JP2001089101A - Method for selectively removing co in hydrogen gas - Google Patents

Method for selectively removing co in hydrogen gas

Info

Publication number
JP2001089101A
JP2001089101A JP26405399A JP26405399A JP2001089101A JP 2001089101 A JP2001089101 A JP 2001089101A JP 26405399 A JP26405399 A JP 26405399A JP 26405399 A JP26405399 A JP 26405399A JP 2001089101 A JP2001089101 A JP 2001089101A
Authority
JP
Japan
Prior art keywords
catalyst
gas
carrier
concentration
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26405399A
Other languages
Japanese (ja)
Inventor
Maki Yonemitsu
真樹 米満
Hiroaki Kaneko
浩昭 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP26405399A priority Critical patent/JP2001089101A/en
Publication of JP2001089101A publication Critical patent/JP2001089101A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for selectively removing CO, for efficiently carrying out a reaction for reducing the CO concentration within a prescribed temperature range, i.e., the temperature range in which the oxidation reaction of the CO can be efficiently carried out and the side reaction such as a methanation reaction (CO+3H2O→CH4+H2O) is suppressed to efficiently reduce the CO concentration. SOLUTION: This method for selectively removing the CO in a hydrogen gas comprises bringing a mixed gas obtained by mixing a gas consisting essentially of the hydrogen and containing the CO, with oxygen gas, into contact with a catalyst for selectively oxidizing the CO to convert the CO into CO2, and a catalyst of Ru carried by a carrier containing Ce is used as the catalyst for selectively oxidizing the CO.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素ガス中のCO
を選択的に除去する、CO選択的除去方法に閑し、より
好適には燃料電池発電装置において、燃料電池の燃料極
側に供給されるメタノール等を改質して得られる水素ガ
ス中に含まれるCOを選択的に酸化して除去する、CO
選択的除去方法に関する。
[0001] The present invention relates to a method for producing CO 2 in hydrogen gas.
In the fuel cell power generation device, more preferably, it is contained in hydrogen gas obtained by reforming methanol or the like supplied to the fuel electrode side of the fuel cell. CO that is selectively oxidized and removed.
It relates to a selective removal method.

【0002】[0002]

【従来の技術】固体高分子型燃料電池には、リン酸型燃
料電池と同様の白金系の電極触媒が使用されているが、
固体高分子型燃料電池の場合、リン酸型燃料電池と異な
り、低温(通常100℃以下)で運転されるため、CO
による電極触媒の被毒が重要な問題となっている。
2. Description of the Related Art A polymer electrolyte fuel cell uses the same platinum-based electrode catalyst as a phosphoric acid fuel cell.
Unlike the phosphoric acid fuel cell, the polymer electrolyte fuel cell is operated at a low temperature (usually 100 ° C. or lower).
The poisoning of the electrode catalyst due to this is an important problem.

【0003】従って、白金系電極触媒を用いる燃料電池
の燃料としては、純粋な水素が好ましいが、安価で貯蔵
性に優れ、公共的な供給システムが設定しやすいメタノ
ール等の燃料改質によって得られる水素含有ガスを用い
ることが一般的である。
Accordingly, as a fuel for a fuel cell using a platinum-based electrode catalyst, pure hydrogen is preferable, but it is obtained by fuel reforming of methanol or the like, which is inexpensive, has excellent storage properties, and is easy to set up in a public supply system. It is common to use a hydrogen-containing gas.

【0004】しかし、こうした改質ガス中には、水素の
他にかなりの濃度のCOが含まれており、このCOを白
金電極触媒に無害なCOに転化し、改質ガス中のC
O濃度を低減する技術の開発が強く望まれている。その
際、CO濃度を通常、100ppm以下、好ましくは4
0ppm以下という低濃度まで低減することが望ましい
とされている。
However, such a reformed gas contains a considerable concentration of CO in addition to hydrogen, and this CO is converted into CO 2 that is harmless to the platinum electrode catalyst.
Development of a technique for reducing the O concentration is strongly desired. At that time, the CO concentration is usually 100 ppm or less, preferably 4 ppm.
It is considered desirable to reduce the concentration to a low concentration of 0 ppm or less.

【0005】改質ガス中のCO濃度を低減させる手段の
一つとして、シフト反応(CO+HO→ CO+H
)を利用することが提案されている。しかし、かかる
反応のみでは、化学平衡上の制約から、CO濃度の低減
には限界があり、一般的にはCO濃度を1%以下にする
ことは困難である。
As one of means for reducing the CO concentration in the reformed gas, a shift reaction (CO + H 2 O → CO 2 + H
It has been proposed to use 2 ). However, such a reaction alone has a limit in reducing the CO concentration due to restrictions on chemical equilibrium, and it is generally difficult to reduce the CO concentration to 1% or less.

【0006】そこで、CO濃度をより低濃度まで低減す
る手段として、改質ガス中に酸素又は空気を導入し、C
OをCOに酸化して除去するCO選択酸化法が提案さ
れている。
Therefore, as a means for reducing the CO concentration to a lower concentration, oxygen or air is introduced into the reformed gas to reduce the C concentration.
There has been proposed a CO selective oxidation method in which O is oxidized to CO 2 and removed.

【0007】このようなCOをCOに酸化する酸化
触媒には従来より、貴金属を担持したアルミナ触媒等が
用いられている。しかし、かかる貴金属担持アルミナ触
媒は、多量の水素中の微量のCOを選択的に酸化するこ
とが非常に困難であり、通常、量論より多くの酸素を導
入している。しかし、この過剰な酸素導入に伴い、水素
の酸化反応が進行し、燃料電池の効率低下を招いてしま
う。このため、COを酸化除去するには、大量の水素中
に含まれている微量のCOを、できるだけ少ない酸素量
で、選択的に酸化できる高性能なCO除去方法の実現が望
まれている。
As an oxidation catalyst for oxidizing CO to CO 2 , an alumina catalyst supporting a noble metal has been used. However, it is very difficult for such a noble metal-supported alumina catalyst to selectively oxidize a trace amount of CO in a large amount of hydrogen, and usually, more than stoichiometric oxygen is introduced. However, with the excessive introduction of oxygen, the oxidation reaction of hydrogen proceeds, which causes a decrease in the efficiency of the fuel cell. Therefore, in order to remove CO by oxidation, it is desired to realize a high-performance CO removal method capable of selectively oxidizing a trace amount of CO contained in a large amount of hydrogen with a minimum amount of oxygen.

【0008】また、このCO選択酸化反応は発熱反応で
あり、反応の進行に伴い触媒層の温度が大きく上昇す
る。実際に触媒の温度が上昇すると、逆シフト反応(C
+H→CO+HO)、水素の燃焼反応(H
1/2O→HO)やメタネーション反応(CO+3
→CH+HO)等の好ましくない反応が進行
し、CO濃度を充分に低減できなくなるという問題が生
じる。
[0008] The CO selective oxidation reaction is an exothermic reaction, and the temperature of the catalyst layer greatly increases as the reaction proceeds. When the temperature of the catalyst actually increases, the reverse shift reaction (C
O 2 + H 2 → CO + H 2 O), combustion reaction of hydrogen (H 2 +
1 / 2O 2 → H 2 O) or methanation reaction (CO + 3
Undesirable reactions such as H 2 → CH 4 + H 2 O) proceed, and a problem arises in that the CO concentration cannot be sufficiently reduced.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、効率
よくCO濃度の低減を行うために、所定の温度範囲内で
CO濃度を低減する反応を効率良く行わしめるCO選択
酸化除去方法、すなわち、CO酸化反応が十分に実施さ
れる温度であり、かつメタネーション反応(CO+3H
→CH4 +HO)等の副反応が抑制される温度範
囲で、CO低減反応が行われるCO選択酸化除去方法を
提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a CO selective oxidation and removal method for efficiently performing a reaction for reducing a CO concentration within a predetermined temperature range in order to efficiently reduce the CO concentration. , A temperature at which the CO oxidation reaction is sufficiently performed, and a methanation reaction (CO + 3H
It is an object of the present invention to provide a CO selective oxidation removal method in which a CO reduction reaction is performed in a temperature range in which a side reaction such as 2 → CH 4 + H 2 O) is suppressed.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記目的
を達成するため、特定の触媒を用いることにより80〜
200℃という広い温度範囲にわたって、CO濃度を十
分に低減することができることを見い出し、本発明に到
達した。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have found that the use of a specific catalyst has a
The present inventors have found that the CO concentration can be sufficiently reduced over a wide temperature range of 200 ° C., and reached the present invention.

【0011】請求項1記載の水素ガス中のCO選択的除
去方法は、水素を主成分とし且つCOを含むガスに酸素
を混合した混合ガスを、CO選択酸化触媒と接触させて
COを選択的に酸化し、COに転化させることによ
り、該水素ガス中のCOを選択的に除去する方法であっ
て、前記CO選択酸化触媒として、Ceを含む担体にR
uを担持した触媒を用いることを特徴とする。
According to a first aspect of the present invention, there is provided a method for selectively removing CO from hydrogen gas, wherein a mixed gas obtained by mixing oxygen with a gas containing hydrogen as a main component and containing CO is brought into contact with a CO selective oxidation catalyst to selectively remove CO. Is a method for selectively removing CO in the hydrogen gas by oxidizing to CO 2 , wherein the carrier containing Ce is used as the CO selective oxidation catalyst.
It is characterized by using a catalyst supporting u.

【0012】請求項2記載の水素ガス中のCO選択的除
去方法は、請求項1記載の水素ガス中のCO選択的除去
方法において、前記CO選択酸化反応を、80〜200
℃の温度域で行うことを特徴とする。
The method for selectively removing CO from hydrogen gas according to claim 2 is the method for selectively removing CO from hydrogen gas according to claim 1, wherein the selective oxidation of CO is carried out at 80 to 200.
It is characterized in that it is performed in a temperature range of ° C.

【0013】請求項3記載の水素ガス中のCO選択的除
去方法は、請求項1又は2記載の水素ガス中のCO選択
的除去方法において、前記担体中のCe含有量が、5〜
20重量%であることを特徴とする。
The method for selectively removing CO from hydrogen gas according to claim 3 is the method for selectively removing CO from hydrogen gas according to claim 1 or 2, wherein the content of Ce in the carrier is 5 to 5.
20% by weight.

【0014】請求項4記載の水素ガス中のCO選択的除
去方法は、請求項1〜3いずれかの項記載の水素ガス中
のCO選択的除去方法において、前記担体が、アルミ
ナ、チタニア、シリカ及びジルコニアから成る群より選
ばれることを特徴とする。
According to a fourth aspect of the present invention, there is provided the method for selectively removing CO from hydrogen gas according to any one of the first to third aspects, wherein the carrier comprises alumina, titania, silica, And zirconia.

【0015】請求項5記載の水素ガス中のCO選択的除
去方法は、請求項1〜4いずれかの項記載の水素ガス中
のCO選択的除去方法において、RuをCO選択酸化触
媒中0.5〜5重量%含有することを特徴とする。
The method for selectively removing CO from hydrogen gas according to claim 5 is the method for selectively removing CO from hydrogen gas according to any one of claims 1 to 4. It is characterized by containing 5 to 5% by weight.

【0016】[0016]

【発明の実施の形態】本発明は、水素を主成分とし且つ
COを含むガスに酸素を混合したガスを、Ceを含む担
体にRuを担持した触媒と接触させ、COを選択的に酸
化してCO 2に転化させることにより、該水素ガス中の
COを選択的に除去する方法である。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, a gas obtained by mixing oxygen with a gas containing hydrogen as a main component and containing CO is brought into contact with a catalyst in which Ru is carried on a carrier containing Ce to selectively oxidize CO. This is a method of selectively removing CO in the hydrogen gas by converting the hydrogen gas into CO 2 .

【0017】水素を主成分とし且つCOを含むガスとし
ては、アルコールの水蒸気改質や炭化水素の部分酸化に
より得られる水素ガスを用いることができる。ここで水
素を主成分とし、且つCOを含むガスとは、水素を全ガ
ス中40容量%以上含有するものをいう。
As the gas containing hydrogen as a main component and containing CO, hydrogen gas obtained by steam reforming of alcohol or partial oxidation of hydrocarbon can be used. Here, the gas containing hydrogen as a main component and containing CO means a gas containing 40% by volume or more of hydrogen in all the gases.

【0018】かかるCO含有水素ガスからCOを選択的
に除去するために、該CO含有水素ガスに酸素ガスを混
合させる。CO含有水素ガスに対する酸素ガスの混合
は、O/CO(モル比)=0.5〜3である。かかる
混合割合とすることによりHの消費を最小限に抑え、
COを選択的に除去できる。
In order to selectively remove CO from the CO-containing hydrogen gas, oxygen gas is mixed with the CO-containing hydrogen gas. The mixing of the oxygen gas with the CO-containing hydrogen gas is O 2 / CO (molar ratio) = 0.5-3. With such a mixing ratio, the consumption of H 2 is minimized,
CO can be selectively removed.

【0019】かかるCO含有水素ガスからCOを選択的
に除去するため、CO選択酸化触媒と該CO含有水素ガ
スに酸素を混合した混合ガスを接触させる。接触方法
は、特に限定されないが、常圧下、80〜200℃の温
度域で行なうことが好ましい。かかる条件でCO選択酸
化反応を行なわしめると、CO+HO→CO+H
シフト反応が効率良く行なわれる一方、CO+H
CO+HO(逆シフト反応)、H+1/2O→H
O(水素の燃焼反応)及びCO+3H→CH+H
O(メタネーション反応)が抑制され、COを十分低
減することができる。
Selective CO from such CO-containing hydrogen gas
CO selective oxidation catalyst and the CO-containing hydrogen gas
The mixed gas in which oxygen is mixed is brought into contact with the gas. Contact method
Is not particularly limited, but under normal pressure, a temperature of 80 to 200 ° C.
It is preferable to perform in the temperature range. Under such conditions, CO selective acid
When the reaction is carried out, CO + H2O → CO2+ H 2
While the shift reaction is carried out efficiently, CO 22+ H2
CO + H2O (reverse shift reaction), H2+ 1 / 2O2→ H
2O (hydrogen combustion reaction) and CO + 3H2→ CH4+ H
2O (methanation reaction) is suppressed and CO is sufficiently low
Can be reduced.

【0020】CO選択酸化触媒としては、Ceを含有す
る担体に、Ruを担持した触媒が好適に用いられる。か
かる担体としては、アルミナ、チタニア、シリカ及びジ
ルコニアから成る群より好適に選択される。
As the CO selective oxidation catalyst, a catalyst in which Ru is supported on a carrier containing Ce is preferably used. Such a carrier is suitably selected from the group consisting of alumina, titania, silica and zirconia.

【0021】該担体中のCe含有量は、担体中5〜20
重量%であることが好ましい。かかる範囲であると担体
表面積を低下させることなく、分散性良くCeを含有す
ることができる。また、担体中にCeを含有させること
で、Oストレージが容易になり、かつRuを高分散に
担持できるため、COを選択的に除去できる。
The Ce content in the carrier is 5 to 20 in the carrier.
% By weight. Within this range, Ce can be contained with good dispersibility without reducing the surface area of the carrier. Further, when Ce is contained in the carrier, O 2 storage is facilitated and Ru can be supported in a high dispersion, so that CO can be selectively removed.

【0022】Ceを担体に含有させるには、Ceの原料
化合物として、Ceの無機酸塩、炭酸塩、アンモニウム
塩、有機酸塩、ハロゲン化物、酸化物、ナトリウム塩、
アンミン錯化合物等を組み合わせて使用することができ
るが、特に水溶性の塩を使用することが触媒性能を向上
させる観点から好ましい。含有法としては特殊な方法に
限定されず、成分の著しい偏在を伴わない限り、公知の
蒸発乾固法、沈殿法、含浸法、イオン交換法等の種々の
方法を用いることができる。特にアルミナへの担持に
は、分散性を高める点から含浸法が好ましい。
In order for Ce to be contained in the carrier, as a raw material compound of Ce, inorganic acid salts, carbonates, ammonium salts, organic acid salts, halides, oxides, sodium salts of Ce,
Although an ammine complex compound or the like can be used in combination, it is particularly preferable to use a water-soluble salt from the viewpoint of improving the catalyst performance. The content method is not limited to a special method, and various methods such as a known evaporation method, a precipitation method, an impregnation method, and an ion exchange method can be used as long as the components are not significantly unevenly distributed. In particular, the impregnation method is preferable for supporting on alumina, from the viewpoint of increasing dispersibility.

【0023】次いでCeを含有させた担体を80℃〜1
80℃で乾燥し、次いで空気中及び/又は空気流通下で
300℃〜500℃で焼成する。焼成温度がかかる温度
範囲であると、担体表面積を保持したままCeを含有で
きる点から好ましい。
Next, the carrier containing Ce was heated to 80 ° C to 1 ° C.
It is dried at 80 ° C., and then calcined at 300 ° C. to 500 ° C. in the air and / or under air flow. It is preferable that the sintering temperature be in such a temperature range since Ce can be contained while maintaining the surface area of the carrier.

【0024】上記担体中にCeを含有していれば、F
e,Ca,Mg,Mn,La,Nd,Sm,Pr,Gd
等の他の成分を含有していてもかまわない。
If Ce is contained in the carrier, F
e, Ca, Mg, Mn, La, Nd, Sm, Pr, Gd
And other components may be contained.

【0025】このようにして得られたCe含有担体にR
uを担持させる。Ruは、CO選択酸化触媒中0.5〜
5重量%含有されることが望ましく、少ないと、COの
酸化活性が不十分であり、一方高いと担持濃度に見合っ
たCO酸化活性が得られない。また、CO選択酸化触媒
中にRuを含有させることで、燃料電池の燃料極側に供
給可能な改質ガスを得ることができる。
The thus obtained Ce-containing carrier has R
u. Ru is 0.5 to 0.5% in the CO selective oxidation catalyst.
If it is contained in an amount of 5% by weight, the oxidizing activity of CO is insufficient if the content is low, and the oxidizing activity corresponding to the supported concentration cannot be obtained if the content is high. Also, by including Ru in the CO selective oxidation catalyst, a reformed gas that can be supplied to the fuel electrode side of the fuel cell can be obtained.

【0026】Ruの原料化合物としては、無機酸塩、炭
酸塩、アンモニウム塩、有機酸塩、ハロゲン化物、酸化
物、ナトリウム塩、アンミン錯化合物等を組み合わせて
使用することができるが、特に水溶性の塩を使用するこ
とが触媒性能を向上させる観点から好ましい。Ruの担
体への担持法としては特殊な方法に限定されず、成分の
著しい偏在を伴わない限り、公知の蒸発乾固法、沈殿
法、含浸法、イオン交換法等の種々の方法を用いること
ができる。
As a raw material compound of Ru, inorganic acid salts, carbonates, ammonium salts, organic acid salts, halides, oxides, sodium salts, ammine complex compounds and the like can be used in combination. It is preferable to use a salt of from the viewpoint of improving the catalyst performance. The method for supporting Ru on the carrier is not limited to a special method, and various methods such as a known evaporation to dryness method, a precipitation method, an impregnation method, and an ion exchange method may be used unless significant uneven distribution of components is involved. Can be.

【0027】次いでRuを含浸したCe含有担体を80
℃〜180℃で乾燥し、次いで、空気中及び/又は空気
流通下で300℃〜600℃焼成する。かかる焼成温度
が、200℃未満だと塩分解が不十分であり、逆に60
0℃を越えるとRuの分散度が低下するので好ましくな
い。
Next, the Ru-impregnated Ce-containing carrier was
It is dried at a temperature of from 180C to 180C, and then calcined at 300C to 600C in the air and / or in the flow of air. If the calcination temperature is less than 200 ° C., salt decomposition is insufficient, and
If the temperature exceeds 0 ° C., the degree of dispersion of Ru decreases, which is not preferable.

【0028】次いで、得られたRu担持Ce含有触媒
を、粉砕して粒径24〜42メッシュにする。かかる粒
径に粉砕することで、再現性良く性能評価を行なうこと
ができる。
Next, the obtained Ru-containing Ce-containing catalyst is pulverized to a particle size of 24 to 42 mesh. By grinding to such a particle size, performance evaluation can be performed with good reproducibility.

【0029】その後、粉砕した触媒粒子を所定の反応容
器に充填し、水素気流中、200〜600℃で0.5〜
2時間還元して、本発明に用いるCO選択酸化触媒を得
る。このようにして得られたCO選択酸化触媒に、上記
CO含有水素ガスに酸素ガスを混合した混合を流速25
〜150cm/分で流すことにより、COを選択的に
酸化除去することができる。
After that, the pulverized catalyst particles are filled in a predetermined reaction vessel, and are heated at 200 to 600 ° C. in a hydrogen stream at a temperature of 0.5 to 500 ° C.
After reducing for 2 hours, a CO selective oxidation catalyst used in the present invention is obtained. A mixture of the above-mentioned CO-containing hydrogen gas and oxygen gas was mixed with the thus-obtained CO selective oxidation catalyst at a flow rate of 25%.
CO can be selectively oxidized and removed by flowing at ~ 150 cm 3 / min.

【0030】本発明CO選択除去方法において、少なく
ともCeを含む担体にRuを担持した触媒を用いて、C
O選択酸化を行うと、従来のCeを含まない担体を用い
た場合と比較して、CO濃度を十分に低減可能な温度範
囲が広くなる。したがって、本発明CO選択除去方法を
用いると、厳密な温度制御を行うことなく、CO濃度の
極めて低い水素ガスを得ることができる。
In the method for selective removal of CO of the present invention, a catalyst comprising Ru supported on a carrier containing at least Ce is used to remove C.
When the O selective oxidation is performed, the temperature range in which the CO concentration can be sufficiently reduced becomes wider as compared with the case where a conventional carrier containing no Ce is used. Therefore, by using the CO selective removal method of the present invention, it is possible to obtain a hydrogen gas having an extremely low CO concentration without performing strict temperature control.

【0031】[0031]

【実施例】以下に、本発明を次の実施例及び比較例につ
いて説明する。なお、本発明は以下の実施例に何ら限定
されるものではない。
The present invention will be described below with reference to the following examples and comparative examples. The present invention is not limited to the following examples.

【0032】実施例1、比較例1〜2 Ceを含むAl担体にRuを担持する触媒を調製
するにあたり、まずCeを含むA1担体を調製し
た。Ceを含む担体の調製は、硝酸セリウムを溶解した
水溶液を含浸溶液として用い、Ce含有量が8重量%に
なるようにA1 担体に含浸担持した。その後15
0℃で乾燥、400℃で焼成して、Ceを含むA1
担体を得た。
[0032]Example 1, Comparative Examples 1-2 Al containing Ce2O3Preparation of catalyst supporting Ru on carrier
In doing so, first A1 containing Ce2O3Prepare the carrier
Was. Preparation of carrier containing Ce dissolved cerium nitrate
Using an aqueous solution as the impregnating solution, Ce content was reduced to 8% by weight.
A1 2O3The carrier was impregnated and supported. Then 15
A1 containing Ce after drying at 0 ° C and firing at 400 ° C2O
3A carrier was obtained.

【0033】次に、CO選択酸化活性成分であるRu
を、上記Ceを含むA1担体に含浸担持した。
Ruの担持には、硝酸ルテニウムを溶解した水溶液
(3.6重量%)を含浸溶液として用いた。Ruの担持
量は、5重量%になるようにした。その後150℃で4
時間乾燥を行い、その後350℃で1時間焼成して、C
eを含むA1担体にRuを担持した触媒(触媒
1)を得た。
Next, Ru, which is a CO selective oxidation active component, is used.
It was impregnated supported on A1 2 O 3 support containing the Ce.
For carrying Ru, an aqueous solution (3.6% by weight) in which ruthenium nitrate was dissolved was used as an impregnation solution. The loading amount of Ru was set to 5% by weight. Then at 150 ° C 4
Drying at 350 ° C. for 1 hour.
to obtain a catalyst carrying Ru (catalyst 1) to A1 2 O 3 support containing e.

【0034】上述した方法と同様にして、比較として、
Ceを含まないA1担体にRuを担持した触媒
(触媒2)およびCeを含むA1担体にPtを担
持した触媒(触媒3)を調製した。
Similar to the method described above, for comparison,
Was prepared catalyst carrying Pt (catalyst 3) to A1 2 O 3 carrier containing not including Ce A1 2 O 3 carrier catalyst supporting Ru (catalyst 2) and ce.

【0035】これら3種類の触媒(触媒1〜3)を、各
々24〜42メッシュに整粒して所定の反応容器に充填
した後、水素気流中、350℃で1時間還元処理してC
O選択酸化触媒を得た。
Each of these three types of catalysts (catalysts 1 to 3) is sized to 24 to 42 mesh and filled in a predetermined reaction vessel, and then reduced at 350 ° C. for 1 hour in a hydrogen stream to obtain C.
An O selective oxidation catalyst was obtained.

【0036】得られたCO選択酸化触媒の評価には、モ
デルガスとして、ドライ状態での組成がH=75%、
CO=24.5%、CO=0.5%の混合ガスをバブ
リングして絶対湿度10%になるように調製したガスを
用いた。また、CO選択酸化触媒へは、モデルガスにO
とCOのモル比[O]/[CO]=1.5となる
ように酸素ガスを混合させたものを、ドライガスベース
でガス流量/触媒体積が約10000h−1となるよう
に供給し、温度を変化させて出口CO濃度を測定した。
In the evaluation of the obtained CO selective oxidation catalyst, the composition in a dry state was H 2 = 75% as a model gas.
A gas prepared by bubbling a mixed gas of CO 2 = 24.5% and CO = 0.5% so as to have an absolute humidity of 10% was used. In addition, for the CO selective oxidation catalyst, O
A mixture obtained by mixing oxygen gas so that the molar ratio of 2 to CO [O 2 ] / [CO] = 1.5 is supplied so that the gas flow rate / catalyst volume becomes about 10,000 h −1 on a dry gas basis. Then, the outlet CO concentration was measured while changing the temperature.

【0037】図1には、出口CO濃度と、温度との関係
を示す。図1に示すようにCeを含まないAl
体にRuを担持した触媒(触媒2)およびCeを含むA
担体にPtを担持下触媒(触媒3)を用いた場
合には、燃料電池に供給する燃料ガスとして許容される
CO濃度である40ppm以下にまでCO濃度を低減で
きるのは、180℃前後の狭い温度範囲に限られてい
た。これに対して、Ceを含むAl担体にRuを
担持した触媒(触媒1)を用いた場合には、80〜20
0℃という広い温度範囲においてCO濃度を40ppm
以下にまで低減することができた。
FIG. 1 shows the relationship between the outlet CO concentration and the temperature. As shown in FIG. 1, a catalyst in which Ru is supported on an Al 2 O 3 carrier that does not contain Ce (catalyst 2) and A containing Ce
In the case where a catalyst (catalyst 3) with Pt supported on an l 2 O 3 carrier is used, the CO concentration can be reduced to 40 ppm or less, which is the CO concentration allowable as a fuel gas supplied to the fuel cell, by 180 It was limited to a narrow temperature range around ℃. On the other hand, when a catalyst in which Ru is supported on an Al 2 O 3 carrier containing Ce (catalyst 1) is used, 80 to 20
CO concentration of 40ppm over a wide temperature range of 0 ° C
It was able to reduce to below.

【0038】本実施例のCeを含む担体にRuを担持し
た触媒(触媒1)では、上述したようにCO濃度を十分
に低減可能な温度範囲が広いが、このことは、Ceを含
む担体を用いることでOストレージが容易となり、よ
り低温からCO酸化活性を有するという効果に加えて、
Ceを含む担体を用いたことで、CO酸化活性成分であ
るRuをより高分散に担持できる効果があるためであ
る。
In the catalyst of the present embodiment in which Ru is supported on a carrier containing Ce (catalyst 1), the temperature range in which the CO concentration can be sufficiently reduced is wide as described above. O 2 storage is facilitated by using, in addition to the effect of having a CO oxidation activity more from a low temperature,
This is because the use of a carrier containing Ce has an effect of supporting Ru, which is a CO oxidation active component, in a higher dispersion.

【0039】図2には、Ceの含有の有無によるRu分
散度の違いを示す。Ceを含むAl 担体にRuを
担持した触媒(触媒1)とCeを含まないAl
体にRuを担持した触媒(触媒2)とのRu分散度を比
較すると、Ceを含むAl担体にRuを担持した
触媒(触媒1)の方が、Ru分散度が高いが、Ptを担
持した触媒では、上述したような効果は得られず、この
効果はRu担持触媒に特徴的なものであることが明らか
となった。Ruの分散度は、貴金属分散度測定装置(C
Oパルス吸着法)を用い測定した。
FIG. 2 shows the Ru content depending on the presence or absence of Ce.
Shows differences in diffusivity. Al containing Ce 2O3Ru on the carrier
Supported catalyst (catalyst 1) and Ce-free Al2O3Responsible
The ratio of the Ru dispersion to the catalyst (Catalyst 2) carrying Ru on the body
In comparison, Al containing Ce2O3Ru supported on carrier
The catalyst (catalyst 1) has a higher Ru dispersion degree, but bears Pt.
With the supported catalyst, the above-mentioned effects cannot be obtained.
It is clear that the effect is characteristic of the Ru-supported catalyst
It became. The degree of dispersion of Ru can be measured with a noble metal dispersion degree measuring device (C
O-pulse adsorption method).

【0040】実施例2 実施例1と同様にして、Ceを含むAl担体にR
uを担持した触媒を調製した。Ceの含有量は、15重
量%とし、Ruの担持量は5重量%とした(触媒4)。
乾燥、焼成も実施例1と同様に行い、24〜42メッシ
ュに整粒後、所定の反応容器に充填し、水素気流中、3
50℃で1時間還元処理した。
Example 2 In the same manner as in Example 1, the Al 2 O 3 support containing Ce
A catalyst supporting u was prepared. The content of Ce was 15% by weight, and the supported amount of Ru was 5% by weight (catalyst 4).
Drying and baking were performed in the same manner as in Example 1. After sizing to 24 to 42 mesh, the mixture was filled in a predetermined reaction vessel, and dried under a hydrogen stream.
Reduction treatment was performed at 50 ° C. for 1 hour.

【0041】次いで、実施例1と同様のモデルガスを用
い、CO選択酸化反応を行った.その結果、80〜20
0℃という広い温度範囲においてCO濃度を40ppm
以下にまで低減することができた。
Next, using the same model gas as in Example 1, a CO selective oxidation reaction was performed. As a result, 80 to 20
CO concentration of 40ppm over a wide temperature range of 0 ° C
It was able to reduce to below.

【0042】実施例3 実施例1と同様にして、Ceを含むAl担体にR
uを担持した触媒を調製した。Ceの含有量は、8重量
%とし、Ruの担持量は1重量%とした(触媒5)。乾
燥、焼成も実施例1と同様に行い、24〜42メッシュ
に整粒後、所定の反応容器に充填し、水素気流中、35
0℃で1時間還元処理した。次いで、実施例1と同様の
モデルガスを用い、CO選択酸化反応を行った。その結
果、100〜200℃という広い温度範囲においてCO
濃度を40ppm以下にまで低減することができた。
Example 3 In the same manner as in Example 1, the Al 2 O 3 carrier containing Ce
A catalyst supporting u was prepared. The content of Ce was 8% by weight, and the supported amount of Ru was 1% by weight (catalyst 5). Drying and calcination were performed in the same manner as in Example 1. After sizing to 24-42 mesh, the mixture was filled in a predetermined reaction vessel, and dried in a stream of hydrogen.
Reduction treatment was performed at 0 ° C. for 1 hour. Next, a CO selective oxidation reaction was performed using the same model gas as in Example 1. As a result, over a wide temperature range of 100 to 200 ° C., CO 2
The concentration could be reduced to 40 ppm or less.

【0043】実施例4 実施例1と同様にして、Ceを含むA1担体にR
uを担持した触蝶を調製した。Ceの含有量は、8重量
%とし、Ruの担持量は0.5重量%とした(触媒
6)。乾燥、焼成も実施例1と同様に行い、24〜42
メッシュに整粒後、所定の反応容器に充填し、水素気流
中、350℃で1時間還元処理した.次いで、実施例1
と同様のモデルガスを用い、CO選択酸化反応を行っ
た。その結果、120〜200℃という広い温度範囲に
おいてCO濃度を40ppm以下にまで低減することが
できた。
[0043] In the same manner as in Example 4 Example 1, R to A1 2 O 3 carrier containing Ce
A butterflies carrying u were prepared. The content of Ce was 8% by weight, and the supported amount of Ru was 0.5% by weight (catalyst 6). Drying and baking were performed in the same manner as in Example 1, and
After sizing the mesh, the mixture was filled in a predetermined reaction vessel and subjected to a reduction treatment at 350 ° C. for 1 hour in a hydrogen stream. Then, Example 1
Using a model gas similar to that described above, a CO selective oxidation reaction was performed. As a result, the CO concentration could be reduced to 40 ppm or less in a wide temperature range of 120 to 200 ° C.

【0044】実施例5、比較例3 実施例1に記載した方法と同様の方法で、8重量%のC
eを含むZrO2担体に5重量%のRuを担持させた触
媒(触媒7)と、比較としてCeを含まないZrO2担
体に5重量%のRuを担持させた触媒(触媒8)を含浸
法により調製した。乾燥、焼成も実施例1と同様に行
い、24〜42メッシュに整粒後、所定の反応容器に充
填し、水素気流中、350℃で1時間還元処理した。
Example 5, Comparative Example 3 In the same manner as described in Example 1, 8% by weight of C
A catalyst in which 5% by weight of Ru is supported on a ZrO2 support containing e (catalyst 7) and a catalyst in which 5% by weight of Ru is supported on a ZrO2 support not containing Ce (catalyst 8) are prepared by an impregnation method. did. Drying and baking were performed in the same manner as in Example 1. After sizing to 24-42 mesh, the mixture was filled in a predetermined reaction vessel, and reduced at 350 ° C. for 1 hour in a hydrogen stream.

【0045】次いで、実施例1と同様のモデルガスを用
い、CO選択酸化反応を行い、その結果を図3に示し
た。Ceを含まないZrO 担体にRuを担持した触
媒(触媒8)を用いた場合には、CO濃度を十分に低減
できる温度範囲が、150〜180℃前後と狭い温度範
囲に限られていた。これに対して、Ceを含むZrO
担体にRuを担持した触蝶(触媒7)を用いた場合に
は、100〜200℃という広い温度範囲において燃料
電池に供給する燃料ガスとして許容されるCO濃度ま
で、CO濃度を低減することができた。
Next, a CO selective oxidation reaction was carried out using the same model gas as in Example 1, and the results are shown in FIG. In the case of using a catalyst in which Ru is supported on a ZrO 2 carrier not containing Ce (catalyst 8), the temperature range in which the CO concentration can be sufficiently reduced is limited to a narrow temperature range of about 150 to 180 ° C. On the other hand, ZrO 2 containing Ce
In the case of using a touch butterfly (catalyst 7) supporting Ru on the carrier, the CO concentration can be reduced to a CO concentration allowable as a fuel gas supplied to the fuel cell in a wide temperature range of 100 to 200 ° C. did it.

【0046】実施例6〜7 Ceを含むSiO担体にRuを担持した触媒(触媒
9)およびCeを含むTiO 担体にRuを担持した
触媒(触媒10)を、実施例1と同様に調製した。Ce
含有量はいずれの触媒も8重量%とし、Ru担持量を5
重量%とした。実施例1と同様のモデルガスを用い、C
O選択酸化反応を行なった。Ceを含むSiO 担体
にRuを担持した触媒(触媒9)では、100〜180
℃で、またCeを含むTiO 担体にRuを担持した
触媒(触媒10)では、120〜200℃でCO濃度を
低減することができた。
Examples 6 to 7 A catalyst in which Ru was supported on a SiO 2 support containing Ce (catalyst 9) and a catalyst in which Ru was supported on a TiO 2 support containing Ce (catalyst 10) were prepared in the same manner as in Example 1. did. Ce
The content of each catalyst was 8% by weight, and the amount of supported Ru was 5%.
% By weight. Using the same model gas as in Example 1, C
An O selective oxidation reaction was performed. For a catalyst in which Ru is supported on a SiO 2 support containing Ce (catalyst 9), 100 to 180
In the case of the catalyst (Catalyst 10) in which Ru was supported on a TiO 2 support containing Ce at 120 ° C., the CO concentration could be reduced at 120 to 200 ° C.

【0047】[0047]

【発明の効果】本発明CO選択除去方法によれば、80
〜200℃という広い温度範囲で水素ガス中のCO濃度
を十分低減することができ、このため、メタノール等を
改質して得られる水素リッチなガスを用いる燃料電池車
両システムの早期実現が可能となり、大気汚染防止効果
の向上が図れることが期待できる。
According to the CO selective removal method of the present invention, 80
The CO concentration in hydrogen gas can be sufficiently reduced in a wide temperature range of up to 200 ° C., and therefore, a fuel cell vehicle system using a hydrogen-rich gas obtained by reforming methanol or the like can be realized early. It can be expected that the effect of preventing air pollution can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 反応温度とCO濃度低減との関係を示す線
図。
FIG. 1 is a diagram showing a relationship between a reaction temperature and a reduction in CO concentration.

【図2】 Ce含有の有無とRu分散度との関係を示す
図。
FIG. 2 is a graph showing the relationship between the presence or absence of Ce and the degree of Ru dispersion.

【図3】 反応温度とCO濃度低減との関係を示す線
図。
FIG. 3 is a diagram showing a relationship between a reaction temperature and a reduction in CO concentration.

フロントページの続き Fターム(参考) 4G040 EA02 EA06 EB16 EB32 EC01 EC03 EC04 4G069 AA03 AA08 BA01A BA01B BA02A BA02B BA04A BA04B BA05A BA05B BB02A BB02B BB04A BB04B BC43A BC43B BC70A BC70B CB81 CC25 CC32 EA02Y EB18Y FA01 FB44 FC08 4H060 AA01 BB11 CC18 FF02 GG02 5H027 AA04 AA06 BA01 BA16 Continued on the front page F-term (reference) 4G040 EA02 EA06 EB16 EB32 EC01 EC03 EC04 4G069 AA03 AA08 BA01A BA01B BA02A BA02B BA04A BA04B BA05A BA05B BB02A BB02B BB04A BB04B BC43A BC43B BC70 FB81 CC02A CB81 CC02A 5H027 AA04 AA06 BA01 BA16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素を主成分とし且つCOを含むガスに
酸素を混合した混合ガスを、CO選択酸化触媒と接触さ
せてCOを選択的に酸化し、COに転化させること
により、該水素ガス中のCOを選択的に除去する方法で
あって、前記CO選択酸化触媒として、Ceを含む担体
にRuを担持した触媒を用いることを特徴とする水素ガ
ス中のCOの選択的除去方法。
1. A mixed gas in which oxygen is mixed with a gas containing hydrogen as a main component and containing CO, is brought into contact with a CO selective oxidation catalyst to selectively oxidize CO and convert it to CO 2 , A method for selectively removing CO in a gas, comprising using a catalyst in which Ru is supported on a carrier containing Ce as the CO selective oxidation catalyst.
【請求項2】 前記CO選択酸化反応を、80〜200
℃の温度域で行うことを特徴とする特許請求項1記載の
水素ガス中のCO選択的除去方法.
2. The method according to claim 1, wherein the selective CO oxidation reaction is carried out at 80 to 200.
The method for selectively removing CO from hydrogen gas according to claim 1, wherein the method is performed in a temperature range of ° C.
【請求項3】 前記担体中のCe含有量が、5〜20重
量%であることを特徴とする請求項1又は2記載の水素
ガス中のCO選択的除去方法。
3. The method for selectively removing CO from hydrogen gas according to claim 1, wherein the content of Ce in the carrier is 5 to 20% by weight.
【請求項4】 前記担体が、アルミナ、チタニア、シリ
カ及びジルコニアから成る群より選ばれることを特徴と
する請求項1〜3いずれかの項記載の水素ガス中のCO
選択的除去方法。
4. The CO in hydrogen gas according to claim 1, wherein said carrier is selected from the group consisting of alumina, titania, silica and zirconia.
Selective removal method.
【請求項5】 RuをCO選択酸化触媒中0.5〜5重
量%含有することを特徴とする請求項1〜4いずれかの
項記載の水素ガス中のCO選択的除去方法。
5. The method for selectively removing CO from hydrogen gas according to claim 1, wherein 0.5 to 5% by weight of Ru is contained in the CO selective oxidation catalyst.
JP26405399A 1999-09-17 1999-09-17 Method for selectively removing co in hydrogen gas Pending JP2001089101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26405399A JP2001089101A (en) 1999-09-17 1999-09-17 Method for selectively removing co in hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26405399A JP2001089101A (en) 1999-09-17 1999-09-17 Method for selectively removing co in hydrogen gas

Publications (1)

Publication Number Publication Date
JP2001089101A true JP2001089101A (en) 2001-04-03

Family

ID=17397899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26405399A Pending JP2001089101A (en) 1999-09-17 1999-09-17 Method for selectively removing co in hydrogen gas

Country Status (1)

Country Link
JP (1) JP2001089101A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272178A (en) * 2005-03-29 2006-10-12 Ne Chemcat Corp Catalyst for removing carbon monoxide
CN1331730C (en) * 2006-01-12 2007-08-15 天津大学 Method for preceding to oxidize CO in hydrogen-riched air

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272178A (en) * 2005-03-29 2006-10-12 Ne Chemcat Corp Catalyst for removing carbon monoxide
CN1331730C (en) * 2006-01-12 2007-08-15 天津大学 Method for preceding to oxidize CO in hydrogen-riched air

Similar Documents

Publication Publication Date Title
US7384986B2 (en) Process for the selective methanation of carbonmonoxide (CO) contained in a hydrogen-rich reformate gas
JP2006346598A (en) Steam reforming catalyst
JP5094028B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
US20100113261A1 (en) Precious Metal Water-Gas Shift Catalyst with Oxide Support Modified with Rare Earth Elements
JP3715482B2 (en) Carbon monoxide selective oxidation catalyst in hydrogen-containing gas, carbon monoxide removal method using the catalyst, and solid polymer electrolyte fuel cell system
JP4689508B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP2008056539A (en) Carbon monoxide methanation method
JP2008155147A (en) Catalyst for methanating carbon monoxide and method for methanating carbon monoxide by using the same
JP2006239551A (en) Co methanizing catalyst, co removing catalyst device and fuel cell system
US20060111457A1 (en) Process for the production of a hydrogen-rich reformate gas by methanol autothermal reforming reaction
JP2001089101A (en) Method for selectively removing co in hydrogen gas
JP2003268386A (en) Method of desulfurization of hydrocarbon, and fuel cell system
JP3796745B2 (en) CO selective oxidation catalyst in hydrogen gas, method for producing the same, and method for removing CO in hydrogen gas
JP3903865B2 (en) CO selective oxidation catalyst and method for producing the same
JP3788718B2 (en) CO selective oxidation catalyst and method for reducing CO concentration in methanol reformed gas
JP2002059004A (en) Co removing catalyst and co removing method using the same
JP2005034682A (en) Co modification catalyst and its production method
JP2008161742A (en) Catalyst for removing carbon monoxide in hydrogen gas
JP2004134299A (en) Carbon monoxide removing device and solid polymer fuel cell system
US7345007B2 (en) Catalyst for selective oxidation of carbon monoxide in reformed gas
JP3703001B2 (en) CO selective oxidation catalyst and method for reducing CO concentration in methanol reformed gas
JP4521970B2 (en) Carbon monoxide removal catalyst and carbon monoxide removal method using the same
JP3975803B2 (en) Method for producing CO selective oxidation catalyst
JP2005082409A (en) Hydrogen generator
JP4857137B2 (en) Method for producing carbon monoxide removal catalyst