate contacts and methods of manufacture
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US8716783B2 (en) 2003-05-20 2014-05-06 Fairchild Semiconductor Corporation Power device with self-aligned source regions
US8350317B2 (en) 2003-05-20 2013-01-08 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US8936985B2 (en) 2003-05-20 2015-01-20 Fairchild Semiconductor Corporation Methods related to power semiconductor devices with thick bottom oxide layers
US8129245B2 (en) 2003-05-20 2012-03-06 Fairchild Semiconductor Corporation Methods of manufacturing power semiconductor devices with shield and gate contacts
US8786045B2 (en) 2003-05-20 2014-07-22 Fairchild Semiconductor Corporation Power semiconductor devices having termination structures
US7655981B2 (en) 2003-11-28 2010-02-02 Fairchild Korea Semiconductor Ltd. Superjunction semiconductor device
US7936008B2 (en) 2003-12-30 2011-05-03 Fairchild Semiconductor Corporation Structure and method for forming accumulation-mode field effect transistor with improved current capability
US8518777B2 (en) 2003-12-30 2013-08-27 Fairchild Semiconductor Corporation Method for forming accumulation-mode field effect transistor with improved current capability
US7732876B2 (en) 2004-08-03 2010-06-08 Fairchild Semiconductor Corporation Power transistor with trench sinker for contacting the backside
US8148233B2 (en) 2004-08-03 2012-04-03 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
US8026558B2 (en) 2004-08-03 2011-09-27 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
US8084327B2 (en) 2005-04-06 2011-12-27 Fairchild Semiconductor Corporation Method for forming trench gate field effect transistor with recessed mesas using spacers
US8680611B2 (en) 2005-04-06 2014-03-25 Fairchild Semiconductor Corporation Field effect transistor and schottky diode structures
US7535059B2 (en) 2005-11-28 2009-05-19 Fuji Electric Holdings Co., Ltd. Semiconductor device and manufacturing method of the semiconductor device
US8138542B2 (en) 2005-11-28 2012-03-20 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of the semiconductor device
US7713822B2 (en) 2006-03-24 2010-05-11 Fairchild Semiconductor Corporation Method of forming high density trench FET with integrated Schottky diode
JP4580886B2 (en) * 2006-03-27 2010-11-17 株式会社東芝 Manufacturing method of semiconductor device
JP2006222444A (en) * 2006-03-27 2006-08-24 Toshiba Corp Manufacturing method of semiconductor device
US7859047B2 (en) 2006-06-19 2010-12-28 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes connected together in non-active region
US9595596B2 (en) 2007-09-21 2017-03-14 Fairchild Semiconductor Corporation Superjunction structures for power devices
US8928077B2 (en) 2007-09-21 2015-01-06 Fairchild Semiconductor Corporation Superjunction structures for power devices
US9224853B2 (en) 2007-12-26 2015-12-29 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US9431481B2 (en) 2008-09-19 2016-08-30 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8432000B2 (en) 2010-06-18 2013-04-30 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
JP2013115385A (en) * 2011-11-30 2013-06-10 Rohm Co Ltd Semiconductor device
US9496384B2 (en) 2011-11-30 2016-11-15 Rohm Co., Ltd. Semiconductor device
WO2013081089A1 (en) * 2011-11-30 2013-06-06 ローム株式会社 Semiconductor device
US10553713B2 (en) 2011-11-30 2020-02-04 Rohm Co., Ltd. Semiconductor device
JP2015170698A (en) * 2014-03-06 2015-09-28 新日本無線株式会社 Semiconductor device and manufacturing method and inspection method of semiconductor device

Also Published As

Publication number Publication date
JP3799888B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
JP2001111041A (en) Super-junction semiconductor device and manufacturing method thereof
US6787420B2 (en) Semiconductor device with alternating conductivity type layer and method of manufacturing the same
US9087893B2 (en) Superjunction semiconductor device with reduced switching loss
JP3951522B2 (en) Super junction semiconductor device
US7723783B2 (en) Semiconductor device
JP4447065B2 (en) Superjunction semiconductor device manufacturing method
EP3433880B1 (en) Superjunction power semiconductor devices with fast switching capability
US7042046B2 (en) Super-junction semiconductor device and method of manufacturing the same
JP4764987B2 (en) Super junction semiconductor device
JP4843843B2 (en) Super junction semiconductor device
JP3908572B2 (en) Semiconductor element
EP1803159B1 (en) Mos-gated transistor with reduced miller capacitance
JP4534303B2 (en) Horizontal super junction semiconductor device
JP2000040822A (en) Superjunction semiconductor element and its manufacture
JP5867606B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2001135819A (en) Super-junction semiconductor element
JP2011029233A (en) Power semiconductor element and manufacturing method of the same
JP2017005140A (en) Insulated gate switching device and manufacturing method of the same
JP2003101022A (en) Power semiconductor device
CN107093622B (en) Longitudinal super-junction double-diffusion metal oxide semiconductor field effect transistor with semi-insulating polycrystalline silicon layer
JP4483001B2 (en) Semiconductor element
JP4867131B2 (en) Semiconductor device and manufacturing method thereof
WO2022119743A1 (en) Finfet power semiconductor devices
JP4710822B2 (en) Super junction semiconductor device
JP4927401B2 (en) Super junction semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Ref document number: 3799888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term