JP2002059004A - Co removing catalyst and co removing method using the same - Google Patents

Co removing catalyst and co removing method using the same

Info

Publication number
JP2002059004A
JP2002059004A JP2000254252A JP2000254252A JP2002059004A JP 2002059004 A JP2002059004 A JP 2002059004A JP 2000254252 A JP2000254252 A JP 2000254252A JP 2000254252 A JP2000254252 A JP 2000254252A JP 2002059004 A JP2002059004 A JP 2002059004A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
gas
containing gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000254252A
Other languages
Japanese (ja)
Other versions
JP4172139B2 (en
Inventor
Noriko Yoshida
紀子 吉田
Sadao Takahashi
貞夫 高橋
Hisao Yamashita
寿生 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP2000254252A priority Critical patent/JP4172139B2/en
Publication of JP2002059004A publication Critical patent/JP2002059004A/en
Application granted granted Critical
Publication of JP4172139B2 publication Critical patent/JP4172139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Industrial Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To produe a CO removing catalyst of which the removing capacity of CO in hydrogen-containing gas is high under a low oxygen concentration condition, that is, in a low O2/CO ratio, and to provide a CO removing method using the same. SOLUTION: The CO removing catalyst for removing CO in hydrogen- containing gas is constituted by supporting Ru and an oxide of at least one kind of an element among alkaline earth elements on an inorganic oxide carrier. CO removing method using this catalyst is also disclosed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素を主成分とし
かつCOが含有された混合ガスから、COを選択的に酸
化除去する触媒と、その触媒を使用したCO除去方法に
関し、詳しくは水素製造用燃料を改質してえた水素を主
成分とした生成ガス中のCOを選択的に酸化除去する触
媒と、その触媒を使用したCO除去方法に関する。
The present invention relates to a catalyst for selectively oxidizing and removing CO from a mixed gas containing hydrogen as a main component and containing CO, and a method for removing CO using the catalyst. The present invention relates to a catalyst for selectively oxidizing and removing CO in a product gas mainly composed of hydrogen obtained by reforming a production fuel, and a method for removing CO using the catalyst.

【0002】[0002]

【従来の技術】固体高分子型燃料電池は高効率で環境調
和性が高く、自動車用電源,分散電源用として近年注目
を集めている。固体高分子型燃料電池は水素を燃料とし
て発電し、作動温度が約100℃の低温作動型が特徴
で、電極にはPt系触媒が使用されている。このような
低温運転ではPt系電極触媒はCOの吸着により被毒さ
れやすく、燃料水素中に含有されるCOが一定量以上に
なると、電池性能の低下をまねく。通常その許容濃度は
100ppm 以下である。このような問題があるため、固
体高分子型燃料電池の燃料水素は純水素を使用するのが
好ましいが、インフラや貯蔵の観点から、メタン,LN
G,LPGなどのガス燃料,メタノール,ガソリン,ナ
フサ,灯油等の液体燃料を水蒸気改質,部分酸化などの
反応で改質して得られる水素含有ガスを使用するのが一
般的となっている。このような水素製造工程では、改質
反応及びCOシフト反応の平衡から、生成水素ガス中に
1%程度のCOが含有され、CO濃度を1%以下に低減
するのは困難である。
2. Description of the Related Art Polymer electrolyte fuel cells are highly efficient and highly environmentally friendly, and have recently attracted attention as power sources for automobiles and distributed power sources. The polymer electrolyte fuel cell generates power using hydrogen as a fuel, and is characterized by a low-temperature operation type in which an operation temperature is about 100 ° C., and a Pt-based catalyst is used for an electrode. In such a low-temperature operation, the Pt-based electrode catalyst is easily poisoned by the adsorption of CO, and when the amount of CO contained in the fuel hydrogen exceeds a certain amount, the battery performance is reduced. Usually, the allowable concentration is 100 ppm or less. Because of these problems, it is preferable to use pure hydrogen as the fuel hydrogen for the polymer electrolyte fuel cell. However, from the viewpoint of infrastructure and storage, methane, LN
It is common to use a hydrogen-containing gas obtained by reforming a gas fuel such as G or LPG, or a liquid fuel such as methanol, gasoline, naphtha, or kerosene by a reaction such as steam reforming or partial oxidation. . In such a hydrogen production process, from the equilibrium between the reforming reaction and the CO shift reaction, about 1% of CO is contained in the produced hydrogen gas, and it is difficult to reduce the CO concentration to 1% or less.

【0003】そこで、CO濃度を電池電極触媒が許容で
きる濃度まで低減する方法として、改質後の水素含有ガ
スに酸素または酸素含有ガスを導入して触媒層を通しC
Oを酸化反応でCO2 に変換する方法が提案されてい
る。
[0003] As a method of reducing the CO concentration to a level that can be tolerated by the battery electrode catalyst, oxygen or an oxygen-containing gas is introduced into the reformed hydrogen-containing gas and passed through the catalyst layer.
A method of converting O into CO 2 by an oxidation reaction has been proposed.

【0004】 CO+1/2O2 → CO2 (1) (1)の反応の際、酸素源として空気を注入する場合、
残存窒素で水素含有ガスが希釈される問題がある。ま
た、これらの触媒及び方法においては、COを酸素で酸
化してCO2 に変換するとき、同時に多量に含まれる水
素も一部酸素で酸化されて消費される。
[0004] CO + 1 / 2O 2 → CO 2 (1) When air is injected as an oxygen source during the reaction (1),
There is a problem that the hydrogen-containing gas is diluted by the residual nitrogen. Further, in these catalysts and methods, when CO is oxidized with oxygen and converted into CO 2 , a large amount of hydrogen is simultaneously oxidized with oxygen and consumed.

【0005】 H2+1/2O2 → H2O (2) (2)の反応により燃料である水素が消費され燃料の利
用率が低下するとともに、反応の発熱により触媒層の温
度制御が難しくなるという問題がある。従って、(1)
及び(2)の反応のうち、(1)に示すCO酸化反応の
選択性の高い触媒、即ち低O2/CO 比条件でCO除去
率の高い触媒が望まれる。これらの課題に対し、例えば
特開平5−201702号では、ロジウムまたはルテニ
ウムを担体に担持した触媒を用いて、一酸化炭素を優先
的に酸化する装置を提案している。この実施例によれ
ば、水素,CO,酸素,窒素からなる反応ガスについて
は温度100℃以下で高いCO除去率を示す。しかし、
燃料を改質してえられた実際の水素含有ガスには、高濃
度の水蒸気やCO2 が含まれており、特開平5−201
702号の触媒では水蒸気の存在により十分な性能が発
揮できない問題がある。また、CO酸化反応の選択性に
ついては、例えば特開平11−347414号ではPt合金を
ゼオライト系担体に担持した触媒にて、ゼオライトの形
状選択性によりCOの酸化反応の選択性を向上した。し
かし、特開平11−347414号の触媒も、実施例で
しめされるCO,酸素,水素からなるガス成分では高性
能,高選択性を示すが、水蒸気を多く含む燃料を改質し
てえられた実際の水素含有ガスでの性能,耐久性が懸念
される。
H 2 + / O 2 → H 2 O (2) (2) The reaction of (2) consumes hydrogen as a fuel and reduces the fuel utilization, and the heat generated by the reaction makes it difficult to control the temperature of the catalyst layer. There is a problem. Therefore, (1)
Among the reactions of (2) and (2), a catalyst having high selectivity for the CO oxidation reaction shown in (1), that is, a catalyst having a high CO removal rate under a low O 2 / CO ratio condition is desired. To solve these problems, for example, Japanese Patent Application Laid-Open No. Hei 5-201702 proposes an apparatus for preferentially oxidizing carbon monoxide using a catalyst in which rhodium or ruthenium is supported on a carrier. According to this embodiment, the reaction gas composed of hydrogen, CO, oxygen, and nitrogen exhibits a high CO removal rate at a temperature of 100 ° C. or less. But,
The actual hydrogen-containing gas obtained by reforming the fuel contains high-concentration water vapor and CO 2.
The catalyst of No. 702 has a problem that sufficient performance cannot be exhibited due to the presence of steam. Regarding the selectivity of the CO oxidation reaction, for example, in JP-A-11-347414, the selectivity of the CO oxidation reaction was improved by the shape selectivity of zeolite using a catalyst in which a Pt alloy was supported on a zeolite-based carrier. However, the catalyst disclosed in Japanese Patent Application Laid-Open No. 11-347414 also shows high performance and high selectivity in the gas components composed of CO, oxygen, and hydrogen described in Examples, but can be obtained by reforming a fuel containing a large amount of water vapor. Also, there is concern about the performance and durability with actual hydrogen-containing gas.

【0006】[0006]

【発明が解決しようとする課題】以上のように、従来の
技術では、燃料を改質してえられる実際の水素含有ガス
組成条件において性能が十分とはいえなかった。本発明
は、上記の問題を解決するという観点にたち、各種燃料
を改質してえられた水素を含有するガス中のCO除去触
媒で、CO酸化反応の選択性が高く、水蒸気存在下にお
いても、低O2 /CO比条件でCO除去率の高い触媒を
提供することを目的としている。
As described above, in the conventional technology, the performance was not sufficient under the actual hydrogen-containing gas composition conditions obtained by reforming the fuel. The present invention is directed to solving the above-described problems, and is a CO removal catalyst in a gas containing hydrogen obtained by reforming various fuels. Another object of the present invention is to provide a catalyst having a high CO removal rate under a low O 2 / CO ratio condition.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、従来のRuを担体に担持した触媒の性
能を向上したもので、Ruと、アルカリ土類元素のうち
少なくとも一種以上の酸化物を、無機酸化物担体に担持
してなることを特徴とする触媒を、水素含有ガス中のC
O除去用触媒に適用したものである。
In order to achieve the above object, the present invention has improved the performance of a conventional catalyst in which Ru is supported on a carrier, and comprises at least one of Ru and an alkaline earth element. The catalyst characterized in that an oxide of the above is supported on an inorganic oxide carrier.
This is applied to a catalyst for removing O.

【0008】上記CO除去用触媒において、Ruととも
に無機酸化物担体に担持される成分はアルカリ土類元素
のうち少なくとも一種以上の酸化物である。アルカリ土
類元素とは、具体的にはMg,Ca,Ba,Srで、ア
ルカリ土類元素の酸化物とはMgO,CaO,BaO,
SrO等であらわされる。しかし、アルカリ土類元素の
酸化物の形態はこれに限定されるものではなく、たとえ
ば無機酸化物担体を構成する元素または酸化物とアルカ
リ土類元素の複合酸化物が含有されていてもかまわな
い。
In the CO removal catalyst, the component supported on the inorganic oxide carrier together with Ru is at least one oxide of alkaline earth elements. The alkaline earth element is specifically Mg, Ca, Ba, Sr, and the oxide of the alkaline earth element is MgO, CaO, BaO,
It is represented by SrO or the like. However, the form of the oxide of the alkaline earth element is not limited to this, and for example, it may contain a composite oxide of the element or oxide constituting the inorganic oxide carrier and the alkaline earth element. .

【0009】上記CO除去用触媒において、アルカリ土
類元素のうち少なくとも一種以上の酸化物の構成割合で
ある担持量は、酸化物重量にしてその合計が触媒全体の
1〜40wt%であることが好ましい。この量が触媒全
体の1wt%よりも少ないとRu触媒の性能を向上する
効果は現れず、40wt%以上では、含有量に対する効
果が小さくなる。
In the CO removal catalyst, the amount of the at least one oxide of the alkaline earth elements, which is a constituent ratio, may be 1 to 40 wt% of the total catalyst in terms of oxide weight. preferable. If this amount is less than 1 wt% of the whole catalyst, the effect of improving the performance of the Ru catalyst will not be exhibited, and if it is 40 wt% or more, the effect on the content will be small.

【0010】上記CO除去用触媒において、触媒活性成
分であるRuの担持量は0.05 〜5wt%の範囲が好
ましい。この量が触媒全体の0.05wt% よりも少な
いと触媒活性が低く、5wt%以上ではRuの凝集によ
って含有Ru量あたりの活性が低下し、添加分の効果が
あらわれず、かつ含有量が多いと触媒のコストが高くな
る。
[0010] In the CO removal catalyst, the amount of supported Ru as a catalytically active component is preferably in the range of 0.05 to 5 wt%. If this amount is less than 0.05% by weight of the whole catalyst, the catalytic activity is low, and if it is 5% by weight or more, the activity per contained Ru amount is reduced due to the aggregation of Ru, and the effect of the added portion does not appear and the content is large. This increases the cost of the catalyst.

【0011】上記CO除去用触媒において、無機酸化物
担体としては、γ−アルミナ,θ−アルミナ,η−アル
ミナ,ベーマイト等多孔質アルミナ,アルミナ含有の多
孔質アルミナ複合酸化物,チタニア,シリカ−アルミ
ナ,ゼオライトなど、触媒活性成分を高分散担持させる
のにふさわしい、高比表面積を持つ多孔質担体が適用で
きる。特に、アルミナまたはアルミナ含有の多孔質アル
ミナ複合酸化物が好適である。
In the above CO removal catalyst, the inorganic oxide carrier includes porous alumina such as γ-alumina, θ-alumina, η-alumina, boehmite, porous alumina composite oxide containing alumina, titania, silica-alumina. A porous carrier having a high specific surface area suitable for highly dispersing and supporting a catalytically active component such as zeolite or the like can be applied. In particular, alumina or a porous alumina composite oxide containing alumina is preferable.

【0012】上記CO除去用触媒は、球状,円柱状など
のペレットや粒状の形状のものが一般的であるが、形状
はこれに限定されない。上記CO除去用触媒をセラミッ
クスあるいは金属構造体にコートしたCO除去用触媒構
造体として使用でき、これらの構造体としてはハニカム
形状,板状基材または反応器形状の内壁等が可能であ
る。
The catalyst for removing CO is generally in the form of pellets such as spheres and cylinders or particles, but the shape is not limited to these. The CO removal catalyst can be used as a CO removal catalyst structure obtained by coating a ceramic or metal structure, and such a structure can be a honeycomb-shaped, plate-shaped substrate, or reactor-shaped inner wall.

【0013】以上述べてきた水素含有ガス中のCO除去
用触媒は、炭化水素燃料を改質後の水素含有ガスに酸素
または酸素含有ガスを導入して触媒層を通しCOを酸化
反応でCO2 に変換する方法に用いる。具体的には、上
記CO除去用触媒を充填した触媒層の入口に、酸素また
は酸素含有ガスを導入する手段をもち、水素含有ガス中
のCOに対し所定のO2/CO(モル比)となるよう酸素
または酸素含有ガス注入量を調整する。触媒層は1層で
も2層以上直列に設置されていても良いが、高CO除去
率を得るためには、各層入口に酸素または酸素含有ガス
を導入する手段をもつ2層以上の触媒層を設置するとよ
り効果がある。更に、触媒層が2層以上直列に設置され
ている場合、各層入口におけるO2/CO(モル比)の値
を上流触媒層より下流触媒層を大きくするよう調整する
と、高CO除去率を得るために効果が大きい。O2/C
O(モル比)の値が大きいと同一入口ガス温度における
CO除去率は高くなるが、同時にCOの酸化及び同時に
進行する水素の酸化によって触媒層の温度が上昇し、シ
ステムとしての温度制御が難しくなる。そのため、2層
以上の触媒層を設置する場合は、O2/CO(モル比)の
値を上流触媒層より下流触媒層を大きくするよう調整す
ることによって、各層における発熱量のバランスを取る
ことができる。特に上記CO除去用触媒の場合、従来の
Ruのみを担体に担持した触媒に比較してO2/CO(モ
ル比)の値における除去活性が高いので、2層以上の触
媒層を設置する場合は各層での発熱差を小さく押さえる
ことができ、温度制御の面でも有利である。
The catalyst for removing CO in a hydrogen-containing gas as described above is obtained by introducing oxygen or an oxygen-containing gas into a hydrogen-containing gas obtained by reforming a hydrocarbon fuel, passing the catalyst through a catalyst layer, and oxidizing CO to CO 2. Used to convert to Specifically, a means for introducing oxygen or an oxygen-containing gas is provided at the inlet of the catalyst layer filled with the CO removal catalyst, and a predetermined O 2 / CO (molar ratio) with respect to CO in the hydrogen-containing gas. The injection amount of oxygen or an oxygen-containing gas is adjusted so as to obtain the optimum value. The catalyst layer may be one layer or two or more layers in series, but in order to obtain a high CO removal rate, two or more catalyst layers having a means for introducing oxygen or an oxygen-containing gas into each layer inlet are required. Installation is more effective. Further, when two or more catalyst layers are arranged in series, a high CO removal rate can be obtained by adjusting the value of O 2 / CO (molar ratio) at each layer inlet so that the downstream catalyst layer is larger than the upstream catalyst layer. The effect is great. O 2 / C
If the value of O (molar ratio) is large, the CO removal rate at the same inlet gas temperature increases, but the temperature of the catalyst layer rises due to the simultaneous oxidation of CO and the oxidation of hydrogen that proceed simultaneously, making temperature control as a system difficult. Become. Therefore, when two or more catalyst layers are provided, the calorific value of each layer is balanced by adjusting the value of O 2 / CO (molar ratio) so that the downstream catalyst layer is larger than the upstream catalyst layer. Can be. Particularly, in the case of the above-mentioned CO removal catalyst, the removal activity at a value of O 2 / CO (molar ratio) is higher than that of a conventional catalyst in which only Ru is supported on a carrier. Can reduce the difference in heat generation in each layer, and is also advantageous in terms of temperature control.

【0014】次に、本発明を更に詳細に説明する。Next, the present invention will be described in more detail.

【0015】本発明の触媒の製造方法を説明する。触媒
を構成するRuと、アルカリ土類元素のうち少なくとも
1種以上の酸化物を無機酸化物担体に担持する方法とし
て、代表的な含浸法について以下説明する。Ruとアル
カリ土類元素の塩を所定量溶解して調整した所定濃度の
水溶液またはアルコール液を調製し触媒原料液とする。
これを、粉末状,ペレット状,ハニカム状等各種形状の
無機多孔質担体に接触,浸漬する。Ru塩としては、塩
化ルテニウムおよび塩化ルテニウム水和物,硝酸ルテニ
ウム,ジクロロアミノルテニウム錯体など水溶性,アル
コール可溶性のルテニウム塩,ルテニウム錯体が使用で
きる。また、ルテニウム塩や錯体を酸に溶解した溶液を
希釈して使用することも可能である。アルカリ土類元素
の塩としては、硝酸塩,硫酸塩,炭酸塩,酢酸塩等が使
用できる。触媒原料液はRu塩とアルカリ土類塩を混合
した溶液を調製し、Ruとアルカリ土類酸化物を同時に
担体へ担持してもよいし、Ru塩のみの触媒原料液とア
ルカリ土類塩のみの触媒原料液を別々に調製して、段階
的に担体へ担持しても良い。Ruとアルカリ土類酸化物
の担体への担持順序は、Ruが先でも良いし、後でも良
い。このような含浸法以外としては、上記触媒原料液を
用いて、競争吸着法,供沈法,混練法等で製造すること
が可能である。この場合は上記原料以外にアルカリ土類
塩原料として、水酸化物,酸化物も用いることができ
る。以上のような手順で、多孔質担体に触媒原料液を担
持した後、通常常温以上好ましくは100℃以上の温度
で乾燥後、300℃以上好ましくは350〜550℃で
1時間以上焼成する。
The method for producing the catalyst of the present invention will be described. A typical impregnation method will be described below as a method for supporting at least one oxide of at least one of Ru and alkaline earth elements constituting the catalyst on an inorganic oxide carrier. An aqueous solution or alcohol solution having a predetermined concentration adjusted by dissolving a predetermined amount of a salt of Ru and an alkaline earth element is prepared to be a catalyst raw material liquid.
This is brought into contact with and immersed in an inorganic porous carrier having various shapes such as a powder, a pellet, and a honeycomb. As the Ru salt, ruthenium chloride, ruthenium chloride hydrate, ruthenium nitrate, dichloroamino ruthenium complex, and other water-soluble and alcohol-soluble ruthenium salts and ruthenium complexes can be used. It is also possible to dilute and use a solution in which a ruthenium salt or complex is dissolved in an acid. As salts of alkaline earth elements, nitrates, sulfates, carbonates, acetates and the like can be used. A catalyst raw material solution may be prepared by mixing a Ru salt and an alkaline earth salt, and Ru and an alkaline earth oxide may be simultaneously supported on a carrier, or a Ru salt only catalyst raw material solution and an alkaline earth salt only May be separately prepared and supported step by step on a carrier. The order of loading Ru and the alkaline earth oxide on the carrier may be Ru first or later. Other than such an impregnation method, the catalyst raw material liquid can be used for production by a competitive adsorption method, a precipitation method, a kneading method, or the like. In this case, in addition to the above raw materials, hydroxides and oxides can be used as alkaline earth salt raw materials. After the catalyst raw material liquid is supported on the porous carrier by the above-described procedure, it is dried at a temperature of normal temperature or higher, preferably 100 ° C or higher, and then calcined at 300 ° C or higher, preferably 350 to 550 ° C for 1 hour or longer.

【0016】以上の方法で製造したCO除去用触媒は、
用いた無機酸化物担体の形状が粒状,ペレット状,ハニ
カム状等そのまま反応器に充填できる形状であれば、こ
れを完成触媒として使用できる。それ以外に、上記の触
媒単独で使用する他に、上記方法で調製した粉末をハニ
カム状,発泡体状,繊維状,板状などのセラミックや金
属構造体上にスラリーコーティングなどの方法で担持し
て使用することも可能である。
The CO removal catalyst produced by the above method is
If the shape of the inorganic oxide carrier used is a shape such as a granular shape, a pellet shape, a honeycomb shape or the like which can be directly charged into the reactor, it can be used as a completed catalyst. In addition, in addition to using the above-mentioned catalyst alone, the powder prepared by the above method is supported on a ceramic or metal structure such as a honeycomb, foam, fiber, or plate by a method such as slurry coating. It is also possible to use.

【0017】上記製造法で製造した触媒は、反応器に充
填して使用される。新規に充填した触媒は、直接水素,
CO及び酸素を含有する燃料改質ガスを導入して反応さ
せても良いが、好ましくは反応前に水素還元処理を行
う。水素気流下、350℃〜550℃で、1時間以上行
う。
The catalyst produced by the above-mentioned production method is used by filling it in a reactor. The newly charged catalyst is directly hydrogen,
The reaction may be performed by introducing a fuel reforming gas containing CO and oxygen, but preferably a hydrogen reduction treatment is performed before the reaction. This is performed at 350 ° C. to 550 ° C. for 1 hour or more under a hydrogen stream.

【0018】次に上記CO除去用触媒を用いたCO除去
方法について説明する。入口側に酸素または酸素を含有
するガスを注入する手段を設けた反応器に、上記CO除
去触媒を充填する。300℃以下、好ましくは100〜
250℃の水素を含有する燃料改質ガスと、前記注入手
段により酸素または酸素を含有するガスとを触媒層に導
入する。この時の酸素または酸素を含有するガスの注入
量は、前述の(1)式からCO酸化に必要なO2 理論量
にもとづき、水素を含有する燃料改質ガス中のCO濃度
に対しモル比O2/CO 比で0.5 以上好ましくは1.
0 以上に調整する。しかし、触媒を充填した層が2層
以上設置される場合はこの限りではなく、上流の触媒層
のO2/CO 比は0.5 以下でもかまわない。また、触
媒を充填した層が2層以上設置される場合は、上流の触
媒層のO2/CO 比の値よりも下流の触媒層のO2/C
O 比の値を大きく設定することによりトータルとして
高いCO除去率を実現できる。上記反応は、通常空間速
度(供給ガスの標準状態におけるガス流量を触媒体積で
除した値)で5000〜50000h-1の範囲で運転す
るのが好適である。
Next, a method of removing CO using the above-described catalyst for removing CO will be described. A reactor provided with a means for injecting oxygen or a gas containing oxygen at the inlet side is charged with the CO removal catalyst. 300 ° C. or less, preferably 100 to
A fuel reforming gas containing hydrogen at 250 ° C. and oxygen or a gas containing oxygen are introduced into the catalyst layer by the injection means. At this time, the injection amount of oxygen or the gas containing oxygen is based on the stoichiometric amount of O 2 required for CO oxidation from the above equation (1), and the molar ratio is based on the CO concentration in the fuel reforming gas containing hydrogen. The O 2 / CO ratio is 0.5 or more, preferably 1.
Adjust to 0 or more. However, this is not the case when two or more layers filled with the catalyst are provided, and the O 2 / CO ratio of the upstream catalyst layer may be 0.5 or less. When two or more layers filled with the catalyst are provided, the O 2 / C ratio of the downstream catalyst layer is lower than the O 2 / CO ratio value of the upstream catalyst layer.
By setting the value of the O 2 ratio large, a high CO removal rate can be realized as a whole. The above reaction is preferably operated at a normal space velocity (a value obtained by dividing the gas flow rate in the standard state of the supplied gas by the catalyst volume) in the range of 5,000 to 50,000 h -1 .

【0019】本発明のCO除去用触媒は、Ruと、アル
カリ土類元素のうち少なくとも一種以上の酸化物を、無
機酸化物担体に担持してなることを特徴とする。本触媒
はRuとアルカリ土類酸化物との複合効果によって、従
来のRuのみを担体に担持した触媒に比較して、低O2
/CO 比の条件におけるCO除去性能が向上した。本
発明のCO除去用触媒を用いたCO除去方法によって、
水素含有ガス中のCOを酸化除去し、CO濃度を十分に
低減することが可能である。本発明のCO除去用触媒及
びこれを用いたCO除去方法によって得られた水素含有
ガスは、水素を使用する燃料電池特に低温作動型の固体
高分子型燃料電池の燃料として、電池の電極触媒を劣化
させることなく、好適に使用することが可能である。
The CO removal catalyst of the present invention is characterized in that Ru and at least one oxide of alkaline earth elements are supported on an inorganic oxide carrier. Due to the combined effect of Ru and the alkaline earth oxide, the present catalyst has lower O 2 compared to a conventional catalyst in which only Ru is supported on a carrier.
The CO removal performance under the condition of / CO 2 ratio was improved. According to the CO removal method using the CO removal catalyst of the present invention,
It is possible to oxidize and remove CO in the hydrogen-containing gas to sufficiently reduce the CO concentration. The CO-removing catalyst of the present invention and the hydrogen-containing gas obtained by the CO removing method using the same are used as a fuel for a fuel cell using hydrogen, in particular, as a fuel for a polymer electrolyte fuel cell of a low-temperature operation type. It can be used favorably without deterioration.

【0020】[0020]

【発明の実施の形態】以下、本発明を実施例で具体的に
説明するが、本発明はこれらの実施例に限定されない。 (実施例1)硝酸マグネシウム六水和物84.8g を蒸
留水61ccに溶解した触媒原料溶液を、γ−アルミナ担
体(住友アルミナ製NKHD−24)を粉砕し10〜2
0meshに分級した担体120gに含浸し、120℃で乾
燥後、500℃で1時間焼成した。更にこの担体に、市
販の硝酸ルテニウム溶液(Ru含有量3.93wt%)1
6.88g を79ccの蒸留水に溶解した触媒原料溶液を
含浸し、120℃で乾燥後、550℃で1時間焼成し、
触媒Aを得た。触媒AのRu担持量は0.5wt%、マ
グネシウムの担持量はMgOに換算して担持量は10w
t%である。 (実施例2)触媒原料液として硝酸カルシウム四水和物
56.15g を蒸留水79ccに溶解したものを用いる以
外は、実施例1と同様の手順で調製し、触媒Bを得た。
触媒BのRu担持量は0.5wt% 、カルシウムの担持
量はCaOに換算して10wt%である。 (実施例3)触媒原料液として硝酸ストロンチウム2
7.23g を蒸留水96ccに溶解したものを用いる以外
は、実施例1と同様の手順で調製し、触媒Cを得た。触
媒CのRu担持量は0.5wt% 、ストロンチウムの担
持量はSrOに換算して10wt%である。 (実施例4)触媒原料液として酢酸バリウム22.21
g を蒸留水96ccに溶解したものを用いる以外は、実
施例1と同様の手順で調製し、触媒Dを得た。触媒Dの
Ru担持量は0.5wt% 、バリウムの担持量はBaO
に換算して10wt%である。 (比較例1)γ−アルミナ担体(住友アルミナ製NKH
D−24)を粉砕し10〜20meshに分級した担体12
0gに、市販の硝酸ルテニウム溶液(Ru含有量3.93
wt%)15.34g を蒸留水81ccに溶解した触媒原
料溶液を含浸し、120℃で乾燥後、550℃で1時間
焼成し、触媒Eを得た。触媒EのRu担持量は0.5w
t% である。 (比較例2)触媒原料液として硝酸セリウム六水和物3
3.64g を蒸留水88ccに溶解したものを用いる以外
は、実施例1と同様の手順で調製し、触媒Fを得た。触
媒FのRu担持量は0.5wt% 、セリウムの担持量は
CeO2 に換算して担持量は10wt%である。 (比較例3)触媒原料液として硝酸ニッケル六水和物5
1.9g を蒸留水77ccに溶解したものを用いる以外
は、実施例1と同様の手順で調製し、触媒Gを得た。触
媒GのRu担持量は0.5wt% 、NiOの担持量は1
0wt%である。 (実施例5)硝酸マグネシウム六水和物40.17g を
蒸留水79ccに溶解した触媒原料溶液1を、γ−アルミ
ナ担体(住友アルミナ製NKHD−24)を粉砕し10
〜20meshに分級した担体120gに含浸し、120℃
で乾燥後、500℃で1時間焼成した。更にこの担体
に、市販の硝酸ルテニウム溶液(Ru含有量3.93wt
%)16.11gを79ccの蒸留水に溶解した触媒原料溶
液を含浸し、120℃で乾燥後、550℃で1時間焼成
し、触媒Hを得た。触媒HのRu担持量は0.5wt%
、マグネシウムの担持量はMgOに換算して担持量は
5wt%である。 (実施例6)硝酸マグネシウム六水和物190.8g を
蒸留水112ccに溶解し触媒原料溶液を調製した。この
2分の1量を、γ−アルミナ担体(住友アルミナ製NK
HD−24)を粉砕し10〜20meshに分級した担体1
20gに含浸し、120℃で乾燥後、500℃で1時間
焼成した。この操作を2回くりかえした。更にこの担体
に、市販の硝酸ルテニウム溶液(Ru含有量3.93w
t%)18.41gを77ccの蒸留水に溶解した触媒原
料溶液を含浸し、120℃で乾燥後、550℃で1時間
焼成し、触媒Iを得た。触媒IのRu担持量は0.5w
t% 、マグネシウムの担持量はMgOに換算して担持
量は20wt%である。 (実施例7)硝酸マグネシウム六水和物327.1g を
蒸留水150ccに溶解し触媒原料溶液を調製した。この
3分の1量を、γ−アルミナ担体(住友アルミナ製NK
HD−24)を粉砕し10〜20meshに分級した担体1
20gに含浸し、120℃で乾燥後、500℃で1時間
焼成した。この操作を3回くりかえした。更にこの担体
に、市販の硝酸ルテニウム溶液(Ru含有量3.93wt
%)30.6g を66ccの蒸留水に溶解した触媒原料溶
液を含浸し、120℃で乾燥後、550℃で1時間焼成
し、触媒Jを得た。触媒JのRu担持量は0.5wt%
、マグネシウムの担持量はMgOに換算して担持量は
30wt%である。 (実施例8)酢酸バリウム10.52g を蒸留水96cc
に溶解した触媒原料溶液を、γ−アルミナ担体(住友ア
ルミナ製NKHD−24)を粉砕し10〜20meshに分
級した担体120gに含浸し、120℃で乾燥後、50
0℃で1時間焼成した。更にこの担体に、市販の硝酸ル
テニウム溶液(Ru含有量3.93wt%)16.11gを
79ccの蒸留水に溶解した触媒原料溶液を含浸し、12
0℃で乾燥後、550℃で1時間焼成し、触媒Kを得
た。触媒KのRu担持量は0.5wt% 、バリウムの担
持量はBaOに換算して担持量は5wt%である。 (実施例9)酢酸バリウム49.98g を蒸留水196
ccに溶解し触媒原料溶液を調製した。この2分の1量
を、γ−アルミナ担体(住友アルミナ製NKHD−24)
を粉砕し10〜20meshに分級した担体120gに含浸
し、120℃で乾燥後、500℃で1時間焼成した。こ
の操作を2回くりかえした。更にこの担体に、市販の硝
酸ルテニウム溶液(Ru含有量3.93wt%)18.4
1g を77ccの蒸留水に溶解した触媒原料溶液を含浸
し、120℃で乾燥後、550℃で1時間焼成し、触媒
Lを得た。触媒LのRu担持量は0.5wt% 、バリウ
ムの担持量はBaOに換算して担持量は20wt%であ
る。 (実施例10)酢酸バリウム89.67g を蒸留水28
8ccに溶解し触媒原料溶液を調製した。この3分の1量
を、γ−アルミナ担体(住友アルミナ製NKHD−24)
を粉砕し10〜20meshに分級した担体120gに含浸
し、120℃で乾燥後、500℃で1時間焼成した。こ
の操作を3回くりかえした。更にこの担体に、市販の硝
酸ルテニウム溶液(Ru含有量3.93wt%)30.6
g を66ccの蒸留水に溶解した触媒原料溶液を含浸
し、120℃で乾燥後、550℃で1時間焼成し、触媒
Mを得た。触媒MのRu担持量は0.5wt% 、バリウ
ムの担持量はBaOに換算して担持量は30wt%であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. (Example 1) A catalyst raw material solution obtained by dissolving 84.8 g of magnesium nitrate hexahydrate in 61 cc of distilled water was pulverized with a γ-alumina carrier (NKHD-24 manufactured by Sumitomo Alumina) and pulverized to 10-2 g.
The carrier was impregnated with 120 g of a mesh classified to 0 mesh, dried at 120 ° C., and calcined at 500 ° C. for 1 hour. Further, a commercially available ruthenium nitrate solution (Ru content: 3.93 wt%)
Impregnated with a catalyst raw material solution in which 6.88 g was dissolved in 79 cc of distilled water, dried at 120 ° C., and calcined at 550 ° C. for 1 hour,
Catalyst A was obtained. The supported amount of Ru of the catalyst A was 0.5 wt%, and the supported amount of magnesium was 10 w in terms of MgO.
t%. (Example 2) Catalyst B was prepared in the same manner as in Example 1, except that 56.15 g of calcium nitrate tetrahydrate dissolved in 79 cc of distilled water was used as the catalyst raw material liquid.
The supported amount of Ru of the catalyst B was 0.5 wt%, and the supported amount of calcium was 10 wt% in terms of CaO. (Example 3) Strontium nitrate 2 as a catalyst raw material liquid
Catalyst C was obtained in the same manner as in Example 1, except that 7.23 g of the compound dissolved in 96 cc of distilled water was used. The supported amount of Ru of the catalyst C was 0.5 wt%, and the supported amount of strontium was 10 wt% in terms of SrO. Example 4 Barium acetate 22.21 as a catalyst raw material liquid
Catalyst D was obtained in the same manner as in Example 1, except that g was dissolved in 96 cc of distilled water. The supported amount of Ru of the catalyst D was 0.5 wt%, and the supported amount of barium was BaO.
It is 10% by weight. (Comparative Example 1) γ-alumina carrier (NKH made by Sumitomo Alumina)
D-24) carrier 12 obtained by pulverizing and classifying the mixture into 10 to 20 mesh
0 g of a commercially available ruthenium nitrate solution (Ru content 3.93)
(wt%) in 81 cc of distilled water was impregnated with a catalyst raw material solution, dried at 120 ° C., and calcined at 550 ° C. for 1 hour to obtain a catalyst E. The amount of Ru supported on the catalyst E is 0.5 w
t%. (Comparative Example 2) Cerium nitrate hexahydrate 3 as a catalyst raw material liquid
Catalyst F was obtained in the same manner as in Example 1, except that a solution prepared by dissolving 3.64 g in 88 cc of distilled water was used. The supported amount of Ru of the catalyst F was 0.5 wt%, and the supported amount of cerium was 10 wt% in terms of CeO 2 . (Comparative Example 3) Nickel nitrate hexahydrate 5 as a catalyst raw material liquid
Catalyst G was prepared in the same manner as in Example 1 except that 1.9 g dissolved in 77 cc of distilled water was used. The supported amount of Ru of the catalyst G was 0.5 wt%, and the supported amount of NiO was 1
0 wt%. (Example 5) A catalyst raw material solution 1 obtained by dissolving 40.17 g of magnesium nitrate hexahydrate in 79 cc of distilled water was pulverized with a γ-alumina carrier (NKHD-24 manufactured by Sumitomo Alumina) and pulverized.
Impregnated into 120g of carrier classified to ~ 20mesh, 120 ° C
And baked at 500 ° C. for 1 hour. Further, a commercially available ruthenium nitrate solution (Ru content: 3.93 wt.
%) Was impregnated with a catalyst raw material solution obtained by dissolving 16.11 g in 79 cc of distilled water, dried at 120 ° C., and calcined at 550 ° C. for 1 hour to obtain a catalyst H. Ru supported amount of catalyst H is 0.5 wt%
The supported amount of magnesium is converted to MgO, and the supported amount is 5 wt%. (Example 6) 199.8 g of magnesium nitrate hexahydrate was dissolved in 112 cc of distilled water to prepare a catalyst raw material solution. One half of this amount is used as a γ-alumina carrier (Sumitomo Alumina NK
Carrier 1 obtained by crushing HD-24) and classifying it into 10 to 20 mesh
20 g was impregnated, dried at 120 ° C., and fired at 500 ° C. for 1 hour. This operation was repeated twice. Furthermore, a commercially available ruthenium nitrate solution (Ru content 3.93 w
(t%) 18.41 g of a catalyst raw material solution in 77 cc of distilled water was impregnated, dried at 120 ° C., and calcined at 550 ° C. for 1 hour to obtain Catalyst I. The amount of Ru supported on the catalyst I is 0.5 w
t%, the supported amount of magnesium is 20 wt% in terms of MgO. (Example 7) 327.1 g of magnesium nitrate hexahydrate was dissolved in 150 cc of distilled water to prepare a catalyst raw material solution. One-third of this amount is used as a γ-alumina carrier (Sumitomo Alumina NK
Carrier 1 obtained by crushing HD-24) and classifying it into 10 to 20 mesh
20 g was impregnated, dried at 120 ° C., and fired at 500 ° C. for 1 hour. This operation was repeated three times. Further, a commercially available ruthenium nitrate solution (Ru content: 3.93 wt.
%) Was impregnated with a catalyst raw material solution obtained by dissolving 30.6 g in 66 cc of distilled water, dried at 120 ° C., and calcined at 550 ° C. for 1 hour to obtain a catalyst J. The supported amount of Ru of the catalyst J is 0.5 wt%.
And the amount of magnesium is 30 wt% in terms of MgO. (Example 8) 96 cc of distilled water was added to 10.52 g of barium acetate.
The raw material solution dissolved in the catalyst was impregnated with 120 g of a carrier obtained by pulverizing a γ-alumina carrier (NKHD-24 manufactured by Sumitomo Alumina) and classifying the carrier into 10 to 20 mesh, drying at 120 ° C.
It was baked at 0 ° C. for 1 hour. Further, the carrier was impregnated with a catalyst raw material solution obtained by dissolving 16.11 g of a commercially available ruthenium nitrate solution (Ru content: 3.93 wt%) in 79 cc of distilled water.
After drying at 0 ° C., it was calcined at 550 ° C. for 1 hour to obtain a catalyst K. The supported amount of Ru of the catalyst K was 0.5 wt%, and the supported amount of barium was 5 wt% in terms of BaO. (Example 9) 49.98 g of barium acetate was added to 196 of distilled water.
The resultant was dissolved in cc to prepare a catalyst raw material solution. A half of this amount is used as a γ-alumina carrier (NKHD-24 manufactured by Sumitomo Alumina).
Was crushed and impregnated into 120 g of a carrier classified into 10 to 20 mesh, dried at 120 ° C, and fired at 500 ° C for 1 hour. This operation was repeated twice. Further, a commercially available ruthenium nitrate solution (Ru content: 3.93 wt%) 18.4 was added to this carrier.
A catalyst raw material solution obtained by dissolving 1 g in 77 cc of distilled water was impregnated, dried at 120 ° C., and calcined at 550 ° C. for 1 hour to obtain a catalyst L. The supported amount of Ru of the catalyst L was 0.5 wt%, and the supported amount of barium was 20 wt% in terms of BaO. (Example 10) 89.67 g of barium acetate was added to distilled water 28
It was dissolved in 8 cc to prepare a catalyst raw material solution. One third of this amount is used as a γ-alumina carrier (NKHD-24 manufactured by Sumitomo Alumina).
Was crushed and impregnated into 120 g of a carrier classified into 10 to 20 mesh, dried at 120 ° C, and fired at 500 ° C for 1 hour. This operation was repeated three times. Further, 30.6 of a commercially available ruthenium nitrate solution (Ru content: 3.93 wt%) was added to this carrier.
g was dissolved in 66 cc of distilled water, impregnated with a catalyst raw material solution, dried at 120 ° C., and calcined at 550 ° C. for 1 hour to obtain a catalyst M. The supported amount of Ru of the catalyst M was 0.5 wt%, and the supported amount of barium was 30 wt% in terms of BaO.

【0021】実施例1から実施例10及び比較例1から
3で調製した触媒A,B,C,D,E,F,G,H,
I.J,K,L,Mの13種について、常圧流通式触媒
評価装置にて、触媒入口ガス温度を変化させて、以下の
反応条件1にてCO除去性能を評価した。反応条件1の
入口ガス組成におけるO2/CO(モル比)は1である。 <反応条件1> 触媒入口ガス温度:80〜250℃ 触媒入口ガス組成:H237%,CO213%,CO0.
1%,O20.1%,H2O 15%,N2 バランス 空間速度(SV):20,000h-1 各触媒は反応器に充填後、CO除去性能評価に先立ち、
水素10%、窒素バランスの還元処理用ガス流通下、5
00℃で、1時間還元処理を行った。CO除去性能を図
1に示す。反応中の触媒層温度150℃及び200℃に
おける反応器出口のCO減少率を代表例として、表1に
まとめた。ここで、CO減少率は下記の式により求め
た。
The catalysts A, B, C, D, E, F, G, H, and A prepared in Examples 1 to 10 and Comparative Examples 1 to 3
For 13 types of I, J, K, L, and M, the CO removal performance was evaluated under the following reaction conditions 1 by changing the catalyst inlet gas temperature using an atmospheric pressure type catalyst evaluation device. The O 2 / CO (molar ratio) in the inlet gas composition under the reaction condition 1 is 1. <Reaction conditions 1> Catalyst inlet gas temperature: 80 to 250 ° C Catalyst inlet gas composition: H 2 37%, CO 2 13%, CO 0.
1%, O 2 0.1%, H 2 O 15%, N 2 balance Space velocity (SV): 20,000 h -1 After each catalyst was charged into the reactor, prior to CO removal performance evaluation,
Under the flow of gas for reduction treatment with 10% hydrogen and nitrogen balance, 5
The reduction treatment was performed at 00 ° C. for 1 hour. FIG. 1 shows the CO removal performance. Table 1 summarizes the CO reduction rate at the reactor outlet at a catalyst layer temperature of 150 ° C. and 200 ° C. during the reaction as a representative example. Here, the CO reduction rate was determined by the following equation.

【0022】CO減少率(%)=(入口ガスCO濃度−
出口ガスCO濃度)÷入口ガスCO濃度×100 各触媒のCO減少率を比較すると、従来のRuのみを担
持した触媒の代表である触媒E(比較例1)に比べて、
本発明のRuとアルカリ土類酸化物をともに担持してな
る触媒である触媒A,B,C,D,H,I,J,K,
L,MはいずれもCO減少率が高く、アルカリ土類酸化
物の添加効果が認められる。またアルカリ土類金属では
ない元素を添加した触媒F,G(比較例2,3)は、い
ずれもRuのみを担持した触媒の代表である触媒E(比
較例1)よりもCO減少率は低く、添加効果は認められ
ない。
CO reduction rate (%) = (Inlet gas CO concentration−
Outlet gas CO concentration) ÷ Inlet gas CO concentration × 100 Comparing the CO reduction rate of each catalyst, compared to the conventional catalyst E (Comparative Example 1), which is a typical catalyst supporting only Ru,
Catalysts A, B, C, D, H, I, J, K, which are the catalysts of the present invention carrying both Ru and alkaline earth oxides,
Both L and M have a high CO reduction rate, and the effect of adding the alkaline earth oxide is recognized. Further, the catalysts F and G (Comparative Examples 2 and 3) to which elements other than the alkaline earth metals were added had lower CO reduction rates than the catalyst E (Comparative Example 1), which is a typical catalyst supporting only Ru. No additional effect is observed.

【0023】[0023]

【表1】 [Table 1]

【0024】表1のうち、触媒A,B,E,H,I,
J,K,L,Mの結果を用いて、触媒層温度が150℃
のCO減少率を、触媒に担持したアルカリ土類酸化物の
担持量との関係であらわした結果を、図1に示す。図1
で、Mg系として示したのは触媒A,H,I,Jであ
り、Ba系として示したのは触媒D,K,L,Mであ
る。各系のアルカリ土類酸化物の担持量の0wt%の点
は、触媒Eの結果である。図1より、アルカリ土類酸化
物の担持量は全体の40wt%以下の場合にCO除去性
能の向上に効果がある。
In Table 1, catalysts A, B, E, H, I,
Using the results of J, K, L, M, the catalyst layer temperature was 150 ° C.
FIG. 1 shows the relationship between the reduction rate of CO and the amount of alkaline earth oxide supported on the catalyst. FIG.
The catalysts A, H, I, and J are shown as Mg-based catalysts, and the catalysts D, K, L, and M are shown as Ba-based catalysts. The point of 0 wt% of the supported amount of the alkaline earth oxide in each system is the result of the catalyst E. According to FIG. 1, when the amount of the supported alkaline earth oxide is 40% by weight or less of the whole, there is an effect on the improvement of the CO removing performance.

【0025】実施例6で調製した触媒Iと、比較例1で
調製した触媒Eについて、触媒入口ガスの酸素濃度とC
O除去性能の関係を評価した。以下に示す反応条件2に
て、ガス組成のうちO2 濃度を変化させ、O2/CO(モ
ル比)を1,2,3の条件に設定し、CO除去性能を評
価した。 <反応条件2> 触媒入口ガス温度:80〜250℃ 触媒入口ガス組成:H2 37%,CO2 13%,CO
0.1%,O2 0.1,0.2,0.3%のいずれか、H2
O15%,N2バランス 空間速度(SV):20,000h-1 各触媒は反応器に充填後、CO除去性能評価に先立ち、
水素10%,窒素バランスの還元処理用ガス流通下、5
00℃で、1時間還元処理を行った。各触媒のO2/C
O(モル比)と触媒層温度150℃におけるCO除去率
の関係を図2に示す。本発明の触媒Iは従来の触媒Eに
比べ、O2/CO(モル比)の小さい領域すなわち低酸素
濃度におけるCO除去活性が高い。
For the catalyst I prepared in Example 6 and the catalyst E prepared in Comparative Example 1, the oxygen concentration and C
The relationship of the O removal performance was evaluated. Under reaction condition 2 shown below, the O 2 concentration in the gas composition was changed, and O 2 / CO (molar ratio) was set to 1, 2, and 3 conditions, and the CO removal performance was evaluated. <Reaction conditions 2> Catalyst inlet gas temperature: 80 to 250 ° C Catalyst inlet gas composition: H 2 37%, CO 2 13%, CO 2
0.1%, O 2 0.1, 0.2 or 0.3%, H 2
O15%, N 2 balance Space velocity (SV): 20,000 h -1 After each catalyst was charged into the reactor, prior to CO removal performance evaluation,
Under the flow of gas for reduction treatment with 10% hydrogen and nitrogen balance, 5
The reduction treatment was performed at 00 ° C. for 1 hour. O 2 / C of each catalyst
FIG. 2 shows the relationship between O (molar ratio) and the CO removal rate at a catalyst layer temperature of 150 ° C. The catalyst I of the present invention has a higher CO removal activity in a region where O 2 / CO (molar ratio) is small, that is, in a low oxygen concentration, as compared with the conventional catalyst E.

【0026】実施例3の触媒CをCO除去器に充填し、
CO除去性能を評価した。用いたCO除去器の構成を図
3に示す。CO除去器の反応容器2は、1−a,1−
b,1−cの3層の触媒層から構成される。処理ガスは
反応ガス導入用配管3からCO除去器へ導入され、触媒
層で処理されたガスは出口配管4から排出される。1−
a,1−b,1−cの3層の触媒層へのCO酸化に必要
な空気は、それぞれ空気注入管5−a,5−b,5−c
から注入される。触媒層1−a,1−b,1−cに触媒
Cを充填し、反応条件3のガスを反応ガス導入用配管3
から5L/min 導入した。触媒の空間速度条件は入口ガ
スに対して20000h-1となるよう触媒を充填した。
空気注入管5−aからは0.175L/min、5−bから
は0.525L/min 、5−cからは0.525L/min
の空気を注入した。運転開始から30分後の出口配管4
から排出されたガス中のCO濃度を測定したところ、5
ppm であった。 <反応条件3> 触媒1−a入口ガス温度:150℃ 触媒入口ガス組成:H2 37.4%,CO2 13.5%,
CO 0.7%,H2O 13.3%,N2 35.1%
The catalyst C of Example 3 was charged into a CO remover,
The CO removal performance was evaluated. FIG. 3 shows the configuration of the CO remover used. The reaction vessel 2 of the CO remover includes 1-a, 1-
It is composed of three catalyst layers b and 1-c. The processing gas is introduced from the reaction gas introduction pipe 3 to the CO remover, and the gas processed by the catalyst layer is discharged from the outlet pipe 4. 1-
The air required for the oxidation of CO into the three catalyst layers a, 1-b, and 1-c are air injection pipes 5-a, 5-b, and 5-c, respectively.
Injected from. The catalyst layers 1-a, 1-b, 1-c are filled with the catalyst C, and the gas under the reaction condition 3 is supplied to the reaction gas introduction pipe 3.
From 5 L / min. The catalyst was charged so that the space velocity condition of the catalyst was 20,000 h -1 with respect to the inlet gas.
0.175 L / min from air injection pipe 5-a, 0.525 L / min from 5-b, 0.525 L / min from 5-c
Air was injected. Outlet piping 4 30 minutes after the start of operation
Measurement of the CO concentration in the gas discharged from
ppm. <Reaction Condition 3> Catalyst 1-a inlet gas temperature: 150 ° C. Catalyst inlet gas composition: H 2 37.4%, CO 2 13.5%,
CO 0.7%, H 2 O 13.3%, N 2 35.1%

【0027】[0027]

【発明の効果】以上述べたように、本発明の触媒は水素
含有ガス中のCOを除去するにあたり、従来の触媒に比
較して酸素濃度の低い条件、即ち低O2/CO モル比の
反応条件においてCO除去性能が高く、CO濃度を低減
することができる。従って、本触媒及び本触媒を用いた
CO除去方法を用いることによって、固体高分子型燃料
電池(PEFC)の水素極の電極触媒のCO被毒による
性能低下を防止することに有効である。
As described above, the catalyst of the present invention, when removing CO in the hydrogen-containing gas, has a lower oxygen concentration than the conventional catalyst, that is, a reaction having a low O 2 / CO molar ratio as compared with the conventional catalyst. Under the conditions, the CO removal performance is high, and the CO concentration can be reduced. Therefore, by using the present catalyst and the CO removal method using the present catalyst, it is effective to prevent performance degradation due to CO poisoning of the electrode catalyst of the hydrogen electrode of the polymer electrolyte fuel cell (PEFC).

【図面の簡単な説明】[Brief description of the drawings]

【図1】触媒のアルカリ土類酸化物担持量とCO除去率
の関係。
FIG. 1 shows the relationship between the amount of alkaline earth oxide carried on a catalyst and the CO removal rate.

【図2】実施例6の触媒Iと比較例1の触媒Eの、各処
理ガス中のO2/CO モル比におけるCO除去率。
FIG. 2 is a graph showing CO removal ratios of catalyst I of Example 6 and catalyst E of Comparative Example 1 at O 2 / CO molar ratios in respective processing gases.

【図3】CO除去器の構成。FIG. 3 is a configuration of a CO remover.

【符号の説明】 1−a,1−b,1−c…触媒層、2…反応容器、3…
反応ガス導入用配管、4…出口配管、5−a,5−b,
5−c…空気注入管。
[Description of Signs] 1-a, 1-b, 1-c: catalyst layer, 2: reaction vessel, 3 ...
Piping for introducing reaction gas, 4 ... outlet piping, 5-a, 5-b,
5-c ... air injection pipe.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/10 H01M 8/10 (72)発明者 高橋 貞夫 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 山下 寿生 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 Fターム(参考) 4G040 EB31 4G069 AA03 AA08 AA09 BA01A BA01B BB12B BB12C BC08A BC09A BC09B BC09C BC10A BC10B BC10C BC12A BC12B BC12C BC13A BC13B BC13C BC70A BC70B BC70C CC26 DA06 EA02Y FA02 FB14 4H060 AA01 AA04 BB11 CC18 FF02 GG02 5H026 AA06 5H027 AA06 BA01 BA17 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) H01M 8/10 H01M 8/10 (72) Inventor Sadao Takahashi 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Electric Power and Electricity Development Laboratory (72) Inventor Toshio Yamashita 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Electric Power and Electricity Development Laboratory F-term (reference) 4G040 EB31 4G069 AA03 AA08 AA09 BA01A BA01B BB12B BB12C BC08A BC09A BC09B BC09C BC10A BC10B BC10C BC12A BC12B BC12C BC13A BC13B BC13C BC70A BC70B BC70C CC26 DA06 EA02Y FA02 FB14 4H060 AA01 AA04 BB11 ACO2 5A02 5

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】Ruと、アルカリ土類元素のうち少なくと
も一種以上の酸化物を、無機酸化物担体に担持してなる
ことを特徴とする水素含有ガス中のCO除去用触媒。
1. A catalyst for removing CO in a hydrogen-containing gas, comprising Ru and an oxide of at least one of alkaline earth elements supported on an inorganic oxide carrier.
【請求項2】アルカリ土類金属がMg,Ca,Sr,B
aから選ばれる少なくとも一種以上である請求項1記載
の水素含有ガス中のCO除去用触媒。
2. The method according to claim 1, wherein the alkaline earth metal is Mg, Ca, Sr, B
The catalyst for removing CO in a hydrogen-containing gas according to claim 1, which is at least one or more selected from a.
【請求項3】Ru担持量が0.05 〜5wt%である請
求項1記載の水素含有ガス中のCO除去用触媒。
3. The catalyst for removing CO in a hydrogen-containing gas according to claim 1, wherein the amount of supported Ru is 0.05 to 5 wt%.
【請求項4】アルカリ土類元素のうち少なくとも一種以
上の酸化物の担持量が1〜40wt%である請求項1記載
の水素含有ガス中のCO除去用触媒。
4. The catalyst for removing CO in a hydrogen-containing gas according to claim 1, wherein the carried amount of at least one oxide of alkaline earth elements is 1 to 40% by weight.
【請求項5】無機酸化物担体がアルミナまたはアルミナ
を含有する複合酸化物である請求項1記載の水素含有ガ
ス中のCO除去用触媒。
5. The catalyst for removing CO in a hydrogen-containing gas according to claim 1, wherein the inorganic oxide carrier is alumina or a composite oxide containing alumina.
【請求項6】請求項1記載のCO除去用触媒を、セラミ
ックスあるいは金属構造体にコートしたことを特徴とす
る水素含有ガス中のCO除去用触媒構造体。
6. A catalyst structure for removing CO in a hydrogen-containing gas, wherein the catalyst for removing CO according to claim 1 is coated on a ceramic or metal structure.
【請求項7】請求項1記載の水素含有ガス中のCO除去
用触媒が充填された触媒層をもち、触媒層入口で処理ガ
スと、酸素または酸素を含有するガスを注入することを
特徴とする水素含有ガス中のCO除去方法。
7. A catalyst layer filled with the catalyst for removing CO in a hydrogen-containing gas according to claim 1, wherein a treatment gas and oxygen or a gas containing oxygen are injected at an inlet of the catalyst layer. To remove CO from a hydrogen-containing gas.
【請求項8】請求項1記載の水素含有ガス中のCO除去
用触媒が充填された2層以上の触媒層からなり、上流の
触媒層入口より処理ガスを導入し、各触媒層入口で酸素
または酸素を含有するガスを注入することを特徴とする
水素含有ガス中のCO除去方法。
8. A catalyst gas comprising two or more catalyst layers filled with the catalyst for removing CO in a hydrogen-containing gas according to claim 1, wherein a processing gas is introduced from an upstream catalyst layer inlet, and oxygen is introduced at each catalyst layer inlet. Alternatively, a method for removing CO from a hydrogen-containing gas, comprising injecting a gas containing oxygen.
【請求項9】請求項8において、各触媒層に導入された
ガス中のO2/CO(モル比)の値が上流触媒層より下流
触媒層を大きくすることを特徴とする水素含有ガス中の
CO除去方法。
9. The hydrogen-containing gas according to claim 8, wherein the value of O 2 / CO (molar ratio) in the gas introduced into each catalyst layer is larger in the downstream catalyst layer than in the upstream catalyst layer. CO removal method.
JP2000254252A 2000-08-21 2000-08-21 CO removal catalyst and CO removal method using the same Expired - Fee Related JP4172139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000254252A JP4172139B2 (en) 2000-08-21 2000-08-21 CO removal catalyst and CO removal method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000254252A JP4172139B2 (en) 2000-08-21 2000-08-21 CO removal catalyst and CO removal method using the same

Publications (2)

Publication Number Publication Date
JP2002059004A true JP2002059004A (en) 2002-02-26
JP4172139B2 JP4172139B2 (en) 2008-10-29

Family

ID=18743232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000254252A Expired - Fee Related JP4172139B2 (en) 2000-08-21 2000-08-21 CO removal catalyst and CO removal method using the same

Country Status (1)

Country Link
JP (1) JP4172139B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116311A (en) * 2003-10-07 2005-04-28 Hitachi Ltd Fuel cell system equipped with deterioration evaluation means of catalyst for carbon monoxide removal, and its operation method
KR100510321B1 (en) * 2002-05-30 2005-08-25 (주)에너피아 Catalysts for refining reformed gas and process for selectively removing carbon monoxide in reformed gas using the same
JP2006142240A (en) * 2004-11-22 2006-06-08 Idemitsu Kosan Co Ltd Co-removing catalyst and its manufacturing method
JP2006142239A (en) * 2004-11-22 2006-06-08 Idemitsu Kosan Co Ltd Co-removing catalyst and its manufacturing method
JP2007302533A (en) * 2006-05-12 2007-11-22 Mitsubishi Heavy Ind Ltd Fuel reforming apparatus, fuel cell system, and method for removing co
CN100372160C (en) * 2004-11-09 2008-02-27 三星Sdi株式会社 Fuel cell electrode and membrane-electrode assembly and fuel cell system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7111065B2 (en) 2019-06-12 2022-08-02 トヨタ車体株式会社 Roll forming equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510321B1 (en) * 2002-05-30 2005-08-25 (주)에너피아 Catalysts for refining reformed gas and process for selectively removing carbon monoxide in reformed gas using the same
JP2005116311A (en) * 2003-10-07 2005-04-28 Hitachi Ltd Fuel cell system equipped with deterioration evaluation means of catalyst for carbon monoxide removal, and its operation method
CN100372160C (en) * 2004-11-09 2008-02-27 三星Sdi株式会社 Fuel cell electrode and membrane-electrode assembly and fuel cell system
JP2006142240A (en) * 2004-11-22 2006-06-08 Idemitsu Kosan Co Ltd Co-removing catalyst and its manufacturing method
JP2006142239A (en) * 2004-11-22 2006-06-08 Idemitsu Kosan Co Ltd Co-removing catalyst and its manufacturing method
JP4551745B2 (en) * 2004-11-22 2010-09-29 出光興産株式会社 CO removal catalyst and method for producing the same
JP2007302533A (en) * 2006-05-12 2007-11-22 Mitsubishi Heavy Ind Ltd Fuel reforming apparatus, fuel cell system, and method for removing co

Also Published As

Publication number Publication date
JP4172139B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
CA2668616C (en) Desulfurization agent for kerosene, method for desulfurization and fuel cell system using the agent
US7704486B2 (en) Precious metal water-gas shift catalyst with oxide support modified with rare earth elements
US7507690B2 (en) Autothermal reforming catalyst having perovskite structure
JP2006346598A (en) Steam reforming catalyst
JP4172139B2 (en) CO removal catalyst and CO removal method using the same
JP2004196646A (en) Fuel reforming apparatus
JP4994686B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP2003144930A (en) Desulfurization catalyst for hydrocarbon, desulfurization method and fuel cell system
JP3574469B2 (en) Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
JP2003268386A (en) Method of desulfurization of hydrocarbon, and fuel cell system
JPH0748101A (en) Production of hydrogen-containing gas for fuel cell
JP3796745B2 (en) CO selective oxidation catalyst in hydrogen gas, method for producing the same, and method for removing CO in hydrogen gas
JP2001212458A (en) Catalyst for selectively oxidizing carbon monoxide in reforming gas
JP2007160254A (en) Catalyst for selectively oxidizing carbon monoxide and its manufacturing method
JP2004134299A (en) Carbon monoxide removing device and solid polymer fuel cell system
US7345007B2 (en) Catalyst for selective oxidation of carbon monoxide in reformed gas
JPH11114423A (en) Catalyst for selective oxidation of co in hydrogen gas, its production, and method for removing co in hydrogen gas
JP2004066035A (en) Method of desulfurizing hydrocarbon and fuel cell system
JP2007160255A (en) Catalyst for selectively oxidizing carbon monoxide and its manufacturing method
JP2006008434A (en) Hydrogen generating unit, fuel cell electricity generating system, and hydrogen generating method
JP2006231132A (en) Fuel reforming catalyst
JP2005193190A (en) Desulfurization agent molding of gaseous hydrocarbon compound and desulfurization method
JP2005035867A (en) Fuel reforming apparatus
WO2004000458A1 (en) Catalysts for selective oxidation of carbon monoxide in reformed gas
JP2006181481A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees