JP2011064382A - Waste melting treatment method and waste melting treatment device - Google Patents

Waste melting treatment method and waste melting treatment device Download PDF

Info

Publication number
JP2011064382A
JP2011064382A JP2009214710A JP2009214710A JP2011064382A JP 2011064382 A JP2011064382 A JP 2011064382A JP 2009214710 A JP2009214710 A JP 2009214710A JP 2009214710 A JP2009214710 A JP 2009214710A JP 2011064382 A JP2011064382 A JP 2011064382A
Authority
JP
Japan
Prior art keywords
waste
grate
melting
pyrolysis residue
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009214710A
Other languages
Japanese (ja)
Other versions
JP5510782B2 (en
Inventor
Nobuhiro Tanigaki
信宏 谷垣
Junichi Takada
純一 高田
Yasuhiko Kato
也寸彦 加藤
Yuzo Sakai
裕三 堺
Kosuke Hoshisawa
康介 星沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2009214710A priority Critical patent/JP5510782B2/en
Publication of JP2011064382A publication Critical patent/JP2011064382A/en
Application granted granted Critical
Publication of JP5510782B2 publication Critical patent/JP5510782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste melting treatment method achieving 300-1,000 kg/h/m<SP>2</SP>of a grate combustion load of a grate part without enlarging a facility by making gas generated in the grate part and a pyrolysis residue melting part pass through a waste filling layer formed within a drying shaft part, and a waste melting treatment device. <P>SOLUTION: Gas generated in the grate part 2 for generating pyrolysis residue 7 and the pyrolysis residue melting part 3 for melting the pyrolysis residue 7 is made to pass through the waste filling layer 6 formed by charging waste from a top of the drying shaft part 1 to inside of the drying shaft part 1, to dry and pyrolyzed the waste. The gas passed through the waste filling layer 6 is discharged from the top of the drying shaft part 1, and the waste dried and pyrolyzed in the drying shaft part 1 is further pyrolyzed in the grate part 2 to generate pyrolysis residue 7. The generated pyrolysis residue 7 is continuously supplied from the grate part 2 to the pyrolysis residue melting part 3 and is melted. The grate combustion load of the grate part 2 is set to be 300-1,000 kg/h/m<SP>2</SP>. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、廃棄物を乾燥・熱分解して廃棄物中の水分および揮発分を除去して得られた熱分解残渣を溶融する廃棄物溶融処理技術に関する。   The present invention relates to a waste melting treatment technique for melting a thermal decomposition residue obtained by drying and thermally decomposing waste to remove moisture and volatile components in the waste.

一般廃棄物、産業廃棄物などの廃棄物をシャフト炉式廃棄物溶融炉で溶融処理することが行われている。図2に示すように、溶融炉31には、廃棄物がコークス、石灰石などの副資材とともに、炉上部から装入装置32により装入される。廃棄物は炉内で乾燥、熱分解、燃焼、溶融の過程を経て出湯口33から溶融物として排出される。廃棄物中の可燃物は、一部が熱分解されてガスとなって排出され、一部は炉下部で羽口34から吹き込まれた空気および酸素によって燃焼するが、残りの可燃物は可燃性ダストとなって溶融炉31の炉頂から排出される。   A waste material such as general waste and industrial waste is melted in a shaft furnace type waste melting furnace. As shown in FIG. 2, the waste material is charged into the melting furnace 31 together with auxiliary materials such as coke and limestone by a charging device 32 from the top of the furnace. The waste is discharged as a melt from the tap 33 through processes of drying, pyrolysis, combustion, and melting in the furnace. Some of the combustibles in the waste are thermally decomposed and discharged as gas, and some are combusted by air and oxygen blown from the tuyere 34 at the bottom of the furnace, while the remaining combustibles are combustible. Dust is discharged from the top of the melting furnace 31 as dust.

溶融炉31の炉頂から排出される可燃性ダストは、可燃性ダスト捕集装置35で捕集され、可燃性ダスト貯蔵タンク36に貯蔵され、可燃性ダスト切出装置37で切り出されて酸素富化空気を供給する羽口34から炉内へ吹き込まれる。可燃性ダスト捕集装置35を通過した排ガスは、後段の燃焼室で燃焼される。   The combustible dust discharged from the top of the melting furnace 31 is collected by the combustible dust collecting device 35, stored in the combustible dust storage tank 36, cut out by the combustible dust cutting device 37, and enriched with oxygen. It is blown into the furnace from the tuyere 34 for supplying the crystallization air. The exhaust gas that has passed through the combustible dust collecting device 35 is burned in the subsequent combustion chamber.

溶融炉31による廃棄物溶融処理では、処理物を溶融するための主燃料として使用されるコークスの処理費用に占める割合が大きいので、処理費用を節約するためにコークスの使用量を低減することが望まれている。   In the waste melting treatment by the melting furnace 31, the ratio of the coke used as the main fuel for melting the processed material to the processing cost is large, so that the amount of coke used can be reduced in order to save the processing cost. It is desired.

一方で、地球温暖化防止の観点から、化石燃料に由来するコークスを溶融熱源として用いるので、環境に対するCO負荷を削減することからもコークス使用量の削減が望まれている。 On the other hand, from the viewpoint of preventing global warming, coke derived from fossil fuels is used as a melting heat source, so that reduction of coke usage is also desired in order to reduce the CO 2 load on the environment.

コークス使用量を低減させるため、例えば、羽口を介して炉頂から排出した可燃性ダストとともに、可燃性ダスト以外の可燃物を吹き込む方法(特許文献1)、下段送風羽口から供給される酸素量(A)に対する、捕集され該下段送風羽口から供給される可燃性ダストとコークスの量および組成から求まる理論酸素量(B)の比率(B/A)を、0.5〜1.0の範囲になるように、可燃性ダストの吹き込み量に応じて送風条件を変える方法(特許文献2)、加熱コイルによって炉内に充填されたコークスを羽口から吹き込まれた空気又は酸素富化空気により還元燃焼せしめるとともに、該コークスに交番電流を通電して誘導加熱することにより廃棄物を溶融処理する廃棄物の溶融処理方法(特許文献3)あるいは、木材などのバイオマスを利用する方法(特許文献4)などが提案されている。 In order to reduce the amount of coke used, for example, a method of injecting combustible materials other than combustible dust together with combustible dust discharged from the top of the furnace through the tuyere (Patent Document 1), oxygen supplied from the lower blowing tuyere The ratio (B / A) of the theoretical oxygen amount (B) obtained from the amount and composition of the combustible dust and coke collected and supplied from the lower air tuyeres to the amount (A) is 0.5 to 1. Enrichment of air or oxygen blown from the tuyere of coke filled in the furnace by a heating coil (Patent Document 2) together allowed to reducing combustion by air, melt processing methods of waste melting treatment of waste by induction heating by energizing the alternating current to the coke (Patent Document 3) or, biomass such as wood And a method of use (Patent Document 4) have been proposed.

特許文献5には、ストーカ群で生成した未燃炭素分を含む残渣を未燃炭素分の燃焼熱にて溶融し、ストーカ炉を高温化することなく主灰の改質による資源化を行うことが開示されている。この技術は、ストーカ高温化による主灰および飛灰の溶融固着を防止し、熱分解残渣冷却に伴うヒートロスによる熱効率低下を改善するためのもので、ストーカ上の廃棄物温度を1000℃以下の低温にて部分燃焼させ安定したガス化を行うというものである。   In Patent Document 5, the residue containing unburned carbon generated in the stoker group is melted by the combustion heat of the unburned carbon, and resource is recycled by reforming the main ash without increasing the temperature of the stoker furnace. Is disclosed. This technology prevents melting and fixing of main ash and fly ash due to high temperature of the stoker, and improves the reduction in thermal efficiency due to heat loss due to cooling of the thermal decomposition residue. This is to perform stable gasification by partial combustion at

特開2006−207911号公報JP 2006-207911 A 特開2003−056820号公報JP 2003-056820 A 特開2002−054810号公報JP 2002-054810 A 特開2007−93069号公報JP 2007-93069 A 特開2003−166705号公報JP 2003-166705 A

シャフト炉式ガス化溶融炉の炉内の充填層では直接熱交換により固体の昇温が行われているため熱効率はよいが、廃棄物中には生ごみ等の高水分ごみや木等の揮発分が多く、また径が大きいものが存在する。このため、従来型のシャフト式ガス化溶融炉では、これらの廃棄物の一部が十分に乾燥されることなく、また揮発分のガス化が十分行われることなく炉最下部に下降して、コークスと共に燃焼・溶融されていた。炉下部において水分や揮発分はいずれも雰囲気温度を低下させることになるので、雰囲気温度を高く維持し非燃焼物を完全溶解するためには、結果としてコークス使用量を増やす必要がある。また、コークス代替としてLPG等の外部燃料を使用する場合、外部燃料(コークス+ガス)使用量は高いままであった。また、従来のシャフト炉式ガス化溶融炉内では、ごみの装入時や未乾燥・未乾留の廃棄物が炉最下部まで下降した時などに、充填層内での揮発分のガス化に伴う蒸気量や排ガス量の変動が発生していた。   In the packed bed in the shaft furnace type gasification melting furnace, the temperature of the solid is raised by direct heat exchange, so the heat efficiency is good, but in the waste, high-moisture waste such as garbage and volatilization of wood etc. There are some which have many parts and large diameters. For this reason, in the conventional shaft type gasification melting furnace, a part of these wastes are not sufficiently dried, and the gasification of the volatile matter is sufficiently performed to descend to the bottom of the furnace, It was burned and melted with coke. Since moisture and volatile matter in the lower part of the furnace both lower the atmospheric temperature, it is necessary to increase the amount of coke used as a result in order to maintain the atmospheric temperature high and completely dissolve non-combustibles. Further, when using external fuel such as LPG as a substitute for coke, the amount of external fuel (coke + gas) used remains high. Also, in the conventional shaft furnace type gasification melting furnace, gasification of volatile matter in the packed bed is performed when charging waste or when undried / undried waste falls to the bottom of the furnace. There was a change in the amount of steam and exhaust gas.

さらに、従来型のシャフト炉式ガス化溶融炉では水分および揮発分の乾燥、ガス化が均一になされず、吹き抜けと呼ばれるガスの偏流現象が発生することがあった。   Furthermore, in the conventional shaft furnace type gasification and melting furnace, moisture and volatile components are not uniformly dried and gasified, and a gas drift phenomenon called blow-through may occur.

また、特許文献5に示すようなストーカ炉においては、次の課題があった。   In addition, the stoker furnace as shown in Patent Document 5 has the following problems.

(1)廃棄物投入口と乾燥・熱分解ゾーンの排ガス排出口とが別々に異なった位置にあって、火格子から発生したガスは二次燃焼室にて完全に燃焼されて排ガス排出口から排出される。その結果、火格子燃焼負荷は150〜250kg/h/m程度でしか操業することができず燃焼負荷を上げるためには、設備を大きくせざるを得ず、設備費が高くなる。(2)燃焼排ガス通路と廃棄物投入口とが別々に異なった位置にあるため、ストーカでの部分燃焼によって発生したガスを有効利用することができず、高水分の廃棄物をストーカ部で部分燃焼するために、乾燥手段および燃焼手段を設置する必要があり、結果として設備が巨大化する。 (1) The waste inlet and the exhaust gas outlet in the drying / pyrolysis zone are located at different positions, and the gas generated from the grate is completely burned in the secondary combustion chamber and is discharged from the exhaust gas outlet. Discharged. As a result, the grate combustion load can only be operated at about 150 to 250 kg / h / m 2, and in order to increase the combustion load, the equipment must be enlarged, and the equipment cost becomes high. (2) Because the combustion exhaust gas passage and the waste inlet are at different positions, the gas generated by partial combustion in the stoker cannot be used effectively, and high-moisture waste is partially separated in the stoker part. In order to burn, it is necessary to install a drying means and a combustion means, resulting in an increase in equipment.

そこで、本発明は、乾燥用シャフト部内に形成した廃棄物充填層に火格子部及び熱分解残渣溶融部で発生したガスを通過させることによって、設備を大きくすることなく火格子部の火格子燃焼負荷を300〜1000kg/h/mとすることができる廃棄物溶融処理方法及び装置を提供するものである。 Therefore, the present invention allows the gas generated in the grate part and the pyrolysis residue melting part to pass through the waste packing layer formed in the drying shaft part, so that the grate combustion of the grate part can be performed without enlarging the equipment. The present invention provides a waste melting method and apparatus capable of setting the load to 300 to 1000 kg / h / m 2 .

本発明の廃棄物溶融処理方法は、廃棄物を乾燥・熱分解する乾燥用シャフト部の頂部から廃棄物を乾燥用シャフト部内に装入して形成した廃棄物充填層に、熱分解残渣を生成する火格子部と塊状炭素系可燃物質を熱源として熱分解残渣を溶融する熱分解残渣溶融部とで発生したガスを通過させて廃棄物を乾燥・熱分解させるとともに、廃棄物充填層を通過したガスは乾燥用シャフト部の頂部から排出し、乾燥用シャフト部で乾燥・熱分解した廃棄物を火格子部でさらに熱分解して熱分解残渣を生成し、生成した熱分解残渣を火格子部から熱分解残渣溶融部へ連続的に供給して溶融して火格子部の火格子燃焼負荷を300〜1000kg/h/mとすることを特徴とする。 The waste melting treatment method of the present invention generates a pyrolysis residue in a waste filling layer formed by charging waste into the drying shaft portion from the top of the drying shaft portion for drying and pyrolyzing the waste. The gas generated in the grate part and the pyrolytic residue melting part that melts the pyrolysis residue using the massive carbon combustible as the heat source is passed through to dry and pyrolyze the waste, and it passes through the waste packed bed The gas is discharged from the top of the drying shaft part, and the waste dried and pyrolyzed in the drying shaft part is further pyrolyzed in the grate part to generate a pyrolysis residue, and the generated pyrolysis residue is grate part Is supplied continuously to the pyrolysis residue melting part and melted to make the grate combustion load of the grate part 300 to 1000 kg / h / m 2 .

また、本発明の廃棄物溶融処理装置は、廃棄物装入口及び排ガス排気口が頂部に設けられ、廃棄物装入口から廃棄物が装入されて形成された廃棄物充填層に火格子部及び熱分解残渣溶融部で発生したガスを通過させて廃棄物を乾燥・熱分解させるとともに、廃棄物充填層を通過したガスが排ガス排気口から排出される乾燥用シャフト部が、乾燥用シャフト部で乾燥・熱分解された廃棄物をさらに熱分解して熱分解残渣を生成する前記火格子部の入側の上方に配置され、火格子部で生成された熱分解残渣を燃焼・溶融する前記熱分解残渣溶融部を備えた廃棄物溶融処理装置において、前記火格子部の火格子燃焼負荷が300〜1000kg/h/mであることを特徴とする。 Further, the waste melting treatment apparatus of the present invention is provided with a waste charging inlet and an exhaust gas exhaust outlet at the top, and a grate portion and a waste filling layer formed by charging waste from the waste charging inlet and The drying shaft part where the gas generated in the pyrolysis residue melting part is dried and pyrolyzed by passing gas through the waste packed bed is exhausted from the exhaust gas exhaust port. The heat that burns and melts the pyrolysis residue generated in the grate part, disposed above the entrance side of the grate part that further pyrolyzes the dried and pyrolyzed waste to produce a pyrolysis residue. In the waste melting apparatus provided with the decomposition residue melting portion, the grate combustion load of the grate portion is 300 to 1000 kg / h / m 2 .

本発明においては火格子部および熱分解残渣溶融部で発生したガスを、乾燥用シャフト部内に形成された廃棄物充填層を通過させることによって廃棄物の乾燥・熱分解を効率化することが可能となり、火格子燃焼負荷を300kg/h/m以上に設定することができる。火格子燃焼負荷を300kg/h/m未満とすると、火格子部で生成される熱分解残渣中の可燃物が完全に燃焼されてしまい、灰化してしまう。その結果、火格子部に連結されている熱分解残渣溶融部において、熱分解残渣に含まれる可燃物質を灰分の溶融熱源として利用することができず、コークス等の塊状炭素系可燃物質使用量が増えてしまう。一方で、火格子燃焼負荷が1000kg/h/m以上である場合、火格子部における廃棄物の燃焼性が悪化してしまい、熱分解残渣溶融部に未乾燥・未乾留の廃棄物が供給されることとなる。この場合、廃棄物の乾燥および乾留のための外部燃料が必要となるため、コークス使用量が増加することとなる。したがって、300〜1000kg/h/mの火格子燃焼負荷にて操業を行うことによって火格子部における廃棄物の乾燥・乾留を最適化し、結果として、溶融炉におけるコークス等の外部燃焼使用量を極小化することが可能となる。試験結果からすると、400〜700kg/h/mが特に望ましい。 In the present invention, it is possible to improve the efficiency of drying and pyrolysis of waste by passing the gas generated in the grate part and the pyrolysis residue melting part through the waste packing layer formed in the drying shaft part. Thus, the grate combustion load can be set to 300 kg / h / m 2 or more. When the grate combustion load is less than 300 kg / h / m 2 , the combustibles in the pyrolysis residue generated in the grate part are completely burned and ashed. As a result, in the pyrolysis residue melting part connected to the grate part, the combustible material contained in the pyrolysis residue cannot be used as a heat source for melting ash, and the amount of massive carbon-based combustible material such as coke is used. It will increase. On the other hand, when the grate combustion load is 1000 kg / h / m 2 or more, the combustibility of the waste in the grate part is deteriorated, and undried / undried waste is supplied to the pyrolysis residue melting part. Will be. In this case, since an external fuel is required for drying and carbonization of waste, the amount of coke used is increased. Therefore, by operating with a grate combustion load of 300 to 1000 kg / h / m 2 , the drying and dry distillation of waste in the grate part is optimized, and as a result, the amount of external combustion used for coke in the melting furnace is reduced. Minimization is possible. From the test results, 400 to 700 kg / h / m 2 is particularly desirable.

火格子燃焼負荷が300kg/h/m以下となる場合は、廃棄物が乾留だけでなく、完全に燃焼してしまい、灰となってしまい、コークス使用量が増加してしまう。従って、炉上部からの廃棄物装入速度を上げ、火格子燃焼負荷を適正な範囲内に維持することが重要となる。 When the grate combustion load is 300 kg / h / m 2 or less, the waste is not only dry-distilled, but also completely burned, becomes ash, and the amount of coke used increases. Therefore, it is important to increase the waste charging speed from the top of the furnace and maintain the grate combustion load within an appropriate range.

また、火格子部からの送風流速に関しては、1〜20Nm/sが望ましい。1Nm/s未満とすると火格子送風口から廃棄物が多く落鉱してしまい、落鉱灰処理装置の大型化が必要になったり、最終処分量の増加を招いたりする。いずれにしてもコストアップ要因となる。また、20Nm/s以上だと火格子上にある廃棄物を吹き飛ばしてしまい、安定的な乾燥・乾留および燃焼を行うことが困難となる。   Moreover, regarding the ventilation flow rate from a grate part, 1-20 Nm / s is desirable. If it is less than 1 Nm / s, a large amount of waste will fall off from the grate blower opening, and it will be necessary to increase the size of the falling ash treatment apparatus, or increase the final disposal amount. In any case, it becomes a cost increase factor. On the other hand, if it is 20 Nm / s or more, the waste on the grate is blown away, and it becomes difficult to perform stable drying / dry distillation and combustion.

本発明では、火格子部および熱分解残渣溶融部で発生したガスを、乾燥用シャフト部内に形成された廃棄物充填層を通過させることによって廃棄物の乾燥・熱分解を効率化することが可能となり、火格子燃焼負荷を大きくすることができ、その結果、コークス等の外部燃焼使用量を低減化することが可能となる。   In the present invention, it is possible to improve the efficiency of drying and pyrolysis of waste by passing the gas generated in the grate part and the pyrolysis residue melting part through the waste packing layer formed in the drying shaft part. Thus, the grate combustion load can be increased, and as a result, the amount of external combustion used such as coke can be reduced.

また、本発明は乾燥シャフト部と熱分解残渣溶融部の間に火格子部を設けて効率よく熱分解を行って熱分解残渣のみを溶融することになるので、充填層内における水分の乾燥および揮発分のガス化による発生ガス量の変動が減少し、蒸気量または排ガス量を安定させることも可能となる。   In addition, the present invention provides a grate portion between the drying shaft portion and the pyrolysis residue melting portion to efficiently perform pyrolysis to melt only the pyrolysis residue, so that drying of moisture in the packed bed and Variations in the amount of generated gas due to gasification of volatile matter are reduced, and the amount of steam or exhaust gas can be stabilized.

本発明では、火格子燃焼負荷が大きいので、設備を大きくすることなく、処理量を増やすことが可能となる。   In the present invention, since the grate combustion load is large, the amount of processing can be increased without increasing the equipment.

また、従来のシャフト炉式廃棄物溶融炉において生じる吹き抜け現象は廃棄物の乾燥・熱分解が効率的に行われない結果発生しているが、本発明では、乾燥、熱分解を乾燥用シャフト部および火格子部にて分離して行うことにより排ガス量の安定化を図ることができるので、吹き抜けを防止することができる。   In addition, the blow-through phenomenon that occurs in a conventional shaft furnace type waste melting furnace occurs as a result of waste being not efficiently dried and thermally decomposed. Moreover, since it can aim at stabilization of the amount of exhaust gas by performing by isolate | separating in a grate part, a blow-by can be prevented.

本発明おいて使用する火格子を備えた廃棄物溶融処理装置を示す概略図である。It is the schematic which shows the waste fusion processing apparatus provided with the grate used in this invention. 従来のシャフト炉式廃棄物溶融炉の概略図である。It is the schematic of the conventional shaft furnace type waste melting furnace.

本発明を、図面を参照しながら説明する。   The present invention will be described with reference to the drawings.

図1において、本発明の廃棄物溶融処理装置は、装入された廃棄物を乾燥・熱分解する乾燥用シャフト部1、乾燥用シャフト部1で乾燥・熱分解された廃棄物をさらに熱分解して熱分解残渣を生成する火格子部2、火格子部2で生成された熱分解残渣を燃焼・溶融する熱分解残渣溶融部3からなる。乾燥用シャフト部1が火格子部2の入側の上方に配置され、熱分解残渣溶融部3が火格子部2の出側の下方に配置されてクランク形状に連通して一体に接続されている。   In FIG. 1, the waste melting apparatus of the present invention is a drying shaft portion 1 for drying and pyrolyzing the charged waste, and further decomposing the waste dried and pyrolyzed by the drying shaft portion 1. And a pyrolysis residue melting section 3 that burns and melts the pyrolysis residue generated in the grate section 2. The drying shaft portion 1 is disposed above the entrance side of the grate portion 2, and the pyrolysis residue melting portion 3 is disposed below the exit side of the grate portion 2, communicated with the crank shape and integrally connected. Yes.

乾燥用シャフト部1の頂部には、廃棄物装入口4と排ガス出口5が設けられる。乾燥用シャフト部1内に廃棄物装入口4から装入された廃棄物により廃棄物充填層6が形成される。廃棄物充填層6は火格子部2及び熱分解残渣溶融部3で発生したガスが通過し、通過したガスは頂部の排ガス出口5から排出される。   A waste charging inlet 4 and an exhaust gas outlet 5 are provided at the top of the drying shaft portion 1. A waste filling layer 6 is formed by the waste charged from the waste charging inlet 4 in the drying shaft portion 1. The gas generated in the grate part 2 and the pyrolysis residue melting part 3 passes through the waste packed bed 6, and the passed gas is discharged from the exhaust gas outlet 5 at the top.

乾燥用シャフト部1の下部には火格子部2が接続されている。火格子部2の横幅は乾燥シャフト部1の内径と同径であり、かつ、火格子部の縦横比が1以上である。乾燥用シャフト部1と火格子部2の幅とを同径とすることによって乾燥用シャフト部−火格子部におけるごみの棚吊り現象を防止することができ、効率的かつ安定的な熱交換を行うことが可能となる。また、縦横比を1以上とすることで、乾燥用シャフト部に充填された廃棄物が熱分解残渣溶融部3に直接流れ込むことを防止できる。乾燥用シャフト部1に充填された廃棄物が熱分解残渣溶融部3に流れ込んでしまうと、廃棄物を乾燥・熱分解するための熱量が必要となり、コークス等の外部燃料使用量を増やさざるを得なくなる。一方、縦横比が4以上となると、火格子長さが非常に長くなり設備コストアップにつながる。   A grate portion 2 is connected to the lower portion of the drying shaft portion 1. The horizontal width of the grate portion 2 is the same as the inner diameter of the dry shaft portion 1 and the aspect ratio of the grate portion is 1 or more. By making the width of the drying shaft portion 1 and the grate portion 2 the same diameter, it is possible to prevent the dust shelving phenomenon in the drying shaft portion-the grate portion, and efficient and stable heat exchange. Can be done. Further, by setting the aspect ratio to 1 or more, it is possible to prevent waste filled in the drying shaft portion from flowing directly into the pyrolysis residue melting portion 3. If the waste filled in the drying shaft portion 1 flows into the pyrolysis residue melting portion 3, heat for drying and pyrolyzing the waste is required, and the amount of external fuel such as coke is increased. You won't get. On the other hand, when the aspect ratio is 4 or more, the grate length becomes very long, leading to an increase in equipment cost.

火格子部2は、乾燥用シャフト部1で乾燥、熱分解された廃棄物をさらに熱分解させて熱分解残渣7を生成して熱分解残渣溶融部3へ移動させる火格子を備えている。火格子部2は、スト−カ炉と同様に、可動火格子8と固定火格子9とを交互に階段状又は傾斜状に組み合せることにより形成されており、各可動火格子8を流体圧シリンダ等の駆動装置で前後方向へ一定のピッチで往復動させることによって、火格子上の廃棄物を撹拌しながら上流側から下流側へ前進させるようになっている。火格子部2は下方から空気が送風される。火格子構造とすることによって、熱分解残渣溶融部3への熱分解残渣7の供給が連続的且つ安定的となり、熱分解残渣溶融部3において熱分解残渣の安定的な溶融を確保することが可能となる。   The grate unit 2 includes a grate that further decomposes the waste dried and pyrolyzed by the drying shaft unit 1 to generate a pyrolysis residue 7 and move it to the pyrolysis residue melting unit 3. The grate part 2 is formed by combining the movable grate 8 and the fixed grate 9 alternately in a staircase shape or an inclined shape, like the stoker furnace. The waste on the grate is advanced from the upstream side to the downstream side while being agitated by reciprocating at a constant pitch in the front-rear direction with a driving device such as a cylinder. The grate portion 2 is blown from below. By adopting the grate structure, the supply of the pyrolysis residue 7 to the pyrolysis residue melting portion 3 becomes continuous and stable, and it is possible to ensure stable melting of the pyrolysis residue in the pyrolysis residue melting portion 3. It becomes possible.

本実施例では、火格子部2は前段の火格子群2aと後段の火格子群2bの2段階に分かれ、前段の火格子群2aと後段火格子群2bがそれぞれ独立した駆動装置を有している。   In this embodiment, the grate unit 2 is divided into two stages, a front stage grate group 2a and a rear stage grate group 2b, and the front stage grate group 2a and the rear stage grate group 2b have independent drive devices. ing.

火格子部を前段の火格子群2aと後段の火格子群2bの2段とすることで、火格子部2における廃棄物の撹拌を強化することができ、より効率的に乾燥、熱分解を行うことが可能となる。   By making the grate part into two stages of the front grate group 2a and the rear grate group 2b, the stirring of the waste in the grate part 2 can be strengthened, and drying and pyrolysis can be performed more efficiently. Can be done.

また、火格子部2における廃棄物の乾燥、熱分解状況によって、前段の火格子群2aと後段火格子群2bの独立した駆動装置により可動火格子8の駆動速度、火格子からの送風量、送風温度等を個別に変化させて火格子部2における廃棄物の乾燥、熱分解状況を容易に制御することが可能となるので、廃棄物の乾燥、熱分解を適正化することが可能となる。例えば、廃棄物の乾燥・熱分解状態が不十分である場合は、前段の火格子群2aと比較して後段火格子群2bの火格子駆動速度を遅くすることによって乾燥、熱分解状態を改善することが可能となる。   Also, depending on the drying and pyrolysis status of the waste in the grate unit 2, the driving speed of the movable grate 8 by the independent drive devices of the front grate group 2a and the rear grate group 2b, the amount of air blown from the grate, Since it is possible to easily control the drying and thermal decomposition status of the waste in the grate section 2 by individually changing the blowing temperature and the like, it becomes possible to optimize the drying and thermal decomposition of the waste. . For example, when the dry / pyrolytic state of the waste is insufficient, the drying and pyrolysis state is improved by slowing the grate driving speed of the rear grate group 2b compared to the front grate group 2a. It becomes possible to do.

このようにすることによって、火格子燃焼負荷を300〜1000kg/h/mの範囲とすることができ、コークス使用量を低減するとともに、火格子部位の設備を小さくすることが可能となる。なお、火格子部2は、3段、4段としても良いが、縦横比が長くなるために最適な段数を選定することが重要である。 By doing in this way, a grate combustion load can be made into the range of 300-1000 kg / h / m < 2 >, it becomes possible to reduce the amount of coke used, and to make the installation of a grate part small. The grate unit 2 may have three stages and four stages, but it is important to select an optimal number of stages in order to increase the aspect ratio.

また、後段の火格子群2bの傾斜角度は前段の火格子群2aの傾斜角度より小さくすることが望ましい。例えば、図1では、後段の火格子群2bを水平にすることにより、右斜め下方向に傾斜している前段の火格子群2の傾斜角度より小さくしている。傾斜角度を変えることで、ごみの撹拌を強化することが可能となる。さらに後段の火格子2bの傾斜角度を前段の火格子2aよりも緩やかにすることで、火格子部2から乾燥、熱分解が不十分な熱分解残渣が熱分解残渣溶融部3に供給されることを抑制することが容易となる。そうすることによって、熱分解残渣溶融部3におけるコークス等の外部燃焼使用量を適正化することが可能となる。なお、乾燥用シャフト部1から火格子部2へ廃棄物を確実に供給するため、前段の火格子群2aは、図1に示すように、水平階段状に設置されていることが望ましい。   Further, it is desirable that the inclination angle of the rear-stage grate group 2b be smaller than the inclination angle of the front-stage grate group 2a. For example, in FIG. 1, the rear grate group 2 b is leveled to be smaller than the inclination angle of the front grate group 2 that is inclined obliquely downward to the right. By changing the inclination angle, it is possible to enhance the stirring of the garbage. Furthermore, by making the inclination angle of the rear grate 2b gentler than that of the front grate 2a, a pyrolysis residue that is insufficiently dried and pyrolyzed is supplied to the pyrolysis residue melting unit 3 from the grate unit 2. It becomes easy to suppress this. By doing so, it becomes possible to optimize the amount of external combustion used such as coke in the pyrolysis residue melting part 3. In order to reliably supply waste from the drying shaft portion 1 to the grate portion 2, it is desirable that the front grate group 2a is installed in a horizontal step shape as shown in FIG.

熱分解残渣溶融部3は、下方の炉床部10、この炉床部10の上に連なる朝顔部11、この朝顔部11の上のシャフト部12を備える。なお、シャフト部12はなくてもかまわない。炉床部10には酸素源として空気と酸素を吹き込む下段羽口13を備えるとともに、朝顔部11からシャフト部12の下端部にかけて空気を吹き込む上段羽口14,15が配置されている。熱分解残渣溶融部3の炉床部10には、従来のシャフト炉式廃棄物溶融炉と同じくコークスベットが形成され、溶融物を出湯する出湯口16が形成されている。   The pyrolysis residue melting part 3 includes a lower hearth part 10, a morning glory part 11 connected to the hearth part 10, and a shaft part 12 on the morning glory part 11. The shaft portion 12 may not be provided. The furnace floor portion 10 includes a lower tuyere 13 for blowing air and oxygen as an oxygen source, and upper tuyere 14 and 15 for blowing air from the morning glory portion 11 to the lower end portion of the shaft portion 12. In the hearth part 10 of the pyrolysis residue melting part 3, a coke bed is formed in the same manner as a conventional shaft furnace type waste melting furnace, and a hot water outlet 16 for pouring the melt is formed.

コークス、石灰石などの副資材は、熱分解残渣溶融部3の頂部の副資材装入口17から投入する。   Auxiliary materials such as coke and limestone are input from the auxiliary material inlet 17 at the top of the pyrolysis residue melting portion 3.

前記構成において、乾燥用シャフト部1の頂部の廃棄物装入口4から廃棄物が乾燥用シャフト部1内に装入されて形成された廃棄物充填層6に火格子部2および熱分解残渣溶融部3で発生した排ガスが通過することによって熱交換されて廃棄物の乾燥・熱分解を効率化することが可能となる。乾燥用シャフト部1の廃棄物充填層6を通過した排ガスは、排ガス出口5から排気される。   In the above-described configuration, the grate portion 2 and the pyrolysis residue are melted into the waste filling layer 6 formed by introducing waste into the drying shaft portion 1 from the waste inlet 4 at the top of the drying shaft portion 1. When the exhaust gas generated in the section 3 passes, heat exchange is performed, and it becomes possible to improve the efficiency of drying and pyrolysis of waste. The exhaust gas that has passed through the waste filling layer 6 of the drying shaft portion 1 is exhausted from the exhaust gas outlet 5.

乾燥用シャフト部1で乾燥、熱分解された廃棄物は、火格子部2でさらに熱分解させて熱分解残渣7を生成する。生成された熱分解残渣7は、火格子部2の出側から熱分解残渣溶融部3内へ落下して充填され、コークスベットの熱源により燃焼、溶融され、炉床部10の出湯口16から排出される。   The waste dried and pyrolyzed by the drying shaft portion 1 is further pyrolyzed by the grate portion 2 to generate a pyrolysis residue 7. The generated pyrolysis residue 7 is dropped and filled from the exit side of the grate portion 2 into the pyrolysis residue melting portion 3, burned and melted by the heat source of the coke bed, and discharged from the tap 16 of the hearth portion 10. Discharged.

1:乾燥用シャフト部 2:火格子部
2a:前段の火格子群 2b:後段の火格子群
3:熱分解残渣溶融部 4:廃棄物装入口
5:排ガス出口 6:廃棄物充填層
7:熱分解残渣 8:可動火格子
9:固定火格子 10:炉床部
11:朝顔部 12:シャフト部
13:下段羽口 14:上段羽口
15:上段羽口 16:出湯口
17:副資材装入口
1: Drying shaft part 2: Grate part 2a: Front grate group 2b: Rear grate group 3: Pyrolysis residue melting part 4: Waste inlet 5: Exhaust gas outlet 6: Waste packed bed 7: Thermal decomposition residue 8: Movable grate 9: Fixed grate 10: Furnace 11: Morning glory 12: Shaft 13: Lower tuyere 14: Upper tuyere 15: Upper tuyere 16: Outlet 17: Secondary material equipment entrance

Claims (7)

廃棄物を乾燥・熱分解する乾燥用シャフト部の頂部から廃棄物を乾燥用シャフト部内に装入して形成した廃棄物充填層に、熱分解残渣を生成する火格子部と塊状炭素系可燃物質を熱源として熱分解残渣を溶融する熱分解残渣溶融部とで発生したガスを通過させて廃棄物を乾燥・熱分解させるとともに、廃棄物充填層を通過したガスは乾燥用シャフト部の頂部から排出し、乾燥用シャフト部で乾燥・熱分解した廃棄物を火格子部でさらに熱分解して熱分解残渣を生成し、生成した熱分解残渣を火格子部から熱分解残渣溶融部へ連続的に供給して溶融して火格子部の火格子燃焼負荷を300〜1000kg/h/mとすることを特徴とする廃棄物処理方法。 A grate and a massive carbon-based combustible material that generates pyrolysis residue in a waste packing layer formed by charging waste into the drying shaft from the top of the drying shaft that drys and pyrolyzes waste The gas generated in the pyrolysis residue melting part that melts the pyrolysis residue with the heat source as the heat source is passed to dry and pyrolyze the waste, and the gas that has passed through the waste packed bed is discharged from the top of the drying shaft part Then, the waste dried and pyrolyzed at the drying shaft is further pyrolyzed at the grate to produce a pyrolysis residue, and the generated pyrolysis residue is continuously transferred from the grate to the pyrolysis residue melting part. A waste disposal method characterized by supplying and melting to make the grate combustion load of the grate part 300 to 1000 kg / h / m 2 . 前記火格子部が前段の火格子群と後段の火格子群の2段階に分かれており、火格子部における廃棄物の乾燥・熱分解状況によって、前段の火格子群と後段火格子群の火格子速度、送風量・送風割合および温度をそれぞれ調整することを特徴とする請求項1に記載の廃棄物溶融処理方法。   The grate part is divided into two stages, a front grate group and a rear grate group, and the fire of the front grate group and the rear grate group depends on the state of drying and pyrolysis of waste in the grate part. The waste melting method according to claim 1, wherein the lattice speed, the air flow rate / the air flow rate, and the temperature are adjusted. 廃棄物装入口及び排ガス排気口が頂部に設けられ、廃棄物装入口から廃棄物が装入されて形成された廃棄物充填層に火格子部及び熱分解残渣溶融部で発生したガスを通過させて廃棄物を乾燥・熱分解させるとともに、廃棄物充填層を通過したガスが排ガス排気口から排出される乾燥用シャフト部が、乾燥用シャフト部で乾燥・熱分解された廃棄物をさらに熱分解して熱分解残渣を生成する前記火格子部の入側の上方に配置され、火格子部で生成された熱分解残渣を燃焼・溶融する前記熱分解残渣溶融部を備えた廃棄物溶融処理装置において、
前記火格子部の火格子燃焼負荷が300〜1000kg/h/mであることを特徴とする廃棄物処理装置。
A waste charging inlet and exhaust gas exhaust outlet are provided at the top, and the gas generated in the grate part and pyrolysis residue melting part is passed through the waste filling layer formed by charging waste from the waste charging inlet. In addition to drying and pyrolyzing the waste, the drying shaft that exhausts the gas that has passed through the waste packed bed from the exhaust gas exhaust port further decomposes the waste that has been dried and pyrolyzed by the drying shaft. And a waste melting treatment apparatus provided with the pyrolysis residue melting portion disposed above the entrance side of the grate portion for generating a pyrolysis residue and combusting and melting the pyrolysis residue generated in the grate portion In
A waste treatment apparatus, wherein a grate combustion load of the grate portion is 300 to 1000 kg / h / m 2 .
前記火格子部の横幅が乾燥シャフト部の内径と同径であり、かつ、火格子部の縦横比が1以上であることを特徴とする請求項3に記載の廃棄物溶融処理装置。   4. The waste melting apparatus according to claim 3, wherein a horizontal width of the grate portion is the same as an inner diameter of the dry shaft portion, and an aspect ratio of the grate portion is 1 or more. 前記火格子部が前段の火格子群と後段の火格子群の2段階に分かれていることを特徴とする請求項3又は4に記載の廃棄物溶融処理装置。   5. The waste melting apparatus according to claim 3, wherein the grate portion is divided into two stages of a front grate group and a rear grate group. 前記前段の火格子群と後段の火格子群がそれぞれ独立した駆動装置を有していることを特徴とする請求項5に記載の廃棄物溶融処理装置。   6. The waste melting apparatus according to claim 5, wherein the front grate group and the rear grate group each have independent drive devices. 前記後段の火格子群の傾斜角度が前段の火格子群の傾斜角度より小さいことを特徴とする請求項5又は6に記載の廃棄物溶融処理装置。   The waste melting apparatus according to claim 5 or 6, wherein an inclination angle of the rear grate group is smaller than an inclination angle of the front grate group.
JP2009214710A 2009-09-16 2009-09-16 Waste melting treatment method and waste melting treatment apparatus Active JP5510782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214710A JP5510782B2 (en) 2009-09-16 2009-09-16 Waste melting treatment method and waste melting treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214710A JP5510782B2 (en) 2009-09-16 2009-09-16 Waste melting treatment method and waste melting treatment apparatus

Publications (2)

Publication Number Publication Date
JP2011064382A true JP2011064382A (en) 2011-03-31
JP5510782B2 JP5510782B2 (en) 2014-06-04

Family

ID=43950826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214710A Active JP5510782B2 (en) 2009-09-16 2009-09-16 Waste melting treatment method and waste melting treatment apparatus

Country Status (1)

Country Link
JP (1) JP5510782B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120823B1 (en) * 2012-02-28 2013-01-16 新日鉄住金エンジニアリング株式会社 Waste gasification melting furnace
WO2014157466A1 (en) * 2013-03-27 2014-10-02 Jfeエンジニアリング株式会社 Waste gasification and melting device and waste gasification and melting method
CN106838916A (en) * 2017-02-13 2017-06-13 熊思江 Integrated flammable solid discarded object dry thermal cracking kettle
CN110906337A (en) * 2019-11-28 2020-03-24 上海锅炉厂有限公司 Integrated fixed bed garbage high-efficiency gasification combustion furnace

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280417A (en) * 1979-11-28 1981-07-28 Bruun & Sorensen Ab Incineration plant
JPS6410231U (en) * 1987-07-09 1989-01-19
JPH04186008A (en) * 1990-11-16 1992-07-02 Nkk Corp Combustion device for waste incinerator
EP0555501A1 (en) * 1992-02-12 1993-08-18 Kiyoharu Michimae Dry distillation type incinerator
JPH11118146A (en) * 1997-08-13 1999-04-30 Martin Gmbh Fuer Umwelt & Energietech Method of controlling combustion process by measuring average radiation ray of combustion bed of combustion facility
JP2001021129A (en) * 1999-07-06 2001-01-26 Plantec Inc Direct connected ignition ash melting facility and operation control method
JP2001027410A (en) * 1999-07-13 2001-01-30 Plantec Inc Separate type incineration ash melting facility, and its operation controlling method
JP2001108212A (en) * 1999-07-30 2001-04-20 Nippon Steel Corp Method of operating waste melting furnace
JP2002081624A (en) * 2000-09-05 2002-03-22 Kawasaki Heavy Ind Ltd Waste gasification melting furnace and operation method of the melting furnace
JP2002372216A (en) * 2001-06-18 2002-12-26 Nkk Corp Gasifying melting furnace for waste
JP2003166705A (en) * 2001-11-30 2003-06-13 Mitsubishi Heavy Ind Ltd Method and device for waste disposal by stoker furnace
JP2005126524A (en) * 2003-10-22 2005-05-19 Nippon Steel Corp Method and apparatus for organic matter gasification
JP2005282970A (en) * 2004-03-30 2005-10-13 Jfe Engineering Kk Combustion control method for stoker type garbage incinerator, and garbage incinerator
JP2006023030A (en) * 2004-07-08 2006-01-26 Plantec Inc Vertical refuse incinerator with primary combustion device, and operation control method thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280417A (en) * 1979-11-28 1981-07-28 Bruun & Sorensen Ab Incineration plant
JPS6410231U (en) * 1987-07-09 1989-01-19
JPH04186008A (en) * 1990-11-16 1992-07-02 Nkk Corp Combustion device for waste incinerator
EP0555501A1 (en) * 1992-02-12 1993-08-18 Kiyoharu Michimae Dry distillation type incinerator
JPH11118146A (en) * 1997-08-13 1999-04-30 Martin Gmbh Fuer Umwelt & Energietech Method of controlling combustion process by measuring average radiation ray of combustion bed of combustion facility
JP2001021129A (en) * 1999-07-06 2001-01-26 Plantec Inc Direct connected ignition ash melting facility and operation control method
JP2001027410A (en) * 1999-07-13 2001-01-30 Plantec Inc Separate type incineration ash melting facility, and its operation controlling method
JP2001108212A (en) * 1999-07-30 2001-04-20 Nippon Steel Corp Method of operating waste melting furnace
JP2002081624A (en) * 2000-09-05 2002-03-22 Kawasaki Heavy Ind Ltd Waste gasification melting furnace and operation method of the melting furnace
JP2002372216A (en) * 2001-06-18 2002-12-26 Nkk Corp Gasifying melting furnace for waste
JP2003166705A (en) * 2001-11-30 2003-06-13 Mitsubishi Heavy Ind Ltd Method and device for waste disposal by stoker furnace
JP2005126524A (en) * 2003-10-22 2005-05-19 Nippon Steel Corp Method and apparatus for organic matter gasification
JP2005282970A (en) * 2004-03-30 2005-10-13 Jfe Engineering Kk Combustion control method for stoker type garbage incinerator, and garbage incinerator
JP2006023030A (en) * 2004-07-08 2006-01-26 Plantec Inc Vertical refuse incinerator with primary combustion device, and operation control method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120823B1 (en) * 2012-02-28 2013-01-16 新日鉄住金エンジニアリング株式会社 Waste gasification melting furnace
WO2013128524A1 (en) * 2012-02-28 2013-09-06 新日鉄住金エンジニアリング株式会社 Waste gasification and melting furnace
CN104094059A (en) * 2012-02-28 2014-10-08 新日铁住金工程技术株式会社 Waste gasification and melting furnace
KR20140131509A (en) * 2012-02-28 2014-11-13 신닛떼쯔 수미킨 엔지니어링 가부시끼가이샤 Waste gasification and melting furnace
US10047954B2 (en) 2012-02-28 2018-08-14 Nippon Steel & Sumikin Enginering Co., Ltd. Method for treating a waste using a waste gasification melting furnace
KR101890873B1 (en) 2012-02-28 2018-08-22 신닛떼쯔 수미킨 엔지니어링 가부시끼가이샤 Waste gasification and melting furnace
WO2014157466A1 (en) * 2013-03-27 2014-10-02 Jfeエンジニアリング株式会社 Waste gasification and melting device and waste gasification and melting method
JP6066461B2 (en) * 2013-03-27 2017-01-25 Jfeエンジニアリング株式会社 Waste gasification and melting apparatus and waste gasification and melting method
JPWO2014157466A1 (en) * 2013-03-27 2017-02-16 Jfeエンジニアリング株式会社 Waste gasification and melting apparatus and waste gasification and melting method
US10228129B2 (en) 2013-03-27 2019-03-12 Jfe Engineering Corporation Waste gasification melting apparatus and waste gasification melting method using the same
CN106838916A (en) * 2017-02-13 2017-06-13 熊思江 Integrated flammable solid discarded object dry thermal cracking kettle
CN110906337A (en) * 2019-11-28 2020-03-24 上海锅炉厂有限公司 Integrated fixed bed garbage high-efficiency gasification combustion furnace

Also Published As

Publication number Publication date
JP5510782B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5180917B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP5255510B2 (en) Waste melting treatment method and waste melting treatment apparatus
KR101921225B1 (en) Waste material melting furnace
JP5510782B2 (en) Waste melting treatment method and waste melting treatment apparatus
US5505145A (en) Process and apparatus for waste incineration
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP5574475B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP6066461B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP5180899B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP2005249279A (en) Waste melting and treating method utilizing biomass
JP2017180922A (en) Waste tire gasification melting device and waste tire gasification melting method
JP5490488B2 (en) Waste melting treatment method
JP5255509B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP2008215661A (en) Combustion furnace, waste gasification system and combustible gas treatment method
JP5534500B2 (en) Waste treatment method and waste treatment facility
JP5605576B2 (en) Waste gasification and melting equipment
JP2019190730A (en) Waste gasification melting device and waste gasification melting method
JPH10169944A (en) Fluidized layer control method in waste thermal decomposition furnace
JP3902123B2 (en) Melting furnace temperature compensation apparatus and melting furnace temperature compensation method for gasification melting apparatus
JP2004169955A (en) Waste incinerator and method of operating the same
JP2006207912A (en) Waste melting treatment method and waste melting treatment furnace
JPH0849820A (en) Device and method for treating waste
JP2004163009A (en) Operation method of waste incineration system and waste incineration system
TWI320085B (en) Method and system of material combustion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140313

R150 Certificate of patent or registration of utility model

Ref document number: 5510782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250