JP2001107136A - Method for producing high strength steel excellent in weldability and low temperature toughness - Google Patents

Method for producing high strength steel excellent in weldability and low temperature toughness

Info

Publication number
JP2001107136A
JP2001107136A JP28340699A JP28340699A JP2001107136A JP 2001107136 A JP2001107136 A JP 2001107136A JP 28340699 A JP28340699 A JP 28340699A JP 28340699 A JP28340699 A JP 28340699A JP 2001107136 A JP2001107136 A JP 2001107136A
Authority
JP
Japan
Prior art keywords
steel
temperature
toughness
weldability
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28340699A
Other languages
Japanese (ja)
Inventor
Jun Furukawa
純 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28340699A priority Critical patent/JP2001107136A/en
Publication of JP2001107136A publication Critical patent/JP2001107136A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing high strength steel economically and efficiently satisfying strength TS >=600 N and EV-80>=100 J in a welded joint without requiring the addition of large quantities of expensive alloy elements and also without applying loads of equipment and operation. SOLUTION: As for the method for producing Cu precipitation hardening type high strength steel, by controlling the content of Al to <=0.015%, a steel composition preventing the formation of AlN at the time of welding is made, a slab is heated to the temperature range of 950 to 1,200 deg.C, is subjected to hot rolling in which finishing temperature is controlled to 700 to 850 deg.C, is thereafter let to cool or is cooled from >=(680 to 830 deg.C) at a cooling rate of 1 to 50 deg.C/sec to the temperature range of <=580 deg.C, is then reheated at 450 to 650 deg.C and is then subjected to air cooling treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶接性と低温靱性
に優れた鋼材の製造方法に関するものである。
[0001] The present invention relates to a method for producing a steel material having excellent weldability and low-temperature toughness.

【0002】[0002]

【従来の技術】近年、経済性および安全性等の観点か
ら、大型産業機械、溶接鋼管、海洋構造物、橋梁等の溶
接構造物における高強度化が益々進むと共に、これらの
分野で使用される鋼材に対する要求特性は高まる一方で
ある。これらの鋼材に共通する要求としては溶接性と低
温靱性の更なる向上がある。
2. Description of the Related Art In recent years, from the viewpoints of economy, safety, and the like, the strength of welded structures such as large industrial machines, welded steel pipes, offshore structures, bridges, and the like has been increasingly increased, and they have been used in these fields. The required properties for steel materials are increasing. A common requirement for these steel materials is further improvement in weldability and low-temperature toughness.

【0003】従来より、鋼の溶接性を向上させるには、
低C化が有効である事が知られており、低C化による強
度低下を補うため、種々の合金元素添加やプロセス面か
らの高強度化が図られている。例えば、ASTMA710や米国
特許第3692514 号明細書にはCu析出強化を利用した鋼材
が開示されている。これらの鋼材は溶接性に優れている
ことが特徴であるが、十分な低温靱性を有しているとは
言い難い。
Conventionally, to improve the weldability of steel,
It is known that lowering the C content is effective. In order to compensate for the reduction in strength due to the lowering of the C content, various alloying elements have been added and the strength has been increased from the process aspect. For example, ASTMA710 and US Pat. No. 3,692,514 disclose steel materials utilizing Cu precipitation strengthening. These steels are distinguished by their excellent weldability, but cannot be said to have sufficient low-temperature toughness.

【0004】一方、低温靱性を改善する技術としては、
特許第2611565 号あるいは第2690578 号の各公報に通常
の熱間圧延後に冷間あるいは温間で圧下を加える方法が
開示されている。しかしながら、これらの技術は、通
常、熱間圧延を行う厚板ミルにおいて冷間あるいは温間
で圧下を加えるもので、設備負荷が大きく広く一般に適
用可能な技術とは言い難い。例えば、特許第2690578 号
公報には、熱間圧延後の700 〜850 ℃の温度範囲から空
冷ないし30℃/sec以下の冷却速度で冷却し、そして400
〜450 ℃の温度範囲で3〜5%の圧延を行うことで低温
靱性、溶接熱影響部の耐局部腐食特性に優れたCu析出型
高張力鋼の製造方法が開示されている。
On the other hand, techniques for improving low-temperature toughness include:
Japanese Patent Nos. 2611565 and 2690578 disclose a method of applying cold rolling or cold rolling after ordinary hot rolling. However, these techniques usually apply a reduction in cold or warm conditions in a hot plate mill that performs hot rolling, and have a large facility load and cannot be said to be generally applicable techniques. For example, Japanese Patent No. 2690578 discloses that from the temperature range of 700 to 850 ° C. after hot rolling, air cooling or cooling at a cooling rate of 30 ° C./sec or less, and 400 ° C.
A method for producing a Cu-precipitated high-strength steel which is excellent in low-temperature toughness and resistance to local corrosion of a weld heat-affected zone by rolling at 3 to 5% in a temperature range of ~ 450 ° C is disclosed.

【0005】また、特許第2710846 号公報ではCu析出型
厚肉高張力鋼板の製造方法が開示されているが、高価な
元素であるNiを2.0 %超6.0 %以下添加する必要があり
構造用鋼としての経済性に問題がある。
Also, Japanese Patent No. 2710846 discloses a method for producing a thick steel plate having a high thickness of Cu precipitation type. However, it is necessary to add more than 2.0% or less of Ni, which is an expensive element, to 6.0% or less. There is a problem in the economics as.

【0006】特開平7−292416号公報には、低P( ≦0.
015 %)、低S( ≦0.0010%)) としてCa添加を行い、オー
ステナイト未再結晶域および2相域で厳格に制御圧延し
た後、加速冷却を行う、低温靱性、現地溶接性、耐サワ
ー性等を同時に達成できるAPI ×100 クラス以上の超高
強度ラインパイプ用鋼板の製造方法が開示されている。
Japanese Patent Application Laid-Open No. 7-292416 discloses a low P (≦ 0.
015%), low S (≦ 0.0010%)) with Ca addition, strictly controlled rolling in austenite unrecrystallized area and two-phase area, and then accelerated cooling, low temperature toughness, on-site weldability, sour resistance A method for manufacturing a steel plate for an ultra-high-strength line pipe of API × 100 class or more capable of simultaneously achieving the above-mentioned requirements is disclosed.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、溶接
性と低温靱性、特に溶接継手における低温靱性に優れた
高強度鋼材のより簡便で安価な手段による製造方法を提
供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a high-strength steel material excellent in weldability and low-temperature toughness, particularly in low-temperature toughness in a welded joint, by simpler and less expensive means.

【0008】具体的には、本発明の課題は、高価な合金
元素の多量添加を要さず、かつ設備・操業的な負荷をか
けずに経済的かつ効率的に溶接性と低温靱性を具備した
高強度鋼材を製造する方法を提供することである。
[0008] Specifically, an object of the present invention is to provide a weldability and low-temperature toughness economically and efficiently without requiring a large amount of expensive alloying elements and without imposing load on equipment and operation. It is an object of the present invention to provide a method for producing a high-strength steel material.

【0009】さらに具体的には、本発明の課題は、TS≧
600Nおよび溶接継手において EV -80 ≧100Jを満足する
高強度鋼材のより簡便で安価な手段による製造方法を提
供することである。
[0009] More specifically, the object of the present invention is to provide TS ≧
An object of the present invention is to provide a method for manufacturing a high-strength steel material satisfying E V -80 ≧ 100 J at 600 N and a welded joint by simpler and less expensive means.

【0010】[0010]

【課題を解決するための手段】本発明者は、上記課題を
解決するため種々の検討を重ねた結果、次のような知見
を得て本発明を完成した。
Means for Solving the Problems The present inventor has made various studies in order to solve the above-mentioned problems, and as a result, obtained the following findings and completed the present invention.

【0011】すなわち、従来のCu析出硬化型鋼材にあっ
ては、Cuの析出硬化作用と、Nbの析出硬化作用ならびに
結晶粒の微細化作用とを利用することで、強度と溶接性
とを同時に満足させている。その場合、Alを積極的に添
加する場合は、AlN の生成によってオーステナイト粒粗
大化防止を図るのであるが、通常は、単に脱酸剤の一種
としてのみ考えられているに過ぎない。しかし、Siを脱
酸剤として使用できない場合には、むしろ、積極的にAl
を脱酸剤として用い、併せてAlN の生成によるオーステ
ナイト粒粗大化防止を図ることが考えられている。いず
れにしても従来にあってはAlの添加は必須と考えられて
いた。
That is, in the conventional Cu precipitation hardening type steel material, strength and weldability are simultaneously improved by utilizing the precipitation hardening effect of Cu, the precipitation hardening effect of Nb and the refining effect of crystal grains. I am satisfied. In this case, when Al is positively added, the austenite grains are prevented from coarsening by the formation of AlN, but it is usually considered only as a kind of deoxidizing agent. However, if Si cannot be used as a deoxidizing agent,
It has been considered to use as a deoxidizing agent and to prevent austenite grain coarsening due to generation of AlN. In any case, the addition of Al was conventionally considered to be essential.

【0012】しかしながら、本発明者は、Alは、溶接継
手の靱性に悪い影響を与えるのであって、可及的に少な
くすることでその低温靱性が著しく改善されることを知
見した。
However, the present inventor has found that Al has a bad effect on the toughness of a welded joint, and that low-temperature toughness is significantly improved by minimizing it.

【0013】したがって、本発明によれば、Alを脱酸剤
としては用いず、Alの含有量を可及的少とするのであ
る。なお、本発明にあって、脱酸はSi、Mnにより行う。
Therefore, according to the present invention, Al is not used as a deoxidizing agent, and the content of Al is made as small as possible. In the present invention, deoxidation is performed using Si and Mn.

【0014】ここに、本発明は、質量%で、C:0.03〜
0.08%、Mn:0.60〜1.6 %、P:0.025 %以下、S:0.
01%以下、Cu:0.50〜1.20、Al:0.015 %以下、Nb:0.
005〜0.05%、およびNi:0 〜0.60%を含有する鋼組成
を有し、所望により、さらにCeq 、Pcm 強度等の調整の
ため鋼に一般的に添加される元素を含有し、残部Feおよ
び不可避的不純物である鋼組成を持った鋼片を、950 〜
1200℃の温度範囲に加熱し、仕上げ温度700 〜850 ℃の
熱間圧延を行った後、放冷し、次いで450 〜650 ℃に再
加熱してから、空冷処理することを特徴とする溶接性と
低温靱性に優れた高強度鋼の製造方法である。
[0014] Here, the present invention relates to the following:
0.08%, Mn: 0.60 to 1.6%, P: 0.025% or less, S: 0.
01% or less, Cu: 0.50 to 1.20, Al: 0.015% or less, Nb: 0.
It has a steel composition containing 005 to 0.05%, and Ni: 0 to 0.60%, and further contains an element generally added to steel for adjusting Ceq, Pcm strength and the like, if desired, and the balance of Fe and A slab with a steel composition that is an inevitable impurity
Weldability characterized by heating to a temperature range of 1200 ° C, performing hot rolling at a finishing temperature of 700 to 850 ° C, allowing to cool, then reheating to 450 to 650 ° C, and then air cooling. And a high-strength steel excellent in low-temperature toughness.

【0015】また、別の面からは、本発明は、上記の鋼
組成を有する鋼片を、950 〜1200℃の温度範囲に加熱
し、仕上げ温度700 〜850 ℃の熱間圧延を行った後、68
0 〜830 ℃以上から1〜50℃/secの冷却速度で580 ℃以
下の温度域まで冷却し、次いで450 〜650 ℃に再加熱し
てから、空冷処理することを特徴とする溶接性と低温靱
性に優れた高強度鋼の製造方法である。
From another aspect, the present invention relates to a method for heating a steel slab having the above-described steel composition to a temperature range of 950 to 1200 ° C. and performing hot rolling at a finishing temperature of 700 to 850 ° C. , 68
Cooling from 0 to 830 ° C or higher to 580 ° C or lower at a cooling rate of 1 to 50 ° C / sec, then reheating to 450 to 650 ° C, and then air-cooling. This is a method for producing high-strength steel with excellent toughness.

【0016】[0016]

【発明の実施の形態】以下、本発明にかかる鋼の製造方
法の実施形態を説明する。以下、本明細書においては特
にことわりがない限り、「%」は「質量%」を意味する
ものとする。なお、以降の実施形態の説明では、「鋼
材」が「鋼板」である場合を例にとる。まず、本発明に
おいて用いる溶鋼の組成を限定する理由を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for producing steel according to the present invention will be described below. Hereinafter, in this specification, unless otherwise specified, “%” means “% by mass”. In the following description of the embodiments, a case where the “steel material” is a “steel plate” will be taken as an example. First, the reason for limiting the composition of the molten steel used in the present invention will be described.

【0017】C:0.03〜0.08% Cは、強度上昇に寄与する元素ではあるが、0.03%未満
では強度を確保することは困難であり、一方、0.08%を
超えて多量に含有すると、目的とする成品の溶接性およ
び靱性を劣化させる。したがって、C含有量は0.03%以
上0.08%以下と限定する。
C: 0.03 to 0.08% C is an element that contributes to an increase in strength. However, it is difficult to secure the strength when the content is less than 0.03%. Deteriorates the weldability and toughness of the resulting product. Therefore, the C content is limited to 0.03% or more and 0.08% or less.

【0018】Mn:0.60〜1.6 % Mnは、鋼の強度および靱性を確保するために必要な元素
ではあるが、0.60%未満ではこのような効果は少なく、
一方、1.6 %を超えて多量に添加すると溶接性を劣化さ
せる。したがって、Mn含有量は、0.60〜1.6 %に限定す
る。好ましくは下限は、0.80%、上限は1.3 %である。
Mn: 0.60 to 1.6% Mn is an element necessary for ensuring the strength and toughness of steel, but if it is less than 0.60%, such effects are small.
On the other hand, when added in a large amount exceeding 1.6%, the weldability is deteriorated. Therefore, the Mn content is limited to 0.60 to 1.6%. Preferably, the lower limit is 0.80% and the upper limit is 1.3%.

【0019】P:0.025 %以下、S:0.01%以下 P、Sは、ともに鋼の凝固時に偏析を起こし易い元素で
あり、この偏析により、溶接部を脆化させて靱性を低下
させる。このため、P、Sともに含有量を低減すること
が望ましいが、著しい低減には相応の処理コストを要す
る。
P: 0.025% or less, S: 0.01% or less Both P and S are elements that are liable to cause segregation during solidification of steel, and this segregation causes the welded portion to become brittle and lower the toughness. For this reason, it is desirable to reduce the content of both P and S, but a remarkable reduction requires a corresponding processing cost.

【0020】そこで、本発明では、P含有量を0.025 %
以下と限定する。一方、Sは、A系介在物であるMnS と
なって鋼中に析出し、圧延時に延伸されて靱性を低下さ
せる。S含有量は0.01%以下とする。
Therefore, in the present invention, the P content is set to 0.025%
Limited to the following. On the other hand, S precipitates in steel as MnS, which is an A-based inclusion, and is elongated during rolling to reduce toughness. The S content is set to 0.01% or less.

【0021】Cu:0.50%〜1.20% Cuは圧延冷却後の析出強化処理により強化作用を発揮す
る元素であり、低C化を実現し、溶接性と低温靱性の向
上をもたらす。析出強化を有効に得るために下限を0.50
%と限定する。また過度の添加は逆に靱性の低下をもた
らすと共に、鋼の熱間圧延中のCuクラックの発生やHAZ
の粒界割れを助長するという悪影響が顕著になる。この
ため、上限を1.20%とする。好ましくは0.80〜1.0 %と
限定する。
Cu: 0.50% to 1.20% Cu is an element that exerts a strengthening effect by precipitation strengthening treatment after rolling and cooling, realizes a low C, and improves weldability and low-temperature toughness. The lower limit is 0.50 for effective precipitation strengthening
%. Excessive addition also causes a decrease in toughness, as well as the occurrence of Cu cracks and HAZ during hot rolling of steel.
The adverse effect of promoting grain boundary cracking becomes significant. Therefore, the upper limit is set to 1.20%. Preferably, it is limited to 0.80 to 1.0%.

【0022】Ni:0 〜0.60% Niは、必要により添加すればよく、Cuとほぼ同様に溶接
性およびHAZ 靱性に悪影響を及ぼすこともなく、母材の
強度、靱性を向上させるが、0.60%超の添加では構造用
鋼材として極めて高価になるため経済性を失うので、添
加する場合、Ni含有量は0.60%以下と限定する。
Ni: 0 to 0.60% Ni may be added as needed, and does not adversely affect the weldability and the HAZ toughness almost similarly to Cu and improves the strength and toughness of the base material. If added excessively, it becomes extremely expensive as a structural steel material and loses economic efficiency. Therefore, when added, the Ni content is limited to 0.60% or less.

【0023】Nb:0.005 〜0.05% Nbは、析出硬化と細粒化による靱性向上に有効な元素で
あるが、0.005 %未満ではこのような効果が得られな
い。一方、0.05%を超えると溶接部の靱性が劣化する。
そこでNb添加量は、0.005 %以上0.05%以下と限定す
る。
Nb: 0.005 to 0.05% Nb is an element effective for improving the toughness by precipitation hardening and grain refinement. However, if it is less than 0.005%, such an effect cannot be obtained. On the other hand, if the content exceeds 0.05%, the toughness of the welded portion deteriorates.
Therefore, the amount of Nb added is limited to 0.005% or more and 0.05% or less.

【0024】Al:0.015 %以下 Alは、大入熱溶接時にAlN を生成させないことによるHA
Z 靱性の改善を特徴としている。すなわち、Al量が高い
とAlN として鋼中に分散析出するが、溶接時に高温に加
熱されるF.L.(fusion line) 近傍ではAlN が昇温時に固
溶し、固溶Nが増加する。この固溶Nは溶接後の冷却時
にはその冷却速度が速いためAlN として再析出せず固溶
NとしてF. L. 近傍の靱性を低下させる。このような
効果をさけるため、Alは0.015 %以下と低い方が望まし
いが、製鋼工程における安定性を考慮した場合、0.01%
以下とするのが好ましい。よって、Al含有量は、0.015
%以下、好ましくは0.010 %以下と限定する。
Al: 0.015% or less Al is HA due to not producing AlN during large heat input welding.
It is characterized by improved Z toughness. That is, when the amount of Al is high, it is dispersed and precipitated as AlN in the steel, but in the vicinity of a FL (fusion line) which is heated to a high temperature during welding, AlN forms a solid solution when the temperature rises, and solute N increases. This solid solution N does not re-precipitate as AlN because of its high cooling rate during cooling after welding, and as solid solution N lowers the toughness near FL. In order to avoid such effects, it is desirable that Al is as low as 0.015% or less, but considering stability in the steel making process, 0.01%
It is preferable to set the following. Therefore, the Al content is 0.015
%, Preferably 0.010% or less.

【0025】本発明にあって、Siは必要により脱酸剤と
して添加してもよいが、多量の添加は溶接性および靱性
の劣化をもたらすことから、可及的少ない量とするのが
よい。Siは0.50%以下、好ましくは0.30%以下に制限す
る。
In the present invention, Si may be added as a deoxidizing agent, if necessary. However, since addition of a large amount causes deterioration of weldability and toughness, it is preferred that the amount be as small as possible. Si is limited to 0.50% or less, preferably 0.30% or less.

【0026】その他の元素 本発明において上述のように限定した元素以外で、鋼の
製造において一般に添加される元素、例えば、Cr、Mo、
V、Ti、B等については、本発明の効果を阻害しない範
囲で添加する事は制限されない。換言すれば、経済的に
許容可能な添加量であれば本発明の効果を助長こそすれ
阻害しないためその添加量に制限を設けない。
Other Elements Other than the elements defined above in the present invention, elements generally added in the production of steel, for example, Cr, Mo,
The addition of V, Ti, B, etc. is not limited as long as the effects of the present invention are not impaired. In other words, as long as the addition amount is economically acceptable, the effect of the present invention is not promoted or hindered, so that the addition amount is not limited.

【0027】すなわち、本発明にあっては、Ceq 、Pcm
強度等の調整のため鋼に一般的に添加される上述のよう
な元素を少なくとも1種以上さらに含有してもよく、残
部は、鉄および不可避的不純物である。
That is, in the present invention, Ceq, Pcm
At least one or more of the above-mentioned elements generally added to steel for adjustment of strength and the like may be further contained, and the balance is iron and inevitable impurities.

【0028】(熱間圧延)熱間圧延の素材としては、分塊
圧延法による鋼片であっても、連続鋳造による鋼片であ
ってもよいが、通常は、連続鋳造による鋼片を素材とす
る。
(Hot Rolling) The material for hot rolling may be a slab obtained by the slab rolling method or a slab obtained by continuous casting. And

【0029】本発明では、このようにして製造した鋼片
を950 〜1200℃の温度範囲に温度域に加熱して、熱間圧
延を行う。一旦室温にまで冷却した鋼片を再加熱しても
よく、いわゆる直送圧延プロセスにより連続鋳造後に室
温にまで冷却することなくそのまま均熱炉を経て上記温
度に維持あるいは加熱してもよい。
In the present invention, the steel slab thus manufactured is heated to a temperature range of 950 to 1200 ° C. to perform hot rolling. The steel slab that has been once cooled to room temperature may be reheated, or may be maintained or heated at the above-mentioned temperature through a soaking furnace without cooling to room temperature after continuous casting by a so-called direct rolling process.

【0030】加熱温度が950 ℃未満の場合はNbが十分に
マトリックスに固溶しないため、後続して行われる熱間
圧延においてオーステナイトの再結晶を抑制することが
できず、組織の微細化が不十分となる。一方、加熱温度
が1200℃を超えると鋼片の加熱時にオーステナイト結晶
粒が粗大化し、板厚中心部だけでなく母材全体の靱性が
低下する。
When the heating temperature is lower than 950 ° C., since Nb does not sufficiently dissolve in the matrix, recrystallization of austenite cannot be suppressed in the subsequent hot rolling, and the microstructure cannot be refined. Will be enough. On the other hand, if the heating temperature exceeds 1200 ° C., the austenite crystal grains become coarse when the steel slab is heated, and the toughness of not only the central part of the sheet thickness but also of the entire base material decreases.

【0031】本発明では、例えば連続鋳造鋳片のような
熱間圧延素材としての鋼片の加熱温度は950 〜1200℃と
する。
In the present invention, the heating temperature of a steel slab as a hot-rolled material such as a continuous cast slab is 950 to 1200 ° C.

【0032】熱間圧延の条件は、熱間圧延の圧延終了温
度を700 〜850 ℃とするだけで、特に制限はない。これ
はいわゆる制御圧延と言われているものであって、従来
のように2相域あるいはオーステナイトの再結晶域で圧
延を行うことで結晶粒をさらに微細にできるが、本発明
の場合には、圧延終了温度が上述の範囲内であるかぎり
例えば従来法に準じて行えばよく、特に制限されない。
The conditions for the hot rolling are not particularly limited, as long as the rolling end temperature of the hot rolling is set at 700 to 850 ° C. This is so-called controlled rolling, and the crystal grains can be further refined by rolling in a two-phase region or an austenite recrystallization region as in the past, but in the case of the present invention, As long as the rolling end temperature is within the above range, the rolling may be performed according to, for example, a conventional method, and is not particularly limited.

【0033】圧延終了温度が700 ℃未満であると、鋼の
変形抵抗が上昇するため、熱間圧延後の鋼板の形状を目
標の形状に仕上げることが難しくなる。また、圧延終了
温度が高いと制御圧延による結晶粒の微細化効果が得ら
れず母材の靱性を確保することが出来ない。従って、圧
延終了温度の上限を850 ℃に制限する。
When the rolling end temperature is lower than 700 ° C., the deformation resistance of the steel increases, so that it is difficult to finish the shape of the steel sheet after hot rolling to a target shape. On the other hand, if the rolling end temperature is high, the effect of grain refinement by controlled rolling cannot be obtained, and the toughness of the base material cannot be secured. Therefore, the upper limit of the rolling end temperature is limited to 850 ° C.

【0034】(冷却)熱間圧延を終了した後に、放冷又は
必要に応じて680 〜830 ℃以上から1〜50℃/secの冷却
速度で580 ℃以下の温度域まで冷却する。
(Cooling) After the completion of the hot rolling, the steel sheet is left to cool or, if necessary, cooled at a cooling rate of from 680 to 830 ° C. to 1 to 50 ° C./sec to a temperature range of 580 ° C. or less.

【0035】ここで言う「必要に応じて」とは、目標と
する鋼材の板厚と低温靱性確保の両面から決定するもの
であり、例えばより低温での高靱性を必要とする場合、
または厚肉鋼材で放冷時の冷却速度が遅い場合、加速冷
却を実施することが効果的であることを意味する。この
場合、圧延終了時から冷却開始時までの間に時間が経過
し、鋼によっては冷却時に焼き入れ性が低下し、強度を
確保することができない。そこで、本発明では、冷却開
始温度を680 ℃以上とする。通常、熱間圧延終了後、直
ちに冷却を開始する。
The term "as needed" is determined from both the target thickness of the steel material and securing the low-temperature toughness. For example, when high toughness at a lower temperature is required,
Alternatively, when the cooling rate at the time of cooling is slow with a thick steel material, it means that it is effective to perform accelerated cooling. In this case, time elapses from the end of rolling to the start of cooling, and depending on the steel, hardenability decreases during cooling, and strength cannot be secured. Therefore, in the present invention, the cooling start temperature is set to 680 ° C. or higher. Usually, cooling is started immediately after hot rolling is completed.

【0036】この冷却における平均の冷却速度が1℃/s
ec未満であると、粗大な炭化物を伴うベイナイト組織等
が生成し易いので、特に鋼板の中心部の十分な降伏強さ
を確保することができない。一方、冷却速度が50℃/sec
を超えると、鋼板の表層部近傍で焼きが入り易いために
表層の靱性が低下することがある。そこで本発明では、
680 ℃以上の冷却開始温度域から580 ℃以下の温度域ま
での平均冷却速度を1℃/sec以上50℃/sec以下と限定す
る。
The average cooling rate in this cooling is 1 ° C./s
If it is less than ec, a bainite structure or the like with coarse carbides is likely to be generated, so that it is not possible to secure a sufficient yield strength especially at the center of the steel sheet. On the other hand, the cooling rate is 50 ℃ / sec
If it exceeds, the surface layer of the steel sheet may be easily quenched in the vicinity thereof, and the toughness of the surface layer may be reduced. Therefore, in the present invention,
The average cooling rate from the cooling start temperature range of 680 ° C. or higher to the temperature range of 580 ° C. or lower is limited to 1 ° C./sec to 50 ° C./sec.

【0037】この冷却における冷却停止温度が580 ℃を
超えると、鋼板の中心部のみならず表層部においても、
マルテンサイトあるいは下部ベイナイト等の生成が不十
分になるので強度を確保することができない。そこで、
本発明では、冷却停止温度は580 ℃以下とする。
If the cooling stop temperature in this cooling exceeds 580 ° C., not only in the central part but also in the surface part of the steel sheet,
Since the formation of martensite or lower bainite becomes insufficient, the strength cannot be secured. Therefore,
In the present invention, the cooling stop temperature is 580 ° C. or lower.

【0038】このような熱処理によって、マルテンサイ
トあるいはベイナイト組織が得られ、本発明の場合、主
としてベイナイト組織である。
By such a heat treatment, a martensite or bainite structure is obtained, and in the present invention, it is mainly a bainite structure.

【0039】(熱処理)放冷あるいは加速冷却した鋼を45
0 〜650 ℃に再加熱した後、空冷処理を実施する。これ
は、Cuの析出強化を効率的かつ安定的に発揮させるため
であり、このときの再加熱は目的とする強度・低温靱性
に応じ、450 〜650 ℃の温度範囲で実施する。
(Heat treatment) 45 ° C
After reheating to 0 to 650 ° C, an air cooling process is performed. This is for the purpose of efficiently and stably exerting the precipitation strengthening of Cu. At this time, the reheating is performed in a temperature range of 450 to 650 ° C. depending on the desired strength and low-temperature toughness.

【0040】ここで、下限を450 ℃と限定するのは、こ
れより低温では熱処理中にCuの析出が十分に完了せず、
その後構造物等に加工される際の溶接熱によって継ぎ手
近傍で母材の特性が著しく変化することが懸念されるか
らである。また上限を650 ℃と限定するのは、これによ
り高温に加熱すると、過時効により十分な強度が確保で
きなくなるためである。
Here, the reason why the lower limit is limited to 450 ° C. is that if the temperature is lower than this, the precipitation of Cu is not sufficiently completed during the heat treatment.
This is because there is a concern that the properties of the base material may be significantly changed in the vicinity of the joint due to welding heat when being processed into a structure or the like thereafter. Further, the upper limit is limited to 650 ° C. because when heated to a high temperature, sufficient strength cannot be secured due to overaging.

【0041】このようにして本発明により製造された鋼
材は、その後に溶接を用いることで構造物を構成する場
合などに、溶接継手、特に溶接母材における例えば−80
℃という低温での靱性、さらに熱影響部における−60℃
という低温での靱性が大幅に改善される。これは溶接に
よって構造物が構成される造船、海洋構造物に用いる鋼
材として特に有利である。
The steel material thus produced according to the present invention can be used, for example, in a case where a structure is formed by using welding, for example, in the case of -80 in a welded joint, especially a welded base material.
Toughness at low temperature of ℃, -60 ℃ in heat affected zone
The toughness at a low temperature is greatly improved. This is particularly advantageous as a steel material used for shipbuilding and marine structures whose structures are formed by welding.

【0042】したがって、本発明にかかる鋼材を造船あ
るいは海洋構造物に用いた場合、その優れた特性が発揮
される。
Therefore, when the steel material according to the present invention is used for shipbuilding or offshore structures, its excellent properties are exhibited.

【0043】[0043]

【実施例】次に、本発明の作用効果について、その実施
例を参照しながら、より具体的に説明する。なお、本実
施例における目標性能は海洋構造物用Gr.80 級(YS ≧80
Ksi)鋼とし、継ぎ手靱性の目標値は板厚の中心部におい
てvE−80≧100Jである。
Next, the operation and effect of the present invention will be described more specifically with reference to the embodiments. Note that the target performance in this embodiment is Gr.80 class for marine structures (YS ≧ 80
Ksi) steel, and the target value of joint toughness is vE-80 ≧ 100J at the center of the plate thickness.

【0044】表1に示す鋼組成から同じく表1に示す製
造条件で熱間圧延により43種の鋼板を製造した。
From the steel compositions shown in Table 1, 43 types of steel sheets were manufactured by hot rolling under the same manufacturing conditions as shown in Table 1.

【0045】得られた鋼板から試験片を切り出し、YS、
TS、シャルピー衝撃値を測定した。また溶接部の靱性評
価として、各試料に対してレ開先のSAW 入熱10kJ/mm を
行うことにより溶接継手を作成し、HAZ 部におけるvE−
60のシャルピー衝撃値を測定した。結果を表1および2
にまとめて示す。
A test piece was cut out from the obtained steel sheet, and YS,
TS and Charpy impact value were measured. In addition, as an evaluation of the toughness of the weld, a weld joint was created by applying a SAW heat input of 10 kJ / mm to the groove on each sample, and the vE-
A Charpy impact value of 60 was measured. The results are shown in Tables 1 and 2.
Are shown together.

【0046】表1において例No.1〜22は本発明の実施例
であり、表2の例No.23 〜43は比較例である。本発明の
実施例である例No.1〜22はいずれもYS≧552N/mm2、TS≧
621N/mm2、vE−80≧295J、HAZ のvE−60≧108J (目標≧
47J)を有しており、溶接性および低温靱性に優れた鋼材
である。
In Table 1, Examples Nos. 1 to 22 are Examples of the present invention, and Examples Nos. 23 to 43 in Table 2 are Comparative Examples. Examples No. 1 to 22 which are examples of the present invention are all YS ≧ 552 N / mm 2 , TS ≧
621N / mm 2, vE-80 ≧ 295J, HAZ of vE-60 ≧ 108 J (target ≧
47J), and is excellent in weldability and low-temperature toughness.

【0047】一方、比較例である例No.23 〜43は製造方
法が本発明範囲外の例である。例No.23 〜24は加熱温度
が発明範囲外であり、強度あるいは継ぎ手靱性が目標を
達成しなかった。
On the other hand, Comparative Examples Nos. 23 to 43 are examples in which the production method is outside the scope of the present invention. In Examples Nos. 23 to 24, the heating temperature was out of the range of the invention, and the strength or the joint toughness did not achieve the target.

【0048】例No.25 〜26は圧延仕上げ温度が発明範囲
外であり、強度あるいは継ぎ手靱性が目標を達成しなか
った。例No.27 〜30は冷却が発明範囲外であり、強度あ
るいは継ぎ手靱性が目標を達成しなかった。
In Examples Nos. 25 to 26, the rolling finishing temperature was out of the range of the invention, and the strength or the joint toughness did not achieve the target. In Examples Nos. 27 to 30, cooling was out of the range of the invention, and strength or joint toughness did not achieve the target.

【0049】例No.31 〜41は化学成分が本発明範囲外の
例であり、強度あるいは継ぎ手靱性が目標を達成しなか
った。例No.42 〜43は熱処理温度が本発明範囲外の例で
あり、強度あるいは継ぎ手靱性が目標を達成しなかっ
た。
Examples Nos. 31 to 41 are examples in which the chemical components are outside the range of the present invention, and the strength or the joint toughness did not achieve the target. In Examples Nos. 42 to 43, the heat treatment temperature was out of the range of the present invention, and the strength or the joint toughness did not achieve the target.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【発明の効果】以上詳細に説明したように、本発明によ
り溶接性と低温靱性に優れた鋼強度鋼材を安価な手段で
もって効果的に製造することが可能となった。かかる効
果を有する本発明の実用上からの意義は極めて大きい。
As described in detail above, according to the present invention, a steel-strength steel material excellent in weldability and low-temperature toughness can be effectively produced by inexpensive means. The practical significance of the present invention having such an effect is extremely large.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C:0.03〜0.08%、Mn:0.60〜1.6 %、P:0.025 %以
下、S:0.01%以下、Cu:0.50〜1.20、Nb:0.005 〜0.
05%、Al:0.015 %以下、およびNi:0 〜0.60%を含有
する鋼組成を有する鋼片を950 〜1200℃の温度範囲に加
熱し、仕上げ温度700 〜850 ℃の熱間圧延を行った後、
放冷し、次いで450 〜650 ℃に再加熱してから、空冷処
理することを特徴とする溶接性と低温靱性に優れた高強
度鋼材の製造方法。
C .: 0.03 to 0.08%, Mn: 0.60 to 1.6%, P: 0.025% or less, S: 0.01% or less, Cu: 0.50 to 1.20, Nb: 0.005 to 0.
A slab having a steel composition containing 05%, Al: 0.015% or less, and Ni: 0 to 0.60% was heated to a temperature range of 950 to 1200 ° C, and hot-rolled at a finishing temperature of 700 to 850 ° C. rear,
A method for producing a high-strength steel material excellent in weldability and low-temperature toughness, characterized by allowing to cool, then reheat to 450 to 650 ° C, and then air-cooling.
【請求項2】 請求項1に記載された鋼組成を有する鋼
片を950 〜1200℃の温度範囲に加熱し、仕上げ温度700
〜850 ℃の熱間圧延を行った後、680 〜830℃以上から
1〜50℃/secの冷却速度で580 ℃以下の温度域まで冷却
し、次いで450 〜650 ℃に再加熱してから、空冷処理す
ることを特徴とする溶接性と低温靱性に優れた高強度鋼
材の製造方法。
2. A steel slab having the steel composition according to claim 1 is heated to a temperature range of 950 to 1200 ° C., and a finishing temperature of 700 to 1200 ° C.
After hot rolling at ~ 850 ° C, it is cooled from 680 ~ 830 ° C to 580 ° C at a cooling rate of 1 ~ 50 ° C / sec, then reheated to 450 ~ 650 ° C, A method for producing a high-strength steel material having excellent weldability and low-temperature toughness characterized by air-cooling.
JP28340699A 1999-10-04 1999-10-04 Method for producing high strength steel excellent in weldability and low temperature toughness Withdrawn JP2001107136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28340699A JP2001107136A (en) 1999-10-04 1999-10-04 Method for producing high strength steel excellent in weldability and low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28340699A JP2001107136A (en) 1999-10-04 1999-10-04 Method for producing high strength steel excellent in weldability and low temperature toughness

Publications (1)

Publication Number Publication Date
JP2001107136A true JP2001107136A (en) 2001-04-17

Family

ID=17665124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28340699A Withdrawn JP2001107136A (en) 1999-10-04 1999-10-04 Method for producing high strength steel excellent in weldability and low temperature toughness

Country Status (1)

Country Link
JP (1) JP2001107136A (en)

Similar Documents

Publication Publication Date Title
WO2013044640A1 (en) Steel plate with low yield ratio high toughness and manufacturing method thereof
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JP3981615B2 (en) Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP4276341B2 (en) Thick steel plate having a tensile strength of 570 to 720 N / mm2 and a small hardness difference between the weld heat-affected zone and the base material, and a method for producing the same
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JP4742597B2 (en) Production method of non-tempered high strength steel
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JP3541746B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP3569499B2 (en) High strength steel excellent in weldability and method for producing the same
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
KR102100050B1 (en) Steel plate and method of manufacturing the same
JPH0247525B2 (en)
JP3371715B2 (en) Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance
JP3589156B2 (en) High strength steel with excellent fracture toughness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205