JP2006142239A - Co-removing catalyst and its manufacturing method - Google Patents

Co-removing catalyst and its manufacturing method Download PDF

Info

Publication number
JP2006142239A
JP2006142239A JP2004337609A JP2004337609A JP2006142239A JP 2006142239 A JP2006142239 A JP 2006142239A JP 2004337609 A JP2004337609 A JP 2004337609A JP 2004337609 A JP2004337609 A JP 2004337609A JP 2006142239 A JP2006142239 A JP 2006142239A
Authority
JP
Japan
Prior art keywords
nitrogen
catalyst
hydrogen
ruthenium
nitrogen content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004337609A
Other languages
Japanese (ja)
Other versions
JP4551745B2 (en
Inventor
Masahiro Yoshinaka
正浩 吉仲
Tetsuya Fukunaga
哲也 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2004337609A priority Critical patent/JP4551745B2/en
Publication of JP2006142239A publication Critical patent/JP2006142239A/en
Application granted granted Critical
Publication of JP4551745B2 publication Critical patent/JP4551745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CO-removing catalyst from which a nitrogen compound produced from the CO-removing catalyst during the operation of a fuel cell system and poisoning the electrode of a fuel cell is restrained from being caused, and to provide a method for manufacturing the CO-removing catalyst. <P>SOLUTION: This CO-removing catalyst is manufactured by depositing a nitrogen-containing ruthenium compound on a fire-resistant oxide carrier and made to have ≤0.5 wt% nitrogen content. The method for manufacturing the CO-removing catalyst comprises the steps of: depositing the nitrogen-containing ruthenium compound on the fire-resistant oxide carrier; and removing the nitrogen content of the deposited nitrogen-containing ruthenium compound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、COを選択的に除去するための触媒に関し、特に、窒素含有ルテニウム化合物を用いて調製した、水素含有ガスからCOを選択的に除去するCO除去触媒、及びその製造方法に関する。   The present invention relates to a catalyst for selectively removing CO, and more particularly, to a CO removal catalyst for selectively removing CO from a hydrogen-containing gas prepared using a nitrogen-containing ruthenium compound, and a method for producing the same.

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用等として、実用化研究が積極的になされている。   In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Or, practical research has been actively conducted for automobiles and the like.

水素源として石油系炭化水素を用いて水素を製造する場合、一般に、炭化水素を、改質触媒の存在下に水蒸気改質又は部分酸化改質処理する方法が用いられる。そして、これらの反応において得られる水素含有ガスには、通常、目的とする水素ガスとともにCOが含まれる。燃料電池中にCOがあるレベル以上含まれていると燃料電池の発電性能が低下したり、濃度によっては全く発電ができなくなってしまうという重大な問題が発生する。従って、このCOを無害なCO2
等に転化し、燃料電池の燃料中のCO濃度を減少させる技術の開発が強く望まれている。
In the case of producing hydrogen using petroleum-based hydrocarbons as a hydrogen source, generally, a method of subjecting hydrocarbons to steam reforming or partial oxidation reforming in the presence of a reforming catalyst is used. The hydrogen-containing gas obtained in these reactions usually contains CO together with the target hydrogen gas. If the fuel cell contains more than a certain level of CO, there will be a serious problem that the power generation performance of the fuel cell will be reduced, or depending on the concentration, it will be impossible to generate power at all. Therefore, this CO is harmless CO 2
The development of a technology for reducing the CO concentration in the fuel of the fuel cell is strongly desired.

改質ガス中のCOの濃度を低減させる手段の一つとして、燃料ガス中に酸素又は酸素含有ガス(空気等)を導入し、COをCO2 に変換する方法が提案されている。この際、できる限り水素は酸化しないでCOを選択的に酸化する触媒を使用することが望ましい。COの選択的酸化触媒として、特許文献1〜3には、アルミナに硝酸ルテニウムを担持させた触媒が開示されている。 As one means for reducing the concentration of CO in the reformed gas, a method of converting CO into CO 2 by introducing oxygen or an oxygen-containing gas (such as air) into the fuel gas has been proposed. At this time, it is desirable to use a catalyst that selectively oxidizes CO without oxidizing hydrogen as much as possible. As selective oxidation catalysts for CO, Patent Documents 1 to 3 disclose catalysts in which ruthenium nitrate is supported on alumina.

しかし、硝酸ルテニウムのような窒素含有ルテニウム化合物が担持された触媒を、燃料電池に供給する水素を製造する水素製造システムに使用するとき、燃料電池システムの運転中に触媒から窒素分がNH、NO等の形で飛散し、燃料電池の電極を被毒する不都合が生じていた。
一方、窒素を含まないルテニウム化合物として、Ru(CO)12、Ru(acac)等が知られているが、これらの塩は水に不溶であり、かつ価格が高いため、工業的なルテニウム担持触媒の製造に使用する原料としては実用的ではない。
特開2001−239169号公報 特開2001−239170号公報 特開2001−327868号公報
However, when a catalyst on which a nitrogen-containing ruthenium compound such as ruthenium nitrate is supported is used in a hydrogen production system for producing hydrogen to be supplied to the fuel cell, the nitrogen content from the catalyst during the operation of the fuel cell system is NH 3 , There is a problem that the fuel cell electrode is poisoned by being scattered in the form of NO x or the like.
On the other hand, Ru 3 (CO) 12 , Ru (acac) 3 and the like are known as ruthenium compounds that do not contain nitrogen, but these salts are insoluble in water and are expensive, so industrial ruthenium. It is not practical as a raw material used for the production of the supported catalyst.
JP 2001-239169 A JP 2001-239170 A JP 2001-327868 A

本発明は、窒素化合物の発生が抑えられたCO除去触媒及びその製造方法を提供することを目的とする。   An object of this invention is to provide the CO removal catalyst by which generation | occurrence | production of the nitrogen compound was suppressed, and its manufacturing method.

本発明によれば、以下のCO除去触媒及びその製造方法等が提供される。
1.耐火性酸化物担体に窒素含有ルテニウム化合物を用いてルテニウムが担持されているCO除去触媒において、窒素含有量が0.5wt%以下であることを特徴とするCO除去触媒。
2.前記耐火性酸化物担体が、アルミナ、チタニア、シリカ、ジルコニア及びセリアから選ばれる少なくとも1種であることを特徴とする1記載のCO除去触媒。
3.前記耐火性酸化物担体が、アルミナであることを特徴とする2記載のCO除去触媒。
4.前記窒素含有ルテニウム化合物が、硝酸ルテニウムであることを特徴とする1〜3のいずれかに記載のCO除去触媒。
5.1〜4のいずれかに記載のCO除去触媒の製造方法であって、耐火性酸化物担体に、窒素含有ルテニウム化合物を担持させ、前記窒素含有ルテニウム化合物の窒素分を除去することを特徴とするCO除去触媒の製造方法。
6.前記窒素含有ルテニウム化合物をアルカリ剤処理することにより、窒素分を除去することを特徴とする5記載のCO除去触媒の製造方法。
7.前記窒素含有ルテニウム化合物を水素還元することにより、窒素分を除去することを特徴とする5記載のCO除去触媒の製造方法。
8.1〜4のいずれかに記載の触媒を用いて、水素含有ガス中のCOを除去することを特徴とする水素含有ガスの製造方法。
9.水素含有ガスが、燃料電池用水素含有ガスである8記載の水素含有ガスの製造方法。
According to the present invention, the following CO removal catalyst and the production method thereof are provided.
1. A CO removal catalyst in which ruthenium is supported on a refractory oxide carrier using a nitrogen-containing ruthenium compound, wherein the nitrogen content is 0.5 wt% or less.
2. 2. The CO removal catalyst according to 1, wherein the refractory oxide support is at least one selected from alumina, titania, silica, zirconia and ceria.
3. 3. The CO removal catalyst according to 2, wherein the refractory oxide support is alumina.
4). 4. The CO removal catalyst according to any one of 1 to 3, wherein the nitrogen-containing ruthenium compound is ruthenium nitrate.
5.1. The method for producing a CO removal catalyst according to any one of claims 1 to 4, wherein a nitrogen-containing ruthenium compound is supported on a refractory oxide carrier, and the nitrogen content of the nitrogen-containing ruthenium compound is removed. A method for producing a CO removal catalyst.
6). 6. The method for producing a CO removal catalyst according to 5, wherein the nitrogen content is removed by treating the nitrogen-containing ruthenium compound with an alkali agent.
7). 6. The method for producing a CO removal catalyst according to 5, wherein the nitrogen content is removed by hydrogen reduction of the nitrogen-containing ruthenium compound.
A method for producing a hydrogen-containing gas, wherein CO in the hydrogen-containing gas is removed using the catalyst according to any one of 8.1 to 4.
9. 9. The method for producing a hydrogen-containing gas according to 8, wherein the hydrogen-containing gas is a hydrogen-containing gas for a fuel cell.

本発明によれば、窒素化合物の発生が抑えられたCO除去触媒及びその製造方法を提供できる。
本発明のCO除去触媒は窒素含有量が少ないので、燃料電池に供給する水素を製造する水素製造システムに使用するとき、燃料電池に対して被毒物質となるアンモニアやNOの生成を抑制できる。
また、通常、本触媒を活性化するためには水素還元操作を実施することが多いが、その還元前に窒素分を除いておけば、還元中に発生する窒素化合物(例えばアンモニア)を除去するための設備コストを軽減することができる。
ADVANTAGE OF THE INVENTION According to this invention, the CO removal catalyst by which generation | occurrence | production of the nitrogen compound was suppressed and its manufacturing method can be provided.
Since the CO removal catalyst of the present invention has a low nitrogen content, when used in a hydrogen production system for producing hydrogen to be supplied to a fuel cell, it is possible to suppress the production of ammonia and NO x that are poisonous substances for the fuel cell. .
Usually, in order to activate the catalyst, a hydrogen reduction operation is often performed. However, if the nitrogen content is removed before the reduction, a nitrogen compound (for example, ammonia) generated during the reduction is removed. Therefore, the equipment cost can be reduced.

本発明のCO除去触媒に用いられる耐火性酸化物担体としては、例えば、アルミナ、チタニア、シリカ、ジルコニア及びセリアから選ばれるものを挙げることができる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。この中でも、触媒活性の点からアルミナが好ましく用いられる。さらに好ましくは、γ−アルミナが用いられる。   Examples of the refractory oxide carrier used in the CO removal catalyst of the present invention include those selected from alumina, titania, silica, zirconia and ceria. These may be used alone or in combination of two or more. Among these, alumina is preferably used from the viewpoint of catalytic activity. More preferably, γ-alumina is used.

本発明のCO除去触媒に用いられる窒素含有ルテニウム化合物としては、例えば、Ru(NO、Ru(NO)(NO、Ru(OH)Cl・7NH・3HO、(Ru(NH14)Cl6・HO、(NH(RuCl(HO))、K(RuCl(NO))、K(Ru(CN))・nHO、K(Ru(NO(OH)(NO))、(Ru(NH)Cl、(Ru(NH)Br、(Ru(NH)Cl、(Ru(NH)Br、(Ru(NO)(NH)Cl、(Ru(OH)(NO)(NH)(NO等が挙げられる。これらのルテニウム化合物のうち、入手のしやすさの点から好ましくはRu(NO、Ru(NO)(NO、(Ru(NH)Cl、(Ru(NH)Cl、より好ましくはRu(NOを用いる。 Examples of the nitrogen-containing ruthenium compound used in the CO removal catalyst of the present invention include Ru (NO 3 ) 3 , Ru (NO) (NO 3 ) 3 , Ru 2 (OH) 2 Cl 4 .7NH 3 .3H 2 O , (Ru 3 O 2 (NH 3 ) 14 ) C 16 • H 2 O, (NH 4 ) 2 (RuCl 5 (H 2 O)), K 2 (RuCl 5 (NO)), K 4 (Ru (CN) ) 6 ) · nH 2 O, K 2 (Ru (NO 2 ) 4 (OH) (NO)), (Ru (NH 3 ) 6 ) Cl 3 , (Ru (NH 3 ) 6 ) Br 3 , (Ru ( NH 3 ) 6 ) Cl 2 , (Ru (NH 3 ) 6 ) Br 2 , (Ru (NO) (NH 3 ) 5 ) Cl 3 , (Ru (OH) (NO) (NH 3 ) 4 ) (NO 3 ) 2 etc. are mentioned. Among these ruthenium compounds, Ru (NO 3 ) 3 , Ru (NO) (NO 3 ) 3 , (Ru (NH 3 ) 6 ) Cl 3 , (Ru (NH 3 ) are preferable from the viewpoint of availability. 6 ) Cl 2 , more preferably Ru (NO 3 ) 3 is used.

本発明のCO除去触媒は窒素含有量が0.5wt%以下であり、好ましくは0.3wt%以下であり、より好ましくは0.1wt%以下である。
本発明において、窒素含有量は化学発光法(JIS K2609)により測定する。
The CO removal catalyst of the present invention has a nitrogen content of 0.5 wt% or less, preferably 0.3 wt% or less, more preferably 0.1 wt% or less.
In the present invention, the nitrogen content is measured by a chemiluminescence method (JIS K2609).

次に、本発明のCO除去触媒の製造方法について説明する。
本発明のCO除去触媒は、担体に窒素含有ルテニウム化合物を接触させ、その後乾燥/焼成させる(担持)。触媒調製過程の適当な時期に、窒素分を除去する処理を行う。また還元処理によりに窒素分を除去することも可能である。
まず、上記のルテニウム化合物を水、エタノール等に溶解させて、触媒調製液を作成する。
この触媒調製液を用いて、通常の含浸法、共沈法、競争吸着法によりルテニウム化合物を担体に接触させる。この際、処理条件は、各種方法に応じて適宜選定すればよいが、通常、室温〜90℃の温度で1分〜10時間、担体を触媒調製液と接触させればよい。ルテニウム化合物の担持量は特に制限はないが、通常、担体に対してRuとして0.05〜10重量%が好ましい。
Next, the manufacturing method of the CO removal catalyst of this invention is demonstrated.
In the CO removal catalyst of the present invention, a nitrogen-containing ruthenium compound is brought into contact with a carrier and then dried / calcined (supported). At an appropriate time in the catalyst preparation process, a treatment for removing nitrogen is performed. It is also possible to remove nitrogen by reduction treatment.
First, the above-described ruthenium compound is dissolved in water, ethanol or the like to prepare a catalyst preparation solution.
Using this catalyst preparation solution, the ruthenium compound is brought into contact with the support by the usual impregnation method, coprecipitation method, or competitive adsorption method. At this time, the treatment conditions may be appropriately selected according to various methods. Usually, the support may be brought into contact with the catalyst preparation solution at a temperature of room temperature to 90 ° C. for 1 minute to 10 hours. The amount of the ruthenium compound supported is not particularly limited, but is usually preferably 0.05 to 10% by weight as Ru with respect to the support.

接触後、担体を乾燥させる。乾燥方法としては、例えば自然乾燥、蒸発乾固法、ロータリーエバポレーターもしくは送風乾燥機による乾燥がいずれも使用可能である。通常乾燥は50〜250℃で0.5〜24時間実施する。乾燥後、焼成を行う場合は、通常、350〜550℃で、1〜6時間、好ましくは2〜4時間焼成する。   After contact, the carrier is dried. As the drying method, for example, natural drying, evaporation to dryness, drying by a rotary evaporator or a blow dryer can be used. Usually, drying is performed at 50 to 250 ° C. for 0.5 to 24 hours. When baking is performed after drying, the baking is usually performed at 350 to 550 ° C. for 1 to 6 hours, preferably 2 to 4 hours.

本発明では、このようにして担体にルテニウム化合物を担持させた触媒の窒素分を0.5wt.%以下まで除去する。
窒素分は、例えば、アルカリ処理により除去できる。アルカリ処理は、アルカリ剤の添加された水中で行うのが好ましい。この時用いられるアルカリ剤は、窒素分を除去できるものであれば特に制限はなく、例えば、リチウム等のアルカリ金属の酸化物、水酸化物、炭酸塩、マグネシウム等のアルカリ土類金属の酸化物、水酸化物アンモニアや炭酸アンモニウム、アミン類等の有機塩基、塩基型のイオン交換樹脂等を用いることができる。
アルカリ処理は、ルテニウム担持後であればいつでも実施できるが、触媒の乾燥後あるいは乾燥・焼成後に行うことが好ましい。
In the present invention, the nitrogen content of the catalyst in which the ruthenium compound is supported on the carrier in this way is 0.5 wt. Remove to less than%.
The nitrogen content can be removed by alkali treatment, for example. The alkali treatment is preferably performed in water to which an alkali agent is added. The alkaline agent used at this time is not particularly limited as long as it can remove the nitrogen component. For example, an alkali metal oxide such as lithium, an oxide of an alkaline earth metal such as hydroxide, carbonate, magnesium, etc. Further, organic bases such as hydroxide ammonia, ammonium carbonate, and amines, basic ion exchange resins, and the like can be used.
The alkali treatment can be performed at any time after the ruthenium is supported, but is preferably performed after the catalyst is dried or after drying / calcination.

また、水素還元により、触媒の窒素分を、例えば0.4%程度まで除去できる。水素還元は、通常200〜600℃、1〜5時間の条件で行う。尚、水素還元で窒素分を除去する場合、発生するアンモニアガスの吸収処理が必要となり手間がかかる場合がある。従って、アルカリ処理を還元前に行うのが好ましい。
水素還元は、ルテニウム担持後であればいつでも実施できるが、燃料電池システムに供する前に実施することが好ましい。
Further, the nitrogen content of the catalyst can be removed to about 0.4% by hydrogen reduction, for example. Hydrogen reduction is normally performed under conditions of 200 to 600 ° C. and 1 to 5 hours. In addition, when removing nitrogen content by hydrogen reduction, the absorption process of the generated ammonia gas is required, which may be troublesome. Therefore, it is preferable to perform the alkali treatment before the reduction.
The hydrogen reduction can be performed at any time after the loading of ruthenium, but it is preferable to perform the hydrogen reduction before use in the fuel cell system.

さらに、ヒドラジン等を用いて液相還元して窒素分を除去することも可能である。例えば、還元条件は、10%ヒドラジン水溶液中にRuを担持した触媒を入れて50℃で1時間放置する。液相還元中にアルカリ剤を入れて除くこともできる。
液相還元は、ルテニウムを担持後であればいつでも実施できるが、乾燥後あるいは乾燥・焼成後に実施することが好ましい。
Furthermore, it is possible to remove the nitrogen component by liquid phase reduction using hydrazine or the like. For example, the reducing condition is that a catalyst supporting Ru is placed in a 10% hydrazine aqueous solution and left at 50 ° C. for 1 hour. Alkaline agents can be added and removed during the liquid phase reduction.
The liquid phase reduction can be performed at any time after loading ruthenium, but is preferably performed after drying or after drying and firing.

次に、本発明の触媒を用いて、水素を主成分とするガス中の一酸化炭素を酸素により酸化し、一酸化炭素の低減された水素含有ガスを製造する方法について説明する。
上述のように調製された触媒上のルテニウムは、全部あるいはほとんどが化合物として窒素分を含まない状態になっている。通常は、水酸化物、酸化物あるいは金属(0価)の状態で存在する。
還元した状態であっても、通常は空気に触れた後燃料電池システムに充填するので、反応前には、燃料電池システムの中で水素によってあるいは水素を含んだ改質ガスによって還元する。通常、水素還元は200〜600℃、好ましくは300〜500℃の温度で、1〜5時間、好ましくは1〜2時間行う。
また、一度還元を受けた状態の触媒は、空気に触れた後もルテニウム表面のみが酸化された状態なので、上記より低温での水素還元あるいは改質ガスでの還元で十分である。通常100〜300℃、好ましくは150〜250℃の温度で、1分〜2時間程度還元すればよい。
Next, a method for producing a hydrogen-containing gas with reduced carbon monoxide by oxidizing carbon monoxide in a gas containing hydrogen as a main component with oxygen using the catalyst of the present invention will be described.
The ruthenium on the catalyst prepared as described above is in a state in which all or most of the ruthenium does not contain nitrogen as a compound. Usually, it exists in the state of hydroxide, oxide or metal (zero valence).
Even in a reduced state, the fuel cell system is usually filled after being exposed to air, and therefore, before the reaction, the fuel cell system is reduced by hydrogen or a reformed gas containing hydrogen. Usually, hydrogen reduction is performed at a temperature of 200 to 600 ° C., preferably 300 to 500 ° C., for 1 to 5 hours, preferably 1 to 2 hours.
Further, since the catalyst once in the state of reduction is in a state in which only the ruthenium surface is oxidized even after contact with air, hydrogen reduction at a lower temperature or reduction with a reformed gas is sufficient. Usually, the reduction may be performed at a temperature of 100 to 300 ° C., preferably 150 to 250 ° C. for about 1 minute to 2 hours.

以上のようにして得られる触媒により、水素を主成分とし、かつ少なくともCOを含有する水素含有ガスに酸素を添加して、COの酸素による選択的酸化反応を行う。本発明のCO除去触媒は、水素製造用原料を改質または部分酸化することによって得られる水素を主成分とするガス(改質ガス)中のCOを選択的に除去するのに好適に利用される。
尚、本発明のCO除去触媒は、酸素存在下COからCOを生成する反応に寄与するが、この反応と共にCOとHからCHとHOを生成する反応(メタネーション)にも寄与している。
With the catalyst obtained as described above, oxygen is added to a hydrogen-containing gas containing hydrogen as a main component and containing at least CO, and a selective oxidation reaction of CO with oxygen is performed. The CO removal catalyst of the present invention is suitably used for selectively removing CO in hydrogen-based gas (reformed gas) obtained by reforming or partially oxidizing a raw material for hydrogen production. The
The CO removal catalyst of the present invention contributes to the reaction of generating CO 2 from CO in the presence of oxygen, but also to the reaction (methanation) of generating CH 4 and H 2 O from CO and H 2 together with this reaction. Has contributed.

水素含有ガスの原料として炭化水素を用いて水素を製造する方法は、通常、脱硫工程、改質工程、変成工程、CO除去工程からなる(脱硫工程、変成工程は省略し得る)。
ここで、脱硫工程は炭化水素原料に含まれる硫黄分を除去する工程であり、改質工程は脱硫処理した炭化水素原料から水素を得る工程である。改質工程の際、水素と共にCOが発生するので、変成工程でCOをCOに変成させる。CO除去工程は変成工程で変成されなかったCOを除去する工程であり、本発明のCO除去触媒はこの工程に用いられる。
このようにして製造される水素は燃料電池に好適に利用されるが、本発明はこれに限定されるものではない。
The method for producing hydrogen using hydrocarbons as a raw material for the hydrogen-containing gas usually comprises a desulfurization step, a reforming step, a shift step, and a CO removal step (the desulfurization step and the shift step may be omitted).
Here, the desulfurization step is a step of removing sulfur contained in the hydrocarbon raw material, and the reforming step is a step of obtaining hydrogen from the desulfurized hydrocarbon raw material. In the reforming process, CO is generated together with hydrogen, so CO is converted to CO 2 in the modification process. The CO removal step is a step of removing CO that has not been transformed in the transformation step, and the CO removal catalyst of the present invention is used in this step.
The hydrogen produced in this way is suitably used for fuel cells, but the present invention is not limited to this.

〔実施例1〕
硝酸ルテニウム溶液(ルテニウムの含有率=(ルテニウム金属として)50g/リットル。溶液は硝酸を含む)7mlをビーカーにとり、これにイオン交換水0.4mlを入れ、均一になるまで攪拌した。
別のビーカーにγ−アルミナ担体KHD24(住友化学工業製、直径2〜4mmの球状)20gをはかりとった。尚、このアルミナ担体1gが吸収できる水分量は0.37mlであった。
アルミナ担体に上記調製した硝酸ルテニウム溶液を、ガラス棒で担体をよくかき混ぜながら滴下した後、さらに1分間程度よくかき混ぜ、1時間室温に放置した。
次に、硝酸ルテニウム溶液を吸収したアルミナ担体が入ったビーカーに5規定の水酸化ナトリウム水溶液30mlを注ぎ、1時間放置した。
続いて、硝酸ルテニウム溶液を吸収したアルミナ担体を回収し、イオン交換水による通水洗浄を行った。
洗浄したルテニウム担持アルミナ担体は焼成皿に回収し、これを120℃で3時間静置乾燥することにより触媒を得た。
調製したルテニウム触媒の窒素含有率を化学発光法(JIS K2609)により定量した。窒素含有量は0.05wt%であった。
[Example 1]
7 ml of a ruthenium nitrate solution (the content of ruthenium = (as ruthenium metal) 50 g / liter. The solution contains nitric acid) was placed in a beaker, and 0.4 ml of ion-exchanged water was added thereto and stirred until uniform.
In another beaker, 20 g of γ-alumina carrier KHD24 (manufactured by Sumitomo Chemical Co., Ltd., spherical shape having a diameter of 2 to 4 mm) was weighed. The amount of water that can be absorbed by 1 g of this alumina carrier was 0.37 ml.
The ruthenium nitrate solution prepared above was dropped onto an alumina support while stirring the support with a glass rod, and the mixture was further stirred for about 1 minute and allowed to stand at room temperature for 1 hour.
Next, 30 ml of 5N aqueous sodium hydroxide solution was poured into a beaker containing an alumina carrier that had absorbed a ruthenium nitrate solution, and left for 1 hour.
Then, the alumina support | carrier which absorbed the ruthenium nitrate solution was collect | recovered, and the water flow washing | cleaning by ion-exchange water was performed.
The washed ruthenium-supported alumina support was recovered in a baking dish, and this was left to stand at 120 ° C. for 3 hours to obtain a catalyst.
The nitrogen content of the prepared ruthenium catalyst was quantified by a chemiluminescence method (JIS K2609). The nitrogen content was 0.05 wt%.

〔実施例2〕
実施例1において、5規定の水酸化ナトリウム水溶液を5規定の炭酸ナトリウム水溶液に変更した以外は同様にして触媒を得た。
調製したルテニウム触媒の窒素含有率を実施例1と同様に測定した。窒素含有量は0.18wt%であった。
[Example 2]
A catalyst was obtained in the same manner as in Example 1 except that the 5N aqueous sodium hydroxide solution was changed to a 5N aqueous sodium carbonate solution.
The nitrogen content of the prepared ruthenium catalyst was measured in the same manner as in Example 1. The nitrogen content was 0.18 wt%.

〔実施例3〕
実施例1において、5規定の水酸化ナトリウム水溶液を5規定の炭酸アンモニウム水溶液に変更した以外は同様にして触媒を得た。
調製したルテニウム触媒の窒素含有率を実施例1と同様に測定した。窒素含有量は0.12wt%であった。
Example 3
A catalyst was obtained in the same manner as in Example 1 except that the 5N aqueous sodium hydroxide solution was changed to a 5N aqueous ammonium carbonate solution.
The nitrogen content of the prepared ruthenium catalyst was measured in the same manner as in Example 1. The nitrogen content was 0.12 wt%.

〔実施例4〕
実施例1において、5規定の水酸化ナトリウム水溶液を5規定のアンモニア水に変更した以外は同様にして触媒を得た。
調製したルテニウム触媒の窒素含有率を実施例1と同様に測定した。窒素含有量は0.24wt%であった。
Example 4
A catalyst was obtained in the same manner as in Example 1 except that the 5N aqueous sodium hydroxide solution was changed to 5N aqueous ammonia.
The nitrogen content of the prepared ruthenium catalyst was measured in the same manner as in Example 1. The nitrogen content was 0.24 wt%.

〔実施例5〕
実施例1において、5規定の水酸化ナトリウム水溶液30mlを5規定の炭酸ナトリウム水溶液100mlに変更し、かつ、放置時間を1時間から3時間に変えた以外は同様にして触媒を得た。
調製したルテニウム触媒の窒素含有率を実施例1と同様に測定した。窒素分含有率は0.05wt%であった。
Example 5
In Example 1, a catalyst was obtained in the same manner except that 30 ml of 5N sodium hydroxide aqueous solution was changed to 100 ml of 5N sodium carbonate aqueous solution and the standing time was changed from 1 hour to 3 hours.
The nitrogen content of the prepared ruthenium catalyst was measured in the same manner as in Example 1. The nitrogen content was 0.05 wt%.

〔実施例6〕
実施例1において、5規定の水酸化ナトリウム水溶液を5規定の炭酸アンモニウム水溶液100mlに変更した。また、1時間放置した後液を捨て、同じ操作をさらに2回繰り返した。他は同様にして触媒を得た。
調製したルテニウム触媒の窒素含有率を実施例1と同様に測定した。窒素分含有率は0.02wt%であった。
Example 6
In Example 1, the 5N aqueous sodium hydroxide solution was changed to 100 ml of 5N aqueous ammonium carbonate solution. Moreover, after leaving it to stand for 1 hour, the liquid was discarded, and the same operation was further repeated twice. The catalyst was obtained in the same manner as others.
The nitrogen content of the prepared ruthenium catalyst was measured in the same manner as in Example 1. The nitrogen content was 0.02 wt%.

〔実施例7〕
実施例1において、5規定の水酸化ナトリウム水溶液を8規定のアンモニア水に変更し、かつ、放置時間を1時間から4時間に変えた以外は同様にして触媒を得た。
調製したルテニウム触媒の窒素含有率を実施例1と同様に測定した。窒素分含有率は0.03wt%であった。
Example 7
In Example 1, a catalyst was obtained in the same manner except that the 5N aqueous sodium hydroxide solution was changed to 8N aqueous ammonia and the standing time was changed from 1 hour to 4 hours.
The nitrogen content of the prepared ruthenium catalyst was measured in the same manner as in Example 1. The nitrogen content was 0.03 wt%.

〔比較例1〕
実施例1において、アルミナ担体に上記調製した硝酸ルテニウム溶液を、ガラス棒で担体をよくかき混ぜながら滴下し、さらに1分間程度よくかき混ぜ、1時間室温に放置した。
この後、水酸化ナトリウム水溶液による処理を行うこと無く直ちにルテニウム溶液を吸収したアルミナ担体を焼成皿に移し、120℃で3時間静置乾燥することにより触媒を得た。
調製したルテニウム触媒の窒素含有率を実施例1と同様に測定した。窒素分含有率は1.2wt%であった。
[Comparative Example 1]
In Example 1, the ruthenium nitrate solution prepared above was dropped onto an alumina support while stirring the support with a glass rod, and the mixture was further stirred for about 1 minute and allowed to stand at room temperature for 1 hour.
Thereafter, the alumina carrier that had absorbed the ruthenium solution was immediately transferred to a baking dish without being treated with an aqueous sodium hydroxide solution, and was left to stand at 120 ° C. for 3 hours to obtain a catalyst.
The nitrogen content of the prepared ruthenium catalyst was measured in the same manner as in Example 1. The nitrogen content was 1.2 wt%.

触媒の窒素含有率定量の結果、実施例1〜7の触媒は比較例1の触媒よりも窒素含有率が著しく低下した。そのため、触媒の還元処理工程において発生する窒素化合物(例:アンモニア)の量が減少する。従って、実施例1〜7の触媒は比較例1の触媒よりも、還元処理工程において発生する窒素化合物を除去するための設備等が不要となりコストを軽減することができる。   As a result of the determination of the nitrogen content of the catalyst, the catalysts of Examples 1 to 7 were significantly lower in nitrogen content than the catalyst of Comparative Example 1. Therefore, the amount of nitrogen compound (eg, ammonia) generated in the catalyst reduction process is reduced. Therefore, the catalysts of Examples 1 to 7 do not require equipment for removing nitrogen compounds generated in the reduction treatment step, and can reduce costs, compared to the catalyst of Comparative Example 1.

〔実施例8〕
以下の条件下で、実施例1〜3の触媒に原料ガス(多量のHと、微量のCOを含む)を通じた。その結果、実施例1では0.0033容量%、実施例2では0.0211容量%、実施例3では0.0162容量%までCOの濃度が減少した。この結果から、CO除去触媒として有効に機能することがわかった。
1.触媒前処理還元条件
温度:500℃
圧力:大気圧
時間:1時間
GHSV:24,000hr−1
2.反応条件
温度:97℃
圧力:大気圧
GHSV:20,000hr−1
原料ガス組成(容量%):CO/CO/O/N/HO/H
=0.6/15/0.9/3.5/20/Balance
尚、上記条件中のGHSVとは、供給ガスの標準状態における供給体積速度を使用する触媒層のみかけの体積で割った値をいい、この値をガス空間速度とする。
Example 8
Under the following conditions, the raw material gas (containing a large amount of H 2 and a small amount of CO) was passed through the catalysts of Examples 1 to 3. As a result, the CO concentration decreased to 0.0033% by volume in Example 1, 0.0211% by volume in Example 2, and 0.0162% by volume in Example 3. From this result, it turned out that it functions effectively as a CO removal catalyst.
1. Catalyst pretreatment reduction conditions Temperature: 500 ° C
Pressure: Atmospheric pressure Time: 1 hour GHSV: 24,000 hr −1
2. Reaction conditions Temperature: 97 ° C
Pressure: Atmospheric pressure GHSV: 20,000 hr −1
Raw material gas composition (volume%): CO / CO 2 / O 2 / N 2 / H 2 O / H 2
= 0.6 / 15 / 0.9 / 3.5 / 20 / Balance
In addition, GHSV in the said conditions means the value which divided the supply volume velocity in the standard state of supply gas by the apparent volume of the catalyst layer to use, and let this value be gas space velocity.

本発明のCO除去触媒は、燃料電池等に使用される水素を製造するシステム
に使用できる。
また、本発明により得られた水素含有ガスは、各種のH2 燃焼型燃料電池の燃料として好適に使用することができ、特に、少なくとも燃料極(負極)の電極に白金(白金触媒)を用いるタイプの各種のH2 燃焼型燃料電池(リン酸型燃料電池、KOH型燃料電池、固体高分子型燃料電池をはじめとする低温作動型燃料電池等)への供給燃料として利用することができる。
The CO removal catalyst of the present invention can be used in a system for producing hydrogen used in fuel cells and the like.
Further, the hydrogen-containing gas obtained by the present invention can be suitably used as a fuel for various H 2 combustion type fuel cells, and in particular, platinum (platinum catalyst) is used at least for the electrode of the fuel electrode (negative electrode). It can be used as a fuel to be supplied to various types of H 2 combustion fuel cells (such as phosphoric acid fuel cells, KOH fuel cells, polymer electrolyte fuel cells, and other low-temperature operation fuel cells).

Claims (9)

耐火性酸化物担体に窒素含有ルテニウム化合物を用いてルテニウムが担持されているCO除去触媒において、窒素含有量が0.5wt%以下であることを特徴とするCO除去触媒。   A CO removal catalyst in which ruthenium is supported on a refractory oxide carrier using a nitrogen-containing ruthenium compound, wherein the nitrogen content is 0.5 wt% or less. 前記耐火性酸化物担体が、アルミナ、チタニア、シリカ、ジルコニア及びセリアから選ばれる少なくとも1種であることを特徴とする請求項1記載のCO除去触媒。   2. The CO removal catalyst according to claim 1, wherein the refractory oxide support is at least one selected from alumina, titania, silica, zirconia and ceria. 前記耐火性酸化物担体が、アルミナであることを特徴とする請求項2記載のCO除去触媒。   The CO removal catalyst according to claim 2, wherein the refractory oxide support is alumina. 前記窒素含有ルテニウム化合物が、硝酸ルテニウムであることを特徴とする請求項1〜3のいずれか一項記載のCO除去触媒。   The CO removal catalyst according to any one of claims 1 to 3, wherein the nitrogen-containing ruthenium compound is ruthenium nitrate. 請求項1〜4のいずれか一項記載のCO除去触媒の製造方法であって、
耐火性酸化物担体に、窒素含有ルテニウム化合物を担持させ、
前記窒素含有ルテニウム化合物の窒素分を除去することを特徴とするCO除去触媒の製造方法。
It is a manufacturing method of the CO removal catalyst as described in any one of Claims 1-4,
A refractory oxide carrier is loaded with a nitrogen-containing ruthenium compound,
A method for producing a CO removal catalyst, wherein the nitrogen content of the nitrogen-containing ruthenium compound is removed.
前記窒素含有ルテニウム化合物をアルカリ剤処理することにより、窒素分を除去することを特徴とする請求項5記載のCO除去触媒の製造方法。   6. The method for producing a CO removal catalyst according to claim 5, wherein the nitrogen content is removed by treating the nitrogen-containing ruthenium compound with an alkali agent. 前記窒素含有ルテニウム化合物を還元することにより、窒素分を除去することを特徴とする請求項5記載のCO除去触媒の製造方法。   6. The method for producing a CO removal catalyst according to claim 5, wherein the nitrogen content is removed by reducing the nitrogen-containing ruthenium compound. 請求項1〜4のいずれか一項記載の触媒を用いて、水素含有ガス中のCOを除去することを特徴とする水素含有ガスの製造方法。   A method for producing a hydrogen-containing gas, wherein CO in the hydrogen-containing gas is removed using the catalyst according to any one of claims 1 to 4. 水素含有ガスが、燃料電池用水素含有ガスである請求項8記載の水素含有ガスの製造方法。
The method for producing a hydrogen-containing gas according to claim 8, wherein the hydrogen-containing gas is a hydrogen-containing gas for a fuel cell.
JP2004337609A 2004-11-22 2004-11-22 CO removal catalyst and method for producing the same Expired - Fee Related JP4551745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004337609A JP4551745B2 (en) 2004-11-22 2004-11-22 CO removal catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004337609A JP4551745B2 (en) 2004-11-22 2004-11-22 CO removal catalyst and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010066247A Division JP2010184237A (en) 2010-03-23 2010-03-23 Co-removing catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006142239A true JP2006142239A (en) 2006-06-08
JP4551745B2 JP4551745B2 (en) 2010-09-29

Family

ID=36622519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004337609A Expired - Fee Related JP4551745B2 (en) 2004-11-22 2004-11-22 CO removal catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4551745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104906A (en) * 2006-10-23 2008-05-08 Catalysts & Chem Ind Co Ltd Method for manufacturing catalyst for removing carbon monoxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184237A (en) * 2010-03-23 2010-08-26 Idemitsu Kosan Co Ltd Co-removing catalyst and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615172A (en) * 1992-06-30 1994-01-25 Tonen Corp Steam reforming catalyst and its production
JPH09131531A (en) * 1995-11-10 1997-05-20 Idemitsu Kosan Co Ltd Catalyst for removal of co in hydrogen-containing gas and method for removing co in hydrogen-containing gas with same
JPH1029803A (en) * 1996-07-15 1998-02-03 Asahi Chem Ind Co Ltd Purifying method of hydrogen for fuel cell
JP2002059004A (en) * 2000-08-21 2002-02-26 Hitachi Ltd Co removing catalyst and co removing method using the same
JP2002085983A (en) * 2000-09-18 2002-03-26 Osaka Gas Co Ltd Method of activating carbon monoxide removing catalyst, method of operating carbon monoxide removing apparatus and method of operating fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615172A (en) * 1992-06-30 1994-01-25 Tonen Corp Steam reforming catalyst and its production
JPH09131531A (en) * 1995-11-10 1997-05-20 Idemitsu Kosan Co Ltd Catalyst for removal of co in hydrogen-containing gas and method for removing co in hydrogen-containing gas with same
JPH1029803A (en) * 1996-07-15 1998-02-03 Asahi Chem Ind Co Ltd Purifying method of hydrogen for fuel cell
JP2002059004A (en) * 2000-08-21 2002-02-26 Hitachi Ltd Co removing catalyst and co removing method using the same
JP2002085983A (en) * 2000-09-18 2002-03-26 Osaka Gas Co Ltd Method of activating carbon monoxide removing catalyst, method of operating carbon monoxide removing apparatus and method of operating fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104906A (en) * 2006-10-23 2008-05-08 Catalysts & Chem Ind Co Ltd Method for manufacturing catalyst for removing carbon monoxide

Also Published As

Publication number Publication date
JP4551745B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
EP1138383B1 (en) Method for oxidising carbon monoxide contained in hydrogen
US7067453B1 (en) Hydrocarbon fuel reforming catalyst and use thereof
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP4722429B2 (en) Method for producing metal-supported zeolite molding and adsorbent for removing sulfur compound containing the zeolite
JP4676690B2 (en) METAL ION EXCHANGE ZEOLITE, PROCESS FOR PRODUCING THE SAME, AND SOLUTION COMPOUND ADSORBENT CONTAINING THE METAL ION EXCHANGE ZEOLITE
JP4284028B2 (en) Carbon monoxide removal method and fuel cell system operating method using the same
WO2003086627A1 (en) Modification catalyst composition
US20050276741A1 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
JP2006036616A (en) Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
US20060223697A1 (en) Catalyst for removal of carbon monoxide
JP4551745B2 (en) CO removal catalyst and method for producing the same
JP5164297B2 (en) CO oxidation catalyst and method for producing hydrogen-containing gas
JP4172139B2 (en) CO removal catalyst and CO removal method using the same
EP1257502A1 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
JP2006239551A (en) Co methanizing catalyst, co removing catalyst device and fuel cell system
JP4970719B2 (en) CO removal catalyst and method for producing the same
JP2010184237A (en) Co-removing catalyst and method for producing the same
JPH0691173A (en) Catalyst for low pressure degradation-desulfurization and its utilization
JP4652834B2 (en) CO removal catalyst and method for producing the same
US8349762B2 (en) Method for producing catalyst for use in preferential oxidation reaction of carbon monoxide
JP2009189911A (en) Catalyst body selectively oxidizing carbon monoxide, filter using it and device for selectively removing carbon monoxide
JP4705375B2 (en) Method for stabilizing and activating CO removal catalyst
JP2002273223A (en) Method for manufacturing co removing catalyst
JP4820106B2 (en) Method for reducing CO selective oxidation catalyst
JP2006044965A (en) Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees