JP2001108212A - Method of operating waste melting furnace - Google Patents

Method of operating waste melting furnace

Info

Publication number
JP2001108212A
JP2001108212A JP34800899A JP34800899A JP2001108212A JP 2001108212 A JP2001108212 A JP 2001108212A JP 34800899 A JP34800899 A JP 34800899A JP 34800899 A JP34800899 A JP 34800899A JP 2001108212 A JP2001108212 A JP 2001108212A
Authority
JP
Japan
Prior art keywords
furnace
temperature
waste
melting furnace
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34800899A
Other languages
Japanese (ja)
Other versions
JP3760069B2 (en
Inventor
Takeshi Takamiya
健 高宮
Hideji Shibaike
秀治 芝池
Hirokazu Tanaka
宏和 田中
Yasuhiko Katou
也寸彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34800899A priority Critical patent/JP3760069B2/en
Publication of JP2001108212A publication Critical patent/JP2001108212A/en
Application granted granted Critical
Publication of JP3760069B2 publication Critical patent/JP3760069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To provide the method of operation enabling to stabilize the amount of generating steam and a Pb content in slug at low level by detecting the deviation of a heat level early and stabilizing the heat level of a furnace bottom quickly in the operation of a waste melting furnace. SOLUTION: In the method of blowing in fuel together with a room temperature oxygen enriched air or a high temperature air to a coke bed from the air blasting tuyere 10 of a waste melting furnace 1, the fuel blowing flow is controlled so as to keep a furnace top gas temperature within a predetermined range when the furnace top gas temperature exceeds a set temperature detecting the furnace top gas temperature, to keep the ηCO within a predetermined range when the ηCO exceeds a set value by measuring the density of CO (%) and CO2 (%) of the furnace top gas and calculating ηCO=CO2/(CO2+CO), and to keep the furnace top gas temperature and ηCO within a predetermined range when the furnace top gas temperature and the ηCO exceed a set up value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一般廃棄物、産業
廃棄物等の廃棄物を熱分解溶融処理する廃棄物溶融炉の
操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a waste melting furnace for pyrolyzing and melting waste such as general waste and industrial waste.

【0002】[0002]

【従来の技術】一般廃棄物、産業廃棄物等の処理方法の
一つとして、シャフト炉型の廃棄物溶融炉で廃棄物を乾
燥、熱分解、燃焼、溶融してスラグとメタルにする廃棄
物溶融処理方法がある。この廃棄物溶融処理方法は、廃
棄物をガス化・高温溶融して一括処理することが可能で
ある。
2. Description of the Related Art As a method of treating general waste and industrial waste, waste is dried, thermally decomposed, burned, and melted into slag and metal in a shaft furnace type waste melting furnace. There is a melt processing method. According to this waste melting treatment method, waste can be gasified, melted at a high temperature, and treated collectively.

【0003】図6は従来のシャフト炉型の廃棄物溶融炉
を備えた廃棄物溶融設備の説明図で、廃棄物溶融炉1に
は、廃棄物、副資材であるコークス、石灰石を炉上部か
ら2重シール弁機構の装入装置2を介して装入し、乾
燥、熱分解、燃焼、溶融する。一方、炉内からの可燃分
は、熱分解ガスとして炉上部のダクト3から排出され、
燃焼室4で完全燃焼後、ボイラ5、タービン発電機など
の付帯設備により熱及び電気エネルギーとして利用され
る。その後、排ガスは、ガス冷却器6で冷却され、集じ
ん装置7を経た後、誘引送風機8により煙突9から放出
する。
FIG. 6 is an explanatory view of a waste melting facility provided with a conventional shaft furnace type waste melting furnace. In the waste melting furnace 1, waste, coke as a secondary material, and limestone are supplied from the upper part of the furnace. It is charged through the charging device 2 of the double seal valve mechanism, and dried, thermally decomposed, burned, and melted. On the other hand, combustibles from the furnace are discharged from the duct 3 in the upper part of the furnace as pyrolysis gas,
After complete combustion in the combustion chamber 4, it is used as heat and electric energy by auxiliary equipment such as a boiler 5 and a turbine generator. Thereafter, the exhaust gas is cooled by the gas cooler 6, passes through the dust collecting device 7, and is discharged from the chimney 9 by the induced blower 8.

【0004】廃棄物溶融炉の下部には空気と酸素を混合
した酸素富化空気を吹き込む送風羽口10が設けられ、
灰分はスラグ及びメタルとして出滓口11から取り出
す。送風羽口10から吹き込んだ酸素富化空気は炉内の
コークス及び熱分解で発生したチャーを燃焼させ、その
燃焼熱は炉内に投入された廃棄物の乾燥、熱分解、及び
不燃物の溶融に利用される。
[0004] At the lower part of the waste melting furnace, there is provided a blowing tuyere 10 for blowing oxygen-enriched air obtained by mixing air and oxygen.
Ash is taken out from the slag port 11 as slag and metal. Oxygen-enriched air blown from the tuyere 10 burns coke in the furnace and char generated by pyrolysis, and the heat of combustion is used for drying, pyrolysis, and melting of non-combustibles put into the furnace. Used for

【0005】廃棄物溶融炉内の下部には、熱分解完了後
の乾留残さ(粗粒チャー)により充填層が形成されてい
る。この乾留残さによる充填層は、固定炭素と灰分を主
としており、空隙も少なく通気抵抗が大きい。そのた
め、燃焼ガスの分散効果が大きく、この分散効果により
羽口前から上昇したガスが炉内に均等に流れて、熱交換
効率を高めることができる。
[0005] In the lower part of the waste melting furnace, a packed bed is formed by the dry distillation residue (coarse char) after the completion of the thermal decomposition. The packed bed formed by the carbonization residue mainly contains fixed carbon and ash, has few voids, and has high airflow resistance. Therefore, the effect of dispersing the combustion gas is large, and the gas that has risen from the front of the tuyere flows evenly into the furnace due to the effect of dispersing the combustion gas, so that the heat exchange efficiency can be increased.

【0006】また、炉内のコークスは、燃料としての役
割を有しつつ且つ2000℃を超える高温中でもその形
状を維持し、炉内の灰分を完全に溶融する機能を持つ火
格子の役割も有している。その結果、炉内に投入された
廃棄物には炭素、水素、酸素、窒素、硫黄、塩素等だけ
でなく、Na、K等の塩類、あるいはZn、Pb、C
r、Cd、As等の有害成分が含まれているが、これら
の有害物の一部は、スラグ中に移行するものの、炉内が
高温・還元雰囲気であるため、大部分が炉外に還元揮発
し、スラグ中に含有されるZn、Pb、Cr、Cd、A
s等は極微量に低減される。
[0006] The coke in the furnace has a role as a grate which has a function as a fuel, maintains its shape even at a high temperature exceeding 2000 ° C, and completely melts the ash in the furnace. are doing. As a result, not only carbon, hydrogen, oxygen, nitrogen, sulfur, chlorine, etc. but also salts such as Na and K, or Zn, Pb, C
Although harmful components such as r, Cd, and As are contained, some of these harmful substances migrate into the slag, but most of the harmful substances are reduced outside the furnace because of the high temperature and reducing atmosphere inside the furnace. Zn, Pb, Cr, Cd, A volatilized and contained in slag
s and the like are reduced to an extremely small amount.

【0007】[0007]

【発明が解決しようとする課題】廃棄物溶融処埋技術で
は、単にごみを溶融処理するだけでなく、廃棄物溶融炉
の運転の安定性、再資源化できる溶融物(スラグ・メタ
ル)の品質、熱及び電気エネルギー回収のための安定し
た蒸気発生量の確保が求められている。また、溶融処理
対象物には、一般の都市ごみだけでなく、高水分、高灰
分、異形ごみ等様々な種類のごみがあり、これらを安定
処理することも求められている。
According to the waste melting and embedding technology, the stability of the operation of the waste melting furnace and the quality of the molten material (slag and metal) that can be recycled are not limited to simply melting the waste. In addition, it is required to secure a stable steam generation amount for recovering heat and electric energy. In addition, various types of refuse, such as high-moisture, high-ash, and irregular-shaped refuse, as well as general municipal refuse, are required to be stably treated.

【0008】運転の安定性、溶融物の品質、安定した蒸
気発生量の確保のために、乾留残さの均一な通気抵抗層
の確保が重要であることは前述のとおりであるが、高水
分や異形等の変動の大きい様々な種類のごみを一括処理
する場合には、熱分解が完了しないまま炉底部へ降下す
ることがある。この場合、それが羽口前で直接燃焼する
と、体積縮小が大きいため、空間部が生じ、乾留残さの
通気抵抗層の変動が発生することがあった。その結果、
炉内ガスと炉内装入物との熱交換効率が低下し、炉内に
おける固体温度の低下が起こって熱分解量が低下し、そ
のため、ごみ処理量の低下、蒸気発生量の低下、あるい
はスラグ温度の低下等が起こることがあった。
As described above, it is important to secure a ventilation resistance layer having a uniform dry distillation residue in order to secure operation stability, melt quality, and a stable amount of steam generation. When collectively processing various types of refuse having large fluctuations such as irregular shapes, the refuse may fall to the furnace bottom without completing the thermal decomposition. In this case, if it is burned directly in front of the tuyere, the volume is largely reduced, so that a space is formed, and the airflow resistance layer of the carbonized residue may fluctuate. as a result,
The heat exchange efficiency between the gas inside the furnace and the contents inside the furnace decreases, the solid temperature in the furnace decreases, and the amount of thermal decomposition decreases, so that the amount of waste disposal, the amount of steam generated, and the amount of slag decrease. In some cases, a decrease in temperature occurred.

【0009】前述のとおり、廃棄物溶融処埋技術では、
溶融物の再資源化つまりスラグ・メタル等の有効利用も
重要である。特に、スラグは、天然資材に匹敵する良好
な特性を持っていることから、多くの方面で有効利用が
試行されている。有効利用が進行すると、最終処分場不
足に対してだけでなく、天然資源の節約にも大きく貢献
する。スラグは、その物理的性状や特性から、主に土木
資材として利用され、例えば、インターロッキングやア
スファルト骨材として利用されているが、その利用に際
しては、Pb等の有害物質の溶出性能は厳しく問われて
おり、安全性の向上と環境への負荷を少なくすることか
ら、有害物質の溶出はできる限り少なく、零にすること
が望ましい。
As described above, in the waste melting and embedding technology,
Recycling of the molten material, that is, effective use of slag and metal is also important. In particular, slag has good properties comparable to natural materials, and its effective use has been attempted in many fields. Effective utilization will contribute not only to the shortage of final disposal sites but also to the saving of natural resources. Due to its physical properties and characteristics, slag is mainly used as civil engineering materials, for example, as interlocking and asphalt aggregates. However, when using slag, the elution performance of harmful substances such as Pb is strictly questionable. In order to improve safety and reduce the burden on the environment, the elution of harmful substances is as small as possible and desirably zero.

【0010】一般的に有害物質の溶出性能は、環境庁告
示46号に従って測定されており、土壌環境基準で評価
されている。その基準を満足することはもちろんである
が、実際の環境中では酸性雨等が存在することから、環
境状況が現在の試験法より厳しい場合が考えられるの
で、含有量を極限まで低減することが有効である。
Generally, the elution performance of harmful substances is measured in accordance with the notification of the Environment Agency, No. 46, and evaluated based on soil environmental standards. Needless to say, it satisfies the criteria, but since acid rain exists in the actual environment, the environment may be more severe than the current test method. It is valid.

【0011】ところで、重金属を含む廃棄物を溶融処理
する場合、溶融部の雰囲気は、大きく酸化雰囲気と還元
雰囲気とに分けられる。表面溶融のような酸化雰囲気の
溶融方法では、重金属類は酸化物として存在し、例え
ば、Pbは沸点が高いためスラグ中に高濃度で残留しや
すい(数十〜数百ppm程度)。
[0011] When melting waste containing heavy metals, the atmosphere in the melting portion is largely divided into an oxidizing atmosphere and a reducing atmosphere. In a melting method in an oxidizing atmosphere such as surface melting, heavy metals exist as oxides. For example, Pb has a high boiling point and thus easily remains in slag at a high concentration (about several tens to several hundred ppm).

【0012】一方、高温・還元雰囲気では、ごみ中のP
b、Zn等の重金属は、主として還元揮発してスラグ中
にはほとんど残留しない。特に、コークスベッドを形成
する廃棄物溶融炉の場合、炉内が2000℃程度に上昇
するため、例えば、通常の経済的な運転条件では、ほぼ
スラグ中のPbが20〜30ppm程度以下になってお
り、投入されたごみ中のPbの約80%以上が溶融炉か
ら揮発することがわかっている。
On the other hand, in a high-temperature and reducing atmosphere, P
Heavy metals such as b and Zn are mainly reduced and volatilized and hardly remain in the slag. In particular, in the case of a waste melting furnace that forms a coke bed, since the inside of the furnace rises to about 2000 ° C., for example, under normal economical operating conditions, Pb in slag is reduced to about 20 to 30 ppm or less. It has been found that about 80% or more of the Pb in the input refuse is volatilized from the melting furnace.

【0013】しかし、炉底部の熱レベルの低下によって
炉内還元雰囲気が低下し、Pb等の重金属の揮発が抑制
され、スラグ中の含有量が若干上昇する傾向があった。
However, the reduction in the heat level at the bottom of the furnace lowers the reducing atmosphere in the furnace, tends to suppress the volatilization of heavy metals such as Pb, and tends to slightly increase the content in slag.

【0014】炉底部の熱レベル低下は、従来、スラグ温
度の低下や蒸気発生量の低下をセンサーで検知して対処
していた。その対策としては、乾留残さの通気抵抗層の
変動原因となるごみの直接燃焼による体積縮小を抑制す
る理由から、具体的には固定炭素割合の大きいコークス
等の炭素塊を炉頂部より投入し、優先的に燃焼させるこ
とでごみの直接燃焼を抑制する方法があった。
Conventionally, a decrease in the heat level at the bottom of the furnace has been dealt with by detecting a decrease in the slag temperature and a decrease in the amount of generated steam with a sensor. As a countermeasure, for the reason of suppressing the volume reduction due to the direct combustion of the refuse causing fluctuation of the ventilation resistance layer of the dry distillation residue, specifically, a carbon lump such as coke having a large fixed carbon ratio is introduced from the furnace top, There was a method of suppressing direct combustion of garbage by giving priority to combustion.

【0015】また、更にスラグ中のPb等重金属を低減
するためには、炉内を更に高温にしたり、還元雰囲気を
強化する必要があった。前者の場合は、送風酸素濃度を
上げて炉内温度を上げる必要があり、後者の場合は、コ
ークス等の塊状燃料の使用量を増加させる必要がある
が、いずれも、ランニングコストが上昇する問題があっ
た。
Further, in order to further reduce heavy metals such as Pb in the slag, it was necessary to further increase the temperature in the furnace and to enhance the reducing atmosphere. In the former case, it is necessary to raise the furnace temperature by increasing the blast oxygen concentration, and in the latter case, it is necessary to increase the amount of lump fuel such as coke, but in both cases, the running cost increases. was there.

【0016】しかも、炉底部の熱レベル上昇や炉内還元
雰囲気強化のために、コークス等の炭素塊を炉頂から投
入しても、炉底に到達するまで時間がかかるために即効
性が弱く、蒸発量の低下やスラグ温度低下がしばらく継
続していた。そのため、炉内熱レベル変化を極力早く検
知し、対処する操業方法が望まれていた。
In addition, even if a carbon lump such as coke is introduced from the furnace top to raise the heat level of the furnace bottom and strengthen the reducing atmosphere in the furnace, it takes a long time to reach the furnace bottom, so that the immediate effect is weak. In addition, the decrease in the amount of evaporation and the decrease in slag temperature continued for a while. Therefore, there has been a demand for an operation method for detecting a change in the heat level in the furnace as soon as possible and coping with the change.

【0017】本発明は、廃棄物をコークス・石灰石とと
もに装入し、乾燥、熱分解、燃焼、溶融して排出する廃
棄物溶融炉の操業において、熱レベルの変動を、従来よ
り早期に検知し、そして、その検出値により、羽口を介
したコークスベッド内への燃料吹込量を制御し、炉底熱
レべルを速やかに安定させて、蒸気発生量の高位安定や
スラグ中のPb含有量を低位で安定させることができる
廃棄物溶融炉の操業方法を提供するものである。
According to the present invention, in the operation of a waste melting furnace in which waste is charged together with coke and limestone, and dried, pyrolyzed, burned, melted and discharged, a change in heat level is detected earlier than before. And, based on the detected value, the amount of fuel injected into the coke bed through the tuyere is controlled, the furnace bottom heat level is quickly stabilized, the steam generation amount is stabilized at a high level, and the Pb content in the slag is increased. An object of the present invention is to provide a method for operating a waste melting furnace capable of stabilizing the amount at a low level.

【0018】[0018]

【課題を解決するための手段】本発明の廃棄物溶融炉の
操業方法は、廃棄物溶融炉に廃棄物をコークス、石灰石
とともに装入し、乾燥、熱分解、燃焼、溶融して排出す
る際に、廃棄物溶融炉の送風羽口からコークスベッドヘ
常温の酸素富化空気又は高温空気とともに、燃料をコー
クスベッドヘ吹き込む方法において、廃棄物溶融炉の炉
頂ガス温度を検出し、炉頂ガス温度が設定値を超えた場
合、炉頂ガス温度が所定の炉頂ガス温度範囲に入るよう
に燃料吹込量を制御することを特徴とする。
SUMMARY OF THE INVENTION The method for operating a waste melting furnace according to the present invention is characterized in that waste is charged into a waste melting furnace together with coke and limestone, dried, pyrolyzed, burned, melted and discharged. In a method of blowing fuel into the coke bed together with oxygen-enriched air or high-temperature air at room temperature from the blowing tuyere of the waste melting furnace to the coke bed, the furnace top gas temperature of the waste melting furnace is detected, When the temperature exceeds a set value, the fuel injection amount is controlled so that the furnace top gas temperature falls within a predetermined furnace gas temperature range.

【0019】また、本発明の廃棄物溶融炉の操業方法
は、廃棄物溶融炉に廃棄物をコークス・石灰石とともに
装入し、乾燥、熱分解、燃焼、溶融して排出する際に、
廃棄物溶融炉の送風羽口からコークスベッドヘ常温の酸
素富化空気又は高温空気とともに、燃料をコークスベッ
ドヘ吹き込む方法において、廃棄物溶融炉の炉頂ガス中
のCO濃度(%)及びCO2濃度(%)を測定してηCO
=CO2/(CO2+CO)を演算し、演算されたηCO
設定値を超えた場合、所定の範囲に入るように燃料吹込
量を制御することを特徴とする。
Further, the method for operating a waste melting furnace according to the present invention is characterized in that the waste is charged together with coke and limestone into the waste melting furnace, dried, thermally decomposed, burned, melted and discharged.
In a method of blowing fuel into a coke bed together with oxygen-enriched air or high-temperature air at room temperature from a blowing tuyere of a waste melting furnace to a coke bed, the CO concentration (%) and CO 2 in the furnace top gas of the waste melting furnace are blown. Measure the concentration (%) to obtain η CO
= CO 2 / (CO 2 + CO), and when the calculated η CO exceeds a set value, the fuel injection amount is controlled to fall within a predetermined range.

【0020】更に、本発明は、廃棄物溶融炉に廃棄物を
コークス、石灰石とともに装入し、乾燥、熱分解、燃
焼、溶融して排出する際に、廃棄物溶融炉の送風羽口か
らコークスベッドヘ常温の酸素富化空気又は高温空気と
ともに、燃料をコークスベッドヘ吹き込む方法におい
て、廃棄物溶融炉の炉頂ガス温度を検出するとともに、
炉頂ガス中のCO濃度(%)及びCO2濃度(%)を測
定してηCO=CO2/(CO2+CO)を演算し、炉頂ガ
ス温度が設定値を超え且つ演算されたηCOが設定値を超
えた場合、炉頂ガス温度が所定の炉頂ガス温度範囲及び
演算されたηCOが所定の範囲に入るように燃料吹込量を
制御することを特徴とする。
Further, the present invention relates to a method of charging waste into a waste melting furnace together with coke and limestone, and drying, pyrolyzing, burning, melting and discharging the coke from a blowing tuyere of the waste melting furnace. In the method of blowing fuel into the coke bed together with oxygen-enriched air or high-temperature air at room temperature to the bed, while detecting the furnace gas temperature of the waste melting furnace,
The CO concentration (%) and the CO 2 concentration (%) in the furnace top gas are measured to calculate η CO = CO 2 / (CO 2 + CO), and the furnace gas temperature exceeds the set value and the calculated η When CO exceeds a set value, the fuel injection amount is controlled so that the top gas temperature falls within a predetermined range of the top gas temperature and the calculated η CO falls within a predetermined range.

【0021】前記構成において、燃料が平均粒径30m
m以下、カロリ2000kcal以上10000kca
l/kg以下の固形燃料とすることができ、固形燃料と
してプラスチックを使用することができる。
In the above construction, the fuel has an average particle diameter of 30 m.
m or less, calorie 2000kcal or more and 10000kca
The solid fuel can be 1 / kg or less, and plastic can be used as the solid fuel.

【0022】[0022]

【発明の実施の形態】羽口から吹き込む燃料は、ガス燃
料、液体燃料、固形燃料で単独で炉内に吹き込んだり、
空気等のキャリアガスで気流搬送可能な性状であれば、
いずれでも利用可能である。また、従来、その処埋に困
っていた廃プラスチック、廃油等も利用可能である。更
に、廃棄物溶融炉から飛散し、燃焼室前で集じん機で捕
集した可燃性ダストでも可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Fuel injected from tuyere is gas fuel, liquid fuel and solid fuel, which are blown into the furnace alone,
If it is a property that can be carried by air flow with a carrier gas such as air,
Any can be used. In addition, waste plastics, waste oils, and the like, which have conventionally been difficult to dispose of, can also be used. Furthermore, combustible dust that is scattered from the waste melting furnace and collected by a dust collector in front of the combustion chamber is also possible.

【0023】前述のとおり、高水分ごみや異形ごみ等の
変動の大きい様々なごみを処理する場合に、ごみの熱分
解が完了しないまま炉底部へ降下する場合があり、熱分
解未完了のごみが羽口前で直接燃焼することによる体積
縮小が大きいために空間部が生じ、断面方向における通
気抵抗の差が生じ、熱交換効率が低下することがあっ
た。しかし、本発明により、コークスベッド充填層内に
吹き込まれた燃料は、コークスベッド充填層内で適当に
混合され、熱分解未完了のごみよりも、羽口を介して吹
き込んだ酸素富化空気もしくは高温空気と優先的に反応
し燃焼する。従って、燃料吹き込み時には、吹き込み燃
料とコークスが優先的に燃焼し、熱分解未完了のごみが
炉底部に降下してもごみの直接燃焼を抑制し、横断面方
向における均一な通気抵抗層を維持する。その結果、ガ
スが均一に流れ、炉内の熱交換効率が上昇する。
As described above, when processing various kinds of refuse having large fluctuations such as high-moisture refuse and irregular refuse, the refuse may fall to the furnace bottom without completing the thermal decomposition, and the refuse which has not been thermally decomposed may be removed. Since a large volume reduction is caused by direct combustion in front of the tuyere, a space is generated, and a difference in air flow resistance occurs in a cross-sectional direction, and heat exchange efficiency may decrease. However, according to the present invention, the fuel blown into the coke bed packed bed is appropriately mixed in the coke bed packed bed, and the oxygen-enriched air blown through the tuyere or the air blown through the tuyere rather than the uncompleted pyrolysis waste. Reacts preferentially with hot air and burns. Therefore, when fuel is injected, the injected fuel and coke burn preferentially, suppressing direct combustion of the waste even if uncompleted pyrolysis waste falls to the furnace bottom, and maintaining a uniform ventilation resistance layer in the cross-sectional direction. I do. As a result, the gas flows uniformly, and the heat exchange efficiency in the furnace increases.

【0024】また、燃料吹き込みの時には、吹き込みな
しの時と比較して吹き込み酸素の燃焼完了点が速く、8
00℃〜1000℃の高温域で起こる吸熱反応(CO2
+C→2CO)が始まる位置が速くなり、還元雰囲気域
が拡がる。その結果、Pb、Zn等の重金属の還元揮発
が促進される。
Further, when fuel is injected, the combustion completion point of the injected oxygen is faster than in the case where no injection is performed.
Endothermic reaction (CO 2
The position where (+ C → 2CO) starts becomes faster, and the reducing atmosphere region is expanded. As a result, reduction and volatilization of heavy metals such as Pb and Zn are promoted.

【0025】特に、燃焼速度の遅い固体物質について
は、粒径は30mm以下、発熱量は2000kcal/
kg以上が好適である。但し、燃焼温度が高くなりす
ぎ、耐火物を痛めるので発熱量は10000kcal/
kg以下が望ましい。
In particular, for a solid substance having a slow burning rate, the particle size is 30 mm or less, and the calorific value is 2000 kcal /
kg or more is preferred. However, since the combustion temperature becomes too high and damages the refractory, the calorific value is 10,000 kcal /
Desirably less than kg.

【0026】一方、炉内に投入されたごみが、熱分解末
完了のまま炉底部に降下すると、横断面方向における通
気抵抗の差が生じ、熱交換効率が低下するため、固体温
度が低下し、ごみの熱分解速度も抑制される。その結
果、炉底部の熱レベルが低下し、最終的にスラグ温度や
処理量の低下が起こる。この場合、まずはじめに固体の
温度低下に伴いCO2+C→2CO−Q(吸熱反応)に
代表される吸熱反応も低下する。その結果、熱分解ガス
温度が上昇し、可燃性熱分解ガス(CO等)割合が低下
するため、炉頂温度・ガス組成を管埋することで、従来
のスラグ温度等による熱レベルの把握より傾向をいち早
く検知できる。
On the other hand, if the refuse introduced into the furnace falls to the bottom of the furnace while the pyrolysis is completed, a difference in airflow resistance in the cross-sectional direction occurs, and the heat exchange efficiency decreases, so that the solid temperature decreases. Also, the thermal decomposition rate of the refuse is suppressed. As a result, the heat level at the bottom of the furnace decreases, and eventually the slag temperature and the throughput decrease. In this case, first, as the temperature of the solid decreases, the endothermic reaction represented by CO 2 + C → 2CO-Q (endothermic reaction) also decreases. As a result, the pyrolysis gas temperature rises and the flammable pyrolysis gas (CO, etc.) ratio decreases. Therefore, by filling the furnace top temperature and gas composition, the heat level can be calculated based on the conventional slag temperature and other factors. Trends can be detected quickly.

【0027】図1は本発明のシャフト炉型の廃棄物溶融
炉を備えた廃棄物溶融設備の説明図で、図6に示す従来
の廃棄物溶融設備と同一の構成については、同一符号を
付し、その説明は省略する。
FIG. 1 is an explanatory view of a waste melting facility provided with a shaft furnace type waste melting furnace according to the present invention. The same reference numerals are given to the same components as those of the conventional waste melting facility shown in FIG. The description is omitted.

【0028】廃棄物溶融炉1の炉頂ガスダクト3には、
炉頂ガス中のCO濃度(%)及びCO2濃度(%)を測
定するCO濃度計及びCO2濃度が設けられ、測定結果
は、ηCO演算装置へ送られ、ηCO=CO2/(CO2+C
O)が演算される。演算されたηCOは、燃料吹込量演算
装置へ送られる。また、廃棄物溶融炉1の炉頂部には、
炉頂温度を測定する温度計(TI)が設けられ、測定結
果は、燃料吹込量演算装置へ送られる。
In the top gas duct 3 of the waste melting furnace 1,
A CO concentration meter and a CO 2 concentration for measuring the CO concentration (%) and the CO 2 concentration (%) in the furnace top gas are provided, and the measurement result is sent to an η CO arithmetic unit, and η CO = CO 2 / ( CO 2 + C
O) is calculated. The calculated η CO is sent to the fuel injection amount calculation device. Also, on the furnace top of the waste melting furnace 1,
A thermometer (TI) for measuring the furnace top temperature is provided, and the measurement result is sent to a fuel injection amount calculating device.

【0029】具体的には、炉頂温度が高くなり、炉頂ガ
ス中CO%が低下した場合、吹き込み量を増加させる。
Specifically, when the furnace top temperature increases and the CO% in the furnace top gas decreases, the blowing amount is increased.

【0030】図2は炉頂温度による燃料吹き込み制御の
フローチャート、図3はηCOによる燃料吹き込み制御の
フローチャート、図4は炉頂温度及びηCOによる燃料吹
き込み制御のフローチャートである。
FIG. 2 is a flowchart of fuel injection control based on furnace top temperature, FIG. 3 is a flowchart of fuel injection control based on η CO , and FIG. 4 is a flowchart of fuel injection control based on furnace top temperature and η CO .

【0031】図2において、温度計(TI)の測定結果
が炉頂温度の設定値を超えると、炉頂温度が設定値以下
になるように燃料が吹き込まれる。炉頂温度は、通常4
00±50℃に入るように燃料吹込量を流量調節計(F
IC)で調節する。図2(a)は吹込量増減用の設定値
を一つ設けたものであり、燃料吹き込み後、炉頂温度が
設定値以下になると、燃料吹き込み量を減らしていく。
一方、図2(b)は、吹込量増減用に設定値が各一つの
計二つ設け、その間の温度では、吹込量を維持したまま
とするものである。
In FIG. 2, when the measurement result of the thermometer (TI) exceeds the set value of the furnace top temperature, fuel is blown so that the furnace top temperature becomes equal to or less than the set value. The furnace top temperature is usually 4
The fuel injection amount is adjusted to a flow controller (F
Adjust with IC). FIG. 2A shows a configuration in which one set value for increasing or decreasing the blowing amount is provided. When the furnace top temperature becomes equal to or lower than the set value after the fuel blowing, the fuel blowing amount is reduced.
On the other hand, in FIG. 2B, two set values are provided for increasing and decreasing the blowing amount, and the blowing amount is maintained at a temperature between them.

【0032】図3において、演算されたηCOが設定値を
超える場合、ηCOが設定値以下になるように燃料が吹き
込まれる。ηCOは、通常40±5%に入るように燃料吹
込量を流量調節計(FIC)で調節する。図3(a)は
吹込量増減用の設定値を一つ設けたものであり、燃料吹
き込み後、ηCOが設定値以下になると、燃料吹き込み量
を減らしていく。一方、図3(b)は、吹込量増減用に
設定値が各一つの計二つ設け、その間の温度では、吹込
量を維持したままとするものである。
In FIG. 3, when the calculated η CO exceeds the set value, the fuel is blown so that η CO becomes equal to or less than the set value. The η CO is adjusted by a flow controller (FIC) so that the fuel injection amount usually falls within 40 ± 5%. FIG. 3A shows a configuration in which one set value for increasing or decreasing the injection amount is provided. When η CO becomes equal to or less than the set value after the injection of the fuel, the injection amount of the fuel is reduced. On the other hand, FIG. 3B shows a case in which two set values are provided for increasing and decreasing the blowing amount, and the blowing amount is maintained at a temperature between them.

【0033】図4において、温度計(TI)の測定結果
が炉頂温度の設定値を超えても、演算されたηCOが設定
値以下の場合は、燃料は吹き込まず、炉頂温度が設定値
を超えるとともに、演算されたηCOが設定値を超える場
合に、燃料が吹き込まれる。図4(a)は、燃料吹き込
み後、炉頂温度が設定値以下あるいはηCOが設定値以下
になると、燃料吹き込み量を減らしていく。図4(b)
では、設定値を三つ設け、ある範囲においては、吹き込
み量を増減せず維持することを特徴としたものである。
In FIG. 4, even if the measurement result of the thermometer (TI) exceeds the set value of the furnace top temperature, if the calculated η CO is equal to or less than the set value, no fuel is blown and the furnace top temperature is set. When the calculated η CO exceeds the set value, the fuel is blown. FIG. 4A shows that when the furnace top temperature becomes equal to or less than a set value or η CO becomes equal to or less than a set value after fuel injection, the fuel injection amount is reduced. FIG. 4 (b)
Is characterized in that three setting values are provided, and in a certain range, the blowing amount is maintained without increasing or decreasing.

【0034】表1は本発明の燃料吹き込みの実施例、及
び吹き込まない比較例との比較表である。
Table 1 is a comparison table between an example of fuel injection according to the present invention and a comparative example without fuel injection.

【0035】[0035]

【表1】 表1から、本発明では、燃料を吹き込まない場合に比較
して、ごみ処理量が増加するとともに、蒸気発生量が安
定しており、またスラグ温度が高くスラグ中のPb、Z
n量が低減され、更にコークス比も低減することが分か
る。
[Table 1] From Table 1, it can be seen that in the present invention, as compared with the case where fuel is not injected, the amount of waste disposal increases, the amount of generated steam is stable, the slag temperature is high, and Pb and Z in the slag are high.
It can be seen that the n amount is reduced and the coke ratio is further reduced.

【0036】図5(a)は本発明の燃料吹き込みの例及
び吹き込まない例とのCO濃度と炉頂温度の変化、
(b)はスラグ温度の変化を示すグラフである。燃料と
して排プラスチックを5mm程度に粉砕したものを用い
た。燃料吹き込みを行う本発明では、CO濃度及び炉頂
温度が設定値の範囲内に制御でき、その結果、スラグ温
度が高く温度低下が少ないことが分かる。
FIG. 5 (a) shows changes in CO concentration and furnace top temperature between the fuel injection example and the non-injection example of the present invention.
(B) is a graph showing a change in slag temperature. As the fuel, waste plastic crushed to about 5 mm was used. In the present invention in which fuel injection is performed, it can be seen that the CO concentration and the furnace top temperature can be controlled within the set values, and as a result, the slag temperature is high and the temperature decrease is small.

【0037】従って、炉頂温度やガス組成を検出して、
吹き込み量を制御させることで、素早く炉内熱レベルを
検知でき、羽口吹き込みによる素早い回復アクションが
可能となる。
Therefore, by detecting the furnace top temperature and gas composition,
By controlling the blowing amount, the heat level in the furnace can be detected quickly, and a quick recovery action by tuyere blowing becomes possible.

【0038】[0038]

【発明の効果】本発明により、炉内熱レベル低下を従来
より早期に検知することが可能となり、また羽口からの
可燃物吹き込み量を制御することで、従来より速やかな
対応が可能となった。そのため、乾留残さによる通気抵
抗層の確保が容易となり、炉内での乾留残さの通気抵抗
層の変動が抑制され、炉内ガスと投入した廃棄物との熱
交換効率が上昇した。その結果、ごみ処理量が増加し、
蒸気発生量が高位で安定した。種々のごみを溶融処埋す
る上で、操業成績の安定化を達成した。また、溶融炉の
炉頂排ガスCO(%)を安定化させるため、後段に設置
した燃焼室での燃焼が更に安定し、ダイオキシン類の発
生も抑制された。
According to the present invention, it is possible to detect a decrease in the heat level in the furnace earlier than before, and to respond more quickly than before by controlling the amount of combustible material blown from the tuyere. Was. Therefore, it was easy to secure the ventilation resistance layer by the carbonization residue, the fluctuation of the ventilation resistance layer of the carbonization residue in the furnace was suppressed, and the heat exchange efficiency between the furnace gas and the input waste increased. As a result, the amount of waste disposal increases,
The amount of steam generated was stable at a high level. Stabilization of operation results was achieved in melting and processing various wastes. Further, in order to stabilize the CO (%) of the exhaust gas at the top of the melting furnace, the combustion in the combustion chamber provided at the subsequent stage was further stabilized, and the generation of dioxins was suppressed.

【0039】また、炉下部熱レベル及び還元雰囲気を制
御・安定化が可能となり、その結果、スラグに含有され
るPbの量が極端に低減(数ppmレベル)した。
Further, the heat level in the lower part of the furnace and the reducing atmosphere can be controlled and stabilized, and as a result, the amount of Pb contained in the slag is extremely reduced (several ppm level).

【0040】更に、炉況が安定し、スラグ温度が高位で
安定したため、コークス等の捕助燃料の使用量が低減し
た。
Further, since the furnace condition was stabilized and the slag temperature was stabilized at a high level, the amount of auxiliary fuel such as coke used was reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のシャフト炉型の廃棄物溶融炉を備えた
廃棄物溶融設備の説明図である。
FIG. 1 is an explanatory view of a waste melting facility provided with a shaft furnace type waste melting furnace of the present invention.

【図2】炉頂温度による燃料吹き込み制御のフローチャ
ートである。
FIG. 2 is a flowchart of fuel injection control based on furnace top temperature.

【図3】ηCOによる燃料吹き込み制御のフローチャート
である。
FIG. 3 is a flowchart of fuel injection control by η CO .

【図4】炉頂温度及びηCOによる燃料吹き込み制御のフ
ローチャートである。
FIG. 4 is a flowchart of fuel injection control based on furnace top temperature and η CO .

【図5】(a)は本発明の燃料吹き込みの例及び吹き込
まない例とのCO濃度と炉頂温度の変化、(b)はスラ
グ温度の変化を示すグラフである。
5A is a graph showing a change in CO concentration and a furnace top temperature in an example of fuel injection and an example of no fuel injection in the present invention, and FIG. 5B is a graph showing a change in slag temperature.

【図6】従来のシャフト炉型の廃棄物溶融炉を備えた廃
棄物溶融設備の説明図である。
FIG. 6 is an explanatory view of a waste melting facility provided with a conventional shaft furnace type waste melting furnace.

【符号の説明】[Explanation of symbols]

1:廃棄物溶融炉 2:装入装置 3:ダクト
4:燃焼室 5:ボイラ 6:ガス冷却器 7:集じん装置
8:誘引送風機 9:煙突 10:送風羽口 11:出滓口
1: Waste melting furnace 2: Charging device 3: Duct
4: Combustion chamber 5: Boiler 6: Gas cooler 7: Dust collector
8: Induction blower 9: Chimney 10: Blower tuyere 11: Slag outlet

フロントページの続き (72)発明者 田中 宏和 北九州市戸畑区大字中原46−59 新日本製 鐵株式会社エンジニアリング事業本部内 (72)発明者 加藤 也寸彦 北九州市戸畑区大字中原46−59 新日本製 鐵株式会社エンジニアリング事業本部内 Fターム(参考) 3K061 AA16 AB02 AB03 AC01 AC13 BA03 BA06 BA07 BA09 BA10 CA08 DA02 DB02 DB16 DB20 4D004 AA46 BA05 CA24 CA29 CC02 CC11 CC17 DA01 DA02 DA03 DA06 DA10 DA20 Continued on the front page (72) Inventor Hirokazu Tanaka 46-59 Ohara Nakahara, Tobata-ku, Kitakyushu Nippon Steel Corporation Inside the Engineering Business Unit (72) Inventor Yasumuhiko Kato 46-59 Ohara Nakahara, Tobata-ku, Kitakyushu New Japan 3K061 AA16 AB02 AB03 AC01 AC13 BA03 BA06 BA07 BA09 BA10 CA08 DA02 DB02 DB16 DB20 4D004 AA46 BA05 CA24 CA29 CC02 CC11 CC17 DA01 DA02 DA03 DA06 DA10 DA20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物溶融炉に廃棄物をコークス、石灰
石とともに装入し、乾燥、熱分解、燃焼、溶融して排出
する際に、廃棄物溶融炉の送風羽口からコークスベッド
ヘ常温の酸素富化空気又は高温空気とともに、燃料をコ
ークスベッドヘ吹き込む方法において、廃棄物溶融炉の
炉頂ガス温度を検出し、炉頂ガス温度が設定値を超えた
場合、炉頂ガス温度が所定の炉頂ガス温度範囲に入るよ
うに燃料吹込量を制御することを特徴とする廃棄物溶融
炉の操業方法。
1. When waste is charged together with coke and limestone into a waste melting furnace, and dried, thermally decomposed, burned, melted and discharged, the waste coke bed is blown into the coke bed at room temperature. In a method in which fuel is blown into a coke bed together with oxygen-enriched air or high-temperature air, the top gas temperature of the waste melting furnace is detected, and when the top gas temperature exceeds a set value, the top gas temperature is set to a predetermined value. A method for operating a waste melting furnace, comprising controlling a fuel injection amount so as to fall within a furnace gas temperature range.
【請求項2】 廃棄物溶融炉に廃棄物をコークス・石灰
石とともに装入し、乾燥、熱分解、燃焼、溶融して排出
する際に、廃棄物溶融炉の送風羽口からコークスベッド
ヘ常温の酸素富化空気又は高温空気とともに、燃料をコ
ークスベッドヘ吹き込む方法において、廃棄物溶融炉の
炉頂ガス中のCO濃度(%)及びCO2濃度(%)を測
定してηCO=CO2/(CO2+CO)を演算し、演算さ
れたηC Oが設定値を超えた場合、所定の範囲に入るよう
に燃料吹込量を制御することを特徴とする廃棄物溶融炉
の操業方法。
2. When the waste is charged together with coke and limestone into the waste melting furnace, and dried, thermally decomposed, burned, melted and discharged, the waste coke bed is blown into the coke bed at room temperature. In a method in which fuel is blown into a coke bed together with oxygen-enriched air or high-temperature air, the CO concentration (%) and CO 2 concentration (%) in the top gas of the waste melting furnace are measured to obtain η CO = CO 2 / A method for operating a waste melting furnace, wherein (CO 2 + CO) is calculated, and when the calculated η C O exceeds a set value, the fuel injection amount is controlled so as to fall within a predetermined range.
【請求項3】 廃棄物溶融炉に廃棄物をコークス、石灰
石とともに装入し、乾燥、熱分解、燃焼、溶融して排出
する際に、廃棄物溶融炉の送風羽口からコークスベッド
ヘ常温の酸素富化空気又は高温空気とともに、燃料をコ
ークスベッドヘ吹き込む方法において、溶融炉の炉頂ガ
ス温度を検出するとともに、炉頂ガス中のCO濃度
(%)及びCO2濃度(%)を測定してηCO=CO2
(CO2+CO)を演算し、炉頂ガス温度が設定値を超
え且つ演算されたηCOが設定値を超えた場合、炉頂ガス
温度が所定の炉頂ガス温度範囲及び演算されたηCOが所
定の範囲に入るように燃料吹込量を制御することを特徴
とする廃棄物溶融炉の操業方法。
3. When the waste is charged together with coke and limestone into the waste melting furnace, dried, thermally decomposed, burned, melted and discharged, the room temperature of the coke bed is discharged from the blast tuyere of the waste melting furnace. In a method in which fuel is blown into a coke bed together with oxygen-enriched air or high-temperature air, the temperature of the top gas of the melting furnace is detected, and the CO concentration (%) and CO 2 concentration (%) in the top gas are measured. Η CO = CO 2 /
(CO 2 + CO) is calculated, and when the furnace gas temperature exceeds the set value and the calculated η CO exceeds the set value, the furnace gas temperature is adjusted to a predetermined furnace gas temperature range and the calculated η CO Controlling the amount of fuel injected so that the temperature falls within a predetermined range.
【請求項4】 燃料が平均粒径30mm以下、カロリ2
000kcal以上10000kcal/kg以下の固
形燃料とすることを特徴とする請求項1、2又は3記載
の廃棄物溶融炉の操業方法。
4. The fuel according to claim 1, wherein the fuel has an average particle size of 30 mm or less,
4. The method for operating a waste melting furnace according to claim 1, wherein the solid fuel is at least 000 kcal and at most 10,000 kcal / kg.
【請求項5】 固形燃料がプラスチックであることを特
徴とする請求項4記載の廃棄物溶融炉の操業方法。
5. The method for operating a waste melting furnace according to claim 4, wherein the solid fuel is plastic.
JP34800899A 1999-07-30 1999-12-07 Waste melting furnace operation method Expired - Fee Related JP3760069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34800899A JP3760069B2 (en) 1999-07-30 1999-12-07 Waste melting furnace operation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-217997 1999-07-30
JP21799799 1999-07-30
JP34800899A JP3760069B2 (en) 1999-07-30 1999-12-07 Waste melting furnace operation method

Publications (2)

Publication Number Publication Date
JP2001108212A true JP2001108212A (en) 2001-04-20
JP3760069B2 JP3760069B2 (en) 2006-03-29

Family

ID=26522338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34800899A Expired - Fee Related JP3760069B2 (en) 1999-07-30 1999-12-07 Waste melting furnace operation method

Country Status (1)

Country Link
JP (1) JP3760069B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349818A (en) * 2001-05-30 2002-12-04 Ibarakishi Method of blowing combustible dust in waste melting furnace
JP2003056820A (en) * 2001-08-20 2003-02-26 Nippon Steel Corp Blowing method for combustible dust into waste melting furnace
JP2011064383A (en) * 2009-09-16 2011-03-31 Nippon Steel Engineering Co Ltd Waste melting treatment method and waste melting treatment device
JP2011064382A (en) * 2009-09-16 2011-03-31 Nippon Steel Engineering Co Ltd Waste melting treatment method and waste melting treatment device
CN116518409A (en) * 2023-04-12 2023-08-01 浙江新都绿色能源有限公司 Feeding combustion-supporting cooperative system for coal combustion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349818A (en) * 2001-05-30 2002-12-04 Ibarakishi Method of blowing combustible dust in waste melting furnace
JP2003056820A (en) * 2001-08-20 2003-02-26 Nippon Steel Corp Blowing method for combustible dust into waste melting furnace
JP4520673B2 (en) * 2001-08-20 2010-08-11 新日鉄エンジニアリング株式会社 Method of injecting combustible dust into a waste melting furnace
JP2011064383A (en) * 2009-09-16 2011-03-31 Nippon Steel Engineering Co Ltd Waste melting treatment method and waste melting treatment device
JP2011064382A (en) * 2009-09-16 2011-03-31 Nippon Steel Engineering Co Ltd Waste melting treatment method and waste melting treatment device
CN116518409A (en) * 2023-04-12 2023-08-01 浙江新都绿色能源有限公司 Feeding combustion-supporting cooperative system for coal combustion

Also Published As

Publication number Publication date
JP3760069B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
JP5180917B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP2001108212A (en) Method of operating waste melting furnace
JP4276559B2 (en) Waste melting treatment method using biomass
JP4377825B2 (en) Waste melting furnace operation method
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP2017180922A (en) Waste tire gasification melting device and waste tire gasification melting method
KR100352790B1 (en) Device for the treatment of the sludge by burning and melting
JP5490488B2 (en) Waste melting treatment method
JP5574475B2 (en) Waste melting treatment method and waste melting treatment apparatus
KR100470730B1 (en) Smelting Incineration Apparatus and Method of Solid Waste Treatment
JP4009151B2 (en) Combustion control method and apparatus for gasification melting furnace
JP5255509B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP4520673B2 (en) Method of injecting combustible dust into a waste melting furnace
JP2000192129A (en) Operation of converter
JP4377826B2 (en) Waste melting treatment method
Shibaike et al. Development of high-performance direct melting process for municipal solid waste
JP2005241054A (en) Waste material melting method using powder biomass
JP4873727B2 (en) Apparatus and method for treating plastic-containing waste
JP2001029725A (en) Control method of temperature of exhaust gas inlet of dust collector of waste melting equipment
JPH06129618A (en) Method of melting and processing waste material
JP5794662B2 (en) Waste melting treatment method
JP2629117B2 (en) Waste melting furnace
JP2005172386A (en) Incinerating melting cooling method
Xiang et al. Study on the Law of the Influence on Slag Blocking in Combustors Produced by Coal Blending Combustion Strategy of Slag-tap Boiler
JP4336226B2 (en) Waste melting treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060106

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees